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Several connections between the concepts underlying the theory
of revealed preference and the concepts underlying solutions to cooperative
games, have been established by Wilson [ 9 ]. In this paper we provide
some new connections. Wilson established the relationship between the solu-
tion concept of Von Neumann and Morgenstern and the strongest forms of
rational choice found at Richter [ 6 ] and Hansson [ 4 ]. Here, for the cases
of finite sets of alternatives we provide connections with weaker '"degrees"

of rationality found at Plott [ 5], Richter [6], and Sen[7].

NOTATION AND FORMULATION

We let E be a universal set of alternatives and let B be a

nonempty family of subsets of E. The family B is a class of admissible

sets of feasible alternatives., A choice function is a function which has

B as a domain and subsets of E as the domain. If C(v) is a choice function

we assume that ¢ # C(v)Cv for v € B. The set C(v) is termed the ghoice

set and v is termed the fcasible set.
We are interested in structures for which C(v) is a model of a
process. The set v is the feasible set and C(v) are the ""outcomes,' 1If

C(v) is not a single element of E, then the interpretation is that the process

solution concept [ 8, pp.

has multiple "equilibriums’ for that feasible set. Since C(:) is a model
of a process there must be, of course, other parameters (such as individual
preferences). For purposes of this paper we assume they are constant
and therefore not listed. .
We will need the following definitions. For a given structure
Am. C(- .V we define a particular binary relation, V, on E. We say

xVy e=> {x = ioémi,\m :x € Clviky€ v).

B

A choice function is rational in case there exists a binary relation, R,

C(v) = {x € v: xRy for ally € v}.

on E such that A<<v<mm

Let Q be an arbitrary binary relation on E. We shall sometimes study

cholce structures, Am. C{- ~V , which have some of the following properties.

Congruence Property, CP(Q) : A<5xm<?«$<mm? € C(v) <> .mi«.mnxi" xQy)

Solution Property, SP(Q) : (Vx) _ (¥v)

xEv <mw7. € C(v) <> (Vy)

yecw) ™)

Core Property, KP(Q) : ?Jskm<2<v [x € C(v) sm=> A<$<m<x0«.u_.

vER
The first axiom has been motivated by the theory of revealed
preference. The second and third axioms come from game theory. In
order to see the first simply let Q be the binary relation V as defined
above. The axiom, in this special case, becomes equivalent to Richters
W - axiom which under certain conditions is equivalent to the weak axiom

of revealed preference.

The second two axioms in this axiomatic form have not received much

attention in the literature. Von Neumann and Morgenstern did axiomatize the

] but since then, to my knowledge, Wilson [ 9 | has

provided the only applicationof the axiom. In order tounderstand these axioms,



{magine that we are modeling a game, The universal set of alternatives
is a set E, but the feasible set v may not be the universal set. The

rules and structure of the game combine with individual preferences to
form a dominance relation, D, over the elements of E. That is, for any
pair if xDy we know the members of some coalition prefer x to y and

have the "power to enforce" x over y. Now if we let xQy mean y ""does not
dominate" x (i. e 7yDx) we can see that if (and only-if) .:ao choice

function satisfies SP(Q) the elements of C(v) form a Von Neumann-
Morgenstern solution. That is, every feasible, not chosen element

is dominated by some chosen element and if two elements are chosen
together, then neither dominates the other. Similarly, if the choice
function satisfies KP(Q), where Q means '"does not dominate, ' then C{v),

for any v, is the core of the underlying game.

RESULTS: REVEALED PREFERENCE

We wish first to focus on the relationship between the three
properties discussed and the propositions which underlie revealed
preference theory (namely the V relation and the concept of rational
choice). We show that when things are taken in the proper combination
each of the properties is equivalent to a different "degree' of rational
choice.

Theorem 1, Let E be finite and let 8 be power set (set of all subsets)

of E. The function C(-) satisfies CP(V) if and only if there exists a
binary relation R on E such that

1) ?.i<m C(v) = {x € v: xRy for all y € v}

P

'

ii) R is total and reflexive
and

iii) R is transitive.

Proof. This theorem is a special case of theorems developed at (6) and

(9).

Theorem 2. Let E be finite and let 8 be the power set (set of all subsets)

- of E and let R be any total, reflexive transitive binary relation on E.

Let C(v) = {x€ v: xRy for all y € v}. Then, in this case C(v) # ¢ for ve B
and the choice structure (B, C(:)? satisfies CP(V).

Proof. Again this is a special case of known results [ 6 ).

Definition: a binary relation R is said to be quasi-transitive in case

[xRy & - yRx] and [yRz & - zRy] implies [xRz & ™ zRx], i.e.,
xPy & yPz = xPz.

Theorem 3. Let E be finite and let B be the power set (set of all subsets)
of E. If the function C(*) satisfies SP(V) then there exists a binary relation
R on E such that

C(v) = {x€v: xRy for ally € v}

i) ?.$<mm

ii) R is total and reflexive
and

{li) R is quasi-transitive,

Proof. Suppose (f,C(")) satisfies SP(V) then {x € v : xVy for y € v} € C(v).
In order to see this assume xVy for all y € v and note that this implies

xVy for y € C(v) which, by SP(V), implies x ¢ C(v). Now, suppose x € C(v),



then, by definition xVy for all y € v 80 {x € v : xVy for y € v} D C(v).
From the two conclusions taken together we see that SP(V) implies

(Vv) mOT; = {x € v: xVy for y € v} which, by letting V = R becomes (i).
vi i :

€
Since {x,y} € B, for all x,y, we obtain (ii). With R as defined suppose
xPy and yPz. We know then, that y ¢ C({x,y, z}) since this would mean
yVx which, together with SP(V) means y € C({x, y}) and yRx contrary
to hypothesis. We know by a similar argument that z ¢ C({x,y, z}).
Consequently, x = C({x,y, z}) and = zVx, since, otherwise, by SP(V),
we would have z € C({x,y, z}). But 1zVx, bydefinition of R, means xPz,

so R is quasi-transitive as demanded by (iii). s

Theorem 4. Let E be finite and let R be any total, reflexive, quasi-

transitive binary relation on E. Let 8 be the power set of E and define
for v€ B, C(v) = {x € v: xRy for all y € v]. In this case (B, C(+))> satisfies
SP(V).

Proof of 4. We know from [ 7 , theorem ] that C(v) # ¢ for all
v € B. We note now that xRy if and only if xVy,

Suppose xVy. Then there is a v such that x ¢ C(v) and y ¢ v. But
then by construction of C(*), it follows that xRy. Suppose xRy. From
the construction of C(-) it follows that x ¢ C({x, y}) so we have xVy.

Chaining these two observations together with the definition of C(*) we get
(1 ?Sxm<2$<mm? € C(v) <=2 21«.@2& which implies

(2) ?5xm<2$<mm? € C(v) => ?.$<mo?vx<i.

Now suppose xo<< for all y € C(v) and that x, ¢ C(v). Since
x, ¢ C(v) and since C(*) is by (1) all of the V maximal elements, there

exists an. x such that 7V x Vx . Clearly x, ¢ C(v) for otherwise would

1 0 71
yield xo<x— contrary to construction. Since X ¢ C{v) there exists, by (1),
an x, such that = x_<xN. If xN € C(v) we would have xo<x~ from our

initial hypothesis but this would violate the conclusion ™ n°<N~ which
follows from the quasi-transitivity of R (and thus V), If x, € C(v), as

concluded, there exists, by virtue of (1), an Xy such that = x~<au. By

repeating the argument we obtain a sequence, XXXy, * 0, such

that for each i there exists an i + 1 such that Jn~<x~+_ is the case

and such that each element is distinct (If X, = X, then we would have,

contrary to hypothesis, ngm.xiu.%rm. “ s ey N_n-~.xr: = @).
This conclusion violates the assumption of finite E. We conclude then that

x, € C(v) or, in general that

(3) ?‘xrmc?i {x € C(v) «= (Vy) xVy].

véR y€eC(v)

We only need note that {2 ) and (3) together form a statement of SP(V)»

Theorem 5. Let E be finite and let § be power set (set of all subsets)

of E. If Am. C(* vv satisfies KP(V) then there exists a binary relation
R on E such that

i) ?«<v<m C(v) = {x € v: xRy for ally ¢ v}

B

if) R is total and reflexive.
Proof. Suppose Am.OA;V satisfies KP(V). Then, by definition, V
satisfies (i) and since B contains all two element sets V satisfies (if).

Simply let R = V and we are finished s

Theorem 6. Let E be finite and let § be the power set of E and let R be

any binary relation such that C{v) # ¢ for ve p and C(v) = {x € v : xRy
for ally € v}. In this case {B,C(*)) satisfies KP(V).

Proof, We note xRy <=> xVy and the statement of the definition of
C(*) becomes KP(V) o
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RESULTS: REVEALED DOMINANCE

The above results establish the relationship between the axioms
and a particular binary relation. This binary relation, V, is determined by
the internal structure of the particular choice function under consideration.
It remains to establish relationships between a choice function and the
structure of some, arbitrary, underlying dominance relation.

Consider the following motivation. We have observed (or are
observing) the cperations of a process. We know little or nothing about
the underlying institutions but we would like to begin an investigation
of them. Only the choices C(v,¥) where 3 is a vector of parameters
and v is the feasible set, are known. * Could this choice function have
been generated by an underlying cooperative game? If so, what is the
structure of the game?

These questions cannot be completely answered now, even though
some headway has been made [Bloomfield (1 ), Bloomfield and Wilson
(2)]). For now we supply an answer to a subproblem. If the parameters
& are fixed and if C(*) is a Von Neumann-Morgenstern solution to some
underlying dominance relation D, what is that dominance relation?

Does the process act as if such an underlying dominance relation exists?
We answer this question for the special case where E is finite and we

have observed the value of C(v) for all possible states of v and most

importantly where C(-) is rational.

Definition: Let D be a "dominance relation'; xDy means x "dominates'

y in the sense of Von Neumann and Morgenstern. We define xUy <= - yDx;

xUy means x is undominated by y.

*
The difficult operational problems posed by the possibility that
C(-,*) contains more than one element, will not be addressed.

Theorem 7: If C(v) # ¢ for all vcC E, E is finite and there exists a
C(v) = {x € v: xRy

total, reflexive binary relation, R, such that ?};ﬁnm
for all y € v} then there exists an asymmetric binary relation D, over E,

such that (Vv) [{x,y € C(v)=> [7xDy & 1 yDx}] and {y € v\C(v)=>

vCE
(@x)x € C(v) : xU<: if and only if R is quasi-transitive.

Proof. Suppose R is quasi-transitive. Then let V- U and by previous
theorem 4, we know Am.n? V satisfies SP(U). That is, we know

-1 yDx]

V¥ yeC(v)

<nmﬁ<5xm<7 € C(v) «=3 (Vy)

which can be seen to be the desired property.
Now suppose C(-) is rational and that D is an asymmetric binary

relation such that Am. GA.V satisfies SP(U). We need to show only
that R is quasi-transitive. Assume x = C({x,y}) and y = C({y, z}).
Since SP(U) is satisfied we know [xDy & -V yDx) and [yDz & 1 zDy].
We also know xPy and yPz which allows us to conclude, from the
properties of R, that x = C({x,y,2}). This observation yields [xDz & 1 zDx]
to be the case, using SP(U) and the asymmetry of D. Using SP(U) again we
see x = C({x, z}) which implies xPz and allows us to conclude that R is quasi-
transitive s

The fact that Am. C(- .v was rational played no small role in
the proof of the last theorem. This property of a choice function may be

present but it does not follow from the nature of Von-Neumann-Morgenstern

solutions alone. The following remark makes the point clearly,

Remark: There exists an asymmetric dominance relation, D, and a

choice function C(-} such that
i) C(v) # ¢ for all subsets.

i) CB.C-]> satisties SP(U).



iil) There does not exist a binary relation, R, such that
A<<v<mm0~$ = {x€ v: xRy forye v).
Proof. We need only consider an example. LetE = {x, ¥, 2z}, 1xDy,
—1yDx, yDz, 712Dy, 2Dx, "1xDz; C({x,y}D) = [x,y}, C(ly,z}) = vy,
Ci{x,z}) = 2, C{{x,y,2}) = {x,y]. The reader can verify that Am.nx.v
satisfies SP(U). To show C(-) satisfies (iii) simply note that C({x,z} = =z
implies 7" xRz for any candidate, R, but this contradicts the fact that xRz
for any candidate R, which is implied by the fact that x ¢ Ci{x,y,2}) u

We can ask a question similar to the above only rather than demand
that C(*) reflect a Von Neumann-Morgenstern solution(s) of an underlying

dominance relation we can demand that it reflect the core.

Theorem 8. Let E be a finite set and let B be the power set of E. Let C(-)

be a choice function such that
i) C(v) # ¢ for v ¢ B.

i) (Vv) C(v) = {xev: xRy for y € v} for some total, reflexive R,

vEp

then there exists an asymmetric binary relation D such that

iii) A<$<m C(v) = {x€ v:=1yDx for all y € v}, Furthermore,

B
let D be any asymmetric binary relation such that the choice function

induced by (iii) satisfies (i). Then there exists an R satisfying (ii).

Proof. Let D be any asymmetric binary relation and let C(-) satisfy (i)
and (iii). Now define xRy <= [ yDx or x = y] and we get the statement
(ii). Now take an arbitrary R which induces, by (ii) a choice function
satisfying (i). Define xUy <=3 xRy and note that (ii) becomes (iii). The

requisite relation D is simply xDy <=2 yUxa

10

In passing we should note that the hypothesis (i) used in this
theorem is not without considerable strength. In effect, it demands
that the core, from any subset is nonempty. This requirement is clearly
not met by all dominance no~w.nmo=u. The theorem then, specifies that
exactly those dominance relations whose negations form suborders [3 ] .
have the property.

We can state one final theorem which deals with the case where
the choice (or outcome) over any set is but a single element. This is
a case where, from one point of view, all of these ideas become the

same idea. We state, without proof, the following theorem and corollary,

Theorem 9. Let E be finite and let B be the power set of E. Suppose
for all v ¢ B, C(v) contains one and only one element. If Am. O?V
satisfies any one of KP(V), SP(V), CP(V} or the weak axiom of revealed

preference then it satisfies them all.

Corollary. Let E be finite and let B be the power set of E. Suppose
for all v € B, C(v) contains one and only one element. LetQ be any
total, antisymmetric binary relation on E. If C(-) satisfies any of
KP(Q), CP(Q) or SP(Q) then it satisfies them all, and, in addition,
Q =V, Qis an order and C(-) satisfies the weak axiom of revealed

preference.
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SUMMARY

From a very broad point of view we are pursuing the possibility
of making inferences from the behavior of a process about the underlying
institutions which define the process. Suppose we are observing the

outcomes of a process and we are willing to assume that the process

can properly be described as a cooperative game, Can we infer, from
the process behavior, what the underlying dominance relation must be?
Can we identify a ''revealed'' dominance relation? From the dominance
relation we might then be able to infer something about the institutions

we would expect to find upon closer examination.

Answers to this question, for the finite case, are partially
provided by theorems 7, 8 and 9. Theorem 7 shows that a rational
choice function can be viewed as a unique solution of a game if and only
if it is quasi-transitive rational. Theorem 8 shows a choice function
can be a core of a game if and only if it is rational. Theorem 9 and its
corollary show that a choice function which chooses but a single element
reflects some underlying game if and only if it is consistent with a
strong ordering in the revealed preference sense.

The remaining theorems (1 thru 6) serve to connect game
solution axioms with other axioms which have been evolving in the
revealed preference literature. They show that KP(V), SP(V) and

CP(V) are, under certain conditions, equivalent to rational choice,

quasi-transitive rational choice and transitive rational choice, respectively.

Under the same conditions each of these '"degrees" of rational choice has
been characterized in terms of both path independence type axioms and
revealed preference axioms [4], [5], [6], [?7]). These theorems, then,
serve to establish equivalence between concepts of ''solutions, " concepts

of ""revealed preference,' and concepts of ''rational choice."
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