
s

Presented by

Dr Chris Jackson
Reliability engineer

Workbook

Why redundant systems aren’t always redundant

Let’s not confuse effort with outcomes

 Page | 2

Copyright © 2022 Christopher Jackson

All rights reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by an
means, including photocopying or other electronic or mechanical methods without the prior written permission of the
author (Christopher Jackson), except as permitted under Section 107 or 108 of the 1976 United States Copyright Act
and certain other non-commercial uses permitted by copyright law.

For permission requests, write to Christopher Jackson using the details on the following pages.

Limit of Liability/Disclaimer of Warranty: While the author has used his best efforts in preparing this document, he
makes no representations or warranties with respect to the accuracy or completeness of the contents of this document
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may
be created or extended by sales representatives or written sales materials. The advice and strategies contained herein
may not be suitable for your situation. You should consult with a professional where appropriate. The author shall not
be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

 Page | 3

Who is your teacher? … Dr Chris Jackson
Dr Jackson holds a Ph.D. and MSc in Reliability Engineering from the University of Maryland’s
Center of Risk and Reliability. He also holds a BE in Mechanical Engineering, a Masters of Military
Science from the Australian National University (ANU) and has substantial experience in the field of
leadership, management, risk, reliability and maintainability. He is a Certified Reliability Engineer
(CRE) through the American Society of Quality (ASQ) and a Chartered Professional Engineer
(CPEng) through Engineers Australia.

Dr Jackson is the cofounder of
is4.com online learning, was
the inaugural director of the
University of California, Los
Angeles (UCLA’s) Center of
Reliability and Resilience
Engineering and the founder
of its Center for the Safety and
Reliability of Autonomous
Systems (SARAS). He has had
an extensive career as a Senior
Reliability Engineer in the
Australian Defence Force, and is the Director of Acuitas Reliability Pty Ltd.

He has supported many complex and material systems develop their reliability performance and
assisted in providing reliability management frameworks that support business outcomes (that is,
make more money). He has been a reliability management consultant to many companies across
industries ranging from medical devices to small satellites. He has also led initiatives in
complementary fields such as systems engineering and performance-based management
frameworks (PBMFs). He is the author of two reliability engineering books, co-author of another,
and has authored several journal articles and conference papers.

 Page | 4

Table of Contents
1. Variability control .. 5

2. Fault Containment .. 5

3. Fault Isolation ... 6

4. Proactive Maintenance .. 6

5. Reversion .. 6

6. Redundancy ... 7

PARALLEL SYSTEMs .. 7

reliability when FAILURE IS NOT INDEPENDENT ... 10

Redundancy – in software .. 14

Human error .. 15

 Page | 5

Once we have exhausted all practical and feasible smart design activities AND we still need to
improve reliability, we might need to start tolerating faults. This could be entirely acceptable if
you have really thought about reliability critically from the start. But like most reliability activities,
it needs to be done right!

There are many things we need to do before we start thinking about tolerating faults. Starting
with a (properly done) FMEA is always a good thing. You might use your FMEA to help allocate
reliability goals to your subsystems and components. And when this is done well, you have well
thought out and flexible goals that help keep your team on track, on time, and on budget.

Individual design teams can then use a host of Design for Reliability (DfR) activities at their
disposal. Perhaps they will conduct Highly Accelerated Life Testing (HALT) on initial prototypes.
Perhaps they will derate. Once they have identified the VITAL FEW failure mechanisms, they can
be targeted for design improvement.

But there comes a point where we cannot eliminate any more faults from our design – at least not
efficiently or cheaply. This means that we now need to tolerate faults.

1. Variability control

Variability control involves using a component that can
tolerate larger variation in inputs caused by failures or
faults in other components. This is sometimes called
robustness. It essentially means that the component keeps
working well when confronted with ‘out of spec’ conditions.

2. Fault Containment

Fault containment is the prevention of
the propagation of a failure
mechanism across a system due to a
fault in a single component. For our
pump, this could involve an upstream
regulator.

There are lots of examples of fault containment that range from voltage regulators through to
filters. Each component has a different range of options based on the dominant failure
mechanisms (VITAL FEW).

 Page | 6

3. Fault Isolation

Fault isolation involves diagnosing a
fault when it occurs. This allows
immediate action to address the fault
to either prevent it from progressing
to a failure, or to minimise the time
spent in a ‘failed’ state.

There are things like Built-in Testing
(BIT), Built-in Self Testing (BIST) and Built-in Test Equipment (BITE) which can help automate
fault isolation. These systems might investigate the entire system during start up to make sure that
performance characteristics are ‘in specification,’ the output voltage is within limits et cetera. In
software, this process is largely analogous to the error handling process where software can detect
when an error has occurred, what piece of code was responsible for the error, and otherwise
advise the user on what he or she might be able to do.

4. Proactive Maintenance

Proactive maintenance or
Condition Based Maintenance
(CBM) is all about addressing faults
before they become failures. So it
has a natural ‘relationship’ with fault
isolation.

Many reliability engineers don’t consider proactive maintenance or CBM a true ‘fault tolerance’
activity. But in practice … you need to thing about proactive maintenance and CBM at the point
of design where you start thinking about tolerating faults. Instead of BIT, BIST or BITE, systems
might have sensors that detect the accumulation of damage (lubricant contaminants, fatigue crack
length, temperature et cetera) to allow maintenance to occur before failure.

5. Reversion

Reversion (which is sometimes
referred to as derating) is the
transition to a sub-optimal operation
state that prevents imminent failure
caused by an isolated fault. This too
is related to fault isolation.

 Page | 7

An example of reversion is an engine RPM limiter that enacts when a leak in the coolant system is
identified. This will reduce the top speed of a vehicle but will allow the vehicle to continue
operating. While reversion can be manual (as in, an operator manually detects a fault and adapts
the use conditions accordingly), it is typically automated using sensors and software.

6. Redundancy

Redundancy is the duplication of components or
functions. For a pump, this could involve the installation of
a second active redundant, standby redundant or load
sharing pump. The idea is that if one fails, the other will
allow the system to continue operating.

Redundancy comes at a cost – so
we need to think about it. There is a
hidden issue with redundancy –
Common Cause Failure (CCF).
Single faults often cause failure in
primary and standby components,
meaning we don’t get the reliability
improvements we hope for.

But perhaps one of the more
egregious issues with redundancy
can be the effect it can have on
culture. Redundancy (and fault
tolerance) often introduces a false
sense of security. So we stop
thinking and start assuming that
everything is going to be OK. Our
systems degrade to a point where
we have no fault tolerance.

PARALLEL SYSTEMs

Let’s now look at our two-pump parallel system where the system fails if pump 𝐴𝐴 fails AND pump
𝐵𝐵 fails.

 Page | 8

Going back to the Venn diagram we looked at in our Basic probability and stuff lesson.

So because failure occurs when pump 𝐴𝐴 AND pump 𝐵𝐵 fails …

You can see how much ‘smaller’ the system failure event is when compared to the series system.

Remember that series system reliability is the product of component reliability … parallel system
failure probability is the product of component failure probabilities.

… the

SYSTEM
fails if …

PUMP A
fails …

PUMP B
fails

AND …

 Page | 9

But of course, parallel systems can have lots of components. If we have a parallel system with
𝑛𝑛 components (and failures are statistically independent), system failure probability is …

𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) = 𝐹𝐹1(𝑡𝑡) × 𝐹𝐹2(𝑡𝑡) × … × 𝐹𝐹𝑛𝑛(𝑡𝑡) = �𝐹𝐹𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) = 1 −�1 − 𝑅𝑅𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

Consider the two-pump parallel system below.

What is the reliability of the system at 2 years if the reliability
of each pump at 2 years is 70%?

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) = 1 −�1 − 𝑅𝑅𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

= 1 −�1 −

𝑖𝑖=1

 = 1 −�

𝑖𝑖=1

= 1 − × = 1 −

=

EX
ER

CI
SE

 Page | 10

Using the techniques we have just learned, we can calculate system reliability at any time or usage
for parallel systems. This is how we get the reliability curves illustrated below.

reliability when FAILURE IS NOT INDEPENDENT

Failure is rarely statistically independent – and this affects our system reliability estimates when
there is redundancy involved (parallel or ‘𝑘𝑘 out of 𝑛𝑛’ systems).

We know many failures have common causes. Some example common cause failures for our
two-pump parallel system are illustrated below.

Common cause failure is most relevant for parallel systems. As parallel systems involve
redundancy, this also (unfortunately) means that the reliability improvements we hope see by
using parallel systems are eroded by any failures that have a common cause.

 Page | 11

This is not a significant issue for series systems, where if any one component fails the entire system
fails. Common cause failures mean it is more likely for other components to fail after the first
component fails. Given the series systems fails when the first component fails, this does not
change any system reliability.

Another form of dependent failure occurs if the system is configured in ‘load sharing’
configuration. Consider the following, seemingly parallel two-pump system.

The system is required to pump 75 gallons per minute. Both pumps can have their service life
extended by making sure that they pump somewhere between 25 and 50 gallons per minute.
When both pumps are working, they need to pump at a rate of 37.5 gallons per minute for the.
This means they both remain in a ‘high-reliability’ zone.

However, when one of them fails, the remaining functional pump needs to pump at 75 gallons
per minute. It can still do this, but it increases the likelihood of failure dramatically.

So even though one pump failing won’t cause the other pump to fail immediately, it will certainly
result in an increased failure probability of that remaining pump. The equation or function that
provides system reliability for a load sharing configuration requires complex modelling outside
the scope of this course.

 Page | 12

A switching system is a redundant system where additional components kept in a ‘standby state’
until the primary component fails.

A switching system needs a switch mechanism that can recognize when the first pump fails, and
then successfully ‘switch’ the standby pump to an ‘active’ state. This introduces additional ways
the system can fail but can substantially increase system reliability.

The system reliability equation that takes into primary pump reliability, pump reliability in a
standby state and switch mechanism reliability is complex and outside the scope of this course.

There are many ways of configuring redundant systems. However, RBDs and fault trees are not
always good at representing them in a way that allows us to identify which redundancy
configuration is being represented. Further, common cause failure exists in virtually every real-
life scenario. While we can incorporate common cause failure into an RBD or fault tree most RBDs
and fault trees don’t inherently do this.

 Page | 13

Going back to common cause failure which we first started talking about in our Fault tolerance
lesson, we looked at the effect on how long it takes before we expect 1 % of our systems to fail
when we add one and two redundant components.

But if just one in ten failures have a common cause, then we don’t have redundancy one in ten
‘times.’ So instead of getting an increase of 39 % on our warranty period (for a 99 % warranty
reliability), common cause failure reduces this increase to 30 %.

COMMON
CAUSE
FAILURE
(CCF)

 Page | 14

Redundancy – in software

Software failure is random – but in a
different way to hardware failure.
Software failures are caused by
coding errors – which are obviously
somewhat random. But once code is
complete, software will behave in
repeatable, non-random ways. So
having defective code in
‘redundancy’ will not work.

One approach is to have different code in a redundant
configuration. For example, let’s say we are coding
software to simply sort numbers. A well-known algorithm is
the ‘bubble sort algorithm.’ We might get a team of
software engineers to code a program based on the
‘bubble sort algorithm.’ We then might ask another team
to code another program based on the ‘shell sort
algorithm.’ Both algorithms achieve the same thing, but
used different methods.

So we can put the shell sort algorithm in redundancy to support the bubble sort algorithm. Any
coding errors in one program are unlikely to manifest themselves in exactly the same way in the
other. But there is still a problem. If one program has an error, then this means the two programs
will have different outputs. How do we know which one is correct?

The solution involves having
three different programs,
coded by different teams, all
acting in ‘redundancy.’ We then
have a ‘voter program’ which
can identify when at least two
outputs are identical. Because it
is highly unlikely for two
identical outputs to result from
two different errors, we likely
have a ‘correct’ output.

This is called N-version programming – where ‘N’ refers to the number of ‘redundant’ programs.

 Page | 15

There are lots of different approaches to software that make it fault tolerant. N-version
programming is only one approach. Remember that software error handling is a form of fault
isolation. This comes down to the coding approach and strategy, where ‘little’ things like coding
in a coherent, commented manner that allows other software engineers to modify your code in
the future is very valuable.

Human error

Human reliability and human factors are separate areas of study. Nuclear power plants are
examples of complex systems where humans are just as important as the valves and pumps of the
emergency cooling system. Any scenario where humans need to be trained and skilled to operate
something automatically make them an integral part of a system.

Airplanes are also examples of systems where human (pilots) are an integral part of the system –
and by extension reliability. Air France 447 was a flight where an Airbus A330 plunged into the
Atlantic Ocean, killing all 228 occupants. One of the issues identified as a contributing factor was
the sidestick or joystick controls in the cockpit (as illustrated below).

 Page | 16

These controls are fundamentally different to the highly visible and connected control yokes of
other airplanes.

The Air France 447 copilot for whatever reason pulled ‘back’ on the side stick, pushing the nose of
the aircraft up. This place it in a stall condition and it started plummeting toward the ocean. The
other pilot was trying to push the nose down with his side stick – and he couldn’t understand why
the plane wasn’t responding. By the time the crew realized what was happening – it was too late.

There is no point designing something that is ‘very reliable’ if it is difficult to operate in a reliable
way.

 Page | 17

	1. Variability control
	2. Fault Containment
	3. Fault Isolation
	4. Proactive Maintenance
	5. Reversion
	6. Redundancy
	PARALLEL SYSTEMs
	reliability when FAILURE IS NOT INDEPENDENT
	Redundancy – in software
	Human error

	Text1:
	Text2:
	Text3:
	Text4:
	Text5:
	Text6:
	Text7:
	Text8:
	Text9:
	Text12:
	Text13:
	Text14:
	Text15:
	Text16:

