Fred Schenkelberg

6 Essential Reliability Engineering Formulas

What is your

favorite formula?

Bayes Theorem

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$
 Purpose

To describe the probability of an event, based on prior knowledge of conditions that might be related to the event.

To account for or incorporate what you know as it influences the calculation of the probability given that information.

To check for statistical independence.

Bayes Theorem

 $P(A | B) = \frac{P(B | A) \cdot P(A)}{P(B)}$ Limitations

Knowledge of probability of individual and conditional probabilities (at least three)

Difference between causation and coincidence

Getting accurate data

Counting all that should be counted

Bayes Theorem

 $P(A | B) = \frac{P(B | A) \cdot P(A)}{P(B)}$ Assumptions

Probability of A and B do not equal zero

We're ignoring the probability of C which may have a role with the probabilities of A, B, A|B, and B|A

What formula deals

with pass/fail data?

Binomial Distribution

 $f(k,n,p) = \binom{n}{k} p (1-p)^{n-k}$ **Purpose**

The probability of getting exactly k successes in n independent Bernoulli trials

Dealing with pass/fail data

Binomial Distribution

 $f(k,n,p) = \binom{n}{k} p (1-p)^{n-k}$ Limitations

Independent trails

Discreet data

Less informative then using continuous data

Binomial Distribution

 $f(k,n,p) = \binom{n}{k} p (1-p)^{n-k}$ Assumptions

Independent Bernoulli trials

Probability of success remains constant over entire experiment

Random sampling

Test to pass strategy is valid

Measurement error is small

How to do you

make comparisons?

Hypothesis Testing

$$t = \frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}}$$
 Purpose

To test if a population via a sample mean is similar to a fix value

To test if two populations via samples have similar means.

Hypothesis Testing

 $t = \frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}}$ Limitations

Not useful for comparing more than two populations

Random sampling

Correct establishment of null and alternative hypothesis statements

Selecting the correct hypotheses test for the given situation and data

Hypothesis Testing

 $t = \frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}}$ Assumptions

The sample mean follows a normal distribution

The variances come from independent and identical normal distributions.

Z and s are independent

How to do you

measure capability?

Process Capability

$$C_{\mathbf{pk}} = \min\left(\frac{\mathbf{USL} - \bar{x}}{3\hat{\sigma}}, \frac{\bar{x} - \mathbf{LSL}}{3\hat{\sigma}}\right)$$
 Purpose

To compare an item's variability to a desired specification (tolerance)

Useful when:

evaluating a process

reviewing tolerances

estimating process yield

Process Capability

$$C_{\mathbf{pk}} = \min\left(\frac{\mathbf{USL} - \bar{x}}{3\hat{\sigma}}, \frac{\bar{x} - \mathbf{LSL}}{3\hat{\sigma}}\right)$$
 Limitations

The process must first be stable else the capability index is inaccurate

The process may shift or change thus invalidating the index value

Need to use the appropriate index for the data and specifications

Process Capability

$$C_{\mathbf{pk}} = \min\left(\frac{\mathbf{USL} - \bar{x}}{3\hat{\sigma}}, \frac{\bar{x} - \mathbf{LSL}}{3\hat{\sigma}}\right)$$
 Assumptions

The process is stable

The process remains stable

The measurement system is stable

Fixed specifications

How to do you model

time-to-failure data?

$$F(t) = 1 - e^{-\left(\frac{t}{\eta}\right)^{\beta}} \text{ Purpose}$$

To describe the cumulative probability of failure from time zero till time t.

To describe time to failure data

To detect changes in rate of failure

To estimate future failure behavior

 $F(t) = 1 - e^{-\left(\frac{t}{\eta}\right)^{\beta}}$ Limitations

It's just a model based on regression

No useful for repaired systems

Selecting the right distribution affects ability to forecast

 $F(t) = 1 - e^{-\left(\frac{t}{\eta}\right)^{\beta}}$ Assumptions

The data is complete and censored data is accurate

The time to failure for individual items occurs independently of other items

How to do you model

real world relationships?

 $\frac{[1-(\frac{kv}{2})^2+\frac{1}{4}(\frac{kv}{2})^{\frac{7}{2}}+...]}{[1-\frac{1}{2}(\frac{kc}{2})^2+...]}$

Arrhenius equation

$$k = Ae^{\frac{-e_a}{k_BT}}$$
 Purpose

To describe the temperature dependence of reaction rates

As part of an acceleration factor equation to translate time to failure information from test to use conditions

Arrhenius equation

 $k = Ae^{\frac{-e_a}{k_BT}}$ Limitations

The activation energy is often unknown

Not valid across material phase changes

Not appropriate for all thermal related failure mechanism relationships

Arrhenius equation

 $k = Ae^{\frac{-e_a}{k_BT}}$ Assumptions

The activation energy (empirically determined) adequately describes threshold energies within chemical processes

There is a linear relationship between temperature and reaction rate

Temperature is dominant factor for failure causing mechanisms

Check Assuptions

something to remember

What are your questions?