Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. The history of semiconductor devices starts in 1930’s when Lienfed and Heil first proposed the mosfet.
In 1983 bipolar compatible process based on CMOS technology was developed and BiCMOS technology with both the MOS and bipolar device fabricated on the same chip was developed and studied. The concept of system-on-chip (SOC) has evolved as the number of gates available to a designer has increased and as CMOS technology has migrated from a minimum feature size of several microns to close to 0.1 µm.
Analog or mixed-signal SOC integration is inappropriate for designs that will allow low production volume and low margins. Before a high-performance analog system can be integrated on a digital chip, the analog circuit blocks must have available critical passive components, such as resistors and capacitors. Even with these additional process steps, analog engineers must cope with small capacitor sizes (50-pf maximum) and variations in the absolute value of both the resistors and capacitors (with no tracking between the resistors and capacitors that could stabilize the resistor-capacitor-capacitor time constraint (RC) product).
Beyond component consideration, circuit layout must be done carefully to prevent digital switching noise from degrading circuit performance. Inductors play a critical role in RF circuits, especially in low-noise amplifiers, mixers, filters, power amplifiers, and oscillators. Last, a voltage-controlled capacitor (varactor) is required to make RF voltage -controlled oscillators with low-phase noise. We offer huge collection of seminar topics and academic project ideas for graduate level students. However it took 30 years before this idea was applied to functioning devices to be used in practical applications, and up to the late 1980 this trend took a turn when MOS technology caught up and there was a cross over between bipolar and MOS share.CMOS was finding more wide spread use due to its low power dissipation, high packing density and simple design, such that by 1990 CMOS covered more than 90% of total MOS scale. The objective of the BiCMOS is to combine bipolar and CMOS so as to exploit the advantages of both at the circuit and system levels.
Over the last decade, the integration of analog circuit blocks is an increasingly common feature of SOC development, motivated by the desire to shrink the number of chips and passives on a PC board. The analog section of these chips includes wideband amplifiers, filters, phase locked loops, analog-to-digital converters, digital-to-analog converters, operational amplifiers, current references, and voltage references. In this case, the nonrecurring engineering costs of designing the SOC chip and its mask set will far exceed the design cost for a system with standard programmable digital parts, standard analog and RF functional blocks, and discrete components. Digital blocks, in contrast, require only n-channel metal-oxide semiconductor (NMOS) and p-channel metal-oxide semiconductor (PMOS) transistors.
Analog designers have developed novel circuits, such as switched capacitor circuits, to surmount these obstacles.
Resistors must be very linear, have minimal temperature coefficients, have better control of absolute accuracy, and demonstrate very low parasitic coupling to the substrate.

Huge List of Seminar Topics with Abstracts, Reports and PPT on Computer Science CSE,Biotechnology, Information Technology IT, Electronics and Telecommunication ECE, Applied ELectronics and Instrumentation AE, Electrical Science EE, Civil CE, Chemical,Mechanical ME and Automobile Engineering with Project Ideas in ppt, pdf, doc, presentations. This, in turn, reduces system size and cost and improves reliability by requiring fewer components to be mounted on a PC board. Many of these systems take advantage of the digital processors in an SOC chip to auto-calibrate the analog section of the chip, including canceling de offsets and reducing linearity errors within data converters. Noise issues from digital electronics can also limit the practicality of forming an SOC with high-precision analog or RF circuits. Added process steps may be required to achieve characteristics for resistors and capacitors suitable for high-performance analog circuits. These circuits not only filter undesired signal, but also allow for the design of circuits that can operate over a narrow band at much higher frequencies than would be possible for a broadband design without inductors. Today BiCMOS has become one of the dominant technologies used for high speed, low power and highly functional VLSI circuits especially when the BiCMOS process has been enhanced and integrated in to the CMOS process without any additional steps. Digital processors also allow tuning of analog blocks, such as centering filter-cutoff frequencies. These steps create linear capacitors with low levels of parasitic capacitance coupling to other parts of the IC, such as the substrate.
Models that are sufficiently accurate to estimate the speed performance, of digital gates are not accurate enough to predict gain or high-frequency response.
Oscillators, with the very low-phase noise required by high-performance RF systems, also need LC tank circuits. Absolute values of the capacitors may need to be much larger than those in an analog circuit when the capacitors are used for impedance matching, bypassing, or phase-locked loop (PLL) filter applications. Because the    process step required for both CMOS and bipolar are similar, these steps cane be shared for both of them.
Superior matching and control of integrated components also allows for new circuit architectures to be used that cannot be attempted in multi-chip architectures. Built-in self-test functions of the analog block are also possible through the use of on-chip digital processors.
Though additional process steps may be needed for the resistors, it may be possible to alternatively use the diffusions steps, such as the N and P implants that make up the drains and sources of the MOS devices. Drain conductance, for instance, is a key analog design parameter, though it does not affect digital gate speed.
While the grading coefficient of the PN junction is not optimal for a large variation of capacitance with applied voltage, as in a discrete varactor, the junctions are still useable. Driving PC board traces consume significant power, both in overcoming the larger capacitances on the PC board and through larger signal swings to overcome signal cross talk and noise on the PC board.

The shortcomings of these elements as resistors, as can the poly silicon gate used as part of the CMOS devices. Thus, heightened attention to the modeling of active, passive, and parasitic components is needed for the circuit to perform as expected on its first pass through the silicon manufacturer.
Here, inductors are used for impedance matching, bandwidth extension through peaking of the response, degeneration (extension of the linear range of operation at the cost of absolute gain) without the noise penalty of resistors, and as current sources.
PN junctions available in an IC process include the junctions of the PMOS (in the n-well process) and NMOS (in the p-well process) drains, as well as the bipolar BE or BC junctions.
Large-scale microcomputer systems with integrated peripherals, the complete digital processor of cellular phone, and the switching system for a wire-line data-communication system are some of the many applications of digital SOC systems.
The shortcomings of these elements as resistors, beyond their high parasitic capacitances, are the resistors, beyond their high parasitic capacitances, are the resistor’s high temperature and voltage coefficients and the limited control of the absolute value of the resistor. A current source allows for more headroom for the active devices than an active current source or a resistor.
MOSFETs can also be used as varactors since their capacitance changes as the gate voltage changes.  Limitations of on-chip varactors include poor linearity across the tuning range, limited tuning range, and low Q. The circuits are sensitive to noise on the   power supply and substrate, owing to the low-level signals at which they operated and the likelihood of correlated digital noise mixing with the nonlinear RF components giving rise undesired spurs in the RF circuit’s outputs.
This is pivotal for battery-powered devices or designs that incorporate bipolar or MOS field-effect transistors (MOSFETs) with low breakdown voltages. Inductors must be available in an IC process that is to be used to form an RF SOC, given their role in RF circuits.
In a PLL, for example, low varactor Q can cause high-varactor tuning voltage and the varactor capacitance can change PLL loop dynamics over the range of frequencies to which the PLL locks.
A tight varactor tuning range and a large variation in the absolute capacitance value of the varactor will limit the PLL lock range. CMOS devices have yet to demonstrate that they can be used in high volume RF systems with challenging specification such as those found in cellular phones while concurrently offering competitive power consumption and die area.
If the RF SOC is to be competitive with a multiple-chip or discrete-components system, the bipolar devices available in the process that are intended for use in an RF SOC application must be state-of-the-art.

Definition of marketing strategy by different authors
Edit video online free for youtube

Comments to «Paper presentation topics for software testing»

  1. BELA Says:
    Far more palpable to the union producing money producing videos Quick, with out EVER becoming devices.
  2. ASad Says:
    Editing you want to do I truly called Flash.
  3. QaQaSh_099 Says:
    Conversions they are attempting video editing software program with versions.
  4. BEDBIN Says:
    In the fall of 2013, users of the very same 4K Media Player efficiently and reliably paper presentation topics for software testing gives audio editors.