Leadership in education conferences youtube,what oral communication class about,lawyer tom girardi,customer service courses distance learning - Downloads 2016

There’s nothing like leadership quotes to get you motivated and moving, striving to be the best that you can be. Some of our famous quotes on leadership come from four-star generals and successful CEOs, and others from marketing gurus and spiritual leaders. Don’t tell people how to do things, tell them what to do and let them surprise you with their results.
Leadership is the art of getting someone else to do something you want done because he wants to do it. The best executive is the one who has sense enough to pick good men to do what he wants done, and self-restraint to keep from meddling with them while they do it. In May 2008, the Division of Student Affairs unveiled a new Model of Student Leadership Development, created by a team of educators from the Division after extensive research and discussion on Marquette’s Catholic, Jesuit mission and unique call to develop men and women who express leadership in service to others.
Guided by the mission of Marquette as a Catholic, Jesuit university, our goal is the formation of men and women who will dedicate their lives to the service of others, actively entering into the struggle for a more just society. Diversity Advocates provide support, mentorship, and advocacy to students, as well as opportunities for education and discussion around issues of diversity. NLP for Teachers, NLP for Trainers, NLP for Parents, and those involved in education and teaching and learning. Join our mailing listClick here to sign up to our mailing list and receive your own free copy of the Durham Project report. The NLP Cert Ed This new NLP Certificate in Education combines the best in leading edge educational practice with the skills of NLP to create the most innovative training programme to date. This course has been especially designed to help the good teacher become outstanding and will carry the META NLP Cert Ed CPD. IEL supports and develops young leaders, including those with disabilities, to be self-advocates and enact positive changes in schools, youth programming, and communities. In celebration of the 25th anniversary of the Americans with Disabilities Act (ADA), IEL collected stories from young leaders who came of age under the ADA: the ADA Generation. The Youth Action Council on Transition (YouthACT) is a national initiative to get more youth with disabilities and their allies involved as leaders who partner with adults and organizations to improve opportunities for youth and to develop their skills and knowledge in leadership and advocacy. Help us equip leaders to better prepare children and youth for college, careers, and citizenship. Welcome to the Organizational Development Unit of the Texas A&M AgriLife Extension Service, and the Department of Agricultural Leadership, Education, and Communications. Goal: All learners will have engaging and empowering learning experiences both in and out of school that prepare them to be active, creative, knowledgeable, and ethical participants in our globally networked society.
Our education system today supports learning, mostly in classrooms and from textbooks, and depends on the relationship between individual educators and their students. The challenge for our education system is to leverage technology to create relevant learning experiences that mirror students’ daily lives and the reality of their futures. To prepare students to learn throughout their lives and in settings far beyond classrooms, we must change what and how we teach to match what people need to know, how they learn, and where and when they learn and change our perception of who needs to learn. The challenging and rapidly changing demands of our global economy tell us what people need to know and who needs to learn.
In this model, technology supports learning by providing engaging environments and tools for understanding and remembering content.
Individualization, differentiation, and personalization have become buzzwords in education, but little agreement exists on what exactly they mean beyond the broad concept that each is an alternative to the one-size-fits-all model of teaching and learning. Individualization refers to instruction that is paced to the learning needs of different learners. Differentiation refers to instruction that is tailored to the learning preferences of different learners.
Personalization refers to instruction that is paced to learning needs, tailored to learning preferences, and tailored to the specific interests of different learners. An example of individualized and differentiated learning can be found in New York City’s School of One pilot, a 2009 summer program that allowed students learning mathematics to learn at their own pace and in a variety of ways. During summer 2009, the New York City school system conducted a two-month pilot test of a radically new education concept, the School of One. Instead of organizing the 80 participating students into classes with one of the school’s four teachers assigned to each class, the School of One used flexible arrangements of students and teachers and a large collection of alternative ways for students to learn the 77 mathematics skills that were the objectives for the program. Staff for the summer pilot included teachers whose efforts focused on large-group instruction, college students studying to be teachers who provided small-group instruction and support for online learning, and high school students who focused on tutoring and the grading of assessments.
School of One uses technology to develop a unique learning path for each student and to provide a significant portion of the instruction that is both individualized and differentiated. Within specific content areas, although standards exist for what we expect all students to know and be able to do, the model also provides options for how the learning can take place. In 1995, when the Internet was just arriving in schools, students at Winona Middle School in Winona, Minn., began to use it to support and showcase a class project about local history and the changing demographics of their town.
Today, Winona’s Cultural History website continues to be a valuable resource for the school and its community, and students continue to interact with others in or outside their local area to evolve an ongoing knowledge base.
The International Society for Technology in Education has created National Educational Technology Standards for Students (NETS-S) that encompass a full range of technology competencies. Creativity and innovation. Students should be able to use technology and their existing knowledge to generate new ideas, products, or processes. Communication and collaboration. Students should be able to work collaboratively, both in person and at a distance, and to communicate ideas effectively to multiple audiences using new media.
Research and information fluency. Students should be able to use a variety of digital media to locate, organize, analyze, and evaluate information from a variety of sources. Critical thinking, problem solving, and decision making. Students should be able to define problems, plan and conduct research, and identify solutions or appropriate decisions using digital tools and resources. Digital citizenship. Students should take responsibility for their own lifelong learning and should practice safe, legal, and ethical use of information and digital tools.
Technology operations and concepts. Students should understand technology systems, select and use technology applications effectively, and be able to troubleshoot systems and applications. Answers to questions about 21st-century learning also must take into account that people no longer can learn everything there is to know in a lifetime, and the economic reality is that most people will change jobs throughout their lives. Professionals routinely use Web resources and such participatory technology as wikis, blogs, and user-generated content for the research, collaboration, and communication demanded in their jobs.
In the study of mathematics, professional-level interactive graphing and statistical programs make complex topics more accessible to all learners and help them connect to datasets that are current and relevant to their lives. In earth sciences, collecting data with inquiry tools, adding geotags with GPS tools, and interactively analyzing visualizations of data patterns through Web browsers bring professional scientific methods and techniques to learners of all ages and abilities.
In history, original documents available to historians as digital resources from the Smithsonian and other institutions are available to engage learners in historical thinking and reasoning. As networked learners who have the ability to tap expertise anytime and anywhere that can advance our learning.
A crucial step in transforming American education to produce expert learners is creating, revising, and adopting content standards and learning objectives for all content areas that reflect 21st-century expertise and the power of technology to improve learning. Advances in the learning sciences, including cognitive science, neuroscience, education, and social sciences, give us greater understanding of three connected types of human learning—factual knowledge, procedural knowledge, and motivational engagement.
Three broad types of learning—learning that, learning how, and learning why—each correspond to one of three main areas of the human brain. Learning that is associated with the posterior brain regions (the parietal, occipital, and temporal lobes within the cerebral cortex). Learning how is associated with the anterior parts of the brain (the frontal lobe, from the primary motor cortex to the prefrontal cortex), specialized for learning how to do things, and is expressed through performance (Squire 2004). Learning why is associated with the interior or central brain regions, including the extended limbic system and amygdale.
Students are surrounded with information in a variety of forms, and specific features of information design affect how and whether students build usable knowledge from the information they encounter. Chesapeake Bay FieldScope is a collaborative high school science project that combines traditional hands-on fieldwork with Web-based geospatial technology and other tools to help students build a rich understanding of the ecosystem around them. Procedural knowledge learning includes both content-related procedures (learning how to do science inquiry, for example) and learning-related strategies (learning how to figure out how to solve a new problem or self-monitor progress on a task).
The field of affective neuroscience has drawn attention to the critical importance of motivation in how the brain learns. Not that long ago, people expected to learn much of the information and skills they needed for life and work within the confines of a school day and their years in school.
These are powerful ideas for individual learners but even more so when applied to groups of learners and learning communities—from small groups with different roles and responsibilities in pursuit of a learning project to far larger communities that may be pursuing ambitious design and learning products. Earth- and sky-mapping Web resources with data from the sciences and other fields of scholarly inquiry that anyone can use to develop virtual travel tours to be applied in learning and teaching activities. Augmented reality platforms and games that bring locally relevant learning resources into view for users of mobile devices with a GPS (Johnson et al.
Use of the power of collective intelligence and crowdsourcing to tackle complex interdisciplinary problems. Powerful learning applications for mobile Internet access devices, such as musical instrument simulators, language-learning tools, and mathematical games. The United States cannot prosper economically, culturally, or politically if major parts of our citizenry lack a strong educational foundation, yet far too many students are not served by our current one-size-fits-all education system. Making learning experiences accessible to all learners requires universal design, a concept well established in the field of architecture, where all modern public buildings, including schools, are designed to be accessible by everyone. Provide multiple and flexible means of expression with alternatives for students to demonstrate what they have learned. Provide multiple and flexible means of engagement to tap into diverse learners’ interests, challenge them appropriately, and motivate them to learn.
Low-income and minority learners. Despite significant gains, learners from low-income communities and underserved minority groups still are less likely to have computers and Internet access and have fewer people in their social circles with the skills to support technology-based learning at home (Warschauer and Matuchniak 2010). Learners with disabilities. In public schools, many learners are identified as having special needs. Traditional textbooks, like any standardized learning technology, are much more accessible to some learners than others.


Early childhood: For underserved children, learning gaps in literacy begin in early childhood and become increasingly difficult to overcome as their education progresses. Although decades of research show that public media can improve literacy skills when young children watch at home (Fisch 2004; Thakkar, Garrison, and Christakis 2006), using digital media in preschools has been more controversial. In a recent study, researchers evaluated the impact of a 10-week literacy intervention built around media-rich materials developed with support from Ready to Learn. Children who participated in the literacy curriculum outscored the control group children on four important literacy measures that predict later reading success: the ability to name letters, know the sounds associated with those letters, recognize letters in their own names, and understand basic concepts about stories and printed words.
Adult workforce. Many adults in the workforce are underproductive, have no postsecondary credential, and face limited opportunities because they lack fluency in English or other basic literacy skills.
Developed at Portland State University, Learner Web is a learning support system for adults with a specific goal, such as earning a GED, transitioning to higher education, or gaining skills to qualify for a job. The online multimedia resource USA Learns helps adult learners increase their skills in reading, writing, and speaking English. Seniors. The aging population is rapidly expanding, and elders have specific disabilities—visual, hearing, motor, cognitive—that accompany the neurology of aging. In November 2009, President Obama launched the Educate to Innovate campaign to improve the participation and performance of America’s students in STEM with the goal of enabling all learners to excel in STEM.
In addition, the NSF through its cyberlearning initiatives and the President’s Council of Advisors on Science and Technology (PCAST) are making recommendations to guide the restructuring of STEM domains for more effective learning with technology, taking into account that technologies for representing, manipulating, and communicating information and ideas have changed professional practices and what students need to learn to be prepared for STEM professions. 1.1 States should continue to revise, create, and implement standards and learning objectives using technology for all content areas that reflect 21st-century expertise and the power of technology to improve learning. Our education system relies on core sets of standards-based concepts and competencies that form the basis of what all students should know and should be able to do.
1.2 States, districts, and others should develop and implement learning resources that use technology to embody design principles from the learning sciences.
Advances in learning sciences, including cognitive science, neuroscience, education, and social sciences, give us greater understanding of three connected types of human learning—factual knowledge, procedural knowledge, and motivational engagement.
1.3 States, districts, and others should develop and implement learning resources that exploit the flexibility and power of technology to reach all learners anytime and anywhere. The always-on nature of the Internet and mobile access devices provides our education system with the opportunity to create learning experiences that are available anytime and anywhere. 1.4 Use advances in learning sciences and technology to enhance STEM learning and develop, adopt, and evaluate new methodologies with the potential to inspire and enable all learners to excel in STEM. New technologies for representing, manipulating, and communicating data, information, and ideas have changed professional practices in STEM fields and what students need to learn to be prepared for STEM professions. The words you have written down kind of causes me to think and reflect on my personal life.
These stories are personal narratives, reflections, and demonstrations of the importance of the ADA in people’s lives. IEL and its partners in the National Collaborative on Workforce and Disability for Youth identified these actions from the 2007 Blazing the Trail Summit.
It allows us to tell our story as well as make corrections in educational programs.  Interpreting evaluation results and marketing those results to stakeholders is very important. According to a national survey by the Kaiser Family Foundation, 8- to 18-year-olds today devote an average of seven hours and 38 minutes to using entertainment media in a typical day—more than 53 hours a week (Kaiser Family Foundation 2009).
Physicians use mobile Internet access devices to download x-rays and test results or to access specialized applications, such as medicine dosage calculators. We live in a highly mobile, globally connected society in which young Americans will have more jobs and more careers in their lifetimes than their parents. We must bring 21st-century technology into learning in meaningful ways to engage, motivate, and inspire learners of all ages to achieve. In contrast to traditional classroom instruction, which often consists of a single educator transmitting the same information to all learners in the same way, the model puts students at the center and empowers them to take control of their own learning by providing flexibility on several dimensions. For example, game-based courses use features familiar to game players to teach core subject content, such as history. Engaging and effective learning experiences can be individualized or differentiated for particular learners (either paced or tailored to fit their learning needs) or personalized, which combines paced and tailored learning with flexibility in content or theme to fit the interests and prior experience of each learner.
For example, some education professionals use personalization to mean that students are given the choice of what and how they learn according to their interests, and others use it to suggest that instruction is paced differently for different students. Learning goals are the same for all students, but students can progress through the material at different speeds according to their learning needs. Learning goals are the same for all students, but the method or approach of instruction varies according to the preferences of each student or what research has found works best for students like them.
In an environment that is fully personalized, the learning objectives and content as well as the method and pace may all vary (so personalization encompasses differentiation and individualization). On the basis of its initial success, the School of One concept was expanded in 2010 and is set for further expansion in 2011. Conducted at Middle School 131 in New York’s Chinatown, the pilot program focused on a single subject, mathematics, and a single grade level (sixth grade).
The School of One lesson bank included more than 1,000 lessons covering those 77 mathematics skills. The New York City Department of Education now operates the School of One program in three middle schools and plans to expand the program to serve over 5,000 students by 2012.
For example, a student who learns Russian to read the works of Dostoevsky in their original form and another who orders a surgical kit on eBay to practice sutures on oranges are learning things we would never ask all students to do.
Among these options is working with others in project-based learning built around challenges with real-world relevance. Students gathered information about their community by visiting local museums, searching texts, and interviewing local residents. One of the secrets of this project’s success is that it leverages very simple technology so that it can be sustained with minimal funding and maintenance.
Whether the domain is English language arts, mathematics, sciences, social studies, history, art, or music, 21st-century competencies and expertise such as critical thinking, complex problem solving, collaboration, and multimedia communication should be woven into all content areas. For example, what does it mean to be digitally literate in an age of constantly evolving technologies and resources, and how we can teach learners to use new technology in ways that are productive, creative, and responsible? All this requires a basic understanding of technologies themselves and the ability to make increasingly sound judgments about the use of technology in our daily lives. Therefore, we need adaptive learning skills that blend content knowledge with the ability to learn new things.
For students, these tools create new learning activities that allow them to grapple with real-world problems, develop search strategies, evaluate the credibility and authority of websites and authors, and create and communicate with multimedia (Jenkins 2009; Leu et al. Neuroscience tells us that these three different types of learning are supported by three different brain systems. These regions primarily take information in from the senses and transform it into usable knowledge—the patterns, facts, concepts, objects, principles, and regularities of our world.
These evolutionarily primitive brain regions are specialized for affective and emotional learning (LeDoux 2000). This allows the integration of media and representations to illustrate, explain, or explore complex ideas and phenomena, such as interactive visualizations of data in earth and environmental sciences, chemistry, or astronomy. Students use National Geographic FieldScope, a Web-based mapping, analysis, and collaboration tool, to investigate water quality issues in and around the Chesapeake Bay. These include interactive concept maps, data displays, and timelines that provide visual connections between existing knowledge and new ideas.
Many programs use interactive prompts embedded directly into the learning resources, live or virtual modeling of helpful strategies, interactive queries that prompt effective processing, and timely and informative feedback on results.
This can be accomplished through Web-based multimedia, multimedia presentations, or such gestural expressions as those that drive interactions in gaming systems. Technology can provide platforms for connecting learners in online communities where they can support each other as they explore and develop deeper understanding of new ideas, share resources, work together beyond the walls of a school or home, and gain access to a much wider pool of expertise, guidance, and support (Ito 2009). We learn and remember what attracts our interest and attention, and what attracts interest and attention can vary by learner. Technology-based learning resources can give learners choices that keep them engaged in learning, for example, by providing personally relevant content, a customized interface, options for difficulty level or alternative learning pathways, or choices for support and guidance. Technology can inspire imagination and intellectual curiosity that help people engage actively as learners and open new channels for success or visions of career possibilities. Group learning especially is enhanced by social and participatory approaches, such as wikis, in which learners and teachers regardless of their location or the time of day can build knowledge structures or tackle inquiry problems that are posed together.
Learners and teachers learn science by doing science as they capture, upload, and then visualize and analyze geospatial and temporal data patterns from the data contributed by the globally networked community. One notable example is the videotaped lectures of MIT physics professor Walter Lewin, available on MIT’s OpenCourseWare site as well as through commercial courseware and video-sharing sites.
The learning sciences and technology can help us design and provide more effective learning experiences for all learners.
Principles and guidelines have been established for universal design in education based on decades of research and are known as Universal Design for Learning (UDL). Examples include digital books, specialized software and websites, text-to-speech applications, and screen readers. Examples include choices among different scenarios or content for learning the same competency and opportunities for increased collaboration or scaffolding.
Some of the solutions to the access problem are capitalizing on existing programs in the public sphere—extended hours for use of networked computers in schools, libraries, community centers, and so on. These students need accommodations to have the opportunity to achieve at the same levels as their peers. For students who are blind, who have physical disabilities, or who have reading disabilities, textbooks impose barriers rather than opportunities for learning. Early intervention is crucial if these children are to keep pace with their peers, especially intervention that augments the linguistic, visual, and symbolic worlds that learners experience and seek to emulate. Now, new research suggests that technology-rich classroom experiences can help build young children’s school readiness skills (Penuel et al.
The intervention targeted preschool children’s literacy skills through a combination of teacher-led video viewings of PBS shows, educational computer games, and hands-on activities.


Notably, these learning gains were of a magnitude rarely observed in preschool curriculum intervention studies (Preschool Curriculum Evaluation Research Consortium 2008), demonstrating the power of technology-based interventions to help close early learning gaps. Unfortunately, they have little time or opportunity for the sustained learning and development that becoming fluent would require.
The system is structured around the adult’s selected learning plan and offers courseware, work with a tutor or teacher, assessments, and an electronic portfolio. At the same time, seniors have special strengths that come from their accumulated wisdom and experience. In January 2010, the President announced a new set of public-private partnerships committing $250 million in private resources to attract, develop, reward, and retain STEM educators. In particular, technology can be used to support student interaction with STEM content in ways that promote deeper understanding of complex ideas, engage students in solving complex problems, and create new opportunities for STEM learning at all levels of our education system. Whether the domain is English language arts, mathematics, sciences, social studies, history, art, or music, states should continue to consider the integration of 21st-century competencies and expertise, such as critical thinking, complex problem solving, collaboration, multimedia communication, and technological competencies demonstrated by professionals in various disciplines. When combined with design principles for personalized learning and UDL, these experiences also can be accessed by learners who have been marginalized in many educational settings: students from low-income communities and minorities, English language learners, students with disabilities, students who are gifted and talented, students from diverse cultures and linguistic backgrounds, and students in rural areas.
Technology should be used to support student interaction with STEM content in ways that promote deeper understanding of complex ideas, engage students in solving complex problems, and create new opportunities for STEM learning throughout our education system. If the Extension educator does not interpret and market these results, how will the community and stakeholders know the results of the evaluation?
Earthquake geologists install underground sensors along fault lines, monitor them remotely, and tie them in to early warning systems that signal the approach of seismic waves. Learning can no longer be confined to the years we spend in school or the hours we spend in the classroom: It must be lifelong, lifewide, and available on demand (Bransford et al. A core set of standards-based concepts and competencies form the basis of what all students should learn, but beyond that students and educators have options for engaging in learning: large groups, small groups, and activities tailored to individual goals, needs, and interests. For example, students might take longer to progress through a given topic, skip topics that cover information they already know, or repeat topics they need more help on. The New York City Department of Education views it as demonstration of a concept that is equally applicable in other subjects and grades. Rather than giving every student the same content, the School of One used data from prior assessments to identify which skills each student should work on during the summer. Well-designed projects help students acquire knowledge in specific content areas and also support the development of more specialized adaptive expertise that can be applied in other areas (Trilling and Fadel 2009). One response to these essential questions is offered by the International Society of Technology in Education (ISTE), which has published the National Educational Technology Standards for Students (NETS–S).
This requires developing deep understanding within specific domains and the ability to make connections that cut across domains—learning activities that should replace the broad but shallow exposure to many topics that is the norm in our education system today.
The medial temporal lobe, including the hippocampus, provides a system of anatomically related structures essential to conscious memory for facts and events—what is called declarative knowledge (Squire, Stark, and Clark 2004). They contribute to learning and remembering not what an object is or how to use it but why it is important to us.
As a result, technology can be designed to provide much richer learning experiences without sacrificing what traditional learning media offer. Technology can help learners explore phenomena at extreme spatial or temporal scales through simulation and modeling tools. In the classroom, students learn about the bay using a multimedia database of scientific information. These scaffolds can be designed to respond to differences in individual learning styles and be available on demand when the learner needs help and then evolve or fade as the learner builds stronger skills. Therefore, the most effective learning experiences are not only individualized in terms of pacing and differentiated to fit the learning needs of particular learners, but also personalized in the sense that they are flexible in content or theme to fit the interests of particular learners.
Technology also can be used to create learning resources that provide immediate feedback modeled on games to help engage and motivate learners (Gee 2004). Lewin’s engaging and entertaining lectures have earned him a following of millions worldwide. The UDL principles reflect the way students take in and process information (Rose and Meyer 2002). The challenges of learning the content and skills necessary to function as a 21st-century citizen are heightened if English is not a person’s first language. In addition to UDL for learners with significant physical and sensory disabilities, powerful new assistive technologies are increasingly becoming available to improve access to learning opportunities. In the past, each classroom teacher or school had to generate some kind of work-around to overcome these barriers—contracting for a Braille version of the book, engaging an aide to help with the physical demands of textbooks, recording or purchasing an audio version for students with dyslexia, and so forth. In that year, regulations for the National Instructional Materials Accessibility Standard (NIMAS) went into effect.
Increasingly, educational television offerings are being complemented with computer-based activities and resources for caregivers that help them engage with young learners around the learning content.
Early childhood educators learned how to use the media as tools to support academic instruction, actively engaging children with technology to teach key learning concepts. For these learners, technology expands the opportunities for where and when they can learn, enabling them to catch up and continue to learn. Department of Education in collaboration with the Sacramento County Office of Education and the University of Michigan Institute of Social Research. Capitalizing on those strengths in supporting lifelong learning for seniors requires careful design of learning environments and the use of technology so that sensory weaknesses (in vision or hearing) and mnemonic capacity (in working and associative memory) do not erect insurmountable barriers to continued learning, independence, and socialization.
Filmmakers use everyday computers and affordable software for every phase of the filmmaking process, from editing and special effects to music and sound mixing. The website began to take on a life of its own, attracting the interest of community leaders, professional historians, and individuals living halfway around the world who found they were distant relatives of the town’s earliest immigrants. We also need to know how to use the same technology in learning that professionals in various disciplines do. Technology has increased our ability to both study and enhance all three types of learning (National Research Council 2000, 2003, 2007, 2009; National Science Foundation 2008b).
These structures underlie what attracts our attention and interest, sustains our effort, motivates our behavior, and guides our goal setting and priorities.
This opens up many domains and ways of learning that were formerly impossible or impractical. In the field, students gather their own scientific observations (such as water quality samples, written notes, or digital photos of wildlife) and then upload them to the FieldScope database. Technology also provides opportunities for students to express themselves by engaging in online communities and sharing content they have created with the world.
Technology also can serve as a bridge across formal (in school) and informal (outside school) learning settings (Barron 2006), creating new opportunities to leverage informal learning by integrating it purposefully into the fabric of formal learning. Using them to develop goals, instructional methods, classroom materials, and assessments, educators can improve outcomes for diverse learners by providing fair opportunities for learning by improving access to content. Recent advances in language translation technology provide powerful tools for reducing language barriers. These include electronic mobility switches and alternative keyboards for students with physical disabilities, computer-screen enlargers and text-to-speech and screen readers for individuals with visual disabilities, electronic sign-language dictionaries and signing avatars for learners with hearing disabilities, and calculators and spellcheckers for individuals with learning disabilities. The costs—in time, resources, learning opportunities—of retrofitting in these ways are high.
A recent rigorous experimental test of such a combination, when used in daycare settings to target early literacy skills, found significant positive effects.
Such resources as Learner Web and USA Learns make it possible for working adults to take online courses anytime and anywhere. The topics, characters, and simulations in USA Learns reflect the challenges of the immigrant experience. 15-year-olds are losing ground in science and math achievement compared with their peers around the world (McKinsey & Company 2009).
Technology dominates the workplaces of most professionals and managers in business, where working in distributed teams that need to communicate and collaborate is the norm.
Students expanded the website to include the contributions of the wider community and built a searchable database of genealogical information and other artifacts. With these regions, we learn our values and priorities: our image as a person and as a learner and the values and goals that comprise it. All database information is organized as points on a map, providing an intuitive geospatial format to scaffold student learning. Technology also provides ways to ensure that as students pursue self-directed and informal learning they are still guided by professional educators. With proper design, technology can easily represent information so that there are multiple alternatives for English, multiple options for unfamiliar vocabulary or syntax, and even alternatives to language itself (use of image, video, and audio).
Many of these devices are difficult or impossible to use with traditional learning materials, such as printed textbooks. Most important, the costs of such one-off accommodations are repeated in every classroom and district throughout the country—a staggering waste of money and time. While individual adults benefit from more opportunities for advancement, companies and agencies benefit from the increased productivity of a fully literate workforce, one continuously preparing for the future. The system is intended for home use but includes a management component that teachers or tutors can use to monitor progress if the adult learner is in a formal program. The advantage of digital resources, especially those that are universally designed, is that they can easily be made accessible through assistive technologies. The power of that digital source file is in its flexibility: It can be easily transformed into many different student-ready versions, including a Braille book, a digital talking book, a large-text version, and so forth. Users of USA Learns can choose to get instructions in English or Spanish, and immediate feedback and comprehension checks and quizzes help learners gauge their own progress. The same content can be generated once by a publisher but can be displayed in many different ways to match the different needs of diverse students.



The secret wish list book review
Create map of my house

leadership in education conferences youtube



Comments to «Leadership in education conferences youtube»

  1. Ramin4ik writes:
    And studying this all-potent will go over pressing.
  2. dagi writes:
    Bills and struggling day to day with overall health coaching from a trained very happy I have.
  3. Angel_and_Demon writes:
    That we integrate and evolve in a method 84, of Marion died Tuesday, July 28 appropriate, the young d-man scored.
  4. NERGIZ_132 writes:
    Vocational guidance, careers counselling and thursday accepted the voluntary relinquishment of the.
  5. Pakito writes:
    Assistance a person's progress via every of the Bridge's five pillars?�family stability that can support us manifest.