Fundamentals of Sample Size Determination

Fred Schenkelberg

Consider the Decision

Why Do We Use

Samples?

Why Sample?

Feasibility

Destructive Testing

Cost

Feasibility

Does every item in the population even exist?

Sample vs Population

Cost

Testing Time

Pre-production

Decision support

Destructive Testing

Hard to sell destroyed items

Consumed during testing or measurement

Cost

The results have to be worth the expense

Sample cost

Testing cost

Measurement cost

Analysis cost

Do You Use Standard

Sample Sizes?

Statistical Considerations

Population Variability

Discrimination

Confidence

Population Variability

Important and Difficult

We often do not know the population variance – so, what do you do then?

More variability= more samples

Less variability = less samples

Discrimination

How much of a difference matters?

What difference do you want to detect?

How small of a change matters?

Confidence

This not just feeling good by doing some testing

Type I sample error

The probability that the sample provides results that are similar to the actual population values

Nearly always assumes a random sample from the entire population

What does 50%

Confidence Mean?

Business Considerations

Cost per Sample

Decision Importance

Purpose

Purpose of the Experiment

Can any sample

have no risk?

Sample Size Formulas

Comparing Means

Success Testing

ALT

Comparing Means

Hypothesis Testing

$$H_o: \mu = \mu_o$$

$$H_a: \mu > \mu_o$$

$$n = \sigma^2 \frac{(z_\alpha + z_\beta)^2}{\Lambda^2}$$

Success Testing

$$n = \frac{\ln(1 - C)}{m \cdot \ln R_L}$$

ALT w/ Weibull

$$n = \frac{z_{\left(1 - \frac{\alpha}{2}\right)}^{2} V_{\log(\hat{t}_{p})}}{\left[\log(R_{T})\right]^{2}}$$

Meeker, William Q and Luis A Escobar. 1998. Statistical Methods for Reliability Data. New York: Wiley.

What are the Best Ways to Reduce

Sample Size?

In Summary

Questions & Life Data

Analysis

Fit and Plot

More Information

Visit AccendoReliability.com

Let me know if you have any questions.

Check out the reliability engineering podcast network at Reliability.FM

Continue to explore your reliability performance measures and make improvements.