Fundamentals of Physics of Failure

Fred Schenkelberg

Root Cause

Is there a model for the applied stress of

85RH/85°C?

Physics of Failure

Models

Mechanisms

Use

PoF Models

"All models are wrong... but some are useful." George Box

A science based approach using modeling and simulation

Based on knowledge of root causes of failure mechanisms

Emperical or Deterministic?

Focus on Mechanisms

Root cause - at fundamental level

Fundamental physical and chemical behavior of materials to reliability parameters - Wikipedia

Is modeling warranty returns a PoF model?

PoF Use

Having a model is nice, using it is great

Models are not like hammers

Need good information - GIGO

- Decision support / what if analysis
- Avoid or minimize accelerated testing

What else is a good use of PoF?

How do you explain

physics of failure and reliability?

Finding Existing PoF Models

Literature

WARP

CALCE

DFR Solutions

What mechanisms

would you like to model?

Creating a PoF Model

Concept

Research Project

Degree

Conceptually

It's a model, just because you can make it more complex, should you?

Objective - estimate time to failure

Approach - stress(es) influence on TTF

Relationships - experimental work

Modeling - mathematics, simulation

Check step - how accurate is the model

Refine - improve with better data

Do a Research Project

If the value of model is high, this makes sense

Deep dive on specific mechanism

Which mechanisms to model?

Earn an Advanced Degree

You will finally have a doctor in the family

This is going back to school.

- + Lab equipment
- + Guideance and Reviews
- Rigor
- Published

Is it worth having

and using a PoF model?

Example PoF Models

Electromigration Wire Bonds Solder Joints

Electromigration

Black's Equation

$$TTF = A(J^{-n})e^{\frac{Ea}{kT}}$$

A is a constant based on cross-sectional area
J is the current density
Ea is the activation energy k is Boltzmann constant
T is temperature
n is a scaling factor

Temperature & Humidity on Wire bond attach

Pecks equation for wire bond/ bond pad connections

$$TTF = A_0 (RH^{-2.7}) f(V) \exp\left(\frac{E_a}{kT}\right)$$

A is a constant, RH is the relative humidity, f(V) is a voltage function (often cited as voltage squared), Ea is the activation energy, k is Boltzmann's constant, and T is temperature in Kelvin

Vibration & Solder Joints

Steinberg – has many models describing vibation effect on structures

$$Z_0 = \frac{9.8 \times 3\sqrt{\pi/2 \times PSD \times f_n \times Q}}{f_n^2}$$

$$Z_0 = \frac{0.00022B}{0.00022B}$$

$$Z_c = rac{0.00022E}{chr\sqrt{L}}$$

Z is maximum displacement, PSD is the power spectral density (g2/Hz), fn is the natural frequency of the CCA, O is transmissibility (assumed to be square re

Q is transmissibility (assumed to be square root of natural frequency),

Zc is the critical displacement (20 million cycles to failure), B is the length of PCB edge parallel to component located at the center of the board,

c is a component packaging constant, h is PCB thickness, r is a relative position factor, and L is component length.

How have you made

made use of models?

In Summary

An Approach

Models Models

Useful

More Information

Visit AccendoReliability.com

Let me know if you have any questions.

Check out the reliability engineering podcast network at Reliability.FM

Let's only useful reliability standards.