Fundamentals of Measurement System Analysis

Fred Schenkelberg

Data

Decisions

Unknowable

Measurement System Analysis

Is our measurement useful or not?

Use of Measurements

Comparisons Monitoring

Decisions

Making Comparisons

what is the chance we select the wrong one?

A v B comparisons

Design of experiments

to specification

to requirements

to standard

to settings

Monitoring Variability

is it just variation or error?

Process control

safety valves

for improvement

for sorting

for characterization

Informing Decisions

Show me the data

Data to support a decision

Data to identify solutions

Data to change a design

Data to determine risk

What are some

of the ways you use measurements?

Bias

Define

Problem

Test

Defining Bias

location variation offset from true

same characteristic, same part

Bias Causes

Bias and accuracy are not the same thing, BTW

need calibration
worn equipment or fixture
wrong gage for application
environmental effects
wrong constants applied
operator fatigue

Testing for Bias

Often accounted for within a measurement system

reference items or masters

repeated measurements

determine average offset or bias

How else may bias

effect your measurements?

Repeatability

Define

Problem

Test

Defining Repeatability

Width error inherent variation or capability of the equipment/process

Same instrument, same person, same sample, same characteristic

Repeatability Problems

'Best available' should always be defined in detail

instrument variability
method variability
appraiser technique variability
environmental variability

Testing for Repeatability

See Gage R&R studies

Same person make repeated measurements on same part using same gage and method

estimate variability

(Note: tricky in practice is the operator knows what value the measurement should actually be)

Can you average you way out of

repeatability problems?

Reproducibility

Define

Problem

Test

Defining Reproducibility

same characteristic, same part, yet may have different gages, labs, appraisers, and environments

Width error different setup yet get the same results

Reproducibility Problems

'Best available' should always be defined in detail

sample and gage variability

gage differences

method differences

appraiser differences

environmental differences

operator training differences

Testing for Reproducibility

see gage R&R study

like repeatability, yet with different people

Note: again tricky if individuals know what the measurement should be

Is an unreproducible measurement

useful?

Stability

Define

Problem

Test

Defining Stability

Location error also known as drift

same characteristic, same part, over extended period of time

Stability Problems

it may not be monotonic

worn equipment or fixtures
normal aging
worn or damaged master
change in measurement process
operator fatigue
seasonal environmental effects

Testing for Stability

This one takes time

Repeat Bias or Gage R&R periodically

Hard part is determining duration over which it should be stable, and how stable is stable enough.

Control charting is handy tool here

What if the manufacturing

process isn't stable?

Linearity

Define

Problem

Test

Defining Linearity

change in bias over measurement range

Linearity Causes

Location error could be a simple design trade off, or a poor design

needs calibration

change in master(s)

poor maintenance practices

operator fatigue

environmental effects

worn equipment or fixture

Testing for Linearity

the big and small of a measurement system

Repeat bias measurement using master samples that cover the range of the expected measurements

How good is

good enough?

In Summary

Gather Data

Ask Good Questions

Plots and Analysis

Clean the Data

More Information

Visit AccendoReliability.com

Let me know if you have any questions.

Check out the reliability engineering podcast network at Reliability.FM

Visit Accendo Reliability