On the physical level some people feel heat sensations during Reiki treatments either in hands-on or in distant sessions. Distant treatments are more subtle then Hands-on ones for the obvious reason that there is not physical contact with the hands of the practitioner, but they allow a better reception as they avoid all sorts of possible barriers that may be involuntary happening during the Hands-on treatments. It is fascinating to notice how the rational scientific approach is, due to the latest discoveries in recent years, increasingly merging with the mystic and metaphysical intuitive approach thousands of years old.
Also interesting is that sound which are longitudinal waves cannot be conducted through a vacuum (in outer space no one can hear you scream). More over, the recent exact mathematic calculation of the frequencies of the 7 chakras (centers of aura energy) has been discovered to be in a musical relationship with each other forming a pentatonic (five-tone) scale, called primasounds (there is an octave relationship between the first and the six, and the second and the seven chakras).
All music affect moods thus changing human auras but the primasounds resonating with the same core essence of the chakras frequencies help clearing the biofield directly. Leading to logically being able to consider planet Earth as much alive as all its living things and as much interactive as human beings can be. Since the most ancient times Mankind have searched in the sky for answers to existential questions.
Astrology studies the movement of the planets and stars in correlation with human basic tendencies and destinies.
Since the psychological attributions to the planets influences are arbitrary and abstract Astrology is not an exact science and too often it has been denigrated as superstition. Only through years of non judgmental observation out of pure curiosity I have been amazed by the happenings of events in exact mathematical correlation with the planets transits on individual natal charts.
While the fundamental free will to actively build oneE»s own destiny is out of question and here underlined, observations have shown how the bigger planetary energies always do trigger circumstances and events on our small lives in a way that is possible to calculate and easily comprehend for a better understanding of what we really are and what is really going on in a much bigger picture.
We are unique cosmic vibrational fields exposed to bigger cosmic vibrational fields that are constantly moving and changing in each unrepeatable instant. Besides since most people do not really know themselves, the Natal Chart, that is the graphic of all the planets positions at the place and moment of birth and which indicates the basic character and tendencies of oneE»s own energy, is a great tool for better knowing one own self for improvement purposes and for better understanding one another in our true essence avoiding the projection playground. It opens up to a cosmic view of a divine positive progressive general growth, from where it is much easier to smile at our small lives pains and joys, frustrations and desires, developing therefore compassion for ourselves and others putting us in prospective of a much better, bigger and amazing order of things. Experimental results are shown for three energies in a coplanar symmetric geometry, and for three energies in an asymmetric geometry. Ionization of atomic and molecular targets is one of the most complex and fundamental collision processes that can be studied in detail. To fully characterize these interactions, it is necessary to perform sophisticated measurements where an incident electron of well controlled momentum scatters and ionizes the target.
In these (e,2e) experiments, information about the collision is obtained by measuring the outgoing momenta of the collision products. For molecular targets, it is difficult to know the orientation and alignment of the molecule prior to the interaction occurring, unless this can be defined prior to the collision or can be measured following the collision. The interaction of low to intermediate energy electrons with molecular targets has been much less studied compared with high energy electron collisions. Experiments on molecular targets often employ effusive beams produced at room temperature, and so the targets may have internal rotational and vibrational energy. Results are presented here for an H2O target at significantly lower energies than has been studied before.
Figure 1.1 Representation of the 1b1 state of H2O, showing an incident electron ionizing the molecule. The experiments described here were carried out in the fully computer controlled and computer optimized (e,2e) spectrometer that operates in Manchester. For the coplanar symmetric experiments described here, the electron detectors were moved so that their angles with respect to the incident beam direction were equal to each other throughout measurement (see figure 1.2).
For coplanar asymmetric experiments, analyzer 1 was fixed at a scattering angle thetaa = 22A°, while analyzer 2 was swept around the scattering plane. The fixed scattering angle thetaa = 22A° was chosen as this was the smallest angle that could be used without the incident electron beam from the gun striking the side of the analyzer (and so producing unacceptable levels of noise on the coincidence signal). The energy resolution of the spectrometer is set by the resolution of the electron gun and the pass energy of the analyzers. Production of a high quality molecular beam of H2O required careful monitoring of the experiment as it progressed. The de-gassed water was then transferred to a 150mm long tubular stainless steel flask which was connected to the main vacuum system using a swagelok fitting. An AD590 sensor was secured to the aluminium block surrounding the flask, so that the temperature of the insulated assembly could be monitored and controlled. To monitor the molecular beam inside the vacuum chamber produced from the water, a quadrupole mass spectrometer was installed onto the spectrometer.
Figure 1.3 shows a typical coincidence energy spectrum obtained from the experiment during operation.
The experiments were carried out over a period of several months, using electron beam currents ~200nA for all data runs. As the incident energy increases, the ratio of forward to backward scattering cross section increases, as has been seen for most atomic targets in this geometry.
The measured coplanar asymmetric data is shown in figure 4, again normalized to unity at thetab = 45A°. As the incident energy is increased to 55eV above threshold, the forward lobe splits into two clear peaks of approximately equal magnitude, as seen in figure 1.5(b). Results from the 1b1 state of water have been presented for coplanar symmetric and asymmetric energies.
These results have been compared to a DWBA theory in the paper J Phys B, however the averaging used in this theory was not a good approximation, and so is not expected to yield accurate results for this state. Experimental results are presented for electron impact ionization of water in the energy regime from near threshold to intermediate energies.
Results of a sophisticated model which approximates the random orientation of the target using a spherical averaging of the wave-function prior to the collision, using sophisticated distorted wave Born calculations that include post-collisional interactions in first order and to all orders of perturbation theory are also shown for comparison (see J. The calculations predict the data most accurately at the lowest energy studied (4eV above threshold) in a coplanar symmetric geometry, whereas the comparison between theory and experiment is generally poor for higher energies and for non-coplanar geometries. Energy deposition and angular distributions resulting from electron collisions with water are used in charged particle track structure analyses to model radiation damage in biological samples.
These low energy electrons have an effect over a much wider volume than the targeted cancer site.
At incident energies less than ~200eV, the collision dynamics are strongly influenced by effects including post-collision interactions, target polarization, distortions in the wave-functions for the participating electrons and multiple collisions. Current models now yield reasonable agreement with experimental data for a range of atoms, implying a good understanding of the collision dynamics under the conditions used in the experiments, and these models are now being extended to low energy (e,2e) collisions from molecules.
Recent experiments studying simple diatomic targets including H2 and N2 have provided benchmark data. The apparatus at Manchester can also access non-coplanar geometries, and so has provided additional data to further test these models. In a previous study the groups at Manchester and Missouri investigated the 1b1 (HOMO) state of H2O in coplanar kinematics. By contrast, the 3a1 orbital of interest here is involved in the O-H bonding and has a charge density distribution distorted from that of a symmetric atomic like orbital. The experimental triple differential cross sections (TDCS) presented here were measured in the (e,2e) apparatus at the University of Manchester. The spectrometer can be operated in a standard coplanar geometry where the momenta of all three electrons (the incident and two outgoing electrons) are within the same detection plane (psi = 0A°, figure 2.1). The power supplies for the electrostatic lenses in the electron gun and the electron analyzers are fully computer controlled and computer optimized, allowing for automated tuning at regular intervals, with the analyzers being re-optimized each time they move to a new angle. The energy of the spectrometer was re-calibrated at the start of each new kinematic arrangement, by measuring the coincidence binding energy spectrum. Over the course of this study the binding energy spectra were recorded for various energies and geometries, and it is estimated that contamination from neighbouring orbitals was always less than 10%, and is more typically in the range of 0.5%.
The distilled water sample used to provide the molecular target beam was contained within a 50mm diameter 100mm long stainless steel vessel sealed by a CF-70 flange to a 6.35mm swagelok fitting. The sample vessel and gas handling line were held at a constant temperature of 50A?C throughout data collection, so as to create sufficient driving pressure for the target beam.
The purity of the target beam was verified with a Spectra VacScan mass spectrometer fitted to the scattering chamber. The background pressure within the scattering chamber was set to 1.1 x 10-5 torr during operation, and was found to remain constant throughout all data runs. During these experiments we observed an unusual behaviour of the tungsten hairpin filament used as the incident electron source.
To facilitate this, the current measured by the Faraday cup located on the opposite side of the interaction region to the electron gun was monitored by the computer control software, and the current through the filament adjusted to maintain a beam current of 300nA throughout data collection.
In the present study we also measured the coincidence energy resolution from ionization of helium, and found this did not change, indicating that the temperature of emission remained approximately constant.
The data presented in figures 3-5 were then averaged over these angular sweeps, and the uncertainties in the measurements determined from the complete set of data for each scattering angle.
The experimental data are not measured on an absolute scale and so experiment and theory are normalized to a maximum of unity at each energy, as shown in figure 2.2. As the energy of the outgoing electrons is lowered, it would be expected that the Coulomb repulsion between the outgoing electrons should play an increasingly important role, driving the electrons apart. The best agreement between experimental data and theory is at the lowest energy, where the experimental data and MDW model are in excellent agreement for the binary peak. A key advantage of the spectrometer in Manchester is the ability to measure data for kinematics in non-coplanar geometries.
Non-coplanar measurements were hence taken here with both outgoing electrons having an energy of 10eV.
As shown in figure 1, the geometry adopted in this spectrometer provides a common normalization point (xi1 = xi2 = 90A°) for all gun angles psi, which allows ALL data at a given energy to be referenced to a common point. For the current measurements, the coplanar data have been normalized to a maximum of unity, as before. The data in figure 2.3 show a clear trend indicating the binary and recoil peaks diminish in magnitude as the angle of the electron gun angle increases.
The data contrasts strongly with the theoretical models for the larger gun angles y, where the theories predict significantly more structure than is seen in the data. The final kinematic configuration used symmetric geometries and 20eV excess energy as above, however in this case the data are for unequal energy sharing between the outgoing electrons. The data were only taken for coplanar and perpendicular plane geometries, so as to contrast differences in these two extremes.
The key differences that can be seen in these data for the coplanar geometry are that the binary peak moves to a smaller angle as the energy asymmetry increases, as might be expected from post collisional interactions.
Agreement is mixed, and rather surprisingly gives best results at low energies, where it might be expected that the approximations are least accurate.
The experimental results for both equal and non-equal energy sharing in the perpendicular plane show almost no structure, whereas the theoretical calculations predict that three clearly defined lobes should be seen. This work was supported by the University of Manchester and the US National Science Foundation under Grant. 12.A A  Naja A, Staicu-Casagrande E M, Lahmam-Bennani A, Nekkab M, Mezdari F, Joulakian B, Chuluunbaatar O and Madison D H 2007 J. The following information pertains to experiments presently being conducted in the laser collisions lab of the above laboratory.
In these experiments atoms and molecules excited by electron impact are studied when they are in a metastable state following the collision. Many different processes can occur in this reaction, depending upon the energetics and kinetics of the reaction.
The experiments described here look at the process of inelastic scattering, where the target is left in a metastable state. The experiments are precursors to measuring stepwise laser excitation of metastable atoms and molecules.
An electron which has well defined energy Einc, and momentum Pei is incident on either an atom or a molecular target which is in its ground state. The velocity of the gas is constrained to a narrow distribution by the supersonically expanding shock wave.
The target beam enters a second vacuum chamber where it travels ~ 100mm prior to interacting with a well defined beam of electrons. These electrons are produced in an electron gun that controls both the direction and energy of the electrons. Only a very small number of these electrons will interact with the target beam, the majority passing through the interaction region and being collected by a Faraday cup 200mm downstream. The majority of the target beam is also unaffected during the reaction, and passes through the interaction region. The majority undergo an elastic collision where only the direction of the incident electron may change and the target remains in its ground state. A small number of targets will be excited, and depending upon the energy that can be exchanged between the electrons and the target, excitation to various states can occur. Depending upon the cross section for the state, which is a function of both the energy and the angle through which the electron is scattered, a small number of these targets will be excited to the metastable state. Since these metastable excited targets cannot decay by photon emission, and since there are very few collisions between targets in the gas beam (their relative velocity is close to zero in the beam and therefore their relative position to each other does not change markedly), most of these will remain in the excited state as they pass out of the interaction region. Scattered Atoms (Molecules) in a Metastable State with internal energy Eexc and which carry momentum Paf away from the reaction. Studying the momentum of the targets that have been deflected by the electron collision, since these are related to the electron momentum by conservation of momentum. It should be noted that in conventional electron scattering experiments which measure excitation cross sections, the target momentum is not usually considered. There are a number of complications that can arise in these experiments where the target momentum is exploited for measurement.
If the incident electron is of sufficient energy to excite not only the metastable state but also higher lying states which through photon emission can decay to the metastable state, there will be a contribution to the target signal due to these cascades.
For a significant number of targets there is more than one metastable state, and these may be sufficiently close in excitation energy to be unresolvable when exploiting their individual momentum transfer contributions. This effect is particularly significant when the target is a molecule since the metastable vibrational and rotational states will be much closer together than can be resolved by even the highest resolution electron impact studies. The difficulties associated with cascading can be overcome by confining the study to the region close to threshold for excitation of the metastable state. For studies of excitation at energies where contributions from cascading become significant, a time resolved coincidence experiment between the scattered electrons and the deflected targets becomes necessary.
Unlike conventional coincidence studies, the direction of the coincident scattered electron is known since the momentum of the excited target is known, and hence the collection rate of the experiments can be enhanced by placing the electron detector at the appropriate point in space. The difficulties associated with state selectivity can be overcome by employing a further stepwise laser excitation step from the metastable state to an upper state using a high resolution laser probe. Since the laser radiation transfers information about the metastable state to this upper state, measurement of the upper state can in principal yield information about the lower state once the laser excitation mechanism is well understood.
Allows the electron excitation mechanism to be studied by analysing the stepwise excited state. Field Ionisation if the laser excited state has sufficiently high principal quantum number (high yields, in principal 100% efficient).
The latter Field Ionisation technique is adopted in these experiments, although photon detection can be easily installed into the vacuum system if this proves advantageous to measurement of the signal.

Molecular Vibrational & Rotational states can be studied in detail for a wide range of targets.
A detailed analysis of the laser excitation process is required to fully characterise the electron excited state.
The processes where the linear momentum transferred from the electron to the target is exploited to determine cross sections for excitation of the state are now considered.
The square root in the above expression shows the origin of the two different momenta at any given deflection angle of the targets as described in figure 4.
Note that for each atom detection angle qa there are 2 contributing momenta Paf1, Paf2 excepting the case of Forward & Backward scattered electrons, as shown in figure 5. Hence with sufficient time resolution and detection angle resolution the experiments should reveal 2 distinct peaks at any given detection angle.
It should be noted that the lifetimes of the low l highly excited helium Rydberg targets, typically only a few microseconds, exclude them from being detected in the present experiments where the targets drift for around 300 microseconds from the interaction region to the metastable detector. The chamber is lined with a double layer of m-metal which reduces external magnetic fields to < 5mG at the interaction region.
Fast output deflector circuit only allows electrons to exit electron gun, preventing any ions created in field free region or other high potential region from reaching interaction region. Angle selectivity is achieved using 1mm apertures 1 & 2 spaced 60mm apart prior to a 719BL CEM metastable detector at end of detector (LHS). Electrostatic deflection plates remove unwanted electrons and ions from entering the detector and possibly reaching the detectors. Visible Laser Diodes (VLD's) align the detector to the interaction region formed by electron beam, gas beam and rotation axis of detector. A control pulse (0 - 150Hz) drives the gas nozzle HT pulse & the electron gun Grid following an appropriate delay. The Turbo-MCS is gated to either sweep over ~100ms for each gas pulse or is set to count events for a set number of gas pulses at each detection angle.
The following graphs show the metastable angular distribution when the target gas is excited using a continuous electron beam, rather than a pulsed electron beam for four different excitation energies from 20eV to 50eV. As the incident energy increases forward scattering starts to dominate over backscattering as a collision mechanism as might be expected.
The evolution from single atom momentum at q'a = 4A°through double momentum peaks at intermediate energies then back to a single peak at the highest scattering angles can clearly be seen as is discussed in figure 4.
Gaussian profiles have been fitted to the peaks to establish the amplitude, width and position of each peak as a function of the deflection angle.
Note that a 4ms electron excitation peak is visible at higher detection angles, which is thought to be due to either photon or stray electron contributions. This accurately yields the time difference between excitation of the target and collection of the metastables.
For these experiments the atoms excited by the incident electrons are counted and fitted to a Gaussian of width w and height h as shown in figure 14.
Figure 15 shows the results of these least squares fit calculations at 40eV Incident Energy, showing the amplitude h and width w together with the associated peak positions. Note that this method allows the DCS to be determined over the complete set of scattering angles from forward to 180A° backward scattering of the electrons. Note that some discrepancies exist between the calculations from the fast and the slow atoms. This effectively acts as a high resolution timing probe of the target gas beam which for helium has a time spread of the order of 6ms from the interaction region to the detector. Besides receiving and feeling the Reiki energy during distant treatments it is the most fascinating experience as it surely opens one to a higher awareness that is not commonly found, thus showing all the beauty and unlimited reality of the spiritual level. Often people report to feel refreshed and energized and being able to accomplish more things more easily.
Transversal waves instead, such as light, can travel through the vacuum of space, which is why we can see the sun but cannot hear it. If the visible Moon, that is so small compared to Jupiter or Uranus yet closer to Earth, affects living things daily (agriculture, tides, woman cycle), then it is logically acceptable to realize that all other planets in the Solar System have a constant impact as well although invisible to our physical eyes, and even more so the bigger galaxies. While faith is the warmest reply of all and worlda€™s religions the most helpful, there is still space for researching.
Coplanar symmetric and asymmetric electron impact ionization studies from the 1b1 state of H2O at low to intermediate impact energies. The experimental data show a wide variation in the cross section over this range of energies. These ionizing collisions are important in a wide range of different areas, ranging from plasma physics, astrophysics, atmospheric physics, medical and biological processes involving low energy electrons through to the study of high voltage discharges. The scattered electron is then detected in time correlated coincidence with either the electron ejected during ionization, or with the resulting ion. This is usually accomplished by determining a cross section that is five fold differential in angle and energy. In most cases, this means that an averaging over the orientation of the target must be included for theory to compare with experimental results. This energy region (from threshold to ~200eV) is important as it is here that the cross section for ionization is largest.
The ionization potential from these ground ro-vibrational states is usually less defined than for atomic targets, due to the associated Franck-Condon overlap between the potential energy curves of the neutral molecules and the resulting ions. This apparatus is described in detail on other web pages on this fileserver, and has been designed to operate in the energy regime from ~10eV to ~300eV.
In this configuration, the energies selected for the scattered and ejected electrons were equal. The inner diameter of this flask was 9mm, and the outside diameter was 12.7mm, so that a standard swaged fitting could be used.
This was accomplished using a Newport model 325 temperature controller, which supplied drive current to the TEC.
This proved invaluable, as it was then possible to continuously monitor the background gases in the chamber during operation. In this example, the analyzers were set to pass electrons of energy 20eV, and a symmetric geometry was chosen with thetaa = thetab = 45A°. Over this period of time, the filament current driving the cathode had to be steadily decreased, probably since the water vapour within the vacuum chamber slowly reduced the diameter of the filament.
The data is normalized to unity at thetaa = thetab = theta = 45A°, since the results have not been placed on an absolute scale. Results were taken in symmetric coplanar and non-coplanar geometries, with both equal and non-equal outgoing electron energies. The human body, and other biological material comprise of ~80% water, which makes it an ideal test case to investigate processes occurring in the body. These models are an active area of research since the observation that high energy radiation that is used to treat cancers also liberates many low energy electrons, causing additional damage to cell DNA. Knowledge of the collision dynamics of low energy electrons with biological systems is hence needed, so as to develop robust models of these processes. In such experiments the energy and momenta of the outgoing electrons are measured, giving a five fold differential cross section. In this regime these processes must be considered on an equal basis, and so the complexity of the interactions means that theoretical studies have mainly been limited to atomic targets. This contrasts to atoms which have a single nuclear scattering centre, and which can hence be described using a spherical basis. A further challenge arises since the experiments cannot, at present, align the molecules prior to the collision, so the models must consider the random orientation of the targets for accurate comparison. The majority of data is recorded in a coplanar geometry, where the incident and two outgoing electrons are in the same plane, and were conducted at a higher incident energy than the studies presented here. The symmetry of the 2py oxygen atomic orbital, representing the lone pair of electrons on the oxygen atoms, prevents it from hybridizing with the H atomic orbital, leaving the molecular 1b1 HOMO orbital essentially atomic like, and therefore symmetric.
However, the orientation averaged molecular orbital used in the theoretical calculation is a bad approximation for that state given the cancellations due to the orbital symmetry.
The molecular orbital used in the model therefore should not suffer from the same cancellation problem during the orientational averaging procedure. This apparatus is fully computer controlled and computer optimized, allowing it to operate continuously without user intervention.
A coplanar geometry (psi = 0A?) is defined when all three electrons are in the detection plane. The angular resolution of the apparatus is estimated as A±3A°, based on geometric considerations of the electrostatic lenses at those energies. Several freeze-pump-thaw cycles were performed using a salted ice slurry bath, to remove dissolved gas impurities from the water prior to admission into the scattering chamber. Over time the emission current from the filament dramatically increased, when a constant current was delivered to the filament. The data were normalized to a collection time of 1000sec for each measurement, and up to 30 sweeps of the detection plane were used to produce statistically significant results.
The overall shape of the TDCS measured at corresponding energies in a previous study of the 1b1 state are qualitatively similar, however the 1b1 state shows a second peak in the binary region emerging at higher energies that is not observed in the 3a1 state. PCI would also be expected to shift the recoil peak towards xi = 90A°, although this cannot be confirmed in the data.
This agreement diminishes as the energy increases, which is unexpected since the MDW model is usually more accurate at higher energies. The TDCS measured in the perpendicular plane is almost constant over all analyzer angles, which is very different to what is observed for atomic targets.
The progression in both models shows a decrease in cross section from psi = 0A° to 45A°, after which the intensity once again increases.
There also appears to be a narrowing in the main binary peak as the asymmetry increases, with a new shoulder appearing around xi = 60A°. This contrasts markedly with the calculations, which predict triple peaks in the perpendicular plane that change magnitude only marginally with the asymmetry. This discrepancy is seen both for equal energy and for non-equal energy data, which have been taken in coplanar and perpendicular geometries. The electron impact occurs when a well controlled electron beam interacts with a well defined gas beam comprising ground state atoms or molecules under investigation. Here the electrons do not lose any energy in the reaction, however the momentum of the electrons may change. Here the incident electron loses energy in the reaction to the target, which is subsequently excited to one of its (usually discrete) states. In these experiments the target is prepared in some way so that it has internal energy prior to interaction with the electron beam.
This is here defined as a state that cannot decay to a lower state of the target via a single photon emission (dipole allowed) transition. State selectivity is obtainable by exploiting momentum transferred to the atom by the electron impact.
This is brought about in these experiments by employing a supersonically expanded jet of target gas which is skimmed by an expontially flared aperture in a source chamber. These ground state targets eventually enter the high vacuum pump located at the top of the interaction chamber from where they are ejected. They can then drift for many hundreds of microseconds before a collisional de-excitation occurs either with each other or with a surface or stray molecule inside the vacuum chamber. Note that if the targets are molecules they may share this internal energy between rotational & vibrational states in the metastable electronic manifold. This can be achieved using conventional electron energy analysers that select electrons of a specific energy and scattering angle for measurement.
As the possible target deflection angles following the collision is confined to a much smaller range than the possible scattering angles of the electrons (which range from 0A° through to 180A° in space), in principle the cross section for excitation of the state can be completely mapped out over all possible electron scattering angles. In these experiments only the momentum of the electron is measured, both for the incident beam and for the scattered electrons using energy and angle selective analysers. The signal will then be an incoherent summation of the contributions fom these excited states. Of particular interest in this region is the study of temporary negative ion states that show up as resonances. Measurements of energy selected scattered electrons in coincidence with measurement of the excited targets then exclude any contribution from upper states, since the electrons which excite these states are excluded from the coincidence measurement.
Tunable laser radiation has an energy resolution typically 1,000 to 1,000,000 times better than is possible using electron spectrometers, and so resonant excitation can individually select the metastable state for further excitation following electron impact excitation. The coplanar momentum transfer scheme, showing the relationship between the extrema of the electron scattering angles together with the corresponding extrema of the target deflaction angles.
The graphs show the effects as a function of the momentum, velocity and deflection angle of the target helium atoms. Variation of the maximum and minimum target deflection angle as a function of the incident energy of the electrons. This aperture together with the 1mm exit orifice of the nozzle are aligned using visible laser diodes.
All are aligned using Visible Laser Diodes apertured to accurately define their individual axes. This is important as the detector may measure ions created as the electron beam interacts with the gas beam.
The calibrated angle plate which accurately measures the deflection angle of the target beam. This additionally allows the zero angle to be calibrated wrt the apertures in the source chamber which define the ground state target beam direction. Since the interaction region to detector distance is accurately known, this immediately yields the value of final atom momentum Paf(qa) to substitute into the appropriate equations. Gaussian fitting parameters as a function of the Detection Angle for the time resolved metastable atom deflections at 40eV Incident Energy.
It can be seen that the DCS is forward peaked as expected, and that the DCS has been determined at the complete set of scattering angles from forward to backward scattering. This may be attributable to errors associated with the solid angle of detection of the analyser which has not been considered in the above calculation.
Eventually it all comes down to mathematic from minus to plus infinite to systematically expand our awareness. Our thoughts and feelings are cosmic vibrations too that constantly change our biofields and destinies at any time and yet for the most part weE»ll unfold following the basic soul imprinting readable in the Natal Chart.
Theoretical approximations accurate at high impact energies can no longer be applied, and so there are stringent demands on theory which must be satisfied for accurate comparison with data.
The (e,2e) coincidence signal for molecules may then have a correspondingly lower yield compared to an atomic target where the ionization potential is well defined. A pictorial representation of the water molecule in the 1b1 state is given in figure 1.1 below.
The spectrometer allows measurements to be conducted from a coplanar geometry through to the perpendicular plane, although in the present measurements only a coplanar geometry was used. The analyzer pass energy was then set to measure electrons so that the overall resolution of the coincidence signal (as measured using a helium atomic target) was 600meV. The pump removed background gas from the flask, and extracted dissolved gases held in the water. The flask was secured to the cold side of a 50mm x 50mm thermo-electric cooler (TEC) using a large aluminium block, and the assembly (flask + block) was insulated from the air using Styrofoam.

The 1b1, 3a1 and 1b2 states are clearly resolved in this spectrum, which is fitted to three Gaussian peaks to ascertain the widths of the spectral profiles. These data were measured in a coplanar geometry with outgoing electron energies of 20eV detected at theta1 = theta2 = 55A°. Figure 1.5(a) shows the lowest energy results, with an incident energy 15eV above the ionization threshold. Molecular wave-functions are generally not spherical, the nuclei within the molecule providing multiple scattering centres. This becomes a computationally intensive problem, and so approximations are usually made to allow these calculations to become tractable.
In this study the analyzers were always kept in a symmetric configuration with xi1 = xi2 = xi.
A needle valve at the entrance to the scattering chamber controlled the flow of target H2O vapour into the interaction region. This indicates that an H2O target molecular beam of high purity was created, as confirmed from binding energy spectral studies. This increase in emission current was often more than a factor of 2 within a 24 hour period.
The solid line shows results from the Molecular Distorted Wave Born Approximation (MDW) while the dashed line was generated from the Molecular 3-body Distorted Wave Approximation (M3DW). This trend is much clearer in the present data compared to that from the 1b1 state measured at higher energies.
For the theoretical model, the coplanar TDCS has also been normalized to unity for both MDW and M3DW models. These measurements were taken in a series of symmetric non-coplanar geometries with outgoing electron energies of 10eV.
The M3DW model follows a trend that is closer to the experimental data, although neither model accurately predicts the results that have been obtained.
The theoretical calculations are also shown, where once again the data and theory have been normalized to unity at the peak in the coplanar geometry.
The minimum around 90A° in this geometry does not change substantially as the energy sharing changes.
Thus the electrons may be scattered throughout space from the reaction zone, the distribution of these electrons then giving information on the elastic differential cross section for the target in question. These states may be below the ionisation limit of the target, in which case the target usually remains neutral, or higher order excitation processes can occur where more than one electron in the target is excited. The interaction then removes energy from the target and so the electrons emerge from the reaction with greater energy than they had prior to the reaction. The excited target therefore has a very long lifetime, since the probability of 2 photon decay is much smaller than for single photon decay processes.
For light atoms and molecules (He & H2 for example) the metastable targets are deflected through angles from ~5A° for forward electron scattering to in excess of 30A° for backward scattering depending upon the impact energy. An electron of well defined momentum Pei collides with a target atom or molecule in its ground state that has a well defined initial momentum Pai. These experiments are conventionally limited to a range of scattering angles that does not include either the forward scattering region of the backward scattering region.
These experiments do not have the spatial or temporal resolution to define either the incident or the final target momentum, since they mostly produce a target beam via continuous effusive flow from a capillary. These resonances occur since the scattered electron following excitation can remain in the region of the excited target for sufficient time to form a pseudo-stable state which has its own unique properties.
As before the electron of incident momentum Pei is scattered inelastically from the target of incident momentum Pai, leaving the target in a metastable state.
Electrons incident along the z-axis have a well defined energy Einc and thus a well defined momentum Pei. Electrons incident along the z-axis have a well defined energy Einc and a well defined momentum Pei. Electrons incident along the z-axis with well defined energy Einc and well defined momentum Pei can scatter throughout the range of angles from 0A° (forward scattering) through to 180A° (backward scattering) as shown in figures (a) and (b). Amplitude h, peak position and peak width w are all calculated using a least squares fit to the data, a sample of which is presented in figure 14. The heavier vibrations exude denser objects that can be seen and felt, such as tables, chairs, rocks and humans. The angles that could be accessed in this configuration ranged from thetaa = thetab = 25A° through to thetaa = thetab = 135A°. The acceptance angle of the analyzer lenses was A±3A°, as set by input apertures at the entrance to the electrostatic lenses.
This de-gassing procedure was carried out for ~2 hours before the water sample was used in the experiment, to ensure that the proportion of dissolved gases in the water was minimized. The hot side of the TEC was attached using thermal conducting paste to an aluminium heatsink to which a 12VDC boxer fan was secured, so that heat from the TEC could be dissipated efficiently. If this ratio reduced, the experiment was halted and the water changed to a newly de-gassed sample.
In this case, the 1b1 state was found to have a width of 620meV, which is comparable to that for an atomic target. The contrast between the maximum and minimum in the cross section increases as the energy increases. As the energy increases further to 95eV above threshold (figure 1.5(c)), the double peak in the forward direction is still visible but the magnitudes of the peaks are now different.
The purity of this beam was monitored regularly using the mass spectrometer throughout this study.
To ensure constant incident electron beam current throughout the measurements as required, the filament current was hence also placed under computer control.
The experimental and theoretical data has been independently normalised to unity at each energy. Dr Kate Nixon thanks the British Council for funding under the research exchange programme, and the Royal Society for a Newton International Fellowship. The energy required to excite these processes is usually above the ionisation limit, and so these excitation mechanisms often lead to ionisation via photon emission or through autoionisation.
In these experiments the initial target state is almost always prepared by excitation with a laser beam from the ground state, since very high yields (theoretically up to 50% for CW laser excitation) of target excitation can be achieved prior to electron collision.
This long lifetime (which can be up to seconds if there are no other mechanisms for de-excitation) is exploited in these experiments, which measure the quantity of metastable targets as a function of the target deflection angle following electron collision.
The correspondence (via momentum and energy conservation equations) between the deflection angle and arrival time at the detector of the excited target with the electron scattering angle therefore allows differential cross sections to be measured over the full range of possible scattering geometries from forward to backward scattering. The target is excited to a metastable state, the electron losing energy Eexc during the reaction. Any variation in cross section due to variations in the target momentum is therefore averaged out in the signal that is collected.
The target is then further excited using resonant laser radiation to a higher lying state which is then studied. These electrons interact with a beam of target atoms or molecules prepared with a well defined momentum Pai travelling along the x-axis with an initial thermal energy Eai.
These electrons interact with a beam of target atoms or molecules prepared with a well defined momentum Pai travelling along the x-axis with an initial energy Eai. Since momentum must be conserved in the reaction, the change of electron momentum delta Pe along the z-axis for these cases must be balanced by a corresponding change in momentum Delta Pa of the targets along this axis.
The graph shows the effect discussed in figure 4, where for each deflection angle there are two distinct atom momenta corresponding to unique electron scattering directions.
These are normally pinched off from exiting the region of the filament using a -15V grid potential wrt the tip of the filament.
Angels are usually invisible to humans because they have a lighter and faster vibration.We humans, are really spiritual beings of light as well, but we have incarnated into denser physical bodies to experience life on the Earth plane.
Also recovering much faster from major strains (even the marathon), fatigue, illness or stressful situations.
For asymmetric geometries, thetaa is fixed at 22A° while analyzer 2 is swept around the scattering plane. A glass flask was used for this procedure as this allowed the process to be visually monitored. This indicates that the energetic effects of ro-vibrational transitions from the ground state to the ion state are negligible for this state.
Further checks were made regularly on the energy of the incident electron beam by monitoring the coincidence energy spectrum (figure 1.3), and regular monitoring of the partial pressures of the gases in the vacuum chamber. A second peak occurs in the backscatter region, however the maximum of this peak appears to occur at thetab < 225A°.
For non-coplanar geometries the electron gun is lifted out of the plane, and is defined by the angle psi. Some experiments have also been conducted where the target beam is prepared in a metastable state using electron bombardment, but these experiments are very preliminary.
The final momentum of the inelastically scattered electron is given by Pef, whereas the final momentum of the target is given by Paf.
The high resolution of the laser excitation allows details of the electron excitation to be studied in higher detail than is possible using electron spectroscopy alone. When requested the grid potential is rapildly raised so that the positive anode potential field reaches the filament to extract electrons which are accelerated and focussed onto the interaction region using 2 triple aperture electrostatic lenses.
When we invoke Angels to assist us, we are not "praying" to them, and they do not override God.  Some people may wonder why not ask God directly for assistance, instead of the Angels. If already tired one often falls asleep even briefly and usually reports waking up more refreshed then normally.
There is an offset of 1eV in the position of the peaks which is due to contact potentials in the spectrometer. The full line represents a three-Gaussian fit, whereas the dotted lines show the individual Gaussians from this fit, illustrating the degree of separation measured with the current energy resolution. The results in the backward direction also have structure, with a minimum occurring when thetab ~ 250A°. The scattered electrons leave the interaction region with momentum Pef at scattering angles (thetae, phie), whereas the deflected excited targets leave the interaction region with linear momentum Paf at polar angles (thetaa, phia). The scattered electrons are confined to the xz plane and leave the interaction region with momentum Pef at a scattering angles thetae. In general as shown in figure (c), for a particular target deflection angle between these two extrema there are two possible electron scattering angles that can result in targets deflected to this angle, as shown. A further set of output deflectors pulsed simultaneously with the grid allows the final focussed beam to pass through the exit aperture and onto the target beam.
When we ask the Angels for assistance, we are also helping them fulfill their mission so to speak.
When receiving a distant treatment make sure you will be relaxing and not driving or doing anything that needs your alert attention. Reiki gently re-align one to the balance center within from which all things develop smoothly and almost effortlessly.
Very little contamination is expected from neighbouring orbitals in the measured TDCS for the 3a1 state. The deflected excited targets therefore must also leave the interaction region in the xz-plane and are deflected to the angle thetaa.
In the example shown, electrons scattered in the lower xz-plane experience a momentum change larger than electrons scattered into the upper xz-plane.
This set of deflectors also removes any ions created inside the electron gun in the high potential regions from reaching the interaction chamber, since their flight times are much slower than the associated electron pulse.
Angels work directly with humans and all other sentient beings on the planet.? They are a part of God, just as we all are. Observation of the targets at any intermediate deflection angle will therefore display two different momenta for these targets.
Some Angels can incarnate on Earth when necessary, and they do so when certain conditions on Earth needs help and the higher vibrations that Angels bring. They are included in the Healing Angels of the Energy Field group that we work with in an IET session.
The other Healing Angels of the Energy Field® are Ariel, Celestina, Casiel, Faith, Daniel and Sarah. Although Angels are androgynous in nature, they sometimes present themselves as either a masculine or feminine energy. Some also believe that Ariel is the feminine aspect of Archangel Uriel, while other believe that Archangel Ariel is a masculine energy. The is that they are in balance with nature, and possess both masculine and feminine energies and qualities. While there are millions of Archangels in existence, there are 15 major ones we usually work with. All Angels and Angels are omnipresent, meaning they can be with everyone at the same time, and are not restricted by time and space.
Although they work with humans, they do not incarnate.?             Guardian Angels - Everyone has at least two guardian Angels with them at all times.
Some people have more than two Guardian Angels, and some have Angels that will stay with you for a certain period of time, until they are no longer needed. Spirit Guides are usually deceased relatives or friends, although they also can sometimes take the role of a Guardian Angel when the need arises.   ?                                                                                          Unknown Artist                  Spirit Guides - Our Guides just like our Angels,  are always sending guidance to us. They have a strong connection to us because they were once human and lived on the earth plane at some point in their existence. They can sometimes play the role of a Guardian Angel if the need arises.?Ascended Masters - Ascended Masters are former humans who have transcended their Karma, and reside in the spirit plane. Because they once waked upon the earth, they have a strong connection and commitment to us. There are many Ascended Masters on the planet now to help us with our spiritual growth and expression, as we shift into a new dimension and new paradigm. The Angels and Archangels will also assist bringing clarity and peace to any issues and questions you may have. If any type of healing is needed, I will be guided as to what that is, and I'll incorporate that into the session. I use Angel cards when guided to do so, usually as a follow up and confirmation of the messages received. These loving messages are meant to empower you as an individual and assist you on your journey through life.
I will receive channeled guidance from the Angels, Archangels, Ascended Masters and your guides.
This is helpful when you have a couple of areas in your life you'd like to address, so you can move forward                           Angelic Calendar Year Reading?                                                                    Unknown Artist      Angelic Year Reading - month by month for the coming calendar year. You will receive messages and information to give you a general sense of the overall energies for the coming calendar year.

Civil service interpersonal skills test
You can heal your life hindi pdf


  1. 09.08.2014 at 12:15:33

    Students from greater education frequently attracts like is a phenomenon that the health club with my two close.

    Author: never_love
  2. 09.08.2014 at 19:53:11

    Also tends to make it easy to take screen.

    Author: HANDSOME