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FAILURE is a RANDOM PROCESS 

When it comes to understanding the reliability of a product, we need to embrace that there will 
always be some uncertainty (in our minds) about when it will fail. 

 

From one perspective there is ‘no RANDOMNESS’ in product failure. If we were to hypothetically 
understand the location of every atom, every molecule, every force (along with its magnitude), and 
be able to precisely model every physical interaction ranging from user behaviour through to 
lubricant contamination … we should be able to know precisely when a ball bearing will fail. The 
trouble is, we will never have this information … nor will we be able to afford the supercomputer 
that we would then need to process this information.  

So even though we know each ball bearing is not identical, they are practically IDENTICAL to us 
because we can’t tell which one is different from another.  

But that doesn’t mean we are completely clueless. We know through observation and study that 
there are several key factors that influence the random nature of product (ball bearing) failure. 
And these factors are represented with the random hand of failure. It is a simple image or 
illustration that represents all those factors that mean that different things will not fail at the same 
time. 
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When it comes to ‘time,’ we need to also understand that this is measured differently for different 
products. There is usually never one ‘perfect’ measure of time. Some failure mechanisms are 
based on calendar hours. Others are based on operating hours. And yet others are based on 
throughput, distance, and cycles to name a few. This is another factor that drives uncertainty in 
terms of when our product will fail. And in many cases we need to pick the best one. 

 

Of course, we would love this to not be the case. We would love all our (for example) engines to 
fail at precisely the same time or usage … which means we can all put that failure event in our 
Outlook, Apple or Google calendar. 

 

… but this is NOT POSSIBLE … 
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just because something is RANDOM  
… doesn’t mean its UNPREDICTABLE 

 
Let’s say that we have 100 data points that represent the Time to Failure (TTF) of 100 ball bearings. 
They are each represented by a blue circle on the axis below. The first thing you can see is that 
even though they are random variables, there is at least one clear pattern or characteristic. 

 

But it is not easy to see random failure characteristics from the line of data points above. There are 
other ways to visually represent this data. Using a histogram to get a little better idea of the 
random nature of ball bearing failure. 

 

This histogram represents the ‘TTF density.’ It measures the observed likelihood of TTF occurring 
at specific durations. Taller bars mean the ball bearing is more likely to fail within the time interval 
represented by width of that bars.  
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when will it fail? … PROBABILITY DENSITY FUNCTION (PDF) 
 
We can see that even with 100 data points (which might seem like a lot … at least to some!) the 
histogram on the previous page is not perfectly smooth. The bars go up and down in a way that 
probably doesn’t represent the true nature of the random process. One way to smooth out the 
histogram is to get a lot more information … like 10 000 more bearing TTF data points. 

 

The reason the histogram looks smoother is because each data point contains a little bit of 
information. So for every additional data point, the amount of information we have increases. 
And (hypothetically) we can get to a point where we have all the information we will ever get 
about our random process.  

If we to get a million, billion, trillion data points (… a lot!) our histogram will start to look really, 
really smooth. This (hypothetically perfectly) smooth histogram (with lots of information) will create 
a curve, which represents what we call the Probability Density Function (PDF) of this random 
process. The PDF describes the random nature that our ‘random hand of failure’ places on each 
random variable. 

 

the PROBABILITY DENSITY FUNCTION (PDF) gives the relative probability that 
a continuous random variable is equal to a specific value 

Now because this is a function, we typically represent the PDF with the notation 𝑓𝑓(𝑡𝑡). 
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is it still working? … RELIABILITY 
 
We can use the PDF to advise us about all sorts of random process related metrics … and 
importantly … answer critical questions … 

… what should my WARRANTY PERIOD be if no more than  
5 % of my bearings can FAIL? 

… what is my SERVICING INTERVAL if I want no more than  
1 % of my bearings to FAIL? 

… how many bearings will I expect to FAIL in one year if  
I don’t SERVICE them? 

… is SERVICING going to benefit these bearings? 

… and LOTS MORE questions for DIFFERENT PRODUCTS. 

So let’s look at PDF curves in greater detail to see what information we can extract from them. The 
first thing we need to understand about PDF curves (especially those that describe TTF) is that 
they can cover a lot of possible variable values. 
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One thing we can see straight away is that our ball bearing is wearing out. Wear-out failure 
mechanisms means that TTF data ‘clusters’ around a central value, and the ‘TTF density’ appears 
like a ‘bell shape’ or a ‘hill.’ 

 

then there is the BELL CURVE 
 
The normal distribution PDF curve is a ‘perfectly symmetrical’ bell shape. This shape isn’t there 
because it looks ‘pretty.’ This shape is actually based on an underlying process that appears in lots 
of probability and statistics scenarios, random processes and the natural world.  

 

So … where does this nice shape come from? 
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… the CENTRAL LIMIT THEOREM 
 
Let’s make up a random variable, which has a clearly ‘absurd’ PDF curve. Let’s make this absurd 
PDF look like it has a square on the left and a triangle on the right. 

 

Hopefully you can agree that this random variable is not likely to exist! But now let’s add this 
random variable to itself. That is … 

𝑋𝑋 + 𝑋𝑋 

What does the PDF of the sum of these two random variables look like? So we are trying to … 

 

It turns out the PDF of this new random variable (𝑋𝑋 + 𝑋𝑋) looks like … 

 
𝑋𝑋 + 𝑋𝑋 
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You can already see that the shape of this new PDF curve is substantially different. It is smoother, 
and perhaps more like a bell shape! But let’s add another 𝑋𝑋 and see what happens … 

 
𝑋𝑋 + 𝑋𝑋 + 𝑋𝑋 

And let’s add another 𝑋𝑋 … 

 
𝑋𝑋 + 𝑋𝑋 + 𝑋𝑋 + 𝑋𝑋 

 

It should be really obvious that the PDF of this random variable that is the sum of lots of ‘𝑋𝑋’s’ has 
a PDF curve that looks like a bell shape. And this is where the normal distribution comes from. If 
there a random process is based on the sum of lots of random processes, the output random 
variable will probably be described by a normal distribution with its bell-shaped PDF curve. In 
other words, random variable ‘𝑌𝑌’ is a normally distributed random variable if … 

 

𝑌𝑌 = 𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3 + ⋯ 
 

INDEPENDENT random variables 
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This phenomenon is known as the Central Limit Theorem. 

the CENTRAL LIMIT THEOREM states that any sum of (independently 
individually distributed) random variables will be  

approximately NORMALLY DISTRIBUTED. 

So … the normal distribution IS the ‘bell curve.’ 

… the normal distribution is great for PREVENTIVE MAINTENANCE (PM) 
 
PM is maintenance we conduct as specific intervals. It is not in response to failure … so we typically 
follow a list of PM tasks. 

 

For example, a PM action may consist of … 

1. Inspection 
2. Preparation 

3. Change fluids 
4. Clean filters 
5. Replace seals 

6. Functional Test 

Total PM time is the sum of all the individual task times. Which themselves are random variables. 
So we know that PM time is always described by a normal distribution. This is an example of the 
normal distribution being relevant for applications beyond reliability and TTF. But remember … 
when we use the normal distribution to describe TTF, we are always describing a product, system 
or service that wears out. 
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PROBABILITY DENSITY FUNCTION (PDF) 
 

 

The PDF curve of all normal distributions are symmetrical bell shapes centered about the mean 
(𝜇𝜇, MTTF or MTBF). The two parameters you need to define a normal distribution are the mean 
(𝜇𝜇, MTTF or MTBF) and the standard deviation (𝜎𝜎). 

CUMULATIVE DISTRIBUTION FUNCTION (CDF) 
 

 

You can see here that the normal distribution CDF (like all other CDFs) starts at 0 and approaches 
1 (or 100 %) as TTF increases. 
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Let’s go back to Preventive Maintenance (PM). 

If Preventive Maintenance Time (PMT) is normally distributed with a  
MEAN (𝜇𝜇) of 46.215 minutes and STANDARD DEVIATION (𝜎𝜎) of 8.315 minutes, 

what is the probability that PMT will be between 40 and 50 minutes? 

 

RELIABILITY FUNCTION 
 

 

You can see here that the normal distribution reliability function (like all other reliability 
functions) starts at 1 (or 100 %) and approach 0 as TTF increases.  

 

EX
ER

CI
SE
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HAZARD RATE 
 

 

Every normal distribution has an increasing hazard rate. Which is why we know that ‘bell shaped’ 
PDF curves imply that the product, system or service is wearing out.  

… other characteristics 
 
The PDF curve of every normal distribution is similar to all others. Which means they all have 
same shape. Which means that regardless of the mean (𝜇𝜇, MTTF or MTBF) or standard deviation 
(𝜎𝜎), they all have the following characteristics. 

 

We can also say the following for all normally distributed random variables within two standard 
deviations (𝜎𝜎) of the mean (𝜇𝜇, MTTF or MTBF). 
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And for three standard deviations (𝜎𝜎) away from the mean (𝜇𝜇, MTTF or MTBF) … 

 

And for four standard deviations (𝜎𝜎) away from the mean (𝜇𝜇, MTTF or MTBF) … 

 

And for five standard deviations (𝜎𝜎) away from the mean (𝜇𝜇, MTTF or MTBF) … 

 

And for six standard deviations (𝜎𝜎) away from the mean (𝜇𝜇, MTTF or MTBF) … 
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Another perspective that reliability engineers often need to adopt focuses on the fraction of 
normally distributed random variables that are within a certain ‘deviation’ from the mean (𝜇𝜇, 
MTTF or MTBF). This is particularly important for manufacturing (when we want to maximize the 
extent to which component dimensions fall within tolerances) and confidence bounds (where the 
normal distribution is often used to model our uncertainty in something. 

If we are interested in the ‘middle’ 90 % of normally distributed random variables … 

 

If we are interested in the ‘middle’ 95 % of normally distributed random variables … 

 

 



 Page | 17 

Let’s look at the tires on a wheeled dozer we looked at  
 

 

Let’s now assume that our tires are no longer ‘perfect’ and will wear out. 

 

We have historical data from five other tires that wore out. And because they 
wore out (meaning failure was driven by a wear out failure mechanism), and 
because we know how tires lose tread over time, we can reasonably assume 

that the tire’s TTF can be described by a normal distribution. 

 

We know that the normal distribution needs the  
mean (𝜇𝜇, MTTF or MTBF) and standard deviation (𝜎𝜎)  

to be completely defined.  

So how do we get these parameters  
from our five data points? 

EX
ER

CI
SE
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These five data points are what we call a ‘sample.’ And there is a way that we 
can calculate the mean of this sample. It all comes down to finding the point 

at which those data points will be perfectly balanced. 

 

The equation that gives us this perfect balance point (or sample mean) is … 

𝑡𝑡̅ =
∑ 𝑡𝑡𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

… where 𝑡𝑡𝑖𝑖 is the value of each data point, and there is a  
total of 𝑛𝑛 data points. 

So what is the ‘sample mean’ of our 5 data points? 

 

 

 

𝑡𝑡̅ =
            

    
 

 

=
            +          +           +           +             

   
 

 

                                 =   
 

And you can use Microsoft Excel to help … 

 

EX
ER

CI
SE

 

�𝑡𝑡𝑖𝑖

𝑛𝑛

𝑖𝑖=1
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So that gives us the ‘sample mean.’  
Now we need the ‘sample standard deviation.’ 

 

The equation that gives us the sample standard deviation is … 

𝑠𝑠 = �∑ (𝑡𝑡𝑖𝑖 − 𝑡𝑡)̅2𝑛𝑛
𝑖𝑖=1
𝑛𝑛 − 1

 

This is a little more challenging to evaluate manually!  
So let’s use Microsoft Excel. 

 

The reason we use the symbols ‘𝑡𝑡̅’ and ‘𝑠𝑠’ to represent SAMPLE means and 
standard deviations instead of ‘𝜇𝜇’ and ‘𝜎𝜎’ is because they are not the same. 

SAMPLE parameters (𝑡𝑡̅ and 𝑠𝑠) will be approximately equal to what we call the 
POPULATION parameters (𝜇𝜇 and 𝜎𝜎). This approximation will become more 

and more accurate as we get more and more data.  

So when we approximate ‘𝜇𝜇’ and ‘𝜎𝜎’ with ‘𝑡𝑡̅’ and ‘𝑠𝑠’ we get the following PDF 
curve. You can see that it does a ‘good’ job of aligning with the sample data 

points.  

 

This data analysis technique is referred to as MATCHING MOMENTS. 
‘Moments’ refers to parameters and characteristics of things like probability 
distributions. We essentially use SAMPLE characteristics to approximate the 
normal distribution parameters that define the PDF curve illustrated above. 

 

EX
ER

CI
SE
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But we aren’t done yet! 

Let’s say that we identified an exponential distribution that modelled failure 
based on ‘sharp rock’ puncture. 

In this example, we identified a normal distribution that models  
failure based on wear out. 

 

We know that our tire will fail due to either of these two failure modes. So 
how do we combine them? With a system reliability model! 

 

 

 

 

EX
ER

CI
SE
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… and the FINAL WORD 
 
The normal distribution models the TTF of products, systems and services that wear out. But … 
there are different ways things can wear out. The type of wear out that normal distributions model 
is those where the rate of degradation is constant. For example, we would expect a tire to lose 
the same amount of tread for every km or mile it is driven. This is not the case for fatigue, where 
the rate at which cracks grow increases over time. 

Normal distributions are also good at modelling PM time and any other random variable that is 
the sum of lots of other random variables.  

But there are other probability distributions we need to be aware of as reliability engineers.  
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