
oggggggg

n

Presented by

Dr Chris Jackson
Reliability engineer

WORKBOOK

What is a
Fault Tree?

Understanding HOW your system has failed ... or will fail

Copyright © 2022 Christopher Jackson

All rights reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by an
means, including photocopying or other electronic or mechanical methods without the prior written permission of the
author (Christopher Jackson), except as permitted under Section 107 or 108 of the 1976 United States Copyright Act
and certain other non-commercial uses permitted by copyright law.

For permission requests, write to Christopher Jackson using the details on the following pages.

Limit of Liability/Disclaimer of Warranty: While the author has used his best efforts in preparing this document, he
makes no representations or warranties with respect to the accuracy or completeness of the contents of this document
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may
be created or extended by sales representatives or written sales materials. The advice and strategies contained herein
may not be suitable for your situation. You should consult with a professional where appropriate. The author shall not
be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

 Page | 2

Who is your teacher? … Dr Chris Jackson
Dr Jackson holds a Ph.D. and MSc in Reliability Engineering from the University of Maryland’s
Center of Risk and Reliability. He also holds a BE in Mechanical Engineering, a Masters of Military
Science from the Australian National University (ANU) and has substantial experience in the field of
leadership, management, risk, reliability and maintainability. He is a Certified Reliability Engineer
(CRE) through the American Society of Quality (ASQ) and a Chartered Professional Engineer
(CPEng) through Engineers Australia.

Dr Jackson is the cofounder of
IS4 online learning, was the
inaugural director of the
University of California, Los
Angeles (UCLA’s) Center of
Reliability and Resilience
Engineering and the founder
of its Center for the Safety and
Reliability of Autonomous
Systems (SARAS). He has had
an extensive career as a Senior
Reliability Engineer in the
Australian Defence Force, and is the Director of Acuitas Reliability.

He has supported many complex and material systems develop their reliability performance and
assisted in providing reliability management frameworks that support business outcomes (that is,
make more money). He has been a reliability management consultant to many companies across
industries ranging from medical devices to small satellites. He has also led initiatives in
complementary fields such as systems engineering and performance-based management
frameworks (PBMFs). He is the author of two reliability engineering books, co-author of another,
and has authored several journal articles and conference papers.

If you would like to speak to Chris or Acuitas about
anything … including what we can do better in the future

… please reach us at contact@acuitas.com

http://www.acuitas.com/
mailto:contact@acuitas.com

Contents
So what does a FAULT TREE look like? .. 4

Perspective #1 – analyzing system RELIABILITY ... 5

Perspective #2 – root cause analysis (RCA) ... 5

Perspective #3 – robust, customer-centric DESIGN ... 6

… other things FAULT TREEs can help us with .. 6

Focus on the DECISION first and foremost .. 7

using FAULT TREES to model SYSTEM RELIABILTY ... 7

what is RELIABILITY? .. 7

what does a SYSTEM RELIABILITY MODEL do? ... 10

so …. how does a FAULT TREE work? ... 10

Let’s start with an ‘AND gate’ ... 11

And now the ‘OR gate’ ... 12

systems usually have WAY MORE than two components... 14

let's look at a REALLY SIMPLE (still complex) nuclear power plant ... 16

More fault tree symbols ... 20

… let’s look at our COMPLEX system FAULT TREE .. 21

… but there is a LOT more … ... 22

FAULT TREES and ROOT CAUSE ANALYSIS (RCA) ... 23

… what part of FAULT TREE analysis is different for RCA? ... 23

… so what is a ROOT CAUSE? ... 24

… let’s do some RCA on a smart lock … ... 25

… what do CORRECTIVE ACTIONS (CAs) look like? ... 28

… the TREE OF FAILURE .. 29

… ROOT CAUSES and NOT APPORTIONING BLAME .. 32

… the RELIABILITY MINDSET... 36

 Page | 4

Who can benefit from using a fault tree? Lots of different people. People who need to solve a
specific reliability engineering problem. People who want to improve their reliability engineering
skills and expertise. People creating amazing new products, meaning they need to understand
what their customers want. People who need to conduct risk analysis.

Then there are people who need to work out what the warranty period of their amazing new
product should be. And people who need to work out why something on their factory floor is now
on fire. People who want to know what design features and characteristics customers really want.
People who want to improve manufacturing and production performance.

And lots of other type of people. Regardless of who you are, you will soon be able to use fault
trees to help you make decisions like the ones the people above need to make.

Fault trees should only ever be used to help INFORM DECISIONs. If not … there is no point in
conducting Fault Tree Analysis (FTA). And before you conduct FTA, you need to really know what
decision you are trying to make.

So what does a FAULT TREE look like?

An example fault tree is illustrated on the right (it is
just a high-level example … don’t worry if you can’t
read the writing!) You can see that it is made up of
different shapes and lines, all starting from a single
shape at the top which usually represents
something ‘undesirable’ (called the top event). So it
doesn’t much look like a tree.

In practice, fault trees look a lot more like the root
system of a tree. They always emanate downwards
from the top event which must be related to the
decision you are trying to inform. So you need to know
what options your decision has, how we measure the
outcomes of the decision, what makes an outcome
‘good’ and so on. The top event is the scenario we are
interested in studying more … and we will talk about
what the top event is later.

It is vitally important to really understand your decision. If you don’t, you will waste a lot of time
and effort in developing a fault tree that has no impact, wastes everyone’s time, and reduces
anyone’s motivation to use fault trees in the future.

To better know what to look for in your decision, we need to talk about the three different
perspectives or reasons you might want to conduct FTA. Most reference sources (textbooks,
standards, professors and so on) tend to focus on only one of these perspectives (which is usually
their favourite). Not understanding all three perspectives means you lose all manners of amazing
flexibility within FTA … simply because you don’t know what they are capable of.

Perspective #1 – analyzing system RELIABILITY

Systems are usually made up of lots of components. Therefore, system reliability is based on
component reliability (reliability being the probability that an item has not failed within a certain
interval when used in specified conditions). Analyzing system reliability often starts with creating
a system reliability model that allows you to convert what you know about component or
subsystem reliability into something meaningful about system reliability.

So before you use fault trees (or anything else) to analyse system reliability, you must already
understand component reliability. This allows you to (among other things) see if your system ‘is
reliable enough,’ and work out which of your components or subsystems is having the biggest
impact on (un)reliability. You can also use a system reliability model to work out how long your
warranty period should be by specifying an allowable ‘warranty failure probability’ and then
finding the usage with the corresponding reliability (reliability = 1 – failure probability.)

Perspective #2 – root cause analysis (RCA)

Root Cause Analysis (RCA) is all about trying to find the reason (or the likely reasons) behind
failure. We conduct RCA after a failure has occurred. RCA’s more ‘textbook’ definition is:

… a method for identifying the root causes of failure, faults,
failure modes, defects, errors or any other event associated

with a system not performing as desired.

FTA as part of RCA looks very different to FTA as part of system reliability analysis (reinforcing
how important it is to understand your decision). We of course don’t just conduct RCA to increase
our knowledge. We conduct RCA to do something. FTA can help us identify lots of wonderful
ideas about how we can prevent that undesirable ‘top’ event from happening in the future
(through redesign, preventive maintenance, operational changes, new components and plenty of
other corrective actions).

 Page | 6

Perspective #3 – robust, customer-centric DESIGN

The techniques employed for RCA can also be used to identify the root causes of potential failures.
This allows us to prevent failures from ever occurring (instead of waiting for a failure to happen
before you design it out of your system) This approach is like doing RCA in advance and identify
the likely scenarios in which failure will occur.

If we are smart enough to know how to build a system or process that works, we are smart enough
to know how it will likely fail. So, we make our first design a reliable design. But it isn’t just about
failure.

We can use this pre-emptive approach for any undesirable event. So we can apply this not only
to the traditional definition of failure (based on the physical deterioration of something), but
scenarios like not meeting customer expectations with design features and functions. This results
in making a first design an amazing & reliable design, saving time and money during production
because we also prevent crises and problems that cost money and cause delays.

… other things FAULT TREEs can help us with

Fault trees can help us identify things like cut sets (which we will examine later) that help us work
out what combinations of components need to fail for the system to fail. This helps us with things
like system reliability analysis but can also help us work out single point failures where one event
can lead to system failure.

Fault trees can help us work out what customers want, and what failures mean. This might seem
trivial but is one of the most important things you can do to ensure a ‘good’ system. For example,
if you are designing a military vehicle … is it worse if the top speed reduces by 15 km per hour or
the payload reduces by 500 kg? Working this out in advance gives much needed design guidance
to the young engineers designing the next generation of amazing machines.

And while there are so many useful things fault trees can help us out with, it is all for nothing if
FTA is not done well. FTA often involves a group of people. So we will also cover how to conduct
FTA, facilitate the group, and ensure everyone has a positive experience.

Focus on the DECISION first and foremost

Are you trying to measure reliability, … or perhaps prevent a failure from happening AGAIN, …
or maybe prevent a failure from EVER OCCURRING, … or maybe making sure you don’t fail to
meet CUSTOMER EXPECTATIONS? Make sure you spend enough time on working out the
decision you are trying to make before conducting FTA.

using FAULT TREES to model SYSTEM RELIABILTY

Failure is a random process. Reliability metrics can be parameters or characteristics of this
random process.

Metrics are standards for measuring or evaluating something

Reliability metrics can be things like warranty reliability, mission reliability, operational
availability, the time taken to repair something during a mission, and any number of other
quantities. There are also metrics like the number and weight of tools, which aren’t random
process parameters but are still characteristics of RAM performance.

what is RELIABILITY?

We can’t ‘schedule’ failure. If (for example) we have 20 identical engines, they won’t fail at the
same time.

In practice, there are many factors that influence the time it takes for something to fail. There are
variations in scenario, build state, and lots of other things that might influence how long it takes
for our engine will work for. Let’s represent all these variable factors with a thing we call ‘the
(random) hand of failure.’ But just because something is random, doesn’t mean it isn’t predictable.

 Page | 8

We can visually summarize the nature of this random process by observing random data and
drawing a histogram to represent regions where failure is more likely to occur.

Another way of visually summarizing this random process is using the same random data to
(approximately) plot the percentage of things (engines) that have not failed over time.

If we were to (hypothetically … but impossibly) observe a HUGE number of engines failing, we
could eventually create a perfectly smooth curve that represents the percentage of things that have
not failed. This is the reliability curve.

If we know the reliability curve, we can determine the reliability of a system at any particular point
in time or usage.

But … we really aren’t (often) interested in understanding when 50 % of our products, systems,
component or items have failed. By then it is too late. Having half of our systems or plants failed
or offline usually means we can’t achieve the mission or make profit. Instead …

For example, say you were able to work out that for your amazing new product, you can tolerate
up to 5 % of your entire sales failing during the warranty period. You don’t want any more than
5 % to fail otherwise you will start losing too much money through warranty costs. You ALSO
don’t want your warranty period to be too short because this won’t be attractive to your customers.
So we can use our reliability curve to help us find the ‘best’ warranty period …

 Page | 10

what does a SYSTEM RELIABILITY MODEL do?

A system reliability model allows us to conduct data analysis and help us understand system
reliability characteristics using component reliability characteristics. The output of this data
analysis is information that SHOULD help a decision maker make a decision.

This process can be referred to as statistical analysis because all we can ever hope to do is
describe some of the characteristics of failure … which is at its heart a random process.

A fault tree is one of many ways of representing a system reliability model. But to do that, we
first need to understand how a fault tree works.

so …. how does a FAULT TREE work?

A fault tree is much easier to look at ‘one bit at a time.’ And to do that, we need to understand
the shapes we usually use to make a fault tree. The most common shapes are illustrated below …

Most fault trees are built by starting with the top event. We then start drawing a line down. The
line must connect with either a single ‘basic event’ or a ‘logic gate.’

A basic event is often referred to as a fault, which is where we get the name ‘fault tree.’ A fault is
essentially any event that has the potential to result in failure. In fault trees used to model system
reliability, basic events are usually component failures. In fault trees used to conduct RCA or
assist robust, customer-centric design, basic events can be design flaws, environmental events,
human errors, or any other scenario that might contribute to failure. The reasons behind this
distinction are discussed later in this course.

We know most systems have more than one component. So fault trees usually have more than
one basic event. Therefore we also need logic gates. Logic gates represent an event which is the
combinations of other events. These combinations can include basic events and other logic gates.

And ‘AND gate’ represents ALL of the events or gates ‘beneath’ it occurring. The events ‘beneath’
each gate are called input events. An ‘OR gate‘ represents AT LEAST ONE of these input events
occurring. The ‘AND gate’ and ‘OR gate’ are the two most common logic gates used in FTA.
Other logic gates used to create fault trees will be examined later in this course.

Let’s start with an ‘AND gate’

Consider the simple, two
pump system illustrated on
the right. The system fails if
pump A fails AND pump B
fails. This is what we call a
parallel system (mainly
because this is what it sort of
looks like).

The most important word for this system is ‘AND.’

To create the fault tree for this two-pump parallel system, we need to use an ‘AND gate.’ The
first thing we need to do is define the basic events.

Basic event ‘A’ is the event where pump A fails.

Basic event ‘B’ is the event where pump B fails.

… the

SYSTEM
fails if …

PUMP A
fails …

PUMP B
fails

AND …

 Page | 12

This allows us to use an ‘AND gate’ to create the following fault tree that models the reliability of
our two-pump parallel system. The ‘AND gate’ has a round top and smooth bottom.

So for the two component parallel system that the fault tree above represents, failure looks like
this (where red represents failure) …

And now the ‘OR gate’

Let’s look at a different
two-pump system. This
system needs one
pump to pump fluid
‘up’ to a level that is
higher off the ground.
The second pump then
pumps that fluid from
the ‘higher’ place
somewhere else.

The system fails if pump A fails OR pump B fails. This is what we call a series system (mainly
because our pumps are arranged one after the other … in series).

The most important word for this system is ‘OR.’

Remember what our two basic events are?

Basic event ‘A’ is the event where pump A fails.

Basic event ‘B’ is the event where pump B fails.

This allows us to use an ‘OR gate’ to create the following fault tree that models the reliability of
our two-pump series system. The ‘OR gate’ has a round top and round bottom.

So for the two component series system that the fault tree above represents, one failure scenario
looks like this (where red represents failure) …

 Page | 14

The examples in the previous chapter involved simple, two-component systems that were either
arranged in series (system fails when one component fails) or parallel (system fails when all
components fail). The corresponding system reliability fault tree models are based on ‘OR gates’
for series systems and ‘AND gates’ for parallel systems.

systems usually have WAY MORE than two components

Systems are usually (much) more complicated than this. Consider our two-pump parallel system,
which is now a subsystem in this (slightly) more complex system.

So how do we create a fault tree that describes this system?

We start from the top.

We can see that the holding tank, the two-pump parallel system, and the valve are arranged in
series. This means that for our system to fail, any one of the following events need to occur:

holding tank fails

OR … the two-pump parallel subsystem fails

OR … the valve fails

This allows us to create the following fault tree based on an ‘OR gate.’

We can see that this ‘OR gate’ has three input events. Any logic gate can have any number of
input events.

But our fault tree clearly isn’t finished yet. The next step is to replace the circled two-pump parallel
system with the ‘AND gate’ model we developed in the previous Chapter.

 Page | 16

We now want to replace those pictures of our components with letters that can help us better
define what each basic event is. So …

Basic event ‘A’ is the event where pump A fails.

Basic event ‘B’ is the event where pump B fails.

Basic event ‘HT’ is the event where the holding tank fails.

Basic event ‘V’ is the event where the valve fails.

Our final fault tree looks like this:

let's look at a REALLY SIMPLE (still complex) nuclear power plant

One of the more complex systems is a nuclear power plant. In fact, the many hundreds of
subsystems that makes up a nuclear power plant are themselves complex systems. A very
simplified illustration of a nuclear power plant is shown below.

The most ‘important’ part of a nuclear power plant is the reactor core. This is where the uranium
fuel undergoes nuclear fission to generate heat. This heat is imparted into water that circulates the
fuel … along with many (very dangerous) radioactive by-products. For this reason, reactor cores
are always built within a containment structure that is designed to capture any leaks of this coolant
water. This will become the subject of many examples and exercises in this course.

To generate electricity, the thermal energy that is passed into the coolant
water that circulates around the uranium fuel needs to somehow leave the
containment structure … without any of the coolant water itself leaving the

containment structure.

This is where the SECONDARY COOLING LOOP becomes critical.

The (very simplified) version of the secondary cooling loop is illustrated
below. Heat is transferred to the water in the secondary cooling loop via the

heat exchanger that removes heat from the water circulating in
the reactor core.

The water in the secondary cooling loop vaporizes and turns into steam. It is
then transported to a turbine that generates electricity. After it leaves the

turbine, it passes through a condenser that removes residual heat and
condenses the steam back into water. And then it is finally driven back into

the heat exchanger using a combination of valves and pumps. In the system
above, each valve-pump pair is arranged in parallel.

BEFORE YOU LOOK AT THE NEXT PAGE …

… draw a fault tree of the secondary cooling loop.

IF YOU FINISH OR GET STUCK, the following pages will take you through the
necessary steps to draw our fault tree.

EX
ER

CI
SE

 Page | 18

EX
ER

CI
SE

The first thing you should try to do, is arrange the secondary cooling loop
into a high-level series system based on an ‘OR gate.’ For clarity, we are

going to use component symbols and not letters as basic event identifiers.
This is only to help us remember what each basic event represents IN THIS

EXERCISE … in practice we would use letters or other identifiers.

We now need to focus on the main and auxiliary valves and pumps. We can
see that each valve-pump pair is arranged in parallel. So we now create a

parallel subsystem that is based on an ‘AND gate.’

The last step is to look at each valve-pump pair. They are arranged in series.
So we replace each valve-pump pair above with a series valve-pump

subsystem that is based on an ‘OR gate.’

EX
ER

CI
SE

 Page | 20

More fault tree symbols

So far, we have looked at fault trees with the following four shapes that represent events and
logic gates.

But many fault trees have different shapes and features that you need to be aware of. In some
fault trees, ‘AND gates’ contain a dot or circle inside the larger shape. ‘OR gates’ sometimes
contain a ‘+’ or plus sign. This helps visually differentiate between ‘AND’ and ‘OR gates’ as some
people can’t easily differentiate between smooth versus flat shape bottoms.

… let’s look at our COMPLEX system FAULT TREE

Let’s use the nuclear power plant secondary cooling loop fault tree to work out what happens if
the first auxiliary valve fails. Let’s represent this event by shading the basic event that corresponds
with the first auxiliary valve below red, and trace how this system fault propagates up through our
fault tree.

We can see that the system fault passes through the first ‘OR gate’ because it only requires one
(any) input event to occur for an output to occur. But our system fault stops when it gets to the next
‘AND gate’ because it requires all input events to occur for an output to occur. So when our first
auxiliary valve fails, the system still works.

Even if the first pump fails in addition to the first valve, the system will not fail.

 Page | 22

But now, if the second auxiliary valve fails (in addition to the first auxiliary valve and the first auxiliary
pump), then our secondary cooling loop will. This is because the ‘AND gate’ that was ‘stopping’
the system fault from propagating up through the fault tree now has all input events occur. So it
now creates an output event that allows the system fault to move up to the next ‘OR gate’ and pass
through it … stopping at the top event.

… but there is a LOT more …

In the next chapter we look at more features of fault trees, as there are many systems that have
many more than six components. And there are times when a system includes a subsystem that
already has a fault tree completed. So how do we incorporate other fault trees into a ‘master fault
tree?’ This will be covered in the next chapter where we explore even more things we can include
into a fault tree to help it describe the way our system fails even better.

FAULT TREES and ROOT CAUSE ANALYSIS (RCA)

So far we looked at fault trees from the perspective of analyzing system reliability. But fault trees
are also very useful for Root Cause Analysis (RCA.) Recall that RCA is all about trying to find the
reason a failure has occurred. RCA’s more ‘textbook’ definition is:

… a method for identifying the root causes of failure, faults,
failure modes, defects, errors or any other event associated

with a system not performing as desired.

But perhaps a simpler understanding of what RCA nominally does is to help us find out …

WHY THINGS FAIL?

But this is not the ultimate aim of RCA. If we stop at understanding why things fail but then don’t
use this information to improve safety or reliability, then RCA has been a waste of time. So in
practice, RCA is all about working out …

what can we do to STOP THINGS FAILing?

… what part of FAULT TREE analysis is different for RCA?

System reliability model fault trees have the following basic structure where top events represent
system faults or failures and basic events represent component failures.

 Page | 24

A fault tree constructed as part of RCA is very different. The top event can be any undesirable
event (that has usually already happened). The basic events are potential root causes identified
as part of the analysis. We can then investigate the likely potential root causes in our fault tree
further to hopefully identify which root causes apply to this undesirable event.

This might seem quite similar to a system reliability fault tree (after all, system failure is an
undesirable event). But an undesirable event can be absolutely anything, like …

… company failing to make a profit in the previous quarter …

… an aircraft crash …

… a large number of employees resigning over the previous financial year …

And root causes are not component failures – even if we are conducting RCA on a system failure.

… so what is a ROOT CAUSE?

Many organizations and ‘experts’ really don’t understand what a root cause is. Many textbooks
and standards say thing like …

… a ROOT CAUSE is the initiating cause of failure.

But this is not helpful as the ‘initiating’ cause of failure is completely subjective. Is it the mistake the
manufacturing engineer made that resulted in a defect being included in a component that led to
premature failure … OR inadequate training the manufacturing engineer received that lead to this
mistake … OR the floor manager who is over-burdening his or her staff in a way that is forcing
them to cut corners? A much more useful way of looking at a root cause is

… a ROOT CAUSE is the THING we can change to make sure ‘that’ failure hardly
happens again …

This means a root cause is a (potentially embarrassing) behaviour YOU EXHIBITED that you have
the ability to change. You can’t change the weather, school system, or customer behaviour. So
these aren’t root causes.

… let’s do some RCA on a smart lock …

Below is an illustration of a ‘smart lock’ … with a problem. A smart lock is a great example of a
modern fusion of traditional mechanical lock mechanics with emerging ‘smart’ technology. A smart
lock can communicate with smart phones and computers in a way that allows users to remotely
unlock and lock a door. You can create temporary pin codes to allow cleaners, tradespeople or
guests access through your door for certain periods of time. It can also detect how close you (and
your smart phone) are to automatically unlock when you are carrying heavy groceries.

But the production prototype below stopped working during a user demonstration. Now we need
to work out why.

One of the first things we do is pull our failed system apart to try and see if there is anything visibly
wrong. You can see that our smart lock is made up of several very different elements that include
mechanical components, Printable Circuit Boards (PCBs), batteries, electric motors and gears,
software and electronic components.

 Page | 26

When we pull disassemble the smart lock, we find that the solder for the cable that connects the
electric motor to the PCB has fractured.

Is this the ROOT CAUSE of failure?

If fractured solder was the root cause of failure, then we should simply be able to correct the
design flaw that lead to this failure be removing the ‘fractured solder joints.’ But this is not a
Corrective Action (CA) – this is a repair or Corrective Maintenance (CM). Resoldering the cables
would ensure that this smart lock would work again. But it would do nothing to remedy the
underlying factor that lead to solder joint fracture in not only this smart lock, but potentially every
single smart lock the manufacturer produces. Perhaps a ‘soldering expert’ would be able to look
at the fractured solder joint and deduce what needs to change – but this is only because that
expert is conducting his or her own RCA in his head based on his experience to come up with the
‘true’ root cause.

So we need to keep asking questions.

When we review the test profile for the smart lock, we see that some of the test serials involved
installing the smart lock onto a test door that was repeatedly exposed to ‘door slams.’ That is, the
door was forcibly shut with a special machine to replicate the type of door slams that at least some
of our future customers would subject our smart lock to.

Are DOOR SLAMS the ROOT CAUSE of failure?

If door slams are the root cause of failure, then the corresponding CA would be to ‘eliminate door
slams.’ But how can we do this? Can we ask customers to ensure that they don’t slam the door with
our smart lock fitted to it? Will this inspire confidence in an increasingly competitive marketplace?
If a customer does indeed slam a door in spite of our clearly stated requirements to not slam the
door, can we somehow reject their warranty claim? … and how can we find out if they slammed
the door when the claim they didn’t? So door slams are not the root cause.

We need to keep asking more questions.

Just because door slams are not the root cause, it doesn’t mean that we are not on the right track.
Slamming the door will transfer forces to the solder joints within the smart lock. The circuit board
and motor are firmly secured within the housing. But the cables are not. This means that the solder
joints are the only thing holding the cables in place. This is often not a problem … provided there
is not a lot of shock loads being applied to the cable. But this is not the case when a door is
slammed. And solder joints are not designed to be able to secure cables in this way.

Is the SOLDER JOINTS being ‘asked’ to do something they were NOT
DESIGNED TO DO the ROOT CAUSE of failure?

If the answer is yes, then we can perhaps reword the root cause as

… design being INCAPABLE of tolerating shock loads at cable connections

This IS something we can address. We ‘own’ the design. We can do what we want with the design.
We can’t individually repair every fractured solder joint that fails on our customers doors, nor can
we ask our customers to not slam the doors. So this IS something we can address. Some
organizations may want to keep going and investigate WHY the design was ‘allowed’ to be
incapable of withstanding the shock loads. Some other organizations might stop investigating here
and start coming up with CAs. As long as they start ‘talking’ about things we are able to address,
then each organization will likely come up with fantastic CAs that will quickly, efficiently and cheaply
eliminate this root cause of failure.

 Page | 28

… what do CORRECTIVE ACTIONS (CAs) look like?

While the root cause we identified on the previous page appears to be all about design issues,
there is no need to limit CAs to just design. Six (6) CAs are identified below … two (2) of which
deal with manufacture and inspection.

If we identify CAs early enough in the production process, then we can eliminate root causes for
virtually NO COST. The six CAs above will involve some basic cost increases (such as purchasing
thicker gauge wire), but when compared to the overall cost of the smart lock are relatively
insignificant. This is what good RCA results in.

Some of you might be asking … but how do we know we
got the RIGHT ROOT CAUSE?

… what if the CAs above don’t address the ROOT CAUSE behind
the failures we observed?

This (in a way) misses the point. If all the CAs above are virtually free to implement (if we come up
with them early), then all we need to do is find the list of likely root causes through. Let’s say we
come up with ten (10) possible root causes for the solder joint failures in our smart lock, and then
generate CAs for each of them. Implementing all these CAs is still going to be virtually NO COST.
We don’t want to waste time and money trying to find the RIGHT root cause … it is much cheaper
to find CAs for the LIKELY root causes … which we call the VITAL FEW.

It all starts with finding the true root cause. Something you can influence. The ‘THING’ you can
change to make sure ‘that’ failure hardly happens again. If it is not something you can influence
(i.e. something you have done or about to do) then it is not a root cause.

… the TREE OF FAILURE

We need to bake reliability into our first design. That means we need to STOP and use our team’s
collective understanding of how our system can work to predict how it might not work. And when
we do, we can come up with lots of really easy and cheap design features and activities to make
reliability happen.

A big part of reliability engineering is STRUCTURED BRAINSTORMING. In fact, some of the most
effective reliability engineering activities revolve around how we facilitate group discussions that
ensure we understand our product, system or service and how it will LIKELY fail.

And to brainstorm, we need a language. So let’s start by visualizing failure … as an apple.

We know that fruit (like apples) grow on trees. But not all failures (or apples) are the same. The
same tree can produce fruit of different sizes, shapes and quality. In this case, we represent the
failure process of a single system with a ‘tree of failure’ that produces ‘big apples’ that represent
‘critical’ or ‘severe’ failure, and ‘small apples’ that represent ‘minor failure.’

 Page | 30

So how do we deal with these (undesirable) apples?

One thing we can do is to ‘get rid of them’ after they appear. We might even think we get rid of
the entire tree when we repair our system or conduct Corrective Maintenance (CM). Perhaps we
come up with a ‘workaround’ for a particular asset, where we change our processes or procedures
to accommodate these failures.

But there is a problem with this. Repairs and CM cost money and always mean our system stops
working at inopportune times. So not only do we spend money on maintenance, we lose money
because our system isn’t working when our schedule demands it to be. And our workarounds
almost always take additional time and money from our budget.

This is because even if we remove the apples – and the tree that produces these apples – the tree
(and apples) will grow back. We might have removed the tree … but we have not removed the
root (cause) of failure. The only way to ensure that the apple (failures) never come back is to
eliminate the tree at the root (cause).

But there is a problem with the concept ‘root cause.’ Failures often have more than one root cause
OR can be best mitigated by addressing another ‘contributing’ cause that might not be the ‘true’
root cause … if one exists.

For example, let’s say that the ‘true’ root cause of failure was a design problem where an electrical
engineer forgot to conduct vibration analysis on the circuit board of the smart lock. This means
that one capacitor that is located on the corner of the circuit board AND a long way from mounts
vibrates excessively when the door is slammed. This means that the capacitor’s solder joints are
prone to fracture.

But when we first uncover this problem in early prototype testing, there is no real benefit in
apportioning ‘blame’ to the electrical engineer (or even trying to work out if there is blame to
apportion). The ’simplest’ fix or CA might be to not redesign the circuit board, but to redesign the
casing to allow the corner of the circuit board to be dampened and secured. This CA is now going
to be implemented by the design team lead in charge of the casing … not the electrical engineer
in charge of the circuit board. Or perhaps everyone is going to implement CAs to ensure we never
see the capacitor come free again.

Remember, if a CORRECTIVE ACTION (CA) is implemented early,
it is often VIRTUALLY FREE

You can see this in the six CAs on page 28 that were identified for the solder joints on the cable
that connects the electric motor which involve designers, engineers, manufacturers and the
incoming part test/inspection teams. Who cares whose ‘fault’ it was in the first place?

So most trees of failure have ‘root systems’ that look like this …

And the more POTENTIAL ROOT CAUSES we find for a particular failure

mode, the better the chance we will find a cheaper, easier and faster
CORRECTIVE ACTION (CA) to implement!

 Page | 32

… ROOT CAUSES and NOT APPORTIONING BLAME

Many RCAs devolve into an apportioning of blame exercise. Many organizations (inadvertently)
encourage this behaviour where different teams and leaders are personally incentivised for the
‘performance’ of their team. These organizations very quickly create cultures where every ‘issue’
needs to be allocated to a particular person or group of people for the purpose of monitoring (so
called) performance. It then becomes in the interest of team leaders to argue against ‘blame’ …
which by extension requires them to argue that the issue in question was ‘someone else’s fault.’

These organizations then ALWAYs evolve a sophisticated blame avoidance system, where
suppliers, providers, subcontractors, customers, the government, schools and universities are
ultimately allocated the blame for issues. This way all team leaders can argue that they didn’t create
‘any issues’ to protect the perceived performance appraisal (and rewards).

The problem with blaming others (especially third parties) is that we never find true root causes.
Third parties in particular are essentially part of the commercial ‘environment’ organizations
operate in. By extension, our ability to do directly change their behaviours is non-existent.

BUT … this doesn’t mean we can’t influence their behaviour by first looking at ‘us.’ This diagram
below contains a ‘true’ root cause on the right where we focus on something ‘we did wrong.’ The
CAs we come up are things we can do to help influence supplier behaviour. So (perhaps counter-
intuitively) if we look at what we can do first, we often have a positive effect on the third parties we
so easily blame. As a rule, suppliers and third parties want our business. They are more open to
working with you if you move beyond simple apportioning of blame.

Unfortunately, some of the root causes of failures are actually people in YOUR organization. There
are three broad types of people that ‘get in the way’ of good reliability engineering outcomes. So
THEY become the root causes. We call these three types of people the enemies of reliability …
who we will discuss below.

… the PONDEROUS PROFESSOR

Analyzing (or admiring) a problem doesn’t solve it. Sure … understanding a problem is often a
great first step. But you need to take lots of steps thereafter. Never fool yourself into thinking that
analysis effort is equivalent to an outcome. Reliability engineering means improving design,
manufacturing, or maintenance to generate value through improved reliability (and availability
and maintainability) performance. This doesn’t involve completing the nearest, most complicated
equations - these are only important some of the time, and for some situations.

One of the reasons people perceive ALL reliability activities to include (painfully) complex analysis
activities is because of our ponderous professor. Good reliability engineering involves focusing
on the decision you are trying to inform and then working out how to get that information. And if
you are focusing on improving reliability and not measuring it … this is often easier than you might
think.

 Page | 34

… the INFANT MANAGER

The infant manager’s most famous catchphrase is ‘WTF!’ … which stands for ‘give me the WRONG
THING FAST!’ He or she is focused on false metrics, meeting the first milestone as quickly as
possible, cutting costs from the start and other things that provide the illusion of blindingly fast
progress. But this illusion never lasts, because he or she pressures the team into not considering
all those really simple and inexpensive design features that prevent problems.

… the PROCESS ZEALOT

Many organizations fail to make reliability happen because they keep everything complicated.
They don’t focus on their organization’s real strategic goals, which means they don’t create a simple
strategy that allows everyone to understand their role. This is where our third and final enemy of
reliability engineering can get in the way – the process zealot.

Good reliability engineering is engaging and rewarding. It is all about selecting the VITAL FEW
(effective) reliability tools to drive high quality and reliability based on the circumstances of the
program being supported, based on reliability plans (that work) that identify and deploy the right
tools for the program.

ROOT CAUSEs and CORRECTIVE ACTIONs (CAs)

To address a root cause, we need to find a Corrective Action (CA) or fix, which is …

… an action that involves a change to a system design, operation,
maintenance procedures, or the manufacturing process of the item for the

purpose of improving its reliability.

This is the thing that you are going to do differently in the future to ensure that the failure we are
examining hardly occurs again.

Finding the CA is the most important part of RCA.

Simply finding the root cause and nothing else is at
best ADMIRING THE PROBLEM.

What we want to do is find the VITAL FEW CAs that have the biggest (likely) impact on future
failures. There will always be the VITAL FEW and the TRIVIAL THOUSANDs. So we should always
be striving to find the couple of weak points that drive system failure characteristics.

CAs are based on root causes which are (by definition) things we can control. The following are
NOT root causes behind the smart lock prototype failures.

If we were to improperly arrive at the (clearly not) root causes above, we would never be able to
find CAs that have any meaningful impact. We (by definition) can go no further than apportioning
blame. And if everyone else gets the blame, then nothing ever gets done to address it. Supplier’s
(perceived) poor soldering or customers slamming the doors will inevitably happen again. So our
smart lock will fail again. Meaning we pay warranty costs, lose customers and ultimately go
bankrupt.

 Page | 36

What we want is …

And the earlier we come up with CAs, the cheaper they become. If we find them early enough,
they become virtually free. The next chapter will involve us practicing our RCA by examining the
smart lock further in a worked example.

… the RELIABILITY MINDSET

This book started with using fault trees to help us analyze system reliability by creating a system
reliability model. This model allows us to convert component reliability characteristics into
system reliability characteristics that help decision-making that include (but aren’t limited to)
determining warranty periods or optimizing Preventive Maintenance (PM) or servicing intervals.
This is the ‘first perspective of FTA’ that was discussed in Chapter 1.

The previous two chapters we looked at how fault trees can be used to help RCA, where the focus
is on IMPROVING reliability more than MEASURING it. This comes about from finding a wide
range of potential CAs that help us quickly, efficiently and cheaply address the VITAL FEW weak
points of our product, system or service. This is ‘second perspective of FTA’ that was discussed in
Chapter 1.

We are now going to start looking at how we use fault trees to create robust, customer-centric
designs. This is the ‘third perspective of FTA’ that we discussed in Chapter 1. We talked about
how we might want to use FMEAs to identify likely failure modes BEFORE we start designing so
that the CAs we come up with are embedded in the first design. We talked about how we might
want to use testing like Highly Accelerated Life Testing (HALT) that deliberately pushes early
prototypes and parts of our system beyond their limits so we can identify their weakest points.

But this only happens if we are motivated culturally to find failures as early as possible in the
production, design and manufacturing process. This is where the concept of the ‘reliability
mindset’ becomes important.

The reliability mindset starts with all of us having a common LANGUAGE of reliability and quality
that allows us to talk to each other without any ambiguity and with full understanding of what others
are trying to say. The reliability mindset then involves the METHODS that include the VITAL FEW
tools that we and our organization have judiciously identified as being the right tools. This allows
us to make better decisions without feeling overwhelmed to maximize value.

Fault trees are one of many tools that FMEAs can use to identify issues that affect the ability of
your product to meet customer expectation.

Let’s go back to the smart lock and really focus on one of the
most basic customer expectations.

This might seem quite obvious. But if we really think about getting the
customer through the door, it allows us to think of scenarios where (for

example) the customer doesn’t do things ‘right.’ How does the customer get
through the door if the smart lock’s batteries are flat? It’s not our fault the

customer didn’t replace them. So why should we care?

The world around us is random and ‘imperfect.’ We want our smart lock to
appeal to all customers. And not the very few ‘perfect’ customers. So let’s use

fault trees to work out how we can make our smart lock more appealing to
more customers.

EX
ER

CI
SE

 Page | 38

We start with defining our top event.

We then go through our first round of brainstorming. In this case, we are
going to use an ‘AND gate’ because our customer has several ways of getting

through the door with our locked smart lock on it – and each of these ways
needs to fail for her to not be able to make this happen.

Another way of looking at this (particularly if you are doing this as part of a
FMEA) is to consider the top event a ‘failure to meet a requirement’ and all
the next level reasons for this requirement not being met becoming ‘failure

modes.’ Failure modes are the manner in which something fails.

This can also become a really useful way of helping brainstorm specific
elements of the failure causal chain. Remember, we don’t want to get too
detailed too quickly. If we do get too detailed, we exclude lots of other

potential failure causal chains that might help us uncover all sorts of other
really dangerous potential root causes that we would want to remove from

the design of our system as early as possible.

CUSTOMER CAN’T GET
THROUGH THE DOOR

EX
ER

CI
SE

Let’s brainstorm one more level.

What else could you put where the question mark is?

We can then keep exploring each input event until we reach basic events that
represent the root causes of us not meeting our customer’s expectations.

The fault tree on the following page shows how this fault tree could look once
it has been fully analyzed. And by doing this, we have come up with some

potentially useful design characteristics that can separate our smart lock from
our competitors.

EX
ER

CI
SE

 Page | 40

EX
ER

CI
SE

Fault trees can be incredibly powerful design tools and help us …

	So what does a FAULT TREE look like?
	Perspective #1 – analyzing system RELIABILITY
	Perspective #2 – root cause analysis (RCA)
	Perspective #3 – robust, customer-centric DESIGN
	… other things FAULT TREEs can help us with
	Focus on the DECISION first and foremost
	using FAULT TREES to model SYSTEM RELIABILTY
	what is RELIABILITY?
	what does a SYSTEM RELIABILITY MODEL do?
	so …. how does a FAULT TREE work?
	Let’s start with an ‘AND gate’
	And now the ‘OR gate’
	systems usually have WAY MORE than two components
	let's look at a REALLY SIMPLE (still complex) nuclear power plant
	More fault tree symbols
	… let’s look at our COMPLEX system FAULT TREE
	… but there is a LOT more …
	FAULT TREES and ROOT CAUSE ANALYSIS (RCA)
	… what part of FAULT TREE analysis is different for RCA?
	… so what is a ROOT CAUSE?
	… let’s do some RCA on a smart lock …
	… what do CORRECTIVE ACTIONS (CAs) look like?
	… the TREE OF FAILURE
	… ROOT CAUSES and NOT APPORTIONING BLAME
	… the RELIABILITY MINDSET

	Text1:
	Text2:
	Text3:
	Text4:
	Text5:
	Text6:
	Text7:
	Text8:
	Text9:
	Text10:
	Text11:
	Text12:
	Text13:
	Text14:
	Text15:
	Text16:
	Text17:
	Text18:

