Angular ng-template, ng-container and
ngTemplateOutlet - The Complete
Guide To Angular Templates

In this post, we are going to dive into some of the more advanced

features of Angular Core!

You have probably already come across with the ng-template Angular

core directive, such as for example while using ng1£ /else, or ngswitch.

The ng-template directive and the related ngTemplateOutlet directive are
very powerful Angular features that support a wide variety of advanced

use cases.

These directives are frequently used with ng-container, and because
these directives are designed to be used together, it will help if we learn

them all in one go, as we will have more context around each directive.

Let's then see some of the more advanced use cases that these
directives enable. Note: All the code for this post can be found in this

Github repository.

Table Of Contents

In this post, we will be going over the following topics:

e Introduction to the ng-template directive

e Template Input Variables


https://github.com/angular-university/ng-template-example

The ng-template directive use with nglf
nglf de-suggared syntax and ng-template

ng-template template references and the TemplateRef
injectable

Configurable Components with Template Partial einputs
The ng-container directive, when to use it?

Dynamic Template with the ngTemplateOutlet custom
directive

Template outlet ernput Properties
Final Combined Example

Summary and Conclusions

Introduction to the ng-template directive

Like the name indicates, the ng-template directive represents an Angular

template: this means that the content of this tag will contain part of a

template, that can be then be composed together with other templates

in order to form the final component template.

Angular is already using ng-template under the hood in many of the

structural directives that we use all the time: ngIf, ngfFor and

ngSwitch.

Let's get started learning ng-template with an example. Here we are

defining two tab buttons of a tab component (more on this later):

@Component ({
selector: 'app-root',

template: °



<ng-template>
<button class="tab-button"
(click)="1login()">{{loginText}}</button>
<button class="tab-button"
(click)="signUp()">{{signUpText}}</button>
</ng-template>
'}
export class AppComponent {
loginText = 'Login';
signUpText = 'Sign Up';

lessons = ['Lesson 1', 'Lessons 2'l;

login() {

console.log('Login');

signUp() {
console.log('Sign Up');

The first thing that you will notice about
ng-template

If you try the example above, you might be surprised to find out that this

example does not render anything to the screen!
This is normal and it's the expected behavior. This is because with the
ng-template tag we are simply defining a template, but we are not using

it yet.

Let's then find an example where we can render an output, using some

of the most commonly used Angular directives.

The ng-template directive and ng1f



You probably came across ng-template for the first time while

implementing an if/else scenario such as for example this one:

<div class="lessons-1list" xngIf="1lessons else loading'">
</div>

<ng-template #loading>
<div>Loading...</div>

</ng-template>

This is a very common use of the nglf/else functionality: we display an
alternative 10ading template while waiting for the data to arrive from

the backend.

As we can see, the else clause is pointing to a template, which has the
name loading. The name was assigned to it via a template reference,

using the #loading syntax.

But besides that else template, the use of nglf also creates a second
implicit ng-template! Let's have a look at what is happening under the
hood:

<ng-template [ngIfl="1lessons" [ngIfElse]="1loading">

<div class="lessons-1list">

</div>

</ng-template>

<ng-template #loading>
<div>Loading...</div>

</ng-template>



This is what happens internally as Angular desugars the more concise

*ngIf structural directive syntax. Let's break down what happened

during the desugaring:

e the element onto which the structural directive nglf was
applied has been moved into an ng-template

o The expression of *nglf has been split up and applied to two
separate directives, using the [ng1f] and [ngifElse] template

input variable syntax

And this is just one example, of a particular case with nglf. But with

ngFor and ngSwitch a similar process also occurs.

These directives are all very commonly used, so this means these
templates are present everywhere in Angular, either implicitly or

explicitly.
But based on this example, one question might come to mind:

How does this work if there are multiple structural directives applied to the

same element?

Multiple Structural Directives

Let's see what happens if for example we try to use ngif and ngFor in

the same element:

<div class="1lesson" *xngIf="1lessons"

*ngFor="1et lesson of lessons'>



<div class="lesson-detail">
{{lesson | json}}
</div>

</div>

This would not work! Instead, we would get the following error message:

Uncaught Error: Template parse errors:
Can't have multiple template bindings on one element. Use
only one attribute

named 'template' or prefixed with *

This means that its not possible to apply two structural directives to the
same element. In order to do so, we would have to do something similar

to this:

<div *ngIf="1lessons">
<div class="1lesson" *xngFor="1let lesson of lessons'>
<div class="lesson-detail">
{{lesson | json}}
</div>
</div>

</div>

In this example, we have moved the nglf directive to an outer wrapping

div, but in order for this to work we have to create that extra div element.

This solution would already work, but is there a way to apply a structural
directive to a section of the page without having to create an extra

element?



Yes and that is exactly what the ng-container structural directive

allows us to do!

The ng-container directive

In order to avoid having to create that extra div, we can instead use ng-

container directive:

<ng-container *ngIf="lessons">
<div class="1lesson" *xngFor="1let lesson of lessons">
<div class="lesson-detail'>
{{lesson | json}}
</div>
</div>

</ng-container>

As we can see, the ng-container directive provides us with an element
that we can attach a structural directive to a section of the page,

without having to create an extra element just for that.

There is another major use case for the ng-container directive: it can
also provide a placeholder for injecting a template dynamically into the
page.

Dynamic Template Creation with the
ngTemplateoutlet directive

Being able to create template references and point them to other

directives such as nglf is just the beginning.

We can also take the template itself and instantiate it anywhere on the

page, using the ngTemplateoutlet directive:



<ng-container xngTemplateOutlet="1loading"></ng-container>

We can see here how ng-container helps with this use case: we are

using it to instantiate on the page the 1o0ading template that we defined

above.

We are refering to the loading template via its template reference
#loading, and we are using the ngTemplateoutlet Structural directive

to instantiate the template.

We could add as many ngTemplateoutlet tags to the page as we would

like, and instantiate a number of different templates. The value passed
to this directive can be any expression that evaluates into a template

reference, more on this later.

Now that we know how to instantiate templates, let's talk about what is

accessible or not by the template.

Template Context

One key question about templates is, what is visible inside them?

Does the template have its own separate variable scope, what variables can

the template see?

Inside the ng-template tag body, we have access to the same context
variables that are visible in the outer template, such as for example the

variable lessons.



And this is because all ng-template instances have access also to the
same context on which they are embedded.

But each template can also define its own set of input variables!
Actually, each template has associated a context object containing all

the template-specific input variables.

Let's have a look at an example:

@Component ({
selector: 'app-root',

template: °

<ng-template #estimateTemplate let-lessonsCounter="estimate'>
<div> Approximately {{lessonsCounter}} lessons ...</div>

</ng-template>

<ng-container
kngTemplateQutlet="estimateTemplate;context:ctx">

</ng-container>

)

export class AppComponent {

totalEstimate = 10;

ctx = {estimate: this.totalEstimate};

Here is the breakdown of this example:

» this template, unlike the previous templates also has one
input variable (it could also have several)



e the input variable is called 1essonscounter, and it's defined via

a ng-template property using the prefix 1et-

e The variable lessonsCounter is visible inside the ng-template
body, but not outside

o the content of this variable is determined by the expression
that its assigned to the property let-lessonsCounter

o That expression is evaluated against a context object, passed
to ngTemplateoutlet together with the template to instantiate

e This context object must then have a property named
estimate , for any value to be displayed inside the template

e the context object is passed to ngTemplateoutlet Via the
context property, that can receive any expression that
evaluates to an object

Given the example above, this is what would get rendered to the screen:
Approximately 10 lessons ...

This gives us a good overview of how to define and instantiate our own

templates.

Another thing that we can also do is interact with a template
programmatically at the level of the component itself: let's see how we

can do that.

Template References

The same way that we can refer to the loading template using a

template reference, we can also have a template injected directly into



our component using the viewchild decorator

@Component ({
selector: 'app-root',
template: °
<ng-template #defaultTabButtons>

<button class="tab-button" (click)="login()">
{{loginText}}
</button>

<button class="tab-button" (click)="signUp()">
{{signUpText}}
</button>

</ng-template>
1)

export class AppComponent implements OnInit {

@ViewChild('defaultTabButtons')
private defaultTabButtonsTpl: TemplateRef<any>;

ngOnInit() {
console.log(this.defaultTabButtonsTpl);

As we can see, the template can be injected just like any other DOM
element or component, by providing the template reference name

defaultTabButtons to the viewchild decorator.

This means that templates are accessible also at the level of the
component class, and we can do things such as for example pass them

to child components!



An example of why we would want to do that is to create a more
customizable component, where can pass to it not only a configuration
parameter or configuration object: we can also pass a template as an

input parameter.

Configurable Components with Template
Partial @Inputs

Let's take for example a tab container, where we would like to give the
user of the component the possibility of configuring the look and feel of
the tab buttons.

Here is how that would look like, we would start by defining the custom

template for the buttons in the parent component:

@Component ({
selector: 'app-root',
template: °
<ng-template #customTabButtons>
<div class="custom-class">
<button class="tab-button" (click)="login()">
{{loginText}}
</button>
<button class="tab-button" (click)="signUp()">
{{signUpText}}
</button>
</div>
</ng-template>
<tab-container [headerTemplatel="defaultTabButtons"></tab-container>
1)

export class AppComponent implements OnInit {



And then on the tab container component, we could define an input

property which is also a template named headerTemplate:

@Component ({
selector: 'tab-container',
template: °

<ng-template #defaultTabButtons>
<div class="default-tab-buttons">
</div>

</ng-template>

<ng-container

kngTemplateOutlet="headerTemplate ? headerTemplate: defaultTabButtons'>
</ng-container>
. rest of tab container component ...

)
export class TabContainerComponent {
@Input()

headerTemplate: TemplateRef<any>;

A couple of things are going on here, in this final combined example.

Let's break this down:

e there is a default template defined for the tab buttons, called

defaultTabButtons

e This template will be used only if the input property

headerTemplate remains undefined



o If the property is defined, then the custom input template
passed via headerTemplate Will be used to display the buttons

instead

o the headers template is instantiated inside a ng-container
placeholder, using the ngTemplateoutlet property

e the decision of which template to use (default or custom) is
taken using a ternary expression, but if that logic was complex
we could also delegate this to a controller method

The end result of this design is that the tab container will display a
default look and feel for the tab buttons if no custom template is

provided, but it will use the custom template if its available.

Summary and Conclusions

The core directives ng-container, ng-template and ngComponentOutlet
all combine together to allow us to create highly dynamical and

customizable components.
We can even change completely the look and feel of a component based
on input templates, and we can define a template and instantiate on

multiple places of the application.

And this is just one possible way that these features can be combined!



