Gene addition in the mammalian system is accomplished by injecting DNA into the pronucleus of a fertilized egg (Gordon et al., 1980). This is a non-targeted event. Targeted disruption of specific genes, however, requires the manipulation of pluripotent embryonic stem (ES) cells in vitro and their subsequent return to the embryonic environment for incorporation into the developing embryo (Zijlstra et al., 1989). The resulting chimeric mouse born is useful for two purposes: 1) it is comprised of tissue from two sources, the host embryo and the manipulated stem cells. More importantly, 2) it can be mated to produce descendants that are entirely transgenic, resulting from the ES cell contribution to the germline of the chimeric mouse. (The Nobel Prize in Physiology or Medicine was awarded in 2007 to the pioneers of this technology, Mario Capecchi, Martin Evans and Oliver Smithies.) The facility, in collaboration with Anderson, Baltimore, Fraser, Kennedy, Lester, Patterson, Rothenberg, Simon, Varshavsky and Wold laboratories, has generated multiple transgenic, knockout and knockin mouse strains, amounting to nearly 180 mouse strains. The Facility together with the Baltimore lab, participated in the development of a new method for the introduction of DNA into early-stage embryos (Lois et al., 2002). This method makes use of non-recombinant lentivirus as a vector for the introduction of DNA into one-cell embryos. The method has proven to be highly efficient and promises to be useful for studies in mice and rats, where large numbers of constructs need to be tested. This new methodology also makes feasible the generation of transgenic animals in species that were hitherto impractical to work with, due to the very low numbers of embryos available for use. Since the lentiviral vector method was established, 79 transient or established mouse models have been generated by this means, together with one Tg rat model. Facility staff has performed all embryo manipulation involved in the production of these new lines. With regard to the injection of DNA into pro-nuclei of pre-implantation stage embryos GEMs staff have most recently assisted the Fraser lab in an early embryonic developmental study of Oct4 kinetics, for the prediction of cell lineage patterning, by the injection of DNA into single nuclei of embryos at 2 cell stage, or into the cytoplasm of 2 cell stage blastomeres. The work has been published online: "Oct4 kinetics predict cell lineage patterning in the early
mammalian embryo.” We are now applying cytoplasmic injection to the generation of mouse and rat mutations by use of CRIPr technology.

Gems staff have also derived new ES cell lines from Oct4/Nanog mice, which have been used for quantitative live imaging by Carol Readhead in the Fraser lab. And from rtTA and ED-1 strains of mouse for Daniel Kim in the Wold lab.

In tissue culture and the use of murine embryonic stem (mES) cells the Facility has generated over forty new and as yet untested, embryonic stem cell lines, the majority of which are from C57BL/6 mice. This was a by-product of our wish to determine the most efficient approach to deriving such cell lines, since we anticipate that investigators may wish to use ES cells derived from their own genetically altered strains of mouse. Indeed, five such new mES cell lines were derived for the Rothenberg lab. We have multiple murine ES cell lines available for use. Several are on a 129 background, some on a C57BL/6 background and others are F1 cell lines, which are a mix between 129 and C57BL/6 strains. We are able to manipulate and obtain germline transmission from all these ES cell types. C57BL/6 ES cells provide a significant advantage in that the mutation will be established initially on this well understood genetic background, instead of undertaking a two-year breeding program to reach the same point, having initially established the mutation on a sub-optimal genetic background. Hybrid mES cells have been reported to be useful for their vigor. Unlike mES cells from an inbred background, (e.g., C57BL/6 and 129), it is possible to derive from hybrid mES cells live pups that are wholly of ES cell origin. (Nagy et al., 1993) This is made possible by first, the production of tetraploid embryos. These are made by fusion of two blastomeres at the two-cell embryo stage, resulting in the production of a single viable blastomere that has twice the normal number of chromosomes. Such embryos can develop to blastocyst stage, but thereafter, can only contribute to extraembryonic cell lineages. Thus, mES cells injected into the blastocoel cavity in this case, are sole contributors to the developing embryo. Not every mES cell line is able to support development to such a degree. However, we have seen that animals appearing to be wholly of ES cell origin can be produced by injecting mES cells into earlier stage embryos (Valenzuela et al., 2010). The facility is able to offer the use of human ES cells, - two lines from WiCell are available, H1 and H9. We also have close contact with the hES facility at USC, for advisory purposes.

For the fifth year, we organized, set up and taught a four-week course for ten “Bridges to Stem Cells” students. This was in conjunction with PCC and funded by CIRM. Students had the opportunity to derive fibroblasts and mES cell lines, plus execute a gene targeting experiment. Students also successfully derived new C57BL/6 embryonic stem cell lines, using media containing two kinase inhibitors. Some of these cell lines have karyotyped well and are currently being evaluated for use in the generation of new mouse models. These fibroblasts and ES cells will also be useful for teaching at PCC in the Biotechnology course, which is directed by Pam Eversole-Cire, (a former Caltech post-doc).

Once a new mouse model has been characterized, it may be cryopreserved by GEMs staff, or sent to the Mutant Mouse Resource Center, to be made available to the research community in
general. We currently have over 100 mouse models cryopreserved. For each line, between 200 and 500 embryos at eight-cell stage have been preserved in liquid nitrogen. There are currently 34,752 embryos frozen in total. We shall continue to preserve embryos from mouse strains carrying multiple mutations. Mouse strains carrying a single mutation will be archived by sperm cryopreservation. Sperm cryopreservation is much more economic than embryo cryopreservation, although the recovery and establishment of the strain by in-vitro fertilization is more costly. The advantages of archiving mouse strains are many. Unique and valuable mouse strains that are currently not in use may be stored economically. In the event that genetic drift should affect any strain, over time, then the option to return to the original documented genetic material is available. Lastly, in the event of a microbiological or genetic contamination occurring within the mouse facility, we have the resources to set up clean and genetically reliable mouse stocks in an alternative location. We also offer re-deriviation as a service, whereby investigators can bring in novel mouse strains from other Institutions without risk of introducing pathogens to CIT stocks. This involves the washing and transfer of pre-implantation embryos from “dirty” incoming mice to “clean” CIT recipient animals.

In addition to the maintenance of nearly 100 different targeted and non-targeted strains, we also maintain colonies of inbred and outbred animals, which are used to support the development of new lines, by investigators at Caltech. We also have many mouse models on both an inbred and an outbred background, plus intercrosses between two or three different, but related, mouse models. In total, we currently maintain nearly 200 separate strains of mouse. GEMs Facility staff have been working with IMSS in the development of software that will assist technicians and investigators in the management of their mice. Amongst its features, this inter-relational system will track the breeding history of each strain and have the ability to generate family trees. The system will also report on production levels for each strain. Users will access the system to enter genotype results and work requests. An electronic signal will be sent to CLAS staff when work requests are made, helping us to manage work requests in a timely manner. The system is basic but easy to use and of value for the reports the system will be able to generate. We are currently offering investigators the use of the system. GEMs is a fee for service facility.

Shirley Pease co-edited "Advanced Protocols for Animal Transgensis 2011" and previously, Mammalian and Avian Transgensis, which was published in 2006.

Listed below are the names of the thirteen principal investigators and their postdoctoral fellows or graduate students who are presently using GEMs services.

David Anderson
Haijiang Cai, Celine Chiu, Li Ching Lo, Weizhe Hong, Hyosang Lee, Prabhat Kunwar, Ryan Remedios, Dong-Wook Kim, Moriel Zelikowsky

Alexei Aravin
Dubravka Pezic
David Baltimore
Alex Balazs, Yvette Garcia-Flores, Rachel Galimidi, Shuai Jiang, Jocelyn Kim, Devdoot Majumdar, Arnav Mehta, Evgenij Raskatov, Alex So, Jimmy Zhao

Ray Deshaies
Narimon Honapour

Scott Fraser
David Koos, Carol Readhead, Max Ezin

Mary Kennedy
Leslie Schenker

Henry Lester
Purnima Deshpande, Julie Miwa, Elisha Mackay, Sheri McKinney, Rell Parker, Andrew Steele, Tegan Wall

Linda Hsieh-Wilson
Joshua Brown, Jean-Luc Chaubard, Chithra Krishnamurthy, Greg Miller, Claude Rogers, Andrew Wang

Paul Patterson
Antoinette Bailey, Grace Chow, Ben Deverman, Natalia Malkova, Ali Koshnan, Jan Ko, Wei-Li Wu

Ellen Rothenberg
Mary Yui, Hao Yuan Kueh, Long Li, Maria Quiloan

David Tirrell
Alborz Mahdavi

Alexander Varshavsky
Christopher Brower, Tri Vu

Barbara Wold
Brian Williams