PDFs, CDFs, and other 'Fs' — what the hell are they?

... random doesn't mean unpredictable

7

... our 'probability curve' can tell us all these things ...

f(x) or the probability density function (PDF)

gives the relative probability that a continuous random variable is equal to a specific value

11

the values of our probability density function (PDF) curve have no direct meaning ...

conceptually, the probability that a continuous random variable can take on a specific value is zero ... we must deal with intervals!

F(x) or the cumulative distribution function (CDF) gives the probability that a random variable is less than or equal to a specific value.

21

... so how does this help us?

... what happens if we make the servicing interval or the warranty period equal to the MTTF?

... so what is the mean?

-

the mean time to failure
helps us understand how
many failures we expect to
see in a year

... so what is left?

... anything else?

... and the most famous hazard rate curve of all is the bathtub curve

... not all bathtub curves look like a bathtub

... so by doing less preventive maintenance (PM) we improved reliability by 23 %.

49

... the next step?

... knowing which one to use.

