Mimicking Portfolios

Richard Roll & Akshay Srivastava
California Institute of Technology
Mimicking Portfolios

By

Richard Roll and Akshay Srivastava
California Institute of Technology
January 2018

Abstract

Mimicking portfolios have many applications in the practice of finance. Here, we present a new method for constructing them. We illustrate its application by creating portfolios that mimic individual NYSE stocks. On the construction date, a mimicking portfolio exactly matches its target stock’s exposures (betas) to a set of ETFs, which serve as proxies for global factors, and the portfolio has much lower idiosyncratic volatility than its target. Mimicking portfolios require only modest subsequent rebalancing in response to instabilities in target assets and assets used for portfolio construction. Although composed here exclusively of equities, mimicking portfolios show potential for mimicking non-equity assets as well.
I. Introduction.

For almost half a century, since the seminal work of Merton (1973) and Ross (1976), academics in finance have been writing about multi-factor models of asset returns. There have been hundreds of scholarly publications and over 300 candidates suggested as possible factors, (Harvey, et al, (2016)). More recently, financial institutions have fully embraced the basic idea, coining terms such as “smart beta” to make multi-dimensional investing sound more sophisticated to clients.

There is little doubt that common pervasive factors are indeed the main drivers of returns for well-diversified portfolios. We know this must be true because diversification does not eliminate all volatility, perhaps only half of it for the average large fund. Moreover, there must be several factors because well-diversified portfolios in different asset classes or countries are not typically highly correlated (and they would be if there were only a single common pervasive factor.)

One can go even further and assert the following fundamental truth: **diversification is factor investing.** Almost 100% of the returns to a well-diversified portfolio are dictated by its sensitivities (often called “betas”) to common pervasive factors. True, many investors and investment managers do not know exactly which factors are driving their portfolios, but everyone should know by now that some factors are doing so.

Because the multi-factor paradigm has become so prevalent among both academics and practitioners, there is a growing need for tools to manage multi-dimensional risks, which is essentially the difficult task of identifying the underlying pervasive factors and managing every diversified portfolio’s sensitivities to them. This paper is devoted to one particular highly useful tool, the mimicking portfolio.

A mimicking portfolio is a tradable fund engineered to closely copy the factor sensitivities of an individual asset, a fund, or a non-tradable variable such as a macro-economic quantity. To be useful, the mimicking portfolio must have two attributes: (a) it is composed only of liquid and easily tradable assets and (b) it retains only a small amount of return volatility which is not explained by the pervasive factors.

Mimicking portfolios have many potential uses, including, (though not limited to)
• Evaluating active manager performance
• Substituting for a desired investment in illiquid assets
• Determining the true potential for improved diversification
• Understanding the sources of past return volatility
• Predicting the likely level of future return volatility.

Our paper is preceded and closely related to Lamont (2001) and to Cooper and Priestley (2011). Lamont presents a method of constructing mimicking portfolio to match various macroeconomic variables such as GDP and Unemployment. Cooper and Priestley focus on the asset pricing risk factors first suggested by Chen, et al., (1986), which in some cases were also macroeconomic variables and in other cases were higher frequency market observations intended to capture aggregate sentiment.\(^1\) We intend to buttress this work by developing methods for constructing mimicking portfolios to a general set of factors, and providing evidence for their robustness over time in the specific case of global market factors.

The next section provides the mathematical underpinning of mimicking portfolio analysis, and gives a general closed form for their construction. Section III then provides an empirical implementation and numerical examples. Section IV concludes and offers suggestions for further research.

II. Mimicking Portfolio Algebra.

We begin by assuming that the underlying pervasive risk factors are known or else can be spanned by a fixed and equal number of observable indexes (or funds). The basic multiple-factor paradigm stipulates that the return on any asset, say stock \(j \) observed over an interval ending at time \(t \), can be written as a linear function,

\[
R_{j,t} = \alpha_j + \beta_{j,1} f_{1,t} + \beta_{j,2} f_{2,t} + \ldots + \beta_{j,K} f_{K,t} + \epsilon_{j,t}
\]

\(^1\) For example, Chen, et al., used the change in corporate bond credit spreads as a proxy for investor confidence.
where the f’s denote the pervasive factors while the β’s are factor sensitivities; α_j is an intercept constant and ε(j,t) represents a residual or “diversifiable” risk that is unrelated to the factors and is also uncorrelated across individual assets. Throughout the duration of this paper we will interchangeably refer to the volatility of this term as the idiosyncratic volatility or the residual volatility. The time interval itself can be any length desired, e.g., daily, weekly, monthly, etc.

Identifying the number of pervasive factors, K, is ultimately empirical and for now we simply assume that we know it. Theoretically, K could be almost any number greater than one, but the fervent hope is that it’s not too large and that (1) is parsimonious. Since K is theoretically unspecified, model (1) doesn’t really assume very much. Presumably, just about any asset’s return could be written as a function of K factors plus some residual volatility.

The factor sensitivities and the intercept cannot be just any numbers imaginable. To prevent arbitrage, Ross (1976) showed that the mean return for stock j, (the expected value of the variable on the left side of (1)), had to be the same linear function of the β’s for every asset. This is the essence of Ross’ “Arbitrage Pricing Theory,” also known as the APT, which is widely used today as the underlying scientific foundation of multi-factor investing.²

Mimicking portfolios can be a useful tool without knowing for sure whether Ross’ no arbitrage result is fully in effect. We can employ the linear model (1) without worrying about possible equilibrium conditions for the β’s.

A well-diversified portfolio has returns that are driven mainly by the non-diversifiable factors in (1); its remaining residual risk is minimal because residuals in (1) are uncorrelated across the assets within the portfolio and are consequently diversified away. Indeed, a fully diversified portfolio p’s returns would be

\[R_{p,t} = \alpha_p + \beta_{p,1} f_{1,t} + \beta_{p,2} f_{2,t} + \ldots + \beta_{p,K} f_{K,t}. \]

(2)

Note that the pervasive factors (f’s) are exactly the same in (2) as in (1) but the factor sensitivities (β’s) and intercept (α) are different; in (2) they are weight-averaged over the

² Ross’ no arbitrage conditions is \(E(R_j) = \lambda_i + \lambda_i \beta_{j,1} + \ldots + \lambda_K \beta_{j,K} \) for all j, where the \(\lambda_i \)’s are the same for every j, \(\lambda_i \) is a risk premium associated with pervasive factor i and \(\lambda_0 \) is a riskless rate of return.
individual assets in the entire portfolio. There is no longer any residual volatility (\(\varepsilon\)), which algebraically portrays the fact that return variability of a completely diversified portfolio is determined entirely by the factors (the \(f\)'s) acting through the sensitivities (the \(\beta\)'s.)

The sensitivities themselves are a matter of financial engineering. By astute weighting of the individual assets in portfolio \(p\), the \(\beta\)'s can be determined in advance. Indeed, if short positions or futures are available, each of the \(K\) \(\beta\)'s in (2) can be set to virtually any level desired. Once the portfolio composition (individual stock weightings) are selected, the \(\beta\)'s are simply weighted averages, with the same weights. The portfolio’s return over the subsequent period ending at \(t\) is fully dictated by the pre-determined \(\beta\)'s (plus \(\alpha_p\)) and whatever the factors values turn out to prevail at \(t\).

II.A. Some Uses of Mimicking Portfolios.

Active management has just two ways of producing superior performance, selection and timing. In either case, a mimicking portfolio such as the perfectly diversified one depicted in (2) can be used as a benchmark. If the manager is a stock picker, the \(\beta\)'s of the benchmark are constructed to identically match those of the managed portfolio. Return performance is simply the managed portfolio’s ex post intercept less the benchmark’s intercept.

In contrast, a timing manager is attempting to predict the ex post realization of one or more factors, which implies that one or more \(\beta\)'s are changed accordingly from period to period; i.e., a \(\beta\) will be increased in a period when its corresponding factor is predicted to be large and positive, and vice versa. In this case, the mimicking benchmark would have \(\beta\)'s fixed as constant time series averages of the \(\beta\)'s of the managed portfolio. Again, the ex post difference in intercepts measure performance.

Another important application of mimicking portfolios is for estimating the benefits of diversification. As discussed by Pukthuanthong and Roll (2009) and by Roll (2013) more forcefully, the simple correlation between already diversified portfolios is a completely inadequate metric for assessing whether combining the two would help reduce risk. The reason is simple: a mimicking portfolio for, say, portfolio B can be constructed by re-weighting the individual assets already in, say, portfolio A. If that mimicking portfolio of A assets, denoted
A*, has minimal residual risk, there is little benefit from combining A and B, even if A and B are only weakly correlated to start with.

For example, Roll (2013) shows that the global minimum variance portfolio that can be obtained by combining A*, the B-mimicking portfolio from A assets, with the original portfolio B has a weight in the original portfolio B equal to

$$w = \frac{\text{Var}(\varepsilon_{A^*})}{[\text{Var}(\varepsilon_{A^*}) + \text{Var}(\varepsilon_{B})]}$$

Where $\text{Var}(\varepsilon_{A^*})$ is the residual variance of A*, the B-mimicking portfolio of A assets constructed to have B’s set of β’s, and $\text{Var}(\varepsilon_{B})$ is the residual variance of the original portfolio B. In other words, when the mimicking portfolio has zero residual volatility, there is no diversification benefit at all. Notice that original correlation between A and B plays no role in this calculation.

II.B. Construction Method for Mimicking Portfolios.

A mimicking portfolio matches the exposures of a target underlying asset, which may itself be an individual asset or a portfolio, while minimizing residual volatility. Let N denote the number of assets used in forming the mimicking portfolio and let T denote the number of return observations available for all relevant time series.

For the target asset j, equation (1) is fit using ordinary least squares (OLS), which results in estimates of all its parameters; the K estimates of the β’s are $\hat{\beta}_{j,1}, \ldots, \hat{\beta}_{j,K}$, the intercept estimate is $\hat{\alpha}_j$ and the OLS residual at time t is $\hat{\epsilon}_{j,t} = R_{j,t} - [\hat{\alpha}_j + \hat{\beta}_{j,1} f_{1,t} + \hat{\beta}_{j,2} f_{2,t} + \ldots + \hat{\beta}_{j,K} f_{K,t}]$. The unbiased OLS residual variance is given by $\hat{\sigma}_j^2 = \frac{\sum_{t=1}^{T} \hat{\epsilon}_{j,t}^2}{(T - K - 1)}$. ³

Then, for each of the N assets preselected to be included in the mimicking portfolio, the same OLS estimation is conducted, not necessarily over the same time period, though the form of the estimates is identical to that of the target asset j just above. Under the utmost generality, dependence is allowed among these N residuals and the covariance between the residuals of asset i and m is denoted $\hat{\sigma}_{i,m}$. Note that the sample residual variance for asset i is simply $\hat{\sigma}_{i,i}$.

³ Henceforth, a statistical estimate will be indicated by ^ above the symbol.
A mimicking portfolio is a weighted average of the N assets with weights given by the column vector \(\mathbf{w} = (w_1, ..., w_N) \).\(^4\) Formally, the optimization problem whose solution gives the mimicking portfolio weights is

\[
\begin{align*}
\text{Min}_{\mathbf{w}} & & \sum_{i=1}^{N} \sum_{m=1}^{N} w_i w_m \hat{\sigma}_{i,m} \\
\text{subject to} & & \sum_{i=1}^{N} w_i = 1 \text{ and } \sum_{i=1}^{N} w_i \hat{\beta}_{i,k} = \hat{\beta}_{j,k} \forall k
\end{align*}
\]

This is a constrained multivariate optimization which can be solved using Lagrangian multipliers. The associated Lagrangian is

\[
\mathcal{L} = \sum_{i=1}^{N} w_i^2 \hat{\sigma}_i^2 + \sum_{i,m} 2w_i w_m \hat{\sigma}_{i,m} + \xi_1 \left[-\beta_{i,1} + \sum_{i=1}^{N} w_i \hat{\beta}_{i,1} \right] + \cdots + \xi_K \left[-\beta_{j,K} + \sum_{i=1}^{N} w_i \hat{\beta}_{i,K} \right] + \xi_{K+1} \left[-1 + \sum_{i=1}^{N} w_i \right]
\]

\[
\Rightarrow \mathcal{L} = \sum_{i=1}^{N} w_i^2 \hat{\sigma}_i^2 + \sum_{i,m} 2w_i w_m \hat{\sigma}_{i,m} + \sum_{m=1}^{K} \xi_m \left[-\beta_{j,m} + \sum_{i=1}^{N} w_i \hat{\beta}_{i,m} \right] + \xi_{K+1} \left[-1 + \sum_{i=1}^{N} w_i \right]
\]

This system can be solved exactly from first order conditions, taking the partial derivatives of the above Lagrangian first with respect to each \(w_i \) and then with respect to the \(\xi_i \). The partial derivative of (1) with respect to \(w_i \) is

\[
\frac{\partial \mathcal{L}}{\partial w_i} = \sum_{m=1}^{N} 2w_m \hat{\sigma}_{i,m} + \sum_{m=1}^{K} \xi_m \hat{\beta}_{i,m} + \xi_{K+1} = 0 \text{ for } i = 1, 2, ..., N
\]

There are N equations of the above form, each one linear in \(\mathbf{w} \), so the entire system can be expressed compactly in matrix notation. Define \(\mathbf{\Sigma} \) to be the \(N \times N \) variance-covariance matrix of the regression residuals, and define

\(^4\) Vectors and matrices are indicated by boldface.
The system of equations (1) can thus be expressed as

\[2\Sigma w = -A\xi \rightarrow w = -\frac{1}{2}\Sigma^{-1}A\xi \]

(2)

Notice that in order for equation (2) above to be valid, the covariance matrix \(\Sigma \) must be non-singular, which will not be the case when there are fewer sample dates than assets.

There are at least two ways this problem can be overcome. First, given a sample of size \(T \), the number of assets \(N \) used in constructing a mimicking portfolio can be made strictly less than \(T \) and, for efficiency, considerably less than \(T \). This would seem to be an easy enough condition unless \(T \) is very small. Alternatively, the problem can be finessed by making a particular reasonable assumption that results in the alternative procedure outlined in the next section.

We proceed by taking the partials of (1) with respect to each \(\xi_j \) for \(j = 1, 2, \ldots, K \) to produce \(K \) additional equations each of the form

\[\frac{\partial L}{\partial \xi_i} = \sum_{m=1}^{N} w_m \beta_{m,i} - \beta_{j,i} = 0 \]

(3)

Taking the partial with respect to \(\xi_{K+1} \) gives the normalization condition on the system as

\[\sum_{i=1}^{N} w_i - 1 = 0 \]

(4)
Notice that the system of $K + 1$ equations formed by (3) and (4) is $A'w = c$. Inserting the expression for w from (2) above into this gives that

$$A'S^{-1}A\xi = -2c \tag{5}$$

Notice that $A'S^{-1}A$ is a square $(K + 1) \times (K + 1)$ matrix, that is assumed to be invertible. However, A is not square and so $(A'S^{-1}A)^{-1} \neq A^{-1}\Sigma(A')^{-1}$. With this in mind, we can write that

$$\xi = -2(A'S^{-1}A)^{-1}c \tag{6}$$

Inserting (6) into (2) provides the solution

$$w = -\frac{1}{2}s^{-1}A\xi = s^{-1}A(A'S^{-1}A)^{-1}c \tag{7}$$

II.C. Assuming Orthogonal Residuals

The solution in II.B above requires non-singularity of the covariance matrix Σ and the matrix $A'S^{-1}A$. If the residuals are assumed to be mutually orthogonal, then these conditions are assured. With many factor models, mutual orthogonality should be approximately valid because the factors subsume most of the commonality. The assumption of orthogonality also obviates any worry about non-stationarity in residual correlations; they’re always zero, by assumption.

Hence, Σ^{-1} becomes diagonal:

$$\begin{bmatrix}
1/\hat{\sigma}_1^2 & 0 & \cdots & 0 \\
0 & 1/\hat{\sigma}_2^2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1/\hat{\sigma}_N^2
\end{bmatrix}$$

Let $C = \sqrt{\Sigma^{-1}}A$ so that equation (7) can be written

$$w = \Sigma^{-1}A(C'C)^{-1}c \tag{8}$$

Now, the only matrix inverse required is $(C'C)^{-1}$ (since Σ^{-1} is already given explicitly above), and C is an $N \times (K + 1)$ matrix where we have that $N \gg K$, since the set of factors is relatively
parsimonious compared to the number of stocks, N. Thus, there should be no issues with singularity in this case and equation (8) should always be computationally feasible.

In the remainder of the paper, we assume orthogonal residuals. Even with this simplification, our method brings significant reductions in the idiosyncratic volatility of mimicking portfolios.

III.A. Factor Selection.

To provide an empirical demonstration of our method, we now move away from the full generality of mimicking portfolios for any set of factors, to focus on some specific global factors. In accordance with previous literature (Pukthuanthong and Roll (2009) and many others), we assume the existence of global factors that drive asset returns across well-integrated international markets. The covariance matrix of country-specific index returns for equities, fixed-income, and real estate can be employed to derive orthogonal principal components directly as factors (Cotter, et al., (2017)). However, we adopt a slightly different approach designed to proxy for the same underlying global market factors, which has the advantage of being both economically intuitive and easily observable.

Specifically, the vector space spanned by orthogonal factors obtained from a principal components analysis (PCA) can be also be spanned by a number of exchange traded funds (ETFs), provided that they are sufficiently heterogeneous. Hence, we consider a large number of ETFs exposed to major asset classes in broad geopolitical regions (USA, Eurozone, Asia, and Emerging Markets) as proxy-factors. But many existing ETFs may be “redundant” in the sense that their addition to the set of proxy-factors does not change the cumulative vector space spanned. To account for this fact, and to make our model more parsimonious, we compute the correlation matrix of candidate ETFs and retain only one from each pair whose correlation is higher than 0.7. The resulting eight ETFs, listed in Table 1, Panel A, are used in the remainder of this study as proxies for global market factors.

ETFs are a relatively recent innovation with various inception dates. Hence, our sample period begins when a sufficient number of heterogeneous ETFs becomes available, which in our case
falls on January 30, 2009. We then continue the sample through December 30, 2016. Panel B of Table 1 provides summary statistics for daily returns for the eight chosen ETFs over this sample period. Panel C reports the correlation matrix for their daily returns.

It is important to note that although ETF proxy factors likely span a similar vector space as the various factors considered in previous literature, they are not mutually orthogonal, which implies that exposures to individual factors need not correspond to any factors explored in the earlier literature or have any particular macroeconomic interpretation. Nonetheless, the magnitude of a given asset’s loadings over all of our ETF-based factors collectively should capture most of the relevant underlying information.

We define a mimicking portfolio to a given target asset as a portfolio with identical exposures to the factor-proxy ETFs, along with minimal remaining idiosyncratic volatility amongst all possible such portfolios. The idiosyncratic volatility of the target asset, in the case of global market factors, can be regarded as encapsulating both specific isolated events about that asset and also “local” or “regional” volatility. Consequently, the derived mimicking portfolio essentially presents the same exposure profile to global factors as the asset being mimicked, while reducing (and attempting to eliminate) the local risk involved. Such a mimicking portfolio should be useful for hedging away risk due to global market movements.

III.B. Sample Description

To obtain a tradeable set of individual assets to use as targets and also as constituents of mimicking portfolios, we download NYSE-listed stocks from CRSP\(^5\) and remove those with incomplete data over the 2009-2016 period, resulting in a universe of 1,634 assets. These stocks might be susceptible to a survivorship bias, because they do not include stocks that are delisted before the end of the period or IPOs that go public during the period. However, since we are not concerned with average return performance *per se*, survivorship effects are not pertinent to this study and should not confound any of our conclusions.

\(^5\) Center for Research in Securities Prices. We use only NYSE stocks because they are typically more liquid.
III.C. Cross-Sectional Analysis

We now provide evidence that mimicking portfolios constructed as described in Section II.C, under the assumption of orthogonal residuals, perform as expected, and report further on the robustness of their main characteristics.

We construct a mimicking portfolio for each of the 1,634 target assets on the last day of each calendar month, provided that there were at least 250 trading days before that date. To do so, we first estimate the OLS parameters of the target asset using data from the 300 prior trading days (or up to 300 but not less than 250 for the initial dates when we have insufficient data). Then, the estimated parameters are inserted into equation (8) to obtain mimicking portfolio weights, which we hold constant until the next rebalancing date, at which time the procedure is repeated. This yields a time series of returns for 1,634 mimicking portfolios, one for each target asset. Note that this time series excludes the initial period during which there are insufficient data (before January 29, 2010).

Even though they are formed under the simplified assumption of orthogonal residuals, the resulting mimicking portfolios have much smaller idiosyncratic volatility than the original assets. To see this, we estimate the residual variance of each target asset \(j \) and its associated mimicking portfolio \(M_j \) over the 100 days subsequent to each rebalancing date, and then record their relative difference, \(1 - \sigma^2_{M_j}/\sigma^2_j \). Figure 1 depicts the cross-sectional distribution of this difference; the cross-sectional mean is solid while the 25th and 75th percentiles are dashed and two standard deviations above and below the mean are shaded.

As would be expected given that the portfolio formation objective is minimization of variance, mimicking portfolios do provide roughly an 80 percent reduction on average. This is accomplished, by the way, despite having assumed, perhaps wrongly, that individual stock residuals are orthogonal to one another. Note that each target asset can be held within its own mimicking portfolio, but its own weight is likely to be very small because of diversification.

6 When this date falls on a non-trading day, we use the closest available trading day instead.

7 Note that the data are asymmetric so that no value necessarily lies at the boundary of the shaded region; in particular, the ratio of variances is strictly positive, so there are no value in Figure 1 above 1.0, though the shading extends above that level.
Moreover, mimicking portfolios match the betas of their underlying target assets reasonably well, even with rather slow (monthly) rebalancing. Of course, on the rebalancing date itself, the betas match exactly, but we look further in the future and examine how they fare over the 100 days immediately afterward. To facilitate this examination, we re-compute OLS regressions for each target and its mimicking portfolio over the 100 post-rebalancing days. The familiar OLS standard error of beta is \(\hat{\sigma}_{\hat{\beta}_{j,k}} \) for target j’s beta on the kth factor. The normalized beta difference between target j and its mimicking portfolio \(M_j \) is thus

\[
\left| \hat{\beta}_{j,k} - \hat{\beta}_{M,j,k} \right| / \hat{\sigma}_{\hat{\beta}_{j,k}}
\]

We record the mean across eight factors of this difference and report the cross-sectional distribution in Figure 2. As in Figure 1, the cross-sectional mean is solid and the 25th and 75th percentiles are dashed with shading plus or minus two standard deviations around the mean. The mean is less than one, and fifty percent of the values lie within plus or minus 0.2 target standard errors of one. Hence, in the majority of cases, mimicking portfolios are tracking their targets quite well over the 100 days after portfolio formation.

III.D. Decay in the Quality of Mimicking Induced by Non-Stationarities

We now investigate how well mimicking persists without rebalancing. Since mimicking portfolios are constructed to mimic their target assets only *at a specific point in time*, non-stationarity in the assets used for portfolio construction and in the target assets themselves could very well bring decay in the quality of mimicking. We explore this effect with our global market factor model, but note that the decay might be different for other models.

Specifically, we construct a mimicking portfolio for each asset in our stock universe on January 25, 2011 (the 500th date in our sample, chosen as an arbitrary date with sufficient return history). The necessary parameters for construction are estimated using the 300 trading days prior to this date, and the calculation is performed using the same assumption of orthogonal residuals employed in the cross-sectional analysis above. However, since we are now interested in analyzing how quickly mimicking portfolios lose their desired properties in the absence of periodic updating, *the original portfolio weights* are fixed for the remainder of the sample period. Subsequent to January 25, 2011, we simply calculate returns of these fixed-weight portfolios.
These portfolios could eventually become stale because they do not incorporate any new information after construction. To measure this quantitatively, we use the same metrics as before but now compare possibly stale mimicking portfolios (which are never rebalanced) to their underlying target assets. On each date subsequent to January 25, 2011 we use the 100 prior days to estimate factor betas and idiosyncratic volatilities of the target asset and its stale mimicking portfolio, and then we compute their normalized spreads.

This differs from our previous analysis in two ways. First, the mimicking portfolios are now possibly stale instead of being rebalanced monthly. Second, instead of using the 100 days after each rebalancing date for parameter estimation, we now look at every date subsequent to the construction date and use the 100 prior days for estimation.

Figure 3 reports on the spread in idiosyncratic volatility, again computed as a simple percent difference. Interestingly, this figure reveals that even several years after portfolio construction, at which point in time one would almost surely expect the original information to be stale, mimicking portfolios offer significant reductions in idiosyncratic volatility, at least on average. However, the pink shading shows that the cross-sectional spread of the metric is widening over time, which suggests some decay for individual cases.

Figure 4 reports on the spread in factor betas, again using the average absolute t-statistic described in the previous cross-sectional analysis. This metric is also stable, with the mean cross-sectional value remaining below two even five years after portfolio construction. There is a modest increase after about three years with little subsequent increase. But the top of the pink shaded area shows a larger upswing, which is evidence that decay is more substantial in some stocks.

To verify the stability in target assets betas, we compute them and their associated standard errors for every underlying asset on the construction date; then, on each subsequent date we recalculate them and record the difference between the new betas and the original betas normalized by the estimated standard errors from the initial date. The cross-sectional distribution of the resulting vector is plotted in Figure 5. The mean difference grows for about a year and then is virtually stationary thereafter. This confirms that, on average, betas are quite stable. Again, however, there are individual stocks in the extremes depicted by the pink shading that exhibit substantial non-stationarity which is accentuated as time progresses.
IV. A Case Study: Mimicking Portfolios of Equities for Non-Equity Assets

The analysis thus far shows that mimicking portfolios reduce idiosyncratic volatility relative to underlying single-name equities, while still providing closely matched exposures to market risk factors. We now examine whether portfolios composed only of equities can mimic non-equity portfolios.

As a demonstration, we consider as targets two ETFs not previously used: LQD, an investment grade corporate bond ETF, and RWX, an international real-estate ETF. Notice that both of these ETFs are already broad, diversified portfolios. We construct mimicking portfolios for these two targets using the exact same procedure as previously described. Figure 6 compares idiosyncratic volatilities and Figure 7 depicts the differences in their factor exposures.

As shown in Figure 6, the idiosyncratic variance of the mimicking portfolio for LQD is often higher than that of LQD itself. This suggests that bond portfolios have very low idiosyncratic variance and equity-only portfolios are unlikely to lower it further. In contrast, for the real estate ETF, RWX, there is some reduction in idiosyncratic variance except during a brief interval between 2014 and 2015.

Figure 7 demonstrates that the mimicking portfolio for RWX matches the exposures of its underlying assets fairly well, although we see significantly more deviation from the underlying asset for LQD than was observed in the cross-sectional results above.

The rather discouraging results in Figure 6, particularly for LQD, can be explained in part by the residual volatilities themselves, as plotted in Figure 8. Both RWX and LQD have small residual volatilities, but LQD’s is much the smaller of the two, often only ¼ to ½ that of RWX and indeed is sometimes close to zero. Any mimicking equity-only portfolio is unlikely to improve on this situation. Also, very low standard error of betas magnifies the difference shown in Figure 7. The one episode when the mimicking portfolio for RWX performs especially poorly, between 2014 and 2015, corresponds exactly to when the residual volatility of RWX drops by nearly 50 percent, providing further evidence for low idiosyncratic volatility causing the degradation in results.

These results could very well have been anticipated. Any extremely well-diversified portfolio such as LQD, whose idiosyncratic volatility is already very small, is not likely to be well-
mimicked by a portfolio constructed of assets in another class. In this particular instance, the simple correlation is quite high between LQD and one of our proxy factors, AGG. AGG is a US aggregate bond ETF, which is highly sensitive, of course, to bond prices including the corporate bonds in LQD. Essentially, the resulting poor mimicking property cannot be ascribed to the method itself but rather to the choice of proxy factors. If one of those proxies is highly correlated with the target, the residual volatility will be minimal by construction. The method works much better when no proxy factor is too highly correlated with a target.

V. Conclusion

In the multi-factor world of recent finance, mimicking portfolios have many uses ranging from estimating the true potential for diversification to evaluating active manager performance. In this paper, we propose a new method for constructing mimicking portfolios.

In a nutshell, our estimation guarantees that the factor sensitivities of the target asset being mimicked are exactly matched on the mimicking portfolio’s construction date. This is achieved by a constrained optimization that minimizes residual volatility. To illustrate the application of our procedure, we employ a set of ETFs as proxies for global factors and construct mimicking portfolios for each NYSE stock. The mimicking portfolios have smaller residual volatilities than the individual stocks, as one would expect. Further, the factor sensitivities (betas) match perfectly on the initial date.

We then study how well the mimicking portfolios retain their matching properties as individual stock betas evolve along with the betas of the constituents of the mimicking portfolios. Perhaps surprisingly, the matching is retained for several weeks, even months, after portfolio formation, but eventual rebalancing becomes essential at some point, depending on the underlying extent of non-stationarity in target assets. This implies that mimicking portfolios for diversified targets would likely retain their desirable properties even longer because such targets are inherently more stable than individual stocks.

We also study (briefly) the use of mimicking portfolios constructed from equities for matching assets in other classes such as fixed income. Understandably, the mimicking in such instances is
less precise which suggests that mimicking portfolios in various asset classes should be constructed with some assets within the same class.

Cotter, John, Stuart Gabriel, and Richard Roll, 2016, Nowhere to Run, Nowhere to Hide Asset Diversification in a Flat World, (UCLA working paper, October.)

Harvey, Campbell R., Yan Liu, and Heqing Zhu, 2016, …and the Cross-Section of Expected Returns, *The Review of Financial Studies* 29, 5-68

Table 1: ETF Proxies for Global Factors

Panel A: Identities of Factor-Proxy ETFs

Eight ETFs, representing various asset classes and major geographic regions, serve as our proxies for global factors. Data for these ETFs span January 30, 2009 through December 30, 2016, 1995 trading days.

<table>
<thead>
<tr>
<th>Name</th>
<th>Ticker</th>
<th>Region</th>
<th>Asset Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>iShares Core U.S. Aggregate Bond ETF</td>
<td>AGG</td>
<td>USA</td>
<td>Fixed-Income</td>
</tr>
<tr>
<td>iShares U.S. Real Estate ETF</td>
<td>IYR</td>
<td>USA</td>
<td>Real-Estate</td>
</tr>
<tr>
<td>iShares International Treasury Bond</td>
<td>IGOV</td>
<td>Eurozone</td>
<td>Fixed-Income</td>
</tr>
<tr>
<td>iShares Europe Developed Real Estate ETF</td>
<td>IFEU</td>
<td>Eurozone</td>
<td>Real-Estate</td>
</tr>
<tr>
<td>iShares J.P. Morgan USD Emerging Markets Bond ETF</td>
<td>EMB</td>
<td>Asia ex Japan</td>
<td>Fixed-Income</td>
</tr>
<tr>
<td>iShares MSCI Japan ETF</td>
<td>EWJ</td>
<td>Japan</td>
<td>Equities</td>
</tr>
<tr>
<td>iShares MSCI Hong Kong ETF</td>
<td>EWH</td>
<td>Hong Kong</td>
<td>Equities</td>
</tr>
<tr>
<td>iShares S&P GSCI Commodity-Indexed Trust</td>
<td>GSG</td>
<td>International</td>
<td>Commodities</td>
</tr>
</tbody>
</table>

Panel B: Factor-Proxy ETF Daily Return Summary Statistics

Summary statistics for returns in percent per day for ETFs listed in Panel A

<table>
<thead>
<tr>
<th></th>
<th>AGG</th>
<th>IYR</th>
<th>IGOV</th>
<th>IFEU</th>
<th>EMB</th>
<th>EWJ</th>
<th>EWH</th>
<th>GSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>0.0149</td>
<td>0.0741</td>
<td>0.0053</td>
<td>0.0559</td>
<td>0.0322</td>
<td>0.0311</td>
<td>0.0543</td>
<td>-0.0166</td>
</tr>
<tr>
<td>std</td>
<td>0.2316</td>
<td>1.6921</td>
<td>0.5592</td>
<td>1.5538</td>
<td>0.5084</td>
<td>1.2196</td>
<td>1.2991</td>
<td>1.3858</td>
</tr>
<tr>
<td>min</td>
<td>-1.244</td>
<td>-10.7043</td>
<td>-2.1629</td>
<td>-12.1189</td>
<td>-4.4433</td>
<td>-7.0305</td>
<td>-6.1665</td>
<td>-7.0648</td>
</tr>
<tr>
<td>25%</td>
<td>-0.119</td>
<td>-0.5666</td>
<td>-0.3355</td>
<td>-0.7548</td>
<td>-0.2005</td>
<td>-0.622</td>
<td>-0.6137</td>
<td>-0.8043</td>
</tr>
<tr>
<td>50%</td>
<td>0.0267</td>
<td>0.0976</td>
<td>0.0194</td>
<td>0.107</td>
<td>0.044</td>
<td>0.081</td>
<td>0.0519</td>
<td>0</td>
</tr>
<tr>
<td>75%</td>
<td>0.1578</td>
<td>0.7305</td>
<td>0.3493</td>
<td>0.8686</td>
<td>0.2703</td>
<td>0.7293</td>
<td>0.7394</td>
<td>0.7428</td>
</tr>
<tr>
<td>max</td>
<td>1.5891</td>
<td>14.9897</td>
<td>2.6738</td>
<td>7.3864</td>
<td>3.5025</td>
<td>7.8227</td>
<td>8.7845</td>
<td>5.5844</td>
</tr>
</tbody>
</table>

Panel C: Factor-Proxy ETF Daily Return Correlations

Larger correlations are more darkly colored

<table>
<thead>
<tr>
<th></th>
<th>AGG</th>
<th>IYR</th>
<th>IGOV</th>
<th>IFEU</th>
<th>EMB</th>
<th>EWJ</th>
<th>EWH</th>
<th>GSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGG</td>
<td>-0.078</td>
<td>0.31</td>
<td>-0.124</td>
<td>0.195</td>
<td>-0.151</td>
<td>-0.196</td>
<td>-0.191</td>
<td></td>
</tr>
<tr>
<td>IYR</td>
<td>0.203</td>
<td>0.539</td>
<td>0.299</td>
<td>0.545</td>
<td>0.586</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGOV</td>
<td>0.358</td>
<td>0.251</td>
<td>0.181</td>
<td>0.127</td>
<td>0.218</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFEU</td>
<td>0.391</td>
<td>0.558</td>
<td>0.566</td>
<td>0.444</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMB</td>
<td></td>
<td>0.281</td>
<td>0.348</td>
<td>0.262</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWJ</td>
<td></td>
<td></td>
<td>0.632</td>
<td>0.384</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWH</td>
<td></td>
<td></td>
<td></td>
<td>0.446</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Panel D: Case Study Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>LQD</th>
<th>RWX</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGG</td>
<td>0.785</td>
<td>-0.151</td>
</tr>
<tr>
<td>IYR</td>
<td>0.136</td>
<td>0.704</td>
</tr>
<tr>
<td>IGOV</td>
<td>0.333</td>
<td>0.329</td>
</tr>
<tr>
<td>IFEU</td>
<td>0.065</td>
<td>0.783</td>
</tr>
<tr>
<td>EMB</td>
<td>0.306</td>
<td>0.418</td>
</tr>
<tr>
<td>EWJ</td>
<td>0.031</td>
<td>0.742</td>
</tr>
<tr>
<td>EWH</td>
<td>0.016</td>
<td>0.752</td>
</tr>
<tr>
<td>GSG</td>
<td>-0.056</td>
<td>0.51</td>
</tr>
</tbody>
</table>
The idiosyncratic variance of 1,634 NYSE individual target stocks and the idiosyncratic variance of each target’s mimicking portfolio are estimated over 100 days after each month-end rebalancing date. The relative difference is \(1 - \frac{\sigma_{\text{M}_j}^2}{\sigma_{\text{Y}_j}^2} \), for target \(j \) and mimicking portfolio \(\text{M}_j \). The cross-sectional mean and the 25th and 75th percentiles of the cross-sectional distribution of these differences are plotted over the sample of rebalancing dates. The pink shading represents plus or minus two standard deviations from the cross-sectional mean. Notice that no observations necessarily attain the values indicated by the shading, rather it indicates the spread in observations.
Figure 2: Exposure to Factors

We use the 100 days subsequent to each rebalancing date to estimate the factor betas for every target asset and its associated mimicking portfolio, and also estimate the standard errors of the target betas. The resulting normalized estimated beta difference between target j and its mimicking portfolio M_j is $|\hat{\beta}_{j,k} - \hat{\beta}_{M_j,k}| / \hat{\sigma}_{\hat{\beta}_{j,k}}$, where $\hat{\sigma}_{\hat{\beta}_{j,k}}$ is the OLS standard error for target j’s beta on the kth factor. The solid red line is the cross-sectional mean difference, and the two blue dashed lines are the 25th and 75th percentiles of the cross-sectional distribution of differences. The pink shading represents plus or minus two standard deviations from the cross-sectional mean. Notice that no observations necessarily attain the values indicated by the shading, rather it indicates the spread in observations.
The idiosyncratic variance of 1,634 NYSE individual target stocks and the idiosyncratic variance of each target’s stale mimicking portfolio are estimated over 100 days before each date after construction. The stale mimicking portfolios have their weights computed exactly once and then held constant for the remainder of the period. The relative difference is \(1 - \frac{\sigma_{M_j}^2}{\sigma_j^2}\), for target \(j\) and mimicking portfolio \(M_j\). The cross-sectional mean and the 25th and 75th percentiles of the cross-sectional distribution of these differences are plotted over the sample of rebalancing dates. The pink shading represents plus or minus two standard deviations from the cross-sectional mean. Notice that no observations necessarily attain the values indicated by the shading, rather it indicates the spread in observations.
Figure 4: Exposures to Factors Under Stale Information

We use the 100 days prior to each date after construction to estimate the factor betas for every target asset and its associated stale mimicking portfolio, and also estimate the standard errors of the target betas. The stale mimicking portfolios have their weights computed exactly once and then held constant for the remainder of the period. The resulting normalized estimated beta difference between target \(j \) and its mimicking portfolio \(M_j \) is

\[
\frac{|\hat{\beta}_{j,k} - \hat{\beta}_{M,j,k}|}{\hat{\sigma}_{\hat{\beta}_{j,k}}}
\]

where \(\hat{\beta}_{j,k} \) is the OLS standard error for target \(j \)’s beta on the \(k \)th factor. The solid red line is the cross-sectional mean difference, and the two blue dashed lines are the 25th and 75th percentiles of the cross-sectional distribution of differences. The pink shading represents plus or minus two standard deviations from the cross-sectional mean. Notice that no observations necessarily attain the values indicated by the shading, rather it indicates the spread in observations.
Figure 5: Drift in Factor Exposures: Underlying Assets

On each date, and for each target asset, we compute the absolute difference between the initial factor betas and the current factor betas, normalized with respect to the standard error in the initial factor beta estimates, and then take the mean of the resulting vector. The solid red line is the cross-sectional mean, and the two blue dashed lines are the 25th and 75th percentiles of the cross-sectional distribution. The pink shading represents plus or minus two standard deviations from the cross-sectional mean. Notice that no observations necessarily attain the values indicated by the shading, rather it indicates the spread in observations.
Figure 6: Equity Mimicking Portfolios for Non-Equity Targets: Idiosyncratic Volatility Comparison.

The idiosyncratic variance of two target non-equity ETF targets and the idiosyncratic variance of each target’s equity-only mimicking portfolio are estimated over 100 days after each month-end rebalancing date. The relative difference is $1 - \sigma_{M_j}^2 / \sigma_j^2$ for target j and mimicking portfolio M_j, which is plotted below for the two targets discussed in the text.
Figure 7: Case Study; Spread in Factor Betas

The normalized difference in factor betas described in the text is plotted again, but calculated for the two targets of our case study: LQD and RWX.
Figure 8: Case Study; Idiosyncratic Volatilities of Underlying Assets

We compute the idiosyncratic volatility of both underlying assets discussed in the case study using the 100 days subsequent to each rebalancing date again, and plot them below.