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Once we have exhausted all practical and feasible smart design activities AND we still need to 
improve reliability, we might need to start tolerating faults. This could be entirely acceptable if 
you have really thought about reliability critically from the start. But like most reliability activities, 
it needs to be done right! 

There are many things we need to do before we start thinking about tolerating faults. Starting 
with a (properly done) FMEA is always a good thing. You might use your FMEA to help allocate 
reliability goals to your subsystems and components. And when this is done well, you have well 
thought out and flexible goals that help keep your team on track, on time, and on budget. 

Individual design teams can then use a host of Design for Reliability (DfR) activities at their 
disposal. Perhaps they will conduct Highly Accelerated Life Testing (HALT) on initial prototypes. 
Perhaps they will derate. Once they have identified the VITAL FEW failure mechanisms, they can 
be targeted for design improvement. 

But there comes a point where we cannot eliminate any more faults from our design – at least not 
efficiently or cheaply. This means that we now need to tolerate faults. 

1. Variability control 
 
Variability control involves using a component that can 
tolerate larger variation in inputs caused by failures or 
faults in other components. This is sometimes called 
robustness. It essentially means that the component keeps 
working well when confronted with ‘out of spec’ conditions. 

2. Fault Containment 
 
Fault containment is the prevention of 
the propagation of a failure 
mechanism across a system due to a 
fault in a single component. For our 
pump, this could involve an upstream 
regulator.  

There are lots of examples of fault containment that range from voltage regulators through to 
filters. Each component has a different range of options based on the dominant failure 
mechanisms (VITAL FEW). 
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3. Fault Isolation 
 
Fault isolation involves diagnosing a 
fault when it occurs. This allows 
immediate action to address the fault 
to either prevent it from progressing 
to a failure, or to minimise the time 
spent in a ‘failed’ state. 

There are things like Built-in Testing 
(BIT), Built-in Self Testing (BIST) and Built-in Test Equipment (BITE) which can help automate 
fault isolation. These systems might investigate the entire system during start up to make sure that 
performance characteristics are ‘in specification,’ the output voltage is within limits et cetera. In 
software, this process is largely analogous to the error handling process where software can detect 
when an error has occurred, what piece of code was responsible for the error, and otherwise 
advise the user on what he or she might be able to do. 

4. Proactive Maintenance 
 
Proactive maintenance or 
Condition Based Maintenance 
(CBM) is all about addressing faults 
before they become failures. So it 
has a natural ‘relationship’ with fault 
isolation. 

Many reliability engineers don’t consider proactive maintenance or CBM a true ‘fault tolerance’ 
activity. But in practice … you need to thing about proactive maintenance and CBM at the point 
of design where you start thinking about tolerating faults. Instead of BIT, BIST or BITE, systems 
might have sensors that detect the accumulation of damage (lubricant contaminants, fatigue crack 
length, temperature et cetera) to allow maintenance to occur before failure. 

5. Reversion 
  
Reversion (which is sometimes 
referred to as derating) is the 
transition to a sub-optimal operation 
state that prevents imminent failure 
caused by an isolated fault. This too 
is related to fault isolation. 
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An example of reversion is an engine RPM limiter that enacts when a leak in the coolant system is 
identified. This will reduce the top speed of a vehicle but will allow the vehicle to continue 
operating. While reversion can be manual (as in, an operator manually detects a fault and adapts 
the use conditions accordingly), it is typically automated using sensors and software. 

6. Redundancy 
 
Redundancy is the duplication of components or 
functions. For a pump, this could involve the installation of 
a second active redundant, standby redundant or load 
sharing pump. The idea is that if one fails, the other will 
allow the system to continue operating. 

Redundancy comes at a cost – so 
we need to think about it. There is a 
hidden issue with redundancy – 
Common Cause Failure (CCF). 
Single faults often cause failure in 
primary and standby components, 
meaning we don’t get the reliability 
improvements we hope for. 

But perhaps one of the more 
egregious issues with redundancy 
can be the effect it can have on 
culture. Redundancy (and fault 
tolerance) often introduces a false 
sense of security. So we stop 
thinking and start assuming that 
everything is going to be OK. Our 
systems degrade to a point where 
we have no fault tolerance. 

PARALLEL SYSTEMs 
 
Let’s now look at our two-pump parallel system where the system fails if pump 𝐴𝐴 fails AND pump 
𝐵𝐵 fails.  
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Going back to the Venn diagram we looked at in our Basic probability and stuff lesson. 

 

So because failure occurs when pump 𝐴𝐴 AND pump 𝐵𝐵 fails … 

 

You can see how much ‘smaller’ the system failure event is when compared to the series system.  

 

Remember that series system reliability is the product of component reliability … parallel system 
failure probability is the product of component failure probabilities. 

… the 

SYSTEM 
fails if …

PUMP A
fails …

PUMP B
fails

AND …
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But of course, parallel systems can have lots of components. If we have a parallel system with  
𝑛𝑛 components (and failures are statistically independent), system failure probability is … 

𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) = 𝐹𝐹1(𝑡𝑡) × 𝐹𝐹2(𝑡𝑡) × … × 𝐹𝐹𝑛𝑛(𝑡𝑡) = �𝐹𝐹𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

 

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) = 1 −�1 − 𝑅𝑅𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

 

Consider the two-pump parallel system below. 

 

What is the reliability of the system at 2 years if the reliability  
of each pump at 2 years is 70%? 

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) = 1 −�1 − 𝑅𝑅𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

 

= 1 −�1 −         
   

𝑖𝑖=1

    = 1 −�            
    

𝑖𝑖=1

 

= 1 −               ×               = 1 −                

= 
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Using the techniques we have just learned, we can calculate system reliability at any time or usage 
for parallel systems. This is how we get the reliability curves illustrated below. 

 

 

reliability when FAILURE IS NOT INDEPENDENT 
 
Failure is rarely statistically independent – and this affects our system reliability estimates when 
there is redundancy involved (parallel or ‘𝑘𝑘 out of 𝑛𝑛’ systems). 

We know many failures have common causes. Some example common cause failures for our 
two-pump parallel system are illustrated below. 

 

Common cause failure is most relevant for parallel systems. As parallel systems involve 
redundancy, this also (unfortunately) means that the reliability improvements we hope see by 
using parallel systems are eroded by any failures that have a common cause. 
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This is not a significant issue for series systems, where if any one component fails the entire system 
fails. Common cause failures mean it is more likely for other components to fail after the first 
component fails. Given the series systems fails when the first component fails, this does not 
change any system reliability. 

Another form of dependent failure occurs if the system is configured in ‘load sharing’ 
configuration. Consider the following, seemingly parallel two-pump system. 

 

The system is required to pump 75 gallons per minute. Both pumps can have their service life 
extended by making sure that they pump somewhere between 25 and 50 gallons per minute. 
When both pumps are working, they need to pump at a rate of 37.5 gallons per minute for the. 
This means they both remain in a ‘high-reliability’ zone. 

However, when one of them fails, the remaining functional pump needs to pump at 75 gallons 
per minute. It can still do this, but it increases the likelihood of failure dramatically.  

So even though one pump failing won’t cause the other pump to fail immediately, it will certainly 
result in an increased failure probability of that remaining pump. The equation or function that 
provides system reliability for a load sharing configuration requires complex modelling outside 
the scope of this course. 
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A switching system is a redundant system where additional components kept in a ‘standby state’ 
until the primary component fails. 

 

A switching system needs a switch mechanism that can recognize when the first pump fails, and 
then successfully ‘switch’ the standby pump to an ‘active’ state. This introduces additional ways 
the system can fail but can substantially increase system reliability. 

The system reliability equation that takes into primary pump reliability, pump reliability in a 
standby state and switch mechanism reliability is complex and outside the scope of this course. 

 

 
There are many ways of configuring redundant systems. However, RBDs and fault trees are not 
always good at representing them in a way that allows us to identify which redundancy 
configuration is being represented. Further, common cause failure exists in virtually every real-
life scenario. While we can incorporate common cause failure into an RBD or fault tree most RBDs 
and fault trees don’t inherently do this. 
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Going back to common cause failure which we first started talking about in our Fault tolerance 
lesson, we looked at the effect on how long it takes before we expect 1 % of our systems to fail 
when we add one and two redundant components. 

 

But if just one in ten failures have a common cause, then we don’t have redundancy one in ten 
‘times.’ So instead of getting an increase of 39 % on our warranty period (for a 99 % warranty 
reliability), common cause failure reduces this increase to 30 %.  

 
 

 

 

COMMON 
CAUSE 
FAILURE 
(CCF) 
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Redundancy – in software 
 
Software failure is random – but in a 
different way to hardware failure. 
Software failures are caused by 
coding errors – which are obviously 
somewhat random. But once code is 
complete, software will behave in 
repeatable, non-random ways. So 
having defective code in 
‘redundancy’ will not work. 

One approach is to have different code in a redundant 
configuration. For example, let’s say we are coding 
software to simply sort numbers. A well-known algorithm is 
the ‘bubble sort algorithm.’ We might get a team of 
software engineers to code a program based on the 
‘bubble sort algorithm.’ We then might ask another team 
to code another program based on the ‘shell sort 
algorithm.’ Both algorithms achieve the same thing, but 
used different methods. 

So we can put the shell sort algorithm in redundancy to support the bubble sort algorithm. Any 
coding errors in one program are unlikely to manifest themselves in exactly the same way in the 
other. But there is still a problem. If one program has an error, then this means the two programs 
will have different outputs. How do we know which one is correct? 

The solution involves having 
three different programs, 
coded by different teams, all 
acting in ‘redundancy.’ We then 
have a ‘voter program’ which 
can identify when at least two 
outputs are identical. Because it 
is highly unlikely for two 
identical outputs to result from 
two different errors, we likely 
have a ‘correct’ output. 

This is called N-version programming – where ‘N’ refers to the number of ‘redundant’ programs.  
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There are lots of different approaches to software that make it fault tolerant. N-version 
programming is only one approach. Remember that software error handling is a form of fault 
isolation. This comes down to the coding approach and strategy, where ‘little’ things like coding 
in a coherent, commented manner that allows other software engineers to modify your code in 
the future is very valuable. 

Human error 
 
Human reliability and human factors are separate areas of study. Nuclear power plants are 
examples of complex systems where humans are just as important as the valves and pumps of the 
emergency cooling system. Any scenario where humans need to be trained and skilled to operate 
something automatically make them an integral part of a system. 

Airplanes are also examples of systems where human (pilots) are an integral part of the system – 
and by extension reliability. Air France 447 was a flight where an Airbus A330 plunged into the 
Atlantic Ocean, killing all 228 occupants. One of the issues identified as a contributing factor was 
the sidestick or joystick controls in the cockpit (as illustrated below). 
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These controls are fundamentally different to the highly visible and connected control yokes of 
other airplanes. 

 

 
The Air France 447 copilot for whatever reason pulled ‘back’ on the side stick, pushing the nose of 
the aircraft up. This place it in a stall condition and it started plummeting toward the ocean. The 
other pilot was trying to push the nose down with his side stick – and he couldn’t understand why 
the plane wasn’t responding. By the time the crew realized what was happening – it was too late. 

There is no point designing something that is ‘very reliable’ if it is difficult to operate in a reliable 
way. 
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