

Designing Systems in CHIPS Interconnect Fabric

Puneet Gupta (puneet@ee.ucla.edu)

Sudhakar Pamarti

Ankur Mehta

UCLA ENGINEERING
Henry Samueli School of
Engineering and Applied Science
Birthplace of the Internet

CHIPS Design System Vision

UCLA ENGINEERING
Henry Samueli School of
Engineering and Applied Science
Birthplace of the Internet

Overall SIF Design Flow

- Key elements
 - System-level thermal modeling and thermally-aware dielet floorplanning
 - Dielet assembly timing/noise/power analyses to integrate multiple PDKs (from heterogeneous dielets)
 - Resistive rather than transmission line behavior of interconnect
 - Simplified parallel I/Os for dielets and appropriate I/O selection
- Build upon existing SoC design infrastructure

SIF Design Components

- Dielets
 - Pre-fabricated bare die
 - Hard IP with perimeter IO
 - automated redistribution layer design
 - Discrete components
- Interconnect substrate
 - Fine pitch on rigid substrate
 - Need tolerance to unreliable bonding
 - Flexible substrate
 - Need to model flex stresses and failures

Electrical Environment in SIF

- Numerous I/Os
 - Potentially complex electromagnetic crosstalk
- Numerous supply domains to power the various dielets
 - Significant isolation/coupling concerns
- Several clock domains
 - Different frequencies and performance
 - Clock domain crossing and synchronization concerns
- Elaborate "dielet management" tasks
 - Selective sleep/wakeup of individual or groups of dielets
- Individual dielet failure self-test, self-healing, and redundancy requirements
- Interconnect variability and resilience

Standardized Interfaces: Enabler for Fast IF-based System Design

- Physical standardization
 - pad/bump sizes, wire pitches
- Electrical standardization
 - voltage/current levels, resistive/capacitive load
- Functional standardization
 - Communication interfaces e.g., multi-Gb/s digital I/O, Z-controlled analog I/O, etc.
 - Dielet health monitor interfaces
 - Temperature, state info, error/mismatch info etc.
 - Facilitate system tuning, self-healing, self-testing
 - Control interfaces
 - · Dielet configuration, etc
- Test standardization
 - Continuity tests, JTAG-like infrastructure for BIST

Active IF: Getting to Plug-n-Play Dielet Assembly

All green blocks are interface dielets

→ active interconnect fabric

Other blocks are application specific dielets (ASDs)

- Active Interconnect Fabric
 - Library of dielets to handle necessary interface tasks
 - Regulator dielets, I/O dielets, clock dielets, test dielets ...
 - Library cells available as hard IP

Eventual Push-Button SIF Design

- Secure dielet repository
 - Inventory
 - Design description (behavioral, timing views, etc)
 - Models (thermal, PDK, etc)
- A visual hardware description system
 - Easy to use, cloud hosted to proliferate use in educational and Maker communities
 - Automated dielet selection from repository
 - Automated dielet assembly and verification
- "SIF in a day" with limited hardware design background

Next Frontier: Cyberphysical Systems on IF

Cyber-physical dielet capabalities

- RF
- Optics
- MEMS
- Additional design constraints
 - Structural (SIF weight)
 - Geometric (SIF shape)
- Interdisciplinary design automation
 - Electrical + mechanical + software subsystems
- "Robot in a day" with limited hardware design background

Actuators

