

CHIPS

Subu Iyer (s.s.iyer@ucla.edu)

UCLA ENGINEERING
Henry Samueli School of
Engineering and Applied Science

Birthplace of the Internet

Three questions

What are we trying to do?

Why are we doing this?

How are we planning to do this?

What are we trying to do?

Develop an "app-like" environment for Hardware that can

- Cut the time to market by 5-10X
- Cut the NRE cost by 10-20X
- Allow extreme heterogeneity including extensions to cyber-physical systems
- Develop a sophisticated manufacturing workforce

Why now?

- The application space is transforming
- CMOS scaling is saturating
- Systems are getting more heterogeneous and complex
- Holistic system Integration is the next frontier of Moore's law

Computing is transforming

"cognitive" computing – brawn Vs. brain

It is unlikely that we can just scale our selves out of the huge gap (10³ to 10⁴) in power and interconnect density

The Power of System on a Chip (SoC)

1964 - TransistorSLT module
6 transistors, 4 resistors

2014 – POWER8 Processor
22nm SOI eDRAM technology, 650mm²
12 cores and 96MB of on-chip memory
4.2 billion transistors

Courtesy IBM

Transistor scaling has made this possible

But as SoCs have gotten more complex

- NRE costs have skyrocketed
- Time to market has become huge
- Manufacturing costs have grown
- and yields have plummeted

What would Yogi Say?

1925-2015

So, if you can't scale the chip

you should try to scale something else!

Package/Board Features have scaled modestly

UCLA ENGINEERING
Henry Samueli School of
Engineering and Applied Science
Birthplace of the Internet

(GHz)

Do we need Packages?

Packages are supposed to:

- Protect the chip mechanically and thermally
- Connect the chip electrically to other chips
- Allows mission mode testing of the chip

Do we need Packages ? - No!

Packages are supposed to:

- Protect the chip mechanically and thermally (not really)
- Connect the chip electrically to other chips (by progressive fan-out)
- Allows mission mode testing of the chip (this is true)
 We can scale the package by getting rid of it
 And mount the bare die directly on the board

Shrinking the board

 Without question the smallest board is a single large die with all the system functions

on it

Amdahl eventually declared the idea would only work with a 99.99% yield, which wouldn't happen for 100 years.

Hence the quest for the largest Yieldable Unit

 the SoC (reticle size today will yield at 3 15%)

Gene Ahmdahl @Trilogy Systems

Evolution Of System Integration

Mega SolFs by re-integration on an Interconnect Fabric

The "right" interconnect fabric

- Mechanically robust (flat, stiff, tough...)
- Capable of fine wiring, fine pitch interconnects
- Thermally conductive
- Can have active and passive built-in components

Silicon Fits the Bill in many cases

Challenges:

- Warpage
- Topography
- Assembly /Thru'put
- Thermal

>100 µm pitch Mass reflow

solder | cu† 100μm >pitch > 40 μm Mass re-flow+TCB Full contact – TCB

Proximate 2-10μm • Inductive

Capacitive

Wafer to Wafer integration at tight pitch

4-layer wafer stack w/ 2.5 μm Pitch

CHIPS Framework

Tier 1 Equipment Partners

New Tool Concepts Tool Development Scale-Up

Heterogeneous Systems
Approximate Computing
Cognitive Computing
Fault Tolerance
Supply chain Integrity
Security
Memory Subsystems
Processing in Memory DFT

Applications & Architecture

Integration

A processing facility for Interconnect Fabric (IF) & assembly

Silicon processing

- •Glass
- •Flexible substrates
- Additive manufacturing
- Thermal compression bonding
- Wafer thinning
- •Wafer-wafer integration

Materials

Fine Pitch Interconnect
Substrate Materials
Warpage, Stress Flexible
Materials
Thermal solutions
Materials for Additive Mfg.
Reliability

Design Infrastructure

Network on Board

Thermo-Mechanical
Electrical
Tools
Partitioning
DFT
Active IF Design

Tier 1 Foundry Partners

Si, Compound Semis, MEMS, and OSATs

Devices/Components

Novel switches New memory MEMS Sensors Passives, antennae Medical devices

UCLA ENGINEERING
Henry Samueli School of
Engineering and Applied Science

Test Beds

"Mega SolF*"
(~ wafer dimensions)

Desktop Datacenter

 μ -Yodabot

autonomous origami μ -Yodabot that thinks, walks, flies, swims and does stuff.....

*System on Interconnect Fabric

Chip Assembly

Summary

- We are in the midst of a significant hardware transformation
 - Semiconductor Scaling is saturating
 - Computing models are changing
 - Systems are getting more heterogeneous
 - SoCs design costs and Times-to-Market huge
- CHIPS will drive a much more holistic Moore's Law
- We can't do it alone, we have to do it together
 - Industry Partners
 - University Partners: GINTI (Tohuku U),
 Binghamton U, Georgia Tech,
 - Government Agencies

