Fundamentals of Monte Carlo Analysis

Fred Schenkelberg

Tolerance Analysis

Product Life Estimation

Defining Monte Carlo

Definition

Concept Benefits

Definition

computer power makes this feasible

The Monte Carlo Method is

a broad class of computational algorithms

that rely on repeated random sampling

to obtain numerical results.

Concept

Really just making a lot of systems virtually

Benefits

It's fun, too

It's a simulation compare options identify critical elements

More accurate than worst case analysis root sum squared analysis

Relatively quick

What are some

applications you see for this approach?

Analysis Steps

Transfer Function

Collect Data

Estimate Runs

Analyze

Select a Transfer Function

What is being calculated?

This is the formula that determines the tolerance stack up or product life estimate.

It's a formula when some or all of inputs have the potential to vary

Collect Data

Better data makes for a better analysis (most of the time)

Like the weather data in the last webinar – find the

- best data
- or description
- or estimate

of how the variable varies

Estimate Number of Runs

confidence precision etc

$$m = \left(\frac{Z_{\alpha/2} \times \sigma / \mu}{Er(\mu) / \mu}\right)^{2}$$

m is the number of runs to hit the precision with stated confidence

 $Er(\mu)$ is the standard error of the mean

Do the Analysis

I always plot the data, always.

Histogram
Confidence interval
Best fit distribution

Calculate percentiles of interest

Life data analysis on time to failure results

Make decisions, ask better questions

Questions?

what do you see is the hardest part?

Tolerance Analysis Example

Define the Problem

What is the appropriate tolerance for individual plates used in a stack of five to achieve a combined thickness of 125 ± 3 mm?

Given the variation of the plate thicknesses, how many assemblies will have thicknesses outside the desired tolerance range?

Define the Transfer Function

for a stack of plate we add the plate thicknesses.

Collect the data

What is the variation of plate thickness?

let's say it is 25±0.99mm

Estimate number of runs

The standard deviation of the combined five plates is $\sigma = 0.7379$

We want 95% confidence thus $Z\alpha/2 = 1.645$

The mean plate thickness is 25mm

The desired precision $Er(\mu)$ is 1%

We calculate we need 14,735 runs...

Generate Random Samples

Virtually pull 5 plates from the distribution of plate sizes

One example might be: 25.540, 25.008, 24.565, 24.878, and 24.248 mm.

Evaluate the transfer function

Here we simple add the virtual plate thicknesses

In one example we find: 25.540, 25.008, 24.565, 24.878, and 24.248 mm equals 124.238 mm.

create a virtual stack of five plates

add up their thicknesses

record

Analyze the data

In this simple example we have normal distribution with a mean of 125mm and standard deviation of 0.7379

How does

tolerance relate to reliability?

Product Life Estimate Example

Electro-migration Black's equation

$$TTF = A(J^{-n})e^{\frac{Ea}{kT}}$$

A is a constant based on cross-sectional area
J is the current density
Ea is the activation energy
k is Boltzmann constant
T is temperature
n is a scaling factor

Questions?

Want to give it a go?

In Summary

Transfer function

Conduct Analysis

Collect data

More Information

Visit AccendoReliability.com

Let me know if you have any questions.

Check out the reliability engineering podcast network at Reliability.FM

Visit Accendo Reliability