Fred Schenkelberg Fundamentals of Hypothesis Testing







# How do you use hypothesis testing?

### What is hypothesis testing?







### Comparison

What is hypothesis testing?

A method to determine if there is sufficient evidence to support a hypothesis.

Samples of a population of interest

Meeting specification

Checking a solution

Detecting a difference



#### Randomness

What is hypothesis testing?

If the world had no randomness – making one measurement would be sufficient...

Alas, there is plenty of randomness

What is a random sample?



#### Differences

What is hypothesis testing?

A useful method when making a comparison of two things.

A sample of measurements to a specification

Two samples from different processes

A before and after a design change



### Which type(s)

### do you use?

### Basic Process







### Hypothesis

**Basic Process** 

A process change – did this result in a lower weight?

Null hypothesis - no change

Alternate hypothesis – new process results in a lower weight



#### Data

#### **Basic Process**

Plot the data - box plots, histograms, etc.

The test statistic is calculated based on the sample measurements.

Sample size calculation to minimize type I and II errors

Assumptions to check:

measurement error acceptable random sample from the population underlying distribution



#### Calculation

**Basic Process** 

The test statistic is a measure of the shift in the parameter

For a z-test

$$z=rac{ar{y}-\mu_0}{\sigma_{ar{y}}}$$
 , where  $\sigma_{ar{y}}=rac{\sigma}{\sqrt{n}}$ 

Compare z to the critical value



### How do you

### check your work?

### A few issues







#### Measurement error

#### A few issues

Some portion of the variation of the sample measurements is due to measurement error.

So, check it!

Large measurement error will lead to faulty conclusions.



### Multiple comparisons

A few issues

There are other comparison tools

Design of Experiments

Analysis of Variance

Control Charting

Nonparametric methods



### Statistical vs Practical

A few issues

Statistical significant

Practical importance

The effect of sample size

Use statistical intervals instead

(graphical methods should always be a part of the analysis)



### When was the last

### you did a comparison?

## Additional Comments and Questions

### Thanks

see more at AccendoReliability.com