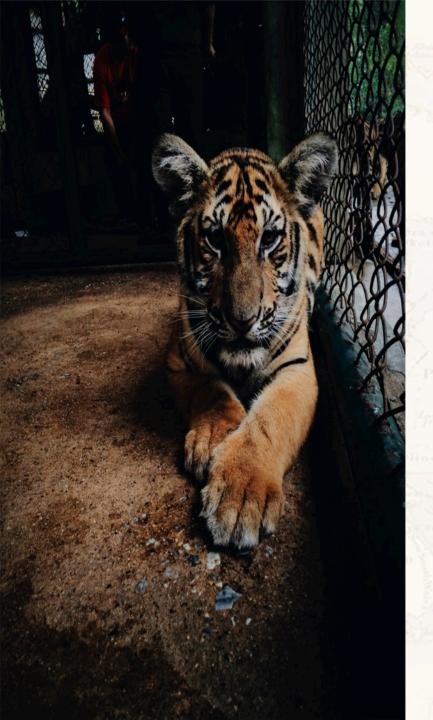
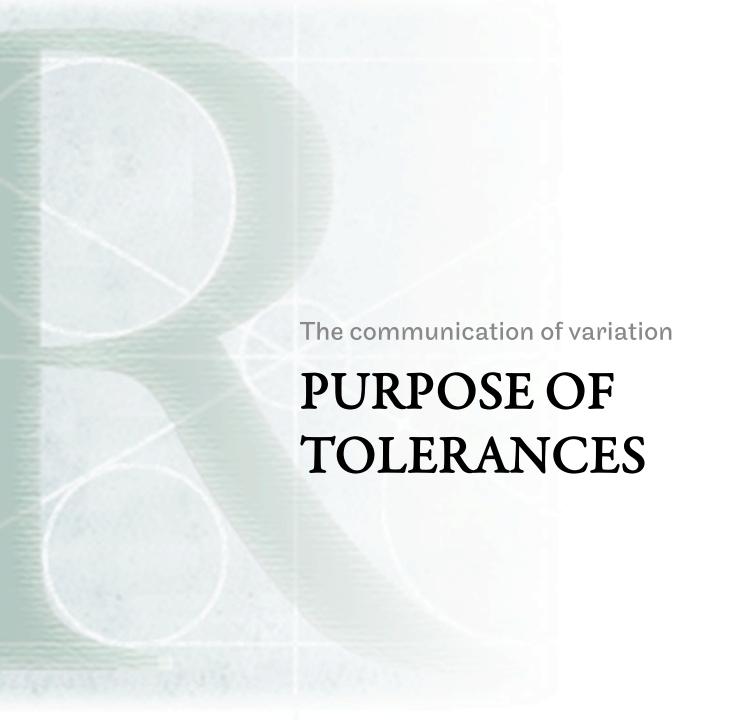
Statistical Tolerance Analysis

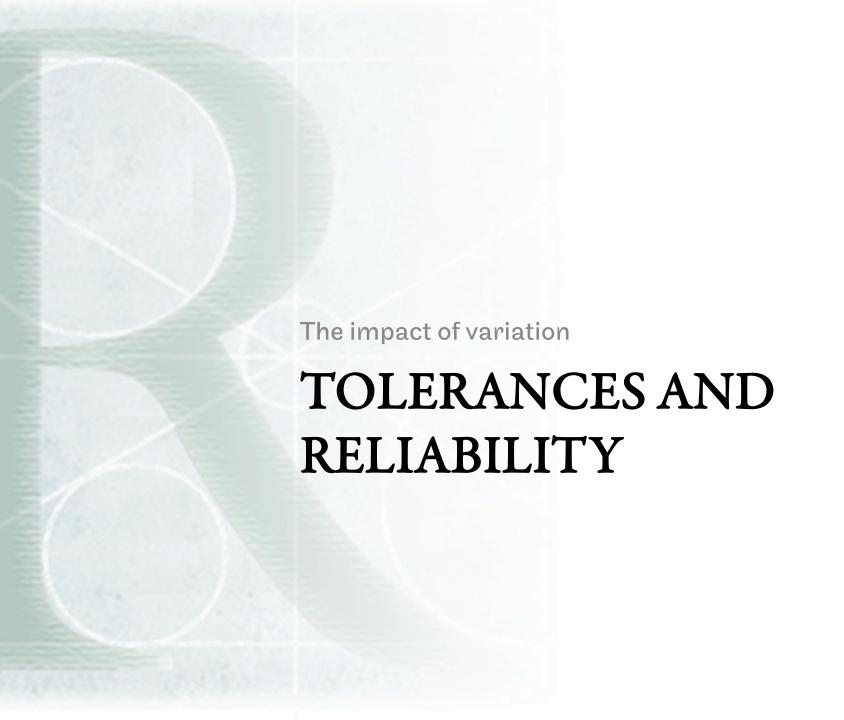
Fred Schenkelberg

No Scrap or Rejects

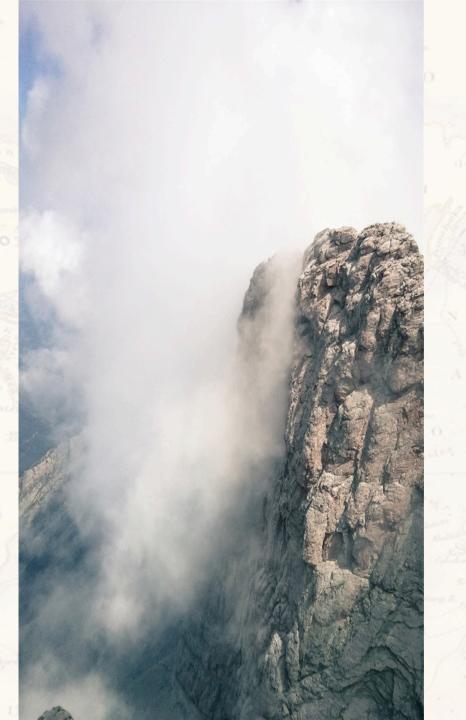


Balance between what is possible and what is necessary

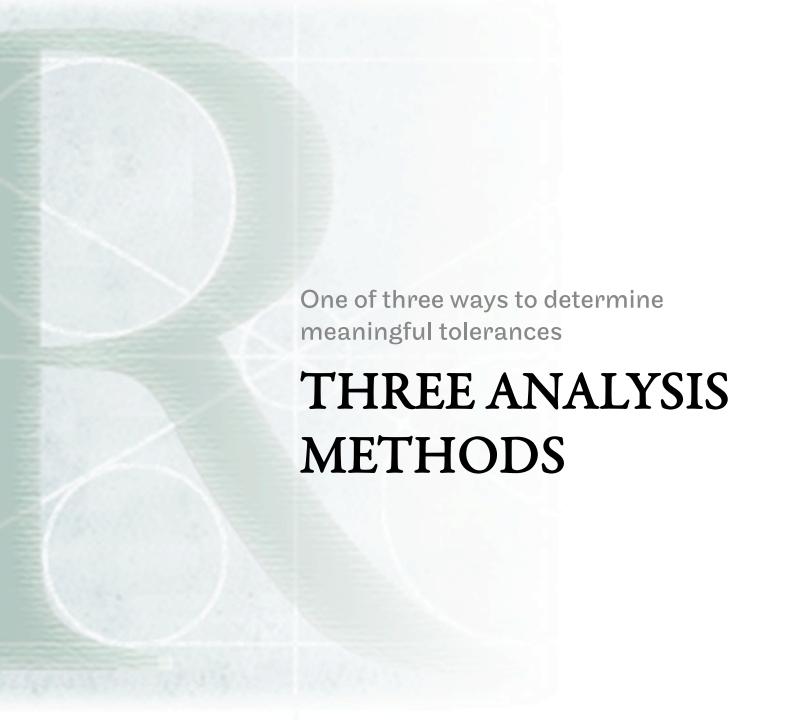




Variation Leads to Failures



Match Capability to Requirements



Worst Case Method

Tally the stack up at maximums

Simple math

Only need range of variation

Root Sum Square Method

 Use standard deviations to estimate combined stack up standard deviation

Able to estimate fall out or failures

Assumes normal distribution

Monte Carlo Method

 Simulation technique to estimate stack up standard deviation

 Use estimates for distributions of each tolerance in the stack up.

Most accurate, assuming good data input

Stack of Plates

- 5 plates
- Overall thickness of interest

 Each plate thickness is 25mm +/- 0.1mm

Worst Case Method

Add nominal values

Add minimum values

Add maximum values

Assumptions & Benefits

 Nothing outside tolerance limits

- Easy and quick
- Conservative

No distributions

Root Sum Squared Method

 Estimate standard deviation for each part

Sum means

Combine standard deviations

Estimating Standard Deviation

- Tolerance divided by 3 or total tolerance range divided by 6
- Make measurements and calculate standard deviation

Assumptions & Benefits

Normal Distribution

Stable Process

Minimal
 Measurement Error

- Accounts for statistical spread of data
- Allows estimate of fraction out of tolerance
- Allows cost/benefit tradeoff analysis

Monte Carlo Method

Estimate distributions

Hard Part (more later)

 Estimate number of simulations

Run simulations & analyze

Assumptions & Benefits

- Reasonable estimates for distributions
- Stable processes

- Accounts for statistical spread of data
- Allows estimate of fraction out of tolerance
- Allows cost/benefit tradeoff analysis
- Any set of distributions

Comparison of Results

Worst Case – quick & conservative

Root Sum Squared – easy & normal?

Monte Carlo – accurate & flexible

Economic Tradeoffs

Relax precision/tolerance for lower cost manufacturing

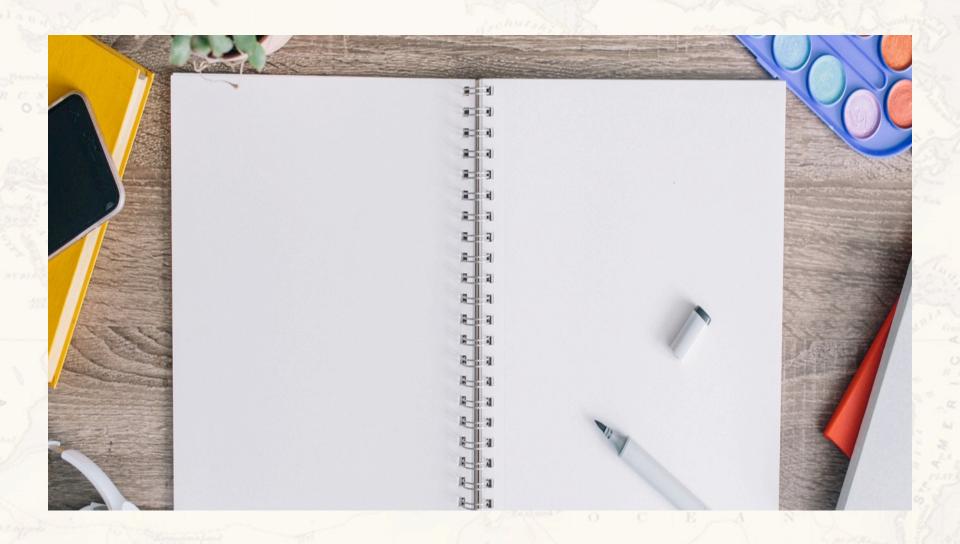
 Estimate defect rate costs (RSS & Monte Carlo methods)

Engineering Judgment

Industry Standards or Guidelines

6 σ Across Tolerance Range

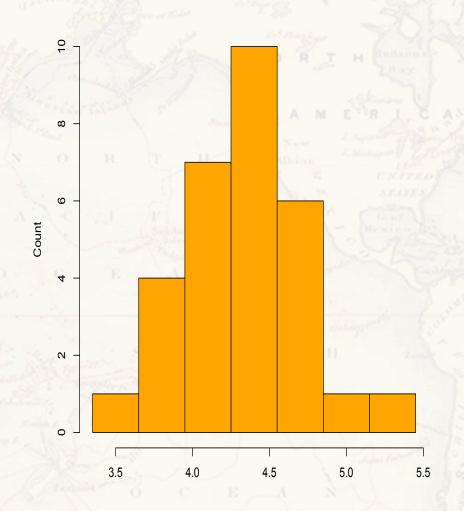
Measurements



Histogram

Lengths

- 4.5 3.4 4.3 4.6 3.8
- 4.5 4.3 4.5 4.0 4.5
- 3.9 4.2 4.6 4.4 4.0
- 4.6 4.3 4.8 4.4 4.0
- 4.1 4.7 3.9 4.5 3.7
- 4.2 4.6 5.2 4.2 5.0



Number of Bins

Sturge's rule

bins =
$$1 + 3.3 \log_{10}(N)$$

Rice rule

$$bins = 2\sqrt[3]{N}$$

 Adjust number of bins to best view the data

Probability Density Function

Discrete Data

$$P[X=x] = p(x)$$

p(x) is nonnegative for all real x

$$\sum_{j} p_{j} = 1$$

$$0 \le p(x) \le 1$$

Continuous Data

$$p[a \le x \le b] = \int_a^b f(x) dx$$

it is nonnegative for all real x

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

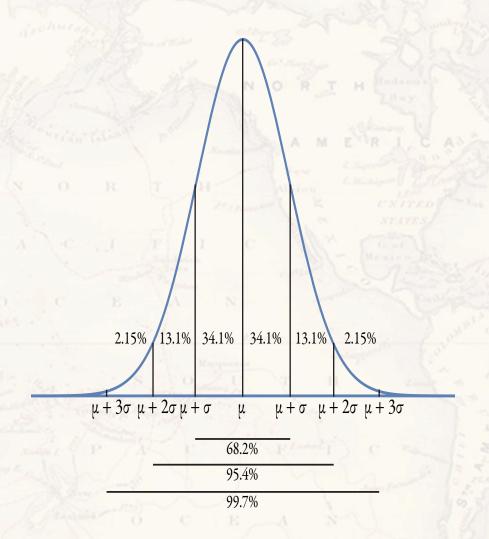
$$0 \le p(x) \le 1$$

Normal Distribution

$$f(x) = \frac{e^{-(x-\mu)^2/(2\sigma^2)}}{\sigma\sqrt{2\pi}}$$

when $\mu = 0$ and $\sigma = 1$

$$f(x) = \frac{e^{-x^2/2}}{\sqrt{2\pi}}$$



Normal Distribution Parameters

• Mean, μ

$$\mu \simeq \overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

• Standard Deviation, σ

$$\sigma \simeq s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

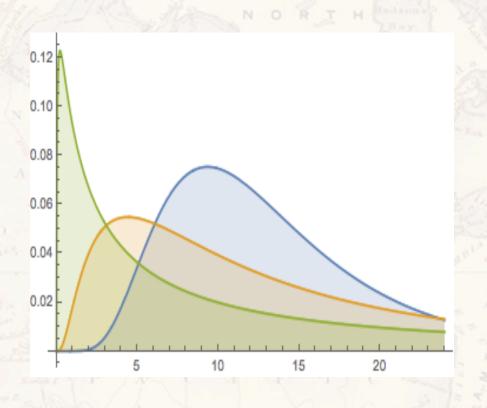
LogNormal Distribution

$$f(x) = \frac{1}{(x-\theta)\sigma\sqrt{2\pi}}e^{-\left(\left(\ln(x-\theta)\right)/m\right)^{2}/2\sigma^{2}}$$

$$x > \theta; m, \sigma > 0$$

when $\theta = 0$ and m = 1

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\left(\frac{(\ln x)^2}{2\sigma^2}\right)}$$



Uniform Distribution

$$f(x) = \frac{1}{B - A}$$

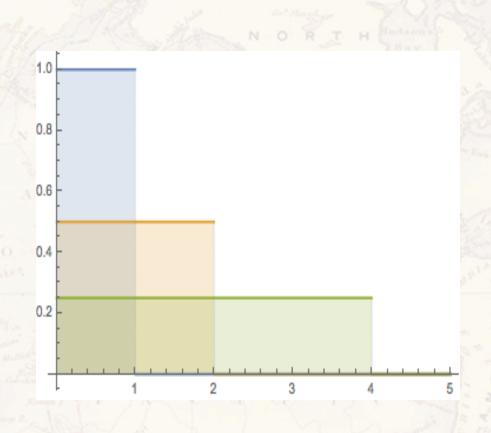
for
$$A \le x \le B$$

when
$$A = 0$$
 and $B = 1$

$$f(x) = 1$$

for $0 \le x \le 1$

for
$$0 \le x \le 1$$



Triangle Distribution

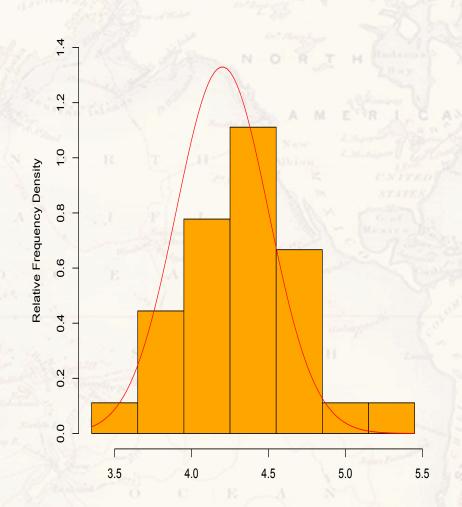
$$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & \text{for } a \le x \le c \\ \frac{2(b-x)}{(b-a)(b-c)} & \text{for } c \le x \le c \end{cases}$$

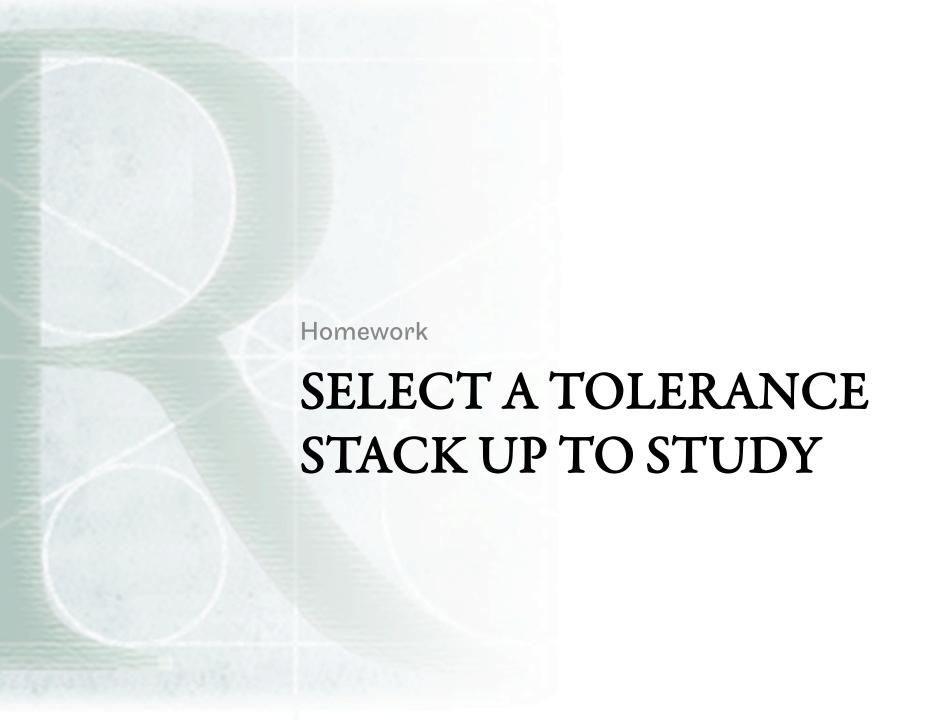
$$0 \qquad \text{otherwise}$$

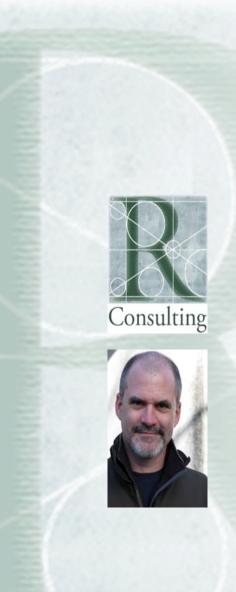
Test the Distribution Fit

Visual

- Probability Plotting
- Goodness of Fit







www.fmsreliability.com fms@fmsreliability.com (408) 710-8248