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Who is your teacher? ... Dr Chris Jackson

Dr Jackson holds a Ph.D. and MSc in Reliability Engineering from the University of Maryland's Center
of Risk and Reliability. He also holds a BE in Mechanical Engineering, a Masters of Military Science
from the Australian National University (ANU) and has substantial experience in the field of leadership,
management, risk, reliability and maintainability. He is a Certified Reliability Engineer (CRE) through
the American Society of Quality (ASQ) and a Chartered Professional Engineer (CPEng) through
Engineers Australia.

Dr Jackson is the cofounder of

IS4 online learning, was the

inaugural  director of the (TP

University of California, Los A& g

Angeles (UCLA's) Center of Ho&o‘él et e
Reliability ~and  Resilience (j ‘/‘/&\ O*':flg’%
Engineering and the founder ] of fakwes oy
of its Center for the Safety and

Reliability —of  Autonomous
Systems (SARAS). He has had

an extensive career as a Senior

Reliability ~Engineer in the
Australian Defence Force, and is the Director of Acuitas Reliability Pty Ltd.

He has supported many complex and material systems develop their reliability performance and
assisted in providing reliability management frameworks that support business outcomes (that is,
make more money). He has been a reliability management consultant to many companies across
industries ranging from medical devices to small satellites. He has also led initiatives in complementary
fields such as systems engineering and performance-based management frameworks (PBMFs). He is
the author of two reliability engineering books, co-author of another, and has authored several journal

arficles and conference papers.
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Arithmetic and other math stuff

This is where some people get a little bit scared ... because we are going to start
talking about mathematics! This is where our ponderous professor loves to ruin
your day. But ... we do need to indulge him a little bit. So we will try and limit the
extent our ponderous professor tries to overwhelm us. We will go through basic

mathematics, keep it simple, and limit it to the stuff we need to know to be good

reliability engineers.

what is ARITHMETIC?

Arithmetic is what we associate with ‘mathematics.” Arithmetic deals with numbers and how we
apply what we call operations to them. The most common arithmetic operations are illustrated
below.

agavegate p|us

MINUS diffevence
sum‘x\ 1 /
- subtvact

0dd «
e ® = guotient
multiply -
@ . —divide
product < \ ¥
tires ovey

These operations are examples of binary operations.

a BINARY OPERATION a rule for combining two values to create a new value.

SO o3 58 8 4 4
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Some binary operations (like addition and multiplication) are commutative - which means it doesn't
matter the order of the numbers. Other binary operations (like subtraction and division) are not
commutative - which means the order of the numbers does matter.
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FUNCTIONS ... but different ones from a ‘reliability’ perspective

We talked about how a function is what a product, system or service is intended to do in order to
satisfy a requirement. But when it comes to mathematics, a function has a different meaning.

a FUNCTION relates an input fo an output.

We often represent a function with a capital ‘F" and the input to this function with the lower case ‘x’
to give ... F(x). The reason we use 'x' is to represent the fact that it is a variable that could take any
number of possible values. We can define any function we want. For example:

f(x)=x+2

This represents a function that takes any input, and outputs a number that is 2 higher than the input.
For example:

f(0O)=0+2=2
fF)=1+2=3
fQ=2+2=4
We can use arithmetic do define any function we want. But when we do, there needs to be rules.

£ () =3t 2

‘!“\ . we ALWAYS rultiply and divide
BEFORE we add ov subtvact

F2) =B x D+ 2

f(2)26+2

f2)=8

Let's say that we actually do want to ADD before we MULTIPLY. We can use brackets to represent

For example, with this new function:

which part of our function we want to evaluate first.
fx) =3x(x+2)
\ .. now we ADD fivst

For example, with this new function:
f2)=3x2+2)
f(2)=3x4
F(2) =12
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As a convention, it is not uncommon to omit multiplication signs entirely. For example, a function with
a multiplication sign is shown below on the left. The same function with the multiplication sign omitted
is shown below on the right.

f(x) =3x(x+2) f(x) =3(x+2)
INVERSE FUNCTIONS

As we know, a function relates an input to an output. An inverse function takes that output and relate
it back to the input. Let's go back to this simple function:

fx)=x+2
Let's evaluate this function for value of x = 2, and allocate its output to variable y (y = 4).
f)=2+2=4
The inverse function is denoted F~1 and essentially turns y back into x.
[l =y-2=x
ffla) =4-2
fl) =2

We use inverse functions a lot in reliability engineering.

NOTATION

NOTATION is a series or system of written symbols used to represent numbers,

amounts, or elements in something such as music or mathematics

We need to use notation a lot in mathematics, statistics and engineering ... otherwise we will exhaust

ourselves trying to write things out in full!

For example, let's look at a scenario where we need to add lots of numbers together.

1.34 + 2.58 + 4.59 + 10.09 + 7.01 + 8.13

We often use the uppercase Greek letter sigma (Z) to represent the addition of lots of numbers. The
expression above is equivalent to the expression below.

2(1.34 ,2.58,4.59,10.09,7.01,8.13)

This makes things a little bit simpler. But we can go much further.
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Let's say that we are studying some sort of metric which might have different values ... depending on
when we look at it, or the environment around it. Perhaps we are examining the thickness of an oxide
coating from unit to unit. Perhaps we are analyzing the number of units shipped this month. Perhaps
we are examining the Time to Failure (TTF) of a number of prototypes, meaning that there will be a
different TTF value for each prototype. The metric you measure can be anything that helps you make
a decision.

Now let's represent this metric with ‘x;." If we are (for example) examining TTF, then x; would be the
TTF of the 1 prototype, x, would be the TTF of the 2" prototype and so on.

Let's say that we want to add lots of these observed TTFs together.
x1+x2 +X3+X4+x5+“‘

We can simplify this expression a little bit:

z(xl,xz,x3,x4, Xg, o)

But now we can really simplify it this expression using the following notation.
2.
Vi

... noting that 'Vi" is how we say that we are interested in all possible values of i. Which means we add
every single TTF we have observed. But if we are only interested in adding a certain number of these

n
2.

i=1

variables, we can write:

For example, if we want to add the first four TTFs, we can write:

4

in:x1+x2 +x3+x4
i=1

This notation makes it a lot simpler to represent the addition of lots of numbers. We can also
incorporate this in a Microsoft Excel spreadsheet, using the following function:

nﬂ = sum(Al:A10) .. = sum(Al,B2,B3)
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What is the sum of
x, =12.4,x, = 13.7,and x3 = 15.1?

Firstly, let's count how many numbers we are adding.

n =

Let's create the ‘simplified’ notation of this expression.

z = + + =

i=1

We can also do a similar thing for multiplication. Let's say that we want to multiply lots of these
observed TTFs together.

Xg X Xy X X3 X X4 X Xg X ...

Instead of using the uppercase Greek letter sigma (Z,) we use the uppercase Greek letter pi (IT). We
can now simplify this expression a little bit:

n(xl, X9, X3, X4, X5, wvr )

We can again simplify expressions for multiplication expressions like this

n

T« - []

Vi i=1

For example, if we want to multiply the first four TTFs, we can write:

product (A1:A10)
= product (Al,B2,B3)
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What is the product of
x; =1.5,x, =3.8and x; = 2.7?

Firstly, let's count how many numbers we are multiplying.

n =

Let's create the ‘simplified’ notation of this expression.

H = + + =

EXPONENTS

We can simplify some stuff even more! Let's just say we are multiplying the same number three times.
We can write:

X=XXXxXX

-
1l w
iy

Another way of writing this is:

3
| |x=x><x><x= N %
L

We can say that we have 'raised x to the power of 3." We call '3’ the exponent.

the EXPONENT refers to the number of times a number is multiplied by itself.

We use the exponent a lot in reliability engineering as well.
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RADICAL or RADIX

An exponential function looks something like:

flx) = x*
The inverse exponential function involves a symbol called a radical or radix (v ).
oy =1y

For example, we understand how we multiply 4 by itself once.

0000 4 X 4
13388 -
0000 =16
So using exponential notation:
42 = 16
And going the other way:
4 =416

... noting that if the exponent is 2, we omit it from the radix or radical sign. This is what we refer to
as the square root.

ALGEBRA

Algebra is a LOT like arithmetic. The key difference is that algebra involves at least one ‘unknown’
number that we represent with a symbol.

arithmetic... 2+ 3 =5
algebra...2 +3 =x

With our second expression, we can ‘solve’ one side to reveal that the value of our ‘'unknown’ number
is 5. But in practice, algebra can be a little more complicated than this.
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Let's look at the following expression we call an equation.
3xx=12 X (x —3)

The reason we call this an equation is because it involves an ‘equals sign.’ This means the part of the
expression on one side is the same as the part of the expression on the other. This also means that
anything we do to one side of the expression, we have to do to the other.

So we go through steps to simplify this equation to find the one and only value of ‘x" that makes this
expression hold true.

Step #l .. divide both sides by 12
3Xxx=12%(x—3) - 025 Xx=x—-3
Step #2 . subtvact 0.25 X x fvom both sides
0.25xx =x—3 - 0=(0.75%xx)—3
Step #3 .. add 3 1o both sides
0=(075%xx)—3 - 3=0.75Xx
Step #4 .. divide botn sides by 0.75

3=0.75%xx - 4 =x

MATRICES

And we need to know what a matrix is as well. Matrices is the plural of matrix.

a MATRIX is a rectangular array of numbers.

We usually represent a matrix with square brackets. We can add any two matrices together ... as long
as they have the same number of columns and rows. Each corresponding element of the matrix is
added together.

e
@ A8 =18 ¢
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We can also multiply matrices ... in a really weird way. When we multiply two matrices, we look at
each row in the first matrix and each column in the second. We multiply the first elements of each row
and column, multiply the second elements of each row and column, and keep going until they have
all been multiplied. We then add them together to get the corresponding element in our output matrix

(lx‘%) +(3x D=7

(Zx-3.2+ LUZ)

/

ARG

FACTORIALS, COMBINATIONS and PERMUTATIONS

Sometimes we need to be able to talk about how we can combine and order certain things. And this
often comes with some sort of equation. Let's just say we want to multiply a whole bunch of whole
numbers or integers, starting at 1 and going up to a number you choose (let's call this 'n’).

n

1x2><3><...xn=1_[i=n!

i=1

We call this a factorial, and we represent it with the symbol '

a FACTORIAL is the product of all integers less than or equal to a number.
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Factorials are really useful when we want to look at combinations of things. Let's say we have three
pieces of fruit: an apple, a banana and an orange.

Oz O

How many ways can you ‘select’ these three pieces of fruit if they are all in the same fruit bowl and you
pick one at a time? Well, for our first selection, we have three options. Let's say we choose the banana.

\ F P
.. we have 3 choices fov ouv fivst fyuit

Now for our second choice. We now only have two options. Let's say we go with the apple.

-*':uy,':,i:::‘ X 7
. now we have 2 choices fov ouvr second fvuit

And for our third and final choice ...

7
.. and now we have only | choice

So this is the sequence of fruit we selected:

L2g 1. 1.0

So how many different ways could we have selected this fruit?
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Well, we know that we have three choices for our first fruit, two choices for our second fruit, and one
choice for our third fruit.

ways of selecting
ouv fuit

Each way of selecting fruit is called a permutation. A permutation includes an order or sequence. But
what happens if we have 10 pieces of fruit, and only select 3 ... how do we calculate the total number
of permutations? Well ... we use the following equation that uses factorials:

n!

nx(n—l)x(n—Z)x...x(n—k)z(n_—'k)'

= pp
where P} is the total number of possible permutations of
k distinct objects from a total of n distinct objects.

It the order or sequence of things doesn't matter, then we are dealing with a combination. For
example, we have identified six permutations of fruit above when we select three pieces of fruit from
a total of three. But there is only one combination, because for combinations the order doesn't matter.

permutation #1

- but theve is only |
combination

And how do we calculate the total number of possible combinations? We use the following equation:

|
(n —nk)! k!l (Z) = Ce

n
where (k) or C is the total number of possible combinations of

k distinct objects from a total of n distinct objects.
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Basic Probability and Stuff

Human beings are really bad at dealing with uncertainty and randomness. We all have different risk
profiles, biases, emotions, gambling debts and so on. We ‘gamble’ on our life every day. And it can
sometimes be about perspective.

For example, Russian Roulette is a very dangerous game where a single round is loaded into the
cylinder of a revolver and then spun (so that the position of the round is effectively random). The
‘player’ then shoots in the direction of him or herself. There is a one in six chance of nothing bad
happening. So the following is true ...

... for each ‘turn” you play in Russian Roulette, you will probably be FINE!

However, playing Russian Roulette is a very, very, very, very bad idea. Even if for each turn, you will
‘probably’ be fine. But how many times have we been advised by someone that it is OK to do

something, because ...

... you will probably be FINE!

Reliability is a measure of probability. And we can delude ourselves that reliability is higher than it
actually is. Why? Because everything we make will probably be FINE. If we manufacture a new product,
and 70 % of them manage to be functional at the end of the warranty period, then the following is
true:

... each of our product will PROBABLY survive the warranty period.

But if you need to effect warranty action on 30 % of your products, you will lose a lot of money and
potentially go bankrupt.

.. ouy thi

pr;c‘f)% Aé?-a .. so let's pull
e B the tviggev!

won't fail ..
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As a rule, humans work much better with non-random processes. This means that for every input, we
like it when there is only one possible output. Which is how arithmetic and algebra work.

.. dlgebva .. avithrmetic

N ¥
PROCESS

But random processes can have multiple different outputs for the same input.

RANDOM
PROCESS

This infuriates us sometimes ... especially if you are an engineer or someone with a technical mind.
But reliability engineers need to embrace this reality. And we need to remember that just because
something is random, doesn’t mean it is not predictable. And by extension, we can observe a
random process and deduce what is affecting our random process. Which means we have the power
to control that random process.

And the random process we are most interested in is failure.

when we talk RANDOM PROCESSES, we talk about EVENTS
an EVENT is a set of outcomes of a process fo
which a PROBABILITY is assigned.

You can define any event you want. Turning on your computer and it working is an event. Rain at 2
pm in the afternoon is an event. Your smart lock failing is an event. The consequence of that failure
is an event. We define events based on whatever it is we are trying to get a better understanding of.

PROBABILITY is a measure of the likeliness or
likelihood that an EVENT will occur
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And this is where that randomness comes into play. If we toss a coin, then spotting a ‘heads’ is an
event. The probability of this event occurring is one half, 0.5 or 50 % (whatever works for you).

Remember in our Arithmetic and other math stuff lesson where we talked about notation? Do you

remember why we like notation? It is because it can simplify the stuff we write.

For example, we might simply state that ...

event A is the event of spotting a head when | toss or flip a coin.

So instead of having to say or write ‘the event of spotting a head when | toss or flip a coin’ every time,
we only have to say or write ‘event A." And this event (like all others) can be assigned a probability.

The notation for the probability that event A occurring is ...
Pr(A4) ... and sometimes just P(A)

So if Pr(4) = 1 it means that event A will CERTAINLY occur. There is no chance of it not occurring.
And Pr(A) = 0 means that event A will NEVER occur.

Reliability engineers are all about the event we call 'success.’ Success is the opposite of failure. So
if we define event S as any event where our thing has not failed ... we have essentially defined
reliability!

Reliability, R = Pr(S)

VENN DIAGRAMS

Remember that humans are really bad at understanding random processes, probability, and making
‘good’ decisions in regard to them? Yenn diagrams are useful ways of visualizing events to help make
it (a little bit) easier for us. A basic example of a Yenn diagram is illustrated below.

- such as W
* t A NOT WORKING' o
wrorint B ‘component A BEING THEREY
"
' {

EVENT A ... is a set N SAMPLE SPACE ...
of some (or all) of is the set of all

these possible possible outcomes

outcomes of a process

And remember, event A can be anything you define it to be.
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Let's say we are looking at the
PROCESS of rolling a dice.

What is the SAMPLE SPACE?

LU
2
O
(a4
LLI
>
Lul

Let's make this a little easier.

Let's use the uppercase letter X to replace the phrase ...
... the number I roll on my dice.

One way of helping us define the sample space is using this symbol:

S

This symbol literally means ‘is an element of'.

So define the SAMPLE SPACE of X using the following notation:

{XE ) ) ) ) ) }

COMPOUND EVENTS (... or COMPOSITIONS)

Random processes can involve more than one event. Yenn diagrams can represent them too.

.. such as . such as
‘cornponent A NOT WORKING' ‘cormponent B NOT WORKING'

N /

You can see that (according to our Venn diagram) it is possible for just event A to occur, just event B

to occur, BOTH events A and B to occur, or NEITHER events A nor B occurring.
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We can create a whole new event based on these two events. And any event that is based on other
events is what we call a compound event or composition.

-. this compound event is
‘cormponent A OR B NOT WORKING'

this is a UNION event

But there is another type of compound event as well.

.. this compound event is

‘cormponents A AND B NOT WORKING'
A B

AND b

this is an INTERSECTION event

And there is another type of event we should mention here. It is not a compound event, as it is based

on just one event.

NOT| A

this is a COMPLEMENT event

We use compound events a lot in reliability engineering. For example, if we have a parallel

(redundant) system of two pumps, then our system fails it pump A AND pump B fails (intersection).
If we have a series system, then our system fails if pump A OR pump B fails (union). And of course,
success is NOT failure (complement).
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EVENTS have BINARY OPERATIONS as well

We talked about binary operations in our Arithmetic and other math stuff lesson.

a BINARY OPERATION a rule for combining two values to create a new value.

And we have just looked at some binary operations as they apply to events.

.. SO these ave BINARY OPERATIONS

UNION INTERSECTION

‘g
AORB AANDB

And as we talked about in the previous section, these compound events or compositions that we

create using binary operations are very important for reliability engineering.

Let's take look at reliability from the perspective of success events. Let's say we have a system with
two components (A and B).

.. and if ouv syster fails - and if ouv system fails
when component _thscoddbe  _ this could be when component

A AND 6 fai‘s - comporent ‘A component ‘B’ A OR [5 fails -

then this is wovkin WOVLiY\ then this is
SYSTEN\ SUCCESS q v SySTEN\ SUCCESS

N

The compound event or composition on the left represents a parallel system, and you can see that
because it is ‘bigger’ it represents the fact that reliability increases when we have redundancy.
Conversely, the compound event or composition on the right represents a series system and is
correspondingly smaller.

If we focus on the size of each event, which is analogous to probability, we can see that

Pr(AU B) = Pr(A) + Pr(B) — Pr(AN B)
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Let's go back to our dice ...

EJ, We are going to define ‘event A" as an event where our dice
G rolls a 1. We are also go:i ::cie:(i)rlllz ‘:\;enf B’ as an event where
ﬁ Complete the following table.
n
EVENT A ... ROLLING 1
EVENT B ... ROLLING 2
Pr(A)
A
Pr(4)
Pr(AU B)
Pr(A N B)
Now complete the following table with the new definitions of events A and B.
EVENT A ... ROLLING 3
EVENT B ... ROLLING AN ODD NUMBER
Pr(A)
A
Pr(4)
Pr(A U B)
Pr(An B)
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then we have MUTUALLY EXCLUSIVE or DISJOINT SETS

So what is a set?

a SET is a collection of elements.

When we are talking about events, then the term set refers to a collection of events. And the set can
also be an event (remember ... we can define pretty much anything happening as an event.)

In the exercise above, we defined event B as the event of ‘rolling an odd number." This is also a set
of the following three events: rolling a 1, rolling a 3 and rolling a 5.

MUTUALLY EXCLUSIVE or DISIOINT SETS are sets that

do not have any common elements.

An example of two mutually exclusive or disjoint sets represented on a Venn diagram is illustrated
below.

.volinga ONEonadie . voling a FIVE on a die
\@ ‘
MUTUALLY EXCLUSIVE or DISIOINT SETS

You can see that neither event overlaps in the Yenn diagram. So what does that say about the

intersection event? We can write that:
ANB=¢9

The symbol ‘@' is described in a couple of different ways by textbooks (... and
ponderous professors). Most of the time, it really doesn’t matter when it
comes to reliability engineering.

Some textbooks will say that @ is an EMPTY set that contains NO ELEMENTS.
This makes intuitive sense to us. But some other textbooks will say that @ is a
NULL set whose elements are negligibly small.

Either way, the intersection of two MUTUALLY EXCLUSIVE events is ‘9" ... or
whatever that means.
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STATISTICALLY INDEPENDENT EVENTS

In reliability engineering, we like to assume that events are statistically independent.

STATISTICALLY INDEPENDENT EVENTS are events where the occurrence of one

does not affect the occurrence of the other.

The reason we like statistically independent events is that it makes the mathematics easier! So what
do statistically independent events mean for reliability engineers? It starts with failure. Failures are
statistically independent if (1) the failure of one item doesn't influence the failure of another and (2)
the failures of multiple items are not influenced by the same factors (like humidity, temperature, or

the same incompetent maintenance crew).
So let's go back to why we like statistically independent events. Think about a two-component

= PUMP A

fails ..

parallel system.

- the
SYSTEM

fails if ..

It events A and B are the failures of pump A and B respectively ... AND they are statistically
independent, then we can write ...

Pr(An B) = Pr(A4) x Pr(B)
Which means we can also write ...
Pr(AuU B) = Pr(A) + Pr(B) — Pr(A) x Pr(B)

In our Fault tolerance lesson, we talked about common cause failure. And unfortunately for customers,
users and reliability engineers, this means that a lot of failures are not statistically independent. And
when that is the case, we can't use the equations above. We instead need to individually investigate
our system, analyse common cause failure, and create a more tailored model.

This is not a huge problem for series systems. But it is a significant concern for parallel systems
where we want redundant components to be functional after a primary component fails.

Experience has shown that around 10 % of failures have a common cause.
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Let's go back to our dice ...

We are going to define ‘event A" as an event where our dice

rolls a 1. We are also going to define ‘event B’ as an event where
our dices rolls a 2 IN THE NEXT THROW.

Complete the following table.

LLI
2
9,
(a4
LLI
>
Lul

EVENT A .. ROLLING 1

EVENT B ... ROLLING 2 IN THE NEXT THROW

Are these events
mutually exclusive?

Are these events

statistically independent?

Complete the following table based on the new definitions
for events A and B.

EVENT A .. ROLLING 4

EVENT B ... ROLLING AN ODD NUMBER

Are these events
mutually exclusive?

Are these events
statistically independent?
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... and there is thing called RARE EVENT APPROXIMATION

We are always looking for shortcuts. And sometimes that extends to reliability engineers!

Think of any event that we call ‘event A." It might be a tornado. It might be a tsunami. It might be a
meteor strike. If the probability of event A occurring is really small, then event A is what we call a rare

event.

Now think of another event, that we call ‘event B." It might be a one in 100-year flood. It might be an
earthquake. It might be a doctor’s appointment actually being on time. If the probability of event B
occurring is really small, then event B is also a rare event.

If the probabilities of events A and B are really small, then the probabilities of event A AND event B
occurring (at least at the same time) is really, really small. This could be (for example) an event where
our electricity generation plant experiences a tornado on the SAME DAY it is struck by an earthquake.

This is beyond unlikely.
Another way of writing this is ...
Pr(ANn B) — 0 ... if events A and B are rare events.

This can really simplify some of our equations above. Remember that the probability of a union of

events Aand B is ...
Pr(AUB) = Pr(4) + Pr(B) — Pr(ANnB)
Pr(AU B) = Pr(A4) + Pr(B) ... if events A and B are rare events.

If events A and B refer to the failure of components A and B respectively, AND we believe that events
A and B are rare events, then we can use this approximation of system failure probability for parallel
systems. One ‘good’ thing about rare event approximation is that we always underestimate system
reliability. This means that we don't inadvertently believe our system is more reliable than it actually
is.

Rare event approximation is sometimes used when we model really complex systems that have
thousands of components. Even computers can have trouble accurately calculating failure

probabilities because there are so many times it needs to multiply component failure probabilities.
But ... in most applications you don't have to (nor should you) do this!
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.. then there is CONDITIONAL PROBABILITY

CONDITIONAL PROBABILITY is the probability of an event occurring given
another event has occurred

Because common cause failure is (unfortunately) everywhere, we need to talk about conditional
probability. And this is how we write the conditional probability of an event ...

the CONDITIONAL PROBABILITY of .. Pr(A|B)
7N

.ofevent A .. given event B
OCCUNVINg occuvved

Let's go back to our Venn diagram that illustrates the intersection of two events, Pr(4 N B).

- this compound event is
‘cormponents A AND B NO{ WORKING'

AND

Another way of looking at this is from the perspective of conditional probability.

.. this compound event is
‘components A AND B NOJ WORKING'

PI‘(A|B) .eventBis
‘cornponent B
__Pr(AnB) NOT WORKING/
~ Pr(B)
&

. which is the probability that cornponent A DOES NOT
wovk- GIVEN THAT component B DOES NOT WORK

If events A and B are statistically independent, then event B occurring has no influence on event A
occurring. So the probability of event A occurring won't change if event B occurs or doesn't occur. In
other words ...

Pr(A|B) = Pr(A) ... if events A and B are statistically independent
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But things are different for common cause failures.

.. if the shafits weve installed

by the same incompetent
~ team then theve is & highey
chance that they ave both

N

.. & vestviction in the

upstveam pipe can limit - ond if the
intake or head pressue, MAINTENANCE REGINE
C‘:\Ujm Cﬂ;‘*{“\:m" is not appvopiate — they will also
Ading to tailuve in BOTH FAIL

BOTH PUN\PS

In this scenario, Pr(4|B) is dependent on whatever it is that drives common cause failure. And you

will need to investigate it if you believe this could be an issue for your system.

... so let's simplify further

We are now going to introduce something we call the ‘random hand of failure." This hand simply
represents the random process we are looking at. Because we are looking at the process of failure,
the hand represents material variations, different ways our system is used, changing environmental

metrics and everything else that will control how likely it is for our system to fail.

Let's use the upper-case letter ‘X" to represent the random variable that our random hand of failure
generates. X could be Time to Failure (TTF), cycles to failure, number of demands and so on.

Let's say that the first random variable our ‘random hand of failure’ throws has a particular value, x;.
Up until now, we have been defining this as an event. Which have been represented with letters. So
we could say that event A is the event where our random hand of failure generates a random variable

with a value x;.

Event ‘A’
- & scale of sormething
~ - that vandomly vavies
-% - - let’s call this X'

\—-)X"Xl
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But using letters is problematic. Let's say our random hand of failure’ generates 21 random variable
values ... or failure events.

- We ave yunning

out of lettevs
E Y)Y, A
vent A P @ X1 R ’
11':3" ) (D[ f ‘/ _'\S ...‘u,
N \/' ‘{&hﬁ/ &
"
} ‘c" ‘E' ‘J' i ™ R
N \Kl 4

There is a much simpler way! Let's look at event A again, where our random variable has a value of

X1, or (in this example) 0.886.
Event ‘A’

Vo VN > Wy W ) P )
O o — TSI ANT T -

~— X=x ~ X =080

And we can do this for any one of our failure events. For example, event L is ...

.
v

el D RIS DGy ey

e

S~ X =194

So event A is simply the event where X = 0.886. And event L is simply the event where

o X|

X = 1.946. So we can write probability as follows ...
Pr(4) = Pr(X = 0.886)
Pr(L) = Pr(X = 1.946)

So in general, reliability engineers (and lots of other people who need to do probability and
statistics) often write probability of random outcomes generally as follows ...

PEOX €)x)
J

what this ‘vandorn vaviable' is . . what the value of
lie tirve to failuve’ ov urnbey the vandom vaviable is
of failwes in ore year’ fov this event
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For example, it we define X to be the (random) number we roll on a dice, and we know that there is
a one in six chance that we roll a one, we can write ...

1
Pr(x=1) =

.. probably need to start talking about RANDOM VARIABLES

a RANDOM (or STOCHASTIC) VARIABLE is a variable whose value is subject
to a random process or chance.

Random variables are all around us. We know plenty of random variables. Because we are talking
about reliability, we need to be really familiar with random variables. And there are different types
of them.

a DISCRETE RANDOM VARIABLE is a variable whose value is subject
to a random process or chance AND is one of a set of
specified values.

The number we roll on a dice is an example of a discrete random variable, as its possible values are
limited. Other examples include the number of failures we observe during a test or in an interval of
usage, the number of defective ball bearings in a batch, or the number of missiles that correctly impact
a target when 10 are launched.

0
©)
0O
0]
O
@)

400

o 8 o
P s ' el
e L LY. rr 77

.. it can only possibly be these values

L

= Jdoooo
—400000
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And there is another type of random variable.

a CONTINUOUS RANDOM VARIABLE is a variable whose value is subject

to a random process or chance AND can occuy
ovev & numbey of intevvals.

An example of a continuous random variable is Time to Failure (TTF), noting that this can be
expressed in terms of operating hours, cycles, distance, or anything else that drives the VITAL FEW
failure mechanisms of your system.
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