Best alternative medicine for acid reflux 99

Signs herpes outbreak is coming

In this web page we provide detailed (e,2e) studies of electron impact ionization of noble gases including helium, neon, argon, krypton and xenon from near threshold to intermediate energies, where the outgoing electrons carry equal energy from the interaction. The experiments were conducted in the perpendicular plane, where the outgoing electrons are detected orthogonal to the incident electron beam.
The data show the cross sections undergo complex variations as a function of incident energy, and in particular ionization of the heaviest target is at variance to all others that have been studied here. The (e,2e) process provides the most precise experimental data for the study of the ionization of atomic and molecular targets by electron impact. By determining the momenta of the scattered and ejected electrons in a time correlated coincidence measurement, the differential ionization cross section (DCS) is derived for comparison with theoretical models. Since the scattered and ejected electrons may emerge over a wide range of different angles, experiments usually define a specific scattering geometry in which to carry out the measurements.
In the present work, we have constrained the spectrometer to measure the DCS only in the perpendicular geometry, where psi = 90A°. For both electrons to emerge in this geometry it is necessary for an interaction with the target nucleus to occur, and this provides a stringent test of current ionization models. We have taken measurements with the incident electron energy E0 ranging from near the ionization threshold of the selected target, through to energies up to 80eV above the ionization potential (IP). Understanding these processes is hence important in areas ranging from the production of plasmas in stellar and planetary atmospheres, through to electron impact ionization in lasers and in nuclear reactors. In all cases results are presented for the outgoing electrons having equal energies at the analysers.
The apparatus can measure the DCS from the coplanar to the perpendicular plane geometry by moving the electron gun, gas jet and Faraday cup together around the interaction region (figure 2). The electron analysers consist of a 3-element electrostatic lens that focuses electrons from the interaction region into a hemispherical energy selector. The data were taken over a period of several months, and the electron gun current was varied for each of the data sets so as to ensure linearity of the detection system.
The energy of the incident electron beam was determined by observing the negative ion elastic scattering resonance in helium at ~19eV, so as to determine the offset in the gun due to contact potentials. The energies of the outgoing electrons were determined by observing inelastic scattering from the excited targets, and by considering the location of Fano resonances in the ionization continuum. The experimental data for helium are taken from previous work carried out in Manchester re-presented here normalised to unity at the peak of the DCS to allow comparison with other noble gases. The ground state of helium is 1S0, with an electronic configuration 1s2, and so both bound electrons occupy s-shell orbitals prior to the interaction.
For helium, neon and argon targets, the bound electrons occupy either s-orbitals or p-orbitals in their ground state. It was not possible to resolve these individual channels in our experiment (due to the limited energy resolution of the spectrometer) apart from for xenon, where results were taken for production of the different ion states at incident electron energies from 10eV to 30eV above the IP. Figure 3 presents results for ionization of helium in the perpendicular plane for ten different incident energies ranging from 3eV to 80eV above the IP. As the incident electron energy increases, additional peaks are seen at angles around 90A° & 270A°.
By 20eV above the IP three distinct peaks are clearly visible, the relative strength of the central peak to outer lobes decreasing monotonically as the energy increases.
The physical reasons behind these structures has been described by several models, ranging from DWBA calculations through to TDCC models. There is only one process that can produce a peak at 180A? in the perpendicular plane without interaction with the target nucleus. The peaks at around 90A° & 270A° are found to result from elastic scattering of the incident electron from the core, followed by a single binary collision between the incident electron and a bound electron. It should be noted that although agreement between theory and experiment in the perpendicular plane has proven to be very good, the results in a coplanar geometry are not as satisfactory, particularly for non-equal outgoing electron energies. The results at the lowest energy are similar in shape to that for helium, with a single broad peak observed centred around 180A°.
As the incident energy increases, the DCS for neon shows a very different character to that for helium. The mechanisms that produce these structures in neon must be quite different to that proposed for helium, apart from at the lowest energy where PCI is expected to dominate for all targets. Al-Hagan and co-workers recently considered the low energy regime for both He and H2 from threshold to ~10eV above threshold, and concluded that for these targets PCI dominates at energies <2eV, which is also consistent with the observations for neon presented here.
The results in figure 4 indicate that the interaction is clearly more complex, and may be due to the momentum distribution of the ionized p-electron and polarizability of the atom (which is 1.9 times greater for neon than for helium). A similar study was carried out for argon, whose outer electronic structure ([Ne]3s23p6) is similar to neon ([He]2s22p6). In the frozen-core approximation as used in many theories, the inner electrons are considered as spectators during the interaction, and so in this approximation the structure of the DCS should be similar for neon and argon. For argon, nine separate energies were chosen for study, so as to reveal the complex variation in the DCS as a function of energy.
Once again the results for argon are not consistent with the simple models found successful for helium. Figure 6 shows the results for krypton, which unlike helium, argon and neon also has bound electrons occupying the 3d-shell. Once again results were taken for a lowest energy 2eV above the IP, with the data having much better statistical significance compared to those for argon at the same energy.
As the energy increases, the results for krypton show a similar trend to that for argon, with the central minimum deepening until around 10eV above the IP where a central peak starts to emerge. The similarity between argon and krypton data tends to indicate that the d-shell electrons in the heavier target are not playing a significant role in the ionization process. As the heaviest isotopically stable noble gas target, xenon has the largest calculated size (108 pm) due to full occupation of the 4d, 5s and 5p shells. The ionic ground states of Xe+ are sufficiently separated that it was possible to resolve ionization to individual states during the experiments, for energies up to 30eV above the IP.
The data are particularly surprising since they do not follow the general trend seen for all other noble gas targets at higher energies. The minimum at 180A° is significantly deeper than for krypton under the same outgoing energy conditions, and unlike krypton this minimum then becomes shallower as the incident energy increases.
These results show that the mechanism for ionization of xenon must once again be different to all other targets that have been studied.
As far as we are aware this phenomenon has never been observed for any other target, and it remains to be seen why this should occur for xenon. Only three energies were selected for these experiments, due to the difficulty of obtaining good statistical data. The set of data presented here for isotopically stable noble gases shows there is a large variation in the probability of ionization in the perpendicular plane. The perpendicular plane is particularly poignant for testing the most sophisticated electron impact ionization models, since multiple scattering must occur for electrons to emerge in this plane. The perpendicular plane has proven to be a fertile ground to test recent theoretical models, which have found success for simple targets such as helium and molecular hydrogen.
It appears that PCI plays a role at the lowest measured energy for each target, although the significance of this process reduces as the target weight increases. The most surprising result is for the heaviest target xenon, since the relative magnitude of the central peak continues to increase as the incident energy increases, and the side lobes reduce to insignificance. It is worth noting that the resolved data for ionization to the different Xe+ states indicate there is little variation to the measured cross section due to fine structure effects. KLN thanks the Royal Society for an International Newton Research Fellowship held at the University of Manchester.
Iodine induces apoptosis and inhibits cells from forming cancer, esophageal varicose Orthoiodosupplementation in a Primary Care PracticeJorge D. For electrons to emerge in this geometry they must undergo multiple scattering including scattering from the nucleus of the target, and so this provides a highly sensitive test for scattering theories. In these experiments a single electron of well defined momentum impacts with a target in the interaction region, resulting in target ionization and a scattered and ejected electron which emerge after the interaction has taken place. Our (e,2e) apparatus can access a wide range of geometries from a coplanar geometry, where the incident, scattered and ejected electrons all occupy the same plane, through to the perpendicular geometry, where the scattered and ejected electrons emerge in a plane orthogonal to the incident electron trajectory (figure 1).
In this regime the probability of single ionization is a maximum, and so it is here that most ionizing collisions with electrons occur in nature. Low energy electron ionization has also been attributed to the production of DNA damage in biological tissue, and so it is important to understand these collisions at a fundamental level to describe the physics of these processes.
The helium results are reproduced from previous studies carried out in Manchester, re-presented here for completeness. By choosing the analyser residual energy to pass electrons around the selector, a channel electron multiplier detects electrons of the specified energy for subsequent amplification and counting. In the perpendicular plane, only the mutual angle phi = xi1 + xi2 is relevant, where xi1, xi2 are as shown in figure 1. The orbital angular momentum of each electron is hence zero, with a momentum distribution that peaks around zero a.u. The configuration of the 10 electrons in neon is 1s22s22p6, whereas argon has 18 electrons occupying a configuration [Ne]3s23p6.
The data files for these results can be downloaded as a TAB deliminated text file Helium.txt. Experimental results for the ionization of helium in the perpendicular plane, with incident energies ranging from 3eV to 80eV above the ionization potential for this target.
This is considered to be due to the dominance of post-collisional interactions (PCI) between the outgoing electrons, which drives electrons emerging with equal energies from the interaction region asymptotically towards opposite directions. At ~50eV excess energy the three lobes have equal amplitudes, whereas at higher energies the outer lobes dominate. The DWBA theory most easily allows the different processes involved in the interaction to be switched on and off, and this has explained the origin of these lobes.
This process requires the momentum of the incident electron to be exactly matched by the momentum of the bound electron, with both electrons moving in opposite directions prior to the interaction.
In this case, since the particles have equal mass and energy, they emerge from the interaction region at a mutual angle of 90A° & 270A° as observed. It is therefore clear that further work is needed to fully describe the ionization reaction, even for a simple target like helium.
The lowest energy studied was 5eV above the IP, with six measurements being taken up to 50eV above the IP as shown. Experimental results for the ionization of neon in the perpendicular plane, with incident energies ranging from 5eV to 50eV above the ionization potential for this target.
The width for this peak in neon is ~120A°, which is broader than ~80A° for the same outgoing electron energy in helium. As the energy is raised to 10eV above the IP, the broad single peak seen at the lowest energy increases in width, and develops a flat structure at the peak.
However, at higher energies the mechanisms proposed for helium ionization described above would be expected to produce similar structures in all targets that have a central ionic core. The calculated atomic radius of argon (71pm) is however significantly larger than that for helium (31pm) or neon (38pm) due to the n=3 shell being occupied.
Experimental results for the ionization of argon in the perpendicular plane, with incident energies ranging from 2eV to 50eV above the ionization potential for this target.


The lowest energy studied was 2eV above the IP, the data at this energy having poor statistics due to experimental difficulties working with argon at this energy. This minimum flattens at 10eV above the IP and rapidly evolves into a clear peak 15eV above the IP. The results further indicate that the use of a A”frozen-coreA• approximation is unlikely to be accurate in any theory attempting to emulate these data. The physical size of krypton (88pm) is slightly larger than argon due to occupation of this shell, and due to closed occupation of the 4s and 4p shells. Experimental results for the ionization of krypton in the perpendicular plane, with incident energies ranging from 2eV to 50eV above the ionization potential for this target. Ionization of krypton no longer shows the dominance of PCI as predicted by Wannier, since there is now a central minimum at 180A°. This central peak is not as significant in krypton compared to the side lobes, and by 30eV above the IP is once again diminishing.
It also appears that the variation in cross section as a function of energy follows a similar pattern for each of these targets. A coincidence energy loss spectrum is shown in figure 7 to illustrate this separation at an incident electron energy 10eV above the IP for this target. The results were taken from 2eV above the IP to 70eV above the IP for this target, so as to establish the variation in the cross section that is observed. At the lowest energy 2eV above the IP, a clear two-peak structure is observed which is similar to that observed from krypton. The results at higher energies are surprising, as the mechanism that produces the central peak with the electrons moving opposite each other is clearly dominating all other scattering processes. The data files for these results can be downloaded as a TAB deliminated text file Xenon2.txt. These data indicate that fine structure in the final ion state does not play a significant role in the ionization process, since the comparison between this data and that reproduced from figure 8 shows that the shapes of the cross section for each energy are very similar. This contrasts to the coplanar geometry most often adopted, where the dominant scattering mechanism is usually a single binary scattering between electrons, resulting in a high probability that forward scattering occurs.
The results presented here will hence further test these models for heavier targets, so as to elucidate the scattering mechanisms that result in the observations. Argon, krypton and xenon also all evolve a central peak as the incident electron energy increases from near threshold, which cannot be due to PCI. The side lobes observed previously in the perpendicular plane have been attributed to a binary collision between the incident electron elastically scattered into this plane and a bound electron. It is hence likely that the results for neon, argon and krypton are also not significantly altered by these effects, even though the spectrometer was not capable of resolving their individual ion states. CK would like to thank the University of Manchester for providing a PhD scholarship while carrying out this work. Hence it is possible to accumulate a full range of DCS measurements over all scattering angles using this spectrometer. The incident electron can move from the coplanar geometry (psi = 0A°) to the perpendicular plane (psi = 90A°), the outgoing electrons being measured in the detection plane. The shape of the DCS for a given energy and target is then of importance, for comparison with theory. This contrasts with the other noble gas targets whose levels are 1S0, but whose valence electrons occupy closed p-orbitals. By contrast, the bound electrons in both of the heavier targets also occupy d-orbitals, with a correspondingly more complex momentum distribution. As the outgoing electron energy is lowered, the post collisional interaction time increases, resulting in an increased flux in the 180A° direction. At excess energies over 80eV above the IP the central lobe has virtually disappeared, leaving only the two outer lobes in the DCS. In this case, momentum conservation requires the outgoing electrons to move in opposite directions (180A°) in the perpendicular plane.
The data files for these results can be downloaded as a TAB deliminated text file Neon.txt. At 15eV above the IP this flat structure has evolved into two peaks with 180A° now being a local minimum.
The static polarization of argon is eight times larger than for helium, so scattering effects due to polarization of the target are expected to be significantly larger than for neon or helium. The data files for these results can be downloaded as a TAB deliminated text file Argon.txt.
This central peak is visible for incident energies up to 40eV above the IP, until at the highest energy (50eV above the IP) this has once again disappeared, the side peaks having also moved outwards compared to at the lower energies. The relative magnitude of this minimum compared to the peaks around 110A° & 250A° is however larger than for higher incident energies, so there is probably a contribution to the cross section at this angle due to PCI. This central peak has virtually disappeared 40eV above the IP and there is no evidence of a peak 50eV above the IP.
It might hence be expected that the cross section for the heaviest target (xenon) would follow a similar trend to that of argon and krypton. The data are fitted to two Gaussians, showing that contamination from each ionic state is <10% when the spectrometer is set to each peak in the cross section. The data files for these results can be downloaded as a TAB deliminated text file Xenon1.txt.
This indicates that PCI is once again not the dominant mechanism producing the cross section at this energy. The relative magnitude of this peak compared to the lobes at 110A° and 250A° then increases in magnitude as the energy increases, as with krypton and argon. This result indicates that fine structure does not appear to play a significant role in electron collision processes at these energies. The marked contrast between results for helium and all other noble gas targets demand that these models carefully consider the intricacies of the interaction, since a simple extension of the basic physical ideas presented for helium cannot explain the experimental data. For argon and krypton the relative magnitude of this peak increases with respect to the side lobes until it reaches a maximum, then decreases to become insignificant at the highest energies measured.
This process has always been considered as the dominant mechanism at higher incident energies, yet the new results presented here indicate these ideas need to be revisited for this heavy target. For the data presented here, the perpendicular plane was chosen, so only the mutual angle phi = xi1 + xi2 is relevant. The combined coincidence energy resolution of the unselected energy electron gun and the two analysers is ~1eV. Krypton has 36 electrons and has a ground state configuration [Ar]3d104s24p6, while xenon has 54 electrons with a ground state configuration [Kr]4d105s25p6. This type of threshold behaviour was first predicted by Wannier and was later considered by Peterkop, Rau and others to explain results in this regime.
This mechanism was considered as being the main reason for the peak at 180A° until the work of Madison and co-workers in 2009 showed the probability of this occurring was low.
As the energy increases further, the peaks separate in angle, and the minimum at 180A° deepens. This angular shift of the side lobes is consistent with PCI playing a continuing role in the interaction, since as the energy increases the effects of PCI diminish, and the electrons move away from 180A° as is observed.
The data files for these results can be downloaded as a TAB deliminated text file Krypton.txt. However, unlike krypton and argon whose central peak reaches a maximum and then decreases, the central peak in xenon continues to dominate the cross section as the energy rises.
Further, the frozen core approximation often adopted in these models which treat all non-ionized electrons as spectators does not appear valid for the heavier targets when compared to neon, even thought the outer valence electrons have the same p-type character. My medical practice is situated in the Appalachian Mountains close to Asheville, North Carolina. They proposed a triple scattering mechanism to describe this peak, where the incident electron first scatters elastically from the nucleus so as to enter the detection plane, followed by a binary inelastic collision with a bound electron, followed by elastic scattering of one of the electrons back from the nucleus. This trend continues up to the highest energy which was possible to measure (70eV above the IP), where the central peak is seen to be broad with a width ~100A°. It is hence likely that these assumptions will need to be relaxed to accurately model the data.
This complex mechanism was found to emulate the cross section more closely compared to the single scattering process originally envisaged.
As for all measurements in this study, the DCS must be zero for the electrons emerging at the same angle (0A°, 360A°), due to post collisional interactions between outgoing electrons of equal energy. At all energies greater than 40eV above the IP, the outer peaks seen in all other targets have disappeared. One of the major problems that we encounter in this location is a problem with hypothyroidism.
Get the day off to a great start with an energy-boosting Drink: try a Winter Spice Smoothie with Maca Powder. Both of these studies were done at separate times by separate groups showing the exact number of 11.7%. This reinforces what we were taught, that iodine deficiency goes hand in hand with the manifestation of hypothyroidism. Make yourself a Kale Salad with Cranberries & Avocado Dressing and be satisfied without feeling heavy. I have on a weekly basis at least one phone call from a healthcare practitioner questioning whether the intake of iodine causes hypothyroidism and goiter.
I often have to go back over the basics of thyroid physiology with these healthcare practitioners, and explain to them that iodine is essential for normal thyroid functions and that it is the manmade organic forms of iodine that are toxic (3).
I have been using iodine supplementation in my practice over the last four years in amounts needed for whole body sufficiency (orthoiodosupplementation). Orthoiodosupplementation is the daily amount of iodine required for whole body sufficiency (3-5).
Prior to implementing orthoiodosupplementation, I perform a complete history and physical examination. If a mass is picked up on physical then another test that I order is an ultrasound of the thyroid. While undergoing ultrasound to evaluate the mass I will have my technician measure the thyroid volume. Each lobe will have its length measured in centimeters, width measured in centimeters and height measured in centimeters. All three measurements are multiplied times each other and this gives the volume in cubic centimeters. A volume size of 5 cc or less is suggestive of thyroid atrophy, another manifestation of iodine deficiency. Any solid mass that is picked up on ultrasound and shows itself to be greater in size than one centimeter by one centimeter will require a radioactive I-123 uptake and scan. This test should be done previous to starting any patient on iodine if a nodule is suspected. A nodule that does not pick up radioactive iodide is considered to be a cold nodule and would suggest the presence of thyroid cancer. Malignant tumors derived from the follicular epithelium are classified according to histological features.


The incidence of thyroid cancer is approximately nine per 100,000 in the population per year and this usually increases with age plateau after about age 50.
Thyroid cancer at a young age (less than 20) or in older people (greater than 65) is usually associated with a worse prognosis. Additional important risk factors include a history of childhood head or neck irradiation, large nodule size greater than four centimeters, evidence for local tumor fixation or invasion into lymph nodes, and the presence of metastasis. In my small practice of around 5,000 patients, I have found five thyroid cancers in one year. If multiple nodules of the thyroid gland are found at the time of ultrasound then the diagnosis of multinodular thyroid goiter is considered even if the gland is normal in size.
I request serum T4 (the main hormone produced by the thyroid), free T3 (the biologically active thyroid hormone at the cellular level) and a thyroid stimulating hormone (TSH) level. Following orthoiodosupplementation, serum T4 and TSH levels usually go down and free T3 stays steady. I have seen TSH sometimes go up rather than down while T4 and free T3 did not change or may have gone up some.
This does not mean that the patient was developing hypothyroidism but that the brain was stimulating the body to make more sodium iodide symporters (NIS). The NIS are channels in the cell membrane that transport atoms into a cell as compared to a calcium channel or a sodium channel or a chloride channel where the channel only admits one atom to go through.
The NIS transports sodium iodide into cells and has been found in all cell lines tested so far. Thyroid stimulating hormone, prolactin and oxytocin have been found to stimulate the making of NIS. While taking iodide, one may see an elevated TSH but we have to recognize that this is not a bad thing. Often a check of the patient’s T4, free T3 and TSH shows the T4 to go down, free T3 going down and TSH going up. The nutritional status of the patient will determine its response to orthoiodosupplementation (3).
It is crucial that the thyroid gland has plenty of antioxidants in its cells and many other nutrients. We have found that giving a multivitamin for women with PMS (Optivitea ) improves the response to orthoiodosupplementation. Iodine deficiency causes fibrocystic breast disease (FBD) with nodules, cyst enlargement, pain and scar tissue.
Initially, this syndrome occurs in the premenstrual phase of a cycle or involves the whole cycle. In 1928 an autopsy series reported a three percent incidence of FBD, whereas in 1973 an autopsy report quoted an 89% incidence.
A review by the American Academy of Pathology gives a minimum incidence for FBD of 50% but suggests that 80% of North American women are afflicted with the syndrome during their reproductive lifetime. He was able to develop a protocol and a scoring system that helps doctors assess how severe a woman’s FBD is. I would recommend that this scoring system be utilized by physicians in their own medical practice.
A precise method of recording the patient’s data will help both physicians and patients see the improvement that occurs following orthoiodosupplementation. The pathological changes that can occur in FBD are noted as micronodularity, tenderness, fibrous tissue plaques, macrocysts and turgidity.
For example if the micro nodularity of macrocysts disease was present in the upper half of the breasts the numerical score would be one for micro nodularity and two for the two breast quadrants scoring a total of three.
If all five changes occurred in all quadrants in one breast the score would be 4 (all four breast quadrants) x5 (all five changes) equals 20 and for both breasts would be 40.
Patients are also encouraged to evaluate their own symptomology as expressed by a number of zero equals symptoms worse, one equals symptoms unchanged, two equals less pain only premenstrual discomfort, three equals no pain unable to predict menstruation.
Zero equals no palpable abnormalities normal, one equals is score of less than 7.2 and a score greater than 7 but less than the pretreatment score and three equals a score greater than the pretreatment score (See Table I).
After a full year at 50 mg iodine per day (4 tablets of Iodorala ), the patients mean score dropped to 3.8.
The other findings of micronodularity, tenderness, fibrous tissue plaques, macrocysts and turgidity will take almost a full year to fully go away. Optimum amount for most patients for FBD is 50 mg (4 tablets) per day continued indefinitely.
It was while treating a large 320-pound woman with insulin dependent diabetes that we learned a valuable lesson regarding the role of iodine in hormone receptor function. She was then started on insulin during her hospitalization and was instructed on the use of a home glucometer. Two weeks later on her return office visit for a checkup of her insulin dependent diabetes she was informed that during her hospital physical examination she was noted to have FBD.
One week later she called us requesting to lower the level of insulin due to having problems with hypoglycemia. She was told to continue to drop her insulin levels as long as she was experiencing hypoglycemia and to monitor her blood sugars carefully with her glucometer.
Four weeks later during an office visit her glucometer was downloaded to my office computer, which showed her to have an average random blood sugar of 98. I praised the patient for her diligent efforts to control her diet and her good work at keeping her sugars under control with the insulin. She then informed me that she had come off her insulin three weeks earlier and had not been taking any medications to lower her blood sugar. When asked what she felt the big change was, she felt that her diabetes was under better control due to the use of iodine. Two years later and 70 pounds lighter this patient continues to have excellent glucose control on iodine 50 mg per day. We since have done a study of twelve diabetics and in six cases we were able to wean all of these patients off of medications for their diabetes and were able to maintain a hemoglobin A1C of less than 5.8 with the average random blood sugar of less than 100.
All diabetic patients were able to lower the total amount of medications necessary to control their diabetes. The one insulin dependent diabetic was able to reduce the intake of Lantus insulin from 98 units to 44 units per day within a period of a few weeks. If C-peptide is absent then we feel there is no insulin being produced and we have not been able to help this particular group of patients to get off their insulin.
We have been able to help these patients lower the total amount of insulin needed to control their glucose. When patients take between 12.5 to 50 mg of iodine per day, it seems that the body becomes increasingly more responsive to thyroid hormones (3-5).
Clur (17) has postulated that iodization of tyrosine residues in the hydrophobic portion of these receptors normalize their response to the corresponding hormone.
Optimal intake of iodine in amounts two orders of magnitude greater than iodine levels needed for goiter control may be required for iodization of these receptors (4). The insulin receptor tyrosine kinase plays a major role in signal transduction distal to the receptor as the primary event leads to subsequent phosphorylation of cytoplasmic proteins, called insulin receptors substrate proteins (IRS). The IRS proteins are cytoplasmic proteins, with multiple tyrosine phosphorylation sites, and phosphorylation of IRS proteins has been implicated as the first post receptor step in insulin signal transmission.
I have one patient with liver fatty infiltration who had varicosities of the esophagus with bleeding. Once she started on iodine for FDB we noticed that her GI bleeding stopped and the varicose veins of her stomach and esophagus disappeared. At its worse this ovarian pathology is very similar to that of polycystic ovarian syndrome (PCOS). The patients have successfully been brought under control with the use of 50 mg of iodine per day. Control with these patients meaning cysts are gone, periods every 28 days and type 2 diabetes mellitus under control.
Ideally, all patients should have an iodine loading test prior to orthoiodosupplementation. This test is one in which 50 mg of iodine is given after discard of the first morning void. All urine is collected for the next 24 hours including the first morning urine void the next day. The lab is a CLIA approved high complexity testing laboratory in the state of North Carolina. The majority of the loading tests that are performed at FFP Lab are on women ages 31 – 70 years old. In 667 patients analyzed, the mean level of excretion was about 18 mg for all age groups no patient achieved whole body sufficiency prior to orthoiodosupplementation. This suggests that of a total 50 mg of iodine given, the patients on the average retained a mean of 32 mg into their body on the first go around.
Following orthoiodosupplementation, patients have described vivid dreams, dissipated depression, no more cold extremities, more energy and less fatigue.
One patient after taking four pills of iodine lost eight pounds of fluid weight in 24 hours.
Patients who have been constipated for over ten years have now noted daily bowel movements. After treating over 1,000 patients with iodine, I have at no time seen the Wolff-Chaikoff Effect. Goiter is associated with breast cancer, stomach cancer, esophageal cancer, ovarian cancer and endometrial cancer .
I feel that those patients with the lowest excretion rates and the highest absorption of iodine on the iodine loading test are the ones with the highest risk for development of cancer. From literally hundreds of phone interviews with patients over the last two years, the levels of iodine excretion that seem to raise the highest alarm are those in which the excretion is somewhere around 10 mg or less per 24 hours in patients age 35 and up. My observations at this point show that there is a definite increase in the incidence of breast cancer, stomach cancer, ovarian cancer or thyroid cancer.
If a patient has the iodine loading test and has an iodine excretion of 10 mg or less in a 24-hour period, I initiate a cancer workup. In 1976, a JAMA article showed that 6% of the female population was at risk for breast cancer (25)). Trends and Public Health Implications: Iodine Excretion Data from National Health and Nutrition Examination Surverys I and III (1971-1974 and 1988-1994). Clur, A., DI-Iodothyronine as Part of the Oestradiol and Catechol Oestrogen Receptor – The Role of Iodine, Thyroid Hormones and Melatonin in the Aetiology of Breast Cancer. Measurement of urinary iodide levels by ion-selective electrode: Improved sensitivity and specificity by chromatography on anion-exchange resin.



Pain medicine news app
Training for holistic therapies


Comments
  1. ANGEL_XOSE 04.02.2016 at 15:29:39
    Antibodies that the immune system that if43% therapy from.
  2. BOB_sincler 04.02.2016 at 20:35:13
    Different sites in the physique together.
  3. prince757 04.02.2016 at 17:48:39
    About a 3 months now and accomplice) could also be a sign of the HSV-2 from sexual contact.