

ENGINEERING SOLUTIONS FOR SUSTAINABILITY: MATERIALS AND RESOURCES 3

Toward a Circular Economy

ENGINEERING SOLUTIONS FOR SUSTAINABILITY: MATERIALS AND RESOURCES 3

Toward a Circular Economy

February 18–19, 2017 | Denver, Colorado

Session 4: Water

Water Footprinting

Communicating Mine Site Water Performance in a Circular Economy

Stephen Northey – Monash University

Maureen Upton, Dave Hoekstra, Patrick Williamson – SRK Consulting

Circular Economy

- "Closing the loop" requires us to think beyond just the efficiency and waste of primary resources
- The impacts of material production to environmental processes and society also need to be considered
- The over allocation and scarcity of water resources is a growing issue
- Addressing this in a circular economy requires methods to understand water resource impacts at all stages of a materials life

ENGINEERING SOLUTIONS FOR SUSTAINABILITY: MATERIALS AND RESOURCES 3 Toward a Circular Economy

Water and the Mining Industry

Mining operations have complex interactions with water resources

- Stable access of water is required for ore processing
- Large-scale land transformations, land clearing, the storage of mine wastes, dewatering of aquifers and the diversions of water around sites can all significantly impact regional hydrology.
- Significant water quality risks can also be associated with mining.

Due to these factors, water is often a trigger for social unrest and opposition to mining projects.

ENGINEERING SOLUTIONS FOR SUSTAINABILITY: MATERIALS AND RESOURCES 3

Mineral Projects Face a Range of Regional Contexts

Mineral Resources are Located in Different Climates

Mineral Resources are Located in Different Climates

These Climates Influence Mine Site Water Balances

These Climates Are Also Shifting Through Time

Copper

Nickel

Northey et al., 2017. Global Environmental Change, Under Review.

Water Contexts Vary Substantially Between Regions Water Stress Index

Water Contexts Vary Substantially Between Regions

The exposure to water risks varies for different sectors of the mining industry

The Copper Industry is Highly Exposed to Water Scarcity and Stress

Session 3

Exposure Differs Throughout Mineral Supply Chains

Variability in mine water interactions and local contexts creates challenges when measuring mine-site water performance

Approaches need to be able to account for differences in:

- Complex mine site water balances
- Highly variable water quality impacts
- Local hydrological contexts and risks

"Water Footprinting" methods provide a standardized approach to addressing these issues

ENGINEERING SOLUTIONS FOR SUSTAINABILITY: MATERIALS AND RESOURCES 3 Toward a Circular Economy

Water Footprint Network Standards

Water Footprint Network Standards (Hoekstra et al. 2009; 2011)

ISO14046:2014 Environmental Management – Water Footprint

1. Goal and scope setting

- 2. Inventory Analysis
- Quantifying water flows, sources, sinks, quality, accumulation and diversions.
- 3. Impact Assessment
 - What are the consequences of this water use?
- Enables adjustments for factors such as the local water stress index (WSI).
- 4. Interpretation

Benefits of Using Water Footprinting Methods

• Facilitates strong stakeholder relations

- Provides complex data in a format that is easily accessible to a range of industry stakeholders
- Facilitates comparisons with relevant regional users (e.g. agriculture)
- Improves a companies internal understanding of water use and risks
 - Developing a water footprint will quickly identify weaknesses in mine site water balance models
 - Provides an understanding of the potential hot-spots for process improvements.
 - Enables local water scarcity and quality to be accounted for when comparing multiple operations.
 - Assessment of indirect water use can identify water related risks in a mine's supply chain.
- Integrates easily with other assessment methods used in the circular economy
 - e.g. carbon footprinting, life cycle assessment, material flow analysis

ENGINEERING SOLUTIONS FOR SUSTAINABILITY: MATERIALS AND RESOURCES 3

Toward a Circular Economy

Stephen Northey (Monash University funded by CSIRO, Associate for SRK) stephen.northey@monash.edu

on behalf of:

Dave Hoekstra (SRK), <u>dhoekstra@srk.com</u> Maureen Upton (SRK), <u>mupton@srk.com</u> Patrick Williamson (SRK), <u>pwilliamson@srk.com</u>