Navigating the EL ROADMAP
HOW EDI SUPPORTS EL INSTRUCTION

DR. SILVIA E. YBARRA • JOHN R. HOLLINGSWORTH
Navigating the EL ROADMAP

HOW EDI SUPPORTS EL INSTRUCTION

DR. SILVIA E. YBARRA • JOHN R. HOLLINGSWORTH

ALSO READ THESE OTHER WHITE PAPERS

PROFESSIONAL
DEVELOPMENT
WHY IT’S SO INEFFECTIVE & HOW TO FIX IT
JOHN R. HOLLINGSWORTH

Explicit Direct Instruction vs. Direct Instruction
JOHN R. HOLLINGSWORTH

INTEGRATED OR DESIGNATED ELD
6 THINGS TO KNOW ABOUT ELD INSTRUCTION
DR. SILVIA E. YBARRA • JOHN R. HOLLINGSWORTH

NEXT STEPS
YOUR SCHOOL AND ITS FUTURE

(Coming Soon)

For further information on DataWORKS Services & English Learner Curriculum please contact our home office at 800-534-2449 (7:30 AM to 5:00 PM).
Navigating the EL Roadmap - HOW EDI SUPPORTS ELs

The EL Roadmap and Dataworks

The English Learner Roadmap was adopted by the California State Board of Education in July 2017. Of the four principles (See sidebar 1) of the Roadmap, the second principle is the one most concerned with instruction. This paper explains how Explicit Direct Instruction or EDI (See sidebar 2) developed by DataWorks Educational Research supports quality instruction for English learners as aligned with key points of the second principle. Principle 2 of the California EL Roadmap focuses on Intellectual Quality of Instruction and Meaningful Access.

We have identified three significant routes which we can provide teachers to help them navigate this part of the Roadmap.

- Route 1: Language development that is integrated across the curriculum.
- Route 2: Instructional materials that support intellectual engagement and language development.
- Route 3: Instruction that is standards-based and scaffolded.

Route 1: Language development that is integrated across the curriculum

DataWORKS Educational Research has developed language strategies (See sidebar 3) that enable teachers to promote language use across all disciplines regardless of the content they teach. These focus on the four Language Objectives of Listening, Speaking, Reading, and Writing as well as Vocabulary Development.

Listening and Speaking

When a teacher is teaching a Learning Objective they can use a Listening and Speaking strategy to support language use.

SIDEBAR 1
The Four Principles of the EL Roadmap

Principle 1: Assets-Oriented and Needs-Responsive Schools

Pre-schools and schools are responsive to different EL strengths, needs, and identities, and support the socio-emotional health and development of English learners. Programs value and build upon the cultural and linguistic assets students bring to their education in safe and affirming school climates. Educators value and build strong family, community, and school partnerships.

Principle 2: Intellectual Quality of Instruction and Meaningful Access

English learners engage in intellectually rich, developmentally appropriate learning experiences that foster high levels of English proficiency. These experiences integrate language development, literacy, and content learning as well as provide access for comprehension and participation through native language instruction and scaffolding. English learners have meaningful access to a full standards-based and relevant curriculum and the opportunity to develop proficiency in English and other languages.
Here is an example:

For the learning objective, “Distinguish between prime numbers and composite numbers,” a teacher can use the strategy of Chunk Words for Pronunciation.

Listen, students. This word is dis-tin-guish, dis-tin-guish. We say distinguish. Let’s all say it together. Distinguish.

Here is another example:

For the word deoxyribonucleic, the teacher can Use Backwards Syllabication to teach the students how to read and pronounce it. Students, look at this new word. Listen carefully and then repeat each part after me. I will start at the end of the word.

\[-\text{nuclei} \quad -\text{nuclei} \]
\[-\text{ribo-nuclei} \quad -\text{ribo-nuclei} \]
\[-\text{oxy-ribo-nuclei} \quad -\text{oxy-ribo-nuclei} \]
\[-\text{deoxy-ribo-nuclei} \quad -\text{deoxy-ribo-nuclei} \]

Very good, point to the word deoxyribonucleic and read it to your partner.

In the previous examples, you can see how content area teachers can focus on language.
Reading and Writing

Teachers can use multiple strategies to address the language needs of English learners who are in the process of learning to read English.

A teacher might use the Read Initial Sounds of Words strategy to help students read identify and setting in the Learning Objective Identify setting.

Example:

The teacher asks the students to point to their eye and say “I”. She can then connect to the first sound in identify. Furthermore, the teacher asks the students for the sound of the letter -s. Recognizing this sound can help students read setting.

Vocabulary Development

Another very important component for developing language is Vocabulary Development across the curriculum in all content areas. Teachers can strategically select the best strategy that is appropriate for the type of word being taught.

English has many words that have multiple meanings, such as: pupil as an eye and pupil as a student, or fan as a person and fan as a machine. English Learners will automatically think of the meaning that they already know.
Therefore, we have to use another strategy. We need to **Clarify Multiple Meanings**.

Example:

If a teacher is teaching the **Learning Objective** “Trace the development of Chinese inventions”, the students might think that trace means to draw over something. The teacher needs to clarify that in today’s lesson trace has a new meaning, “to follow the development over time,” not to draw over something.

Again, the teacher is teaching language in the context of a History/Social Science lesson.

Route 2: Learning that supports intellectual engagement and language development

DataWORKS Educational Research ensures that lessons and instructional materials designed for English Learners provide for intellectual engagement while retaining the rigor of the content and language standards. We do this in five different ways.

A. Retain Academic and Content Vocabulary

The first thing that needs to be considered is that the Learning Objectives must retain their original academic language. In too many cases, we have seen that districts have directed teachers to rewrite the Learning Objectives into “kid friendly” language. Keep the original academic language. See the following table:

SIDEBAR 3

Strategies for Teaching ELs

Every teacher of English learners (ELs) struggles with the very same issue. How do you build language skills at the same time that you’re teaching new content? That balancing act is made a whole lot easier with this step-by-step guide. John Hollingsworth and Sylvia Ybarra combine the best of educational theory, brain research, and data analysis to bring you Explicit Direct Instruction (EDI) for English Learners: a proven method for creating and delivering lessons that help every EL student acquire language skills while learning content.

Teachers across all grades and subjects will learn how to:

- Use 50 strategies to present and modify language within any lesson
- Craft lessons that ELs can learn the first time they’re taught
- Check for Understanding throughout each lesson
- Embed vocabulary development across the curriculum
- Address listening, speaking, reading, and writing language objectives in all lessons

An educational bestseller, this book features sample lessons, classroom examples, and boxed features to make it easy to read and give you practical tools to help ELs.
Navigating the EL Roadmap - **HOW EDI SUPPORTS ELs**

B. Teacher uses Academic and Content Vocabulary

It is also imperative that the teacher continues to use the content and academic language throughout the lesson in text and while speaking.

Example:

Students, I am going to determine the character trait in the first paragraph.

C. Students use Content and Academic language.

During EDI lessons, students practice using new language while responding to questions. The teacher provides a sentence frame, and then students pair-share their answers with a partner so all students practice. Then the teacher selects random non-volunteers to respond to a Checking for Understanding question.

Example:

CFU Question:

Which of the following statements could be a theme in a text? Explain.

A) It is polite to say please and thank you.

B) Be thankful for what you have.

A sentence frame for the CFU question could be “_____ could be a theme because...”

**SIDEBAR 4
EL Roadmap Policy
Research Summary
(from Calif. Dept. of Education)**

National Consensus

Current national research consensus on second language learning, bilingualism, program effectiveness, and policy research includes the following:

- **English language proficiency development** is a process that takes five to seven years for those entering with emerging English, benefits from coherent and aligned instruction across that time period, and can take place as an integrated process simultaneous with academic content learning in addition to designated ELD and the development of bilingualism/biliteracy.

- **Bilingualism** provides benefits from the capacity to communicate in more than one language and may enhance cognitive skills, as well as improve academic outcomes.

- **Effective system improvement** requires proper and consistent procedures and criteria for identifying, monitoring, and exiting English learners using appropriate assessment—while developing professional capacity to use assessment results.

- **Diversity of the EL population** (e.g., newcomers, long-term English learners, students with interrupted formal education, students with disabilities, gifted and talented students, and the expected continuous exiting of...)

Academic Language (Useful) | Simplified Language (Not Useful)

<table>
<thead>
<tr>
<th>Academic Language (Useful)</th>
<th>Simplified Language (Not Useful)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expand sentences using noun phrases</td>
<td>Make sentences longer</td>
</tr>
<tr>
<td>Express a sum of two whole numbers using the distributive property</td>
<td>Add whole numbers using the distributive property</td>
</tr>
<tr>
<td>Describe the law of conservation of matter</td>
<td>Tell about the law of conservation of matter</td>
</tr>
<tr>
<td>Analyze the Law-Making Process</td>
<td>Retell the Law-Making Process</td>
</tr>
</tbody>
</table>
Navigating the EL Roadmap - **HOW EDI SUPPORTS ELs**

D. In EDI lessons, students read the lesson itself.

Student reading, whether choral, in pair-shares, or individual, supports engagement and language development.

Example:

The teacher provides and then directs students in reading the Skill Development steps below.

We will analyze theme.

1. Read the text.
2. Identify the challenge. (underline)
3. Identify the character’s response to the challenge. (underline 2x)
4. Determine the theme. (circle)

Notice that the steps given to the students still contain the academic and content language – text, identify (not underline), character, determine, theme.

E. Challenge ELs to work at higher levels.

Challenge the students throughout the lessons to answer questions that are designed to help them understand the information at higher levels. These are higher-order questions.

Examples:

A) Using details from the text, describe how the theme is revealed in the text. Answers will vary.

B) An author wants to write a story with a theme of a character who learns to Never give up. Select the sentence(s) that the author would likely use to suggest that theme. Explain why he would use those words.

1) Bruce wants to fight crime in the city, so he takes classes on learning how to identify criminals.

2) Bruce wants to fight crime in the city, so he works for years to find better ways to track criminals, call the police, and use gadgets to catch criminals.

3) Bruce wants to fight crime in the city, so he hires more police and trains them.
Route 3: Instruction is standards-based and scaffolded.

Instruction is scaffolded

DataWORKS Educational Research ensures that the lessons presented to students are scaffolded so English learners can be successful throughout the lesson. Since scaffolding is understood in many ways by educators, we would like to use the original definition before we proceed with a discussion.

Scaffolding is the process in which a teacher facilitates the incremental mastery of a concept. The scaffolding is gradually removed until the students can work independently.

DataWORKS provides scaffolding in many ways for students via Lesson Design components and Lesson Delivery strategies.

- Lessons are taught in small steps with Checking for Understanding at each step. If students cannot answer correctly, the teacher reteaches and provides corrective feedback until students can answer correctly.
- Teachers pre-read, and then students read, all the text in the lesson including the lesson itself.
- Teachers always work a problem first before asking students to work a problem.
- Teachers model their thinking so students can learn how problems are solved.
- Vocabulary is taught in the context of the lesson when it occurs.
- Lessons are taught in small steps with Checking for Understanding at each step. If students cannot answer correctly, the teacher reteaches and provides corrective feedback until students can answer correctly.
- Teachers pre-read, and then students read, all the text in the lesson including the lesson itself.
- Teachers always work a problem first before asking students to work a problem.
- Teachers model their thinking so students can learn how problems are solved.
- Vocabulary is taught in the context of the lesson when it occurs.
- Lessons are taught in small steps with Checking for Understanding at each step. If students cannot answer correctly, the teacher reteaches and provides corrective feedback until students can answer correctly.
- Teachers pre-read, and then students read, all the text in the lesson including the lesson itself.
- Teachers always work a problem first before asking students to work a problem.
- Teachers model their thinking so students can learn how problems are solved.
- Vocabulary is taught in the context of the lesson when it occurs.
- Lessons are taught in small steps with Checking for Understanding at each step. If students cannot answer correctly, the teacher reteaches and provides corrective feedback until students can answer correctly.
- Teachers pre-read, and then students read, all the text in the lesson including the lesson itself.
- Teachers always work a problem first before asking students to work a problem.
- Teachers model their thinking so students can learn how problems are solved.
- Vocabulary is taught in the context of the lesson when it occurs.
- Lessons are taught in small steps with Checking for Understanding at each step. If students cannot answer correctly, the teacher reteaches and provides corrective feedback until students can answer correctly.
- Teachers pre-read, and then students read, all the text in the lesson including the lesson itself.
- Teachers always work a problem first before asking students to work a problem.
- Teachers model their thinking so students can learn how problems are solved.
- Vocabulary is taught in the context of the lesson when it occurs.
- Lessons are taught in small steps with Checking for Understanding at each step. If students cannot answer correctly, the teacher reteaches and provides corrective feedback until students can answer correctly.
- Teachers pre-read, and then students read, all the text in the lesson including the lesson itself.
- Teachers always work a problem first before asking students to work a problem.
- Teachers model their thinking so students can learn how problems are solved.
- Vocabulary is taught in the context of the lesson when it occurs.
- Lessons are taught in small steps with Checking for Understanding at each step. If students cannot answer correctly, the teacher reteaches and provides corrective feedback until students can answer correctly.
- Teachers pre-read, and then students read, all the text in the lesson including the lesson itself.
- Teachers always work a problem first before asking students to work a problem.
- Teachers model their thinking so students can learn how problems are solved.
- Vocabulary is taught in the context of the lesson when it occurs.
- Lessons are taught in small steps with Checking for Understanding at each step. If students cannot answer correctly, the teacher reteaches and provides corrective feedback until students can answer correctly.
- Teachers pre-read, and then students read, all the text in the lesson including the lesson itself.
- Teachers always work a problem first before asking students to work a problem.
- Teachers model their thinking so students can learn how problems are solved.
- Vocabulary is taught in the context of the lesson when it occurs.
- Lessons are taught in small steps with Checking for Understanding at each step. If students cannot answer correctly, the teacher reteaches and provides corrective feedback until students can answer correctly.
- Teachers pre-read, and then students read, all the text in the lesson including the lesson itself.
- Teachers always work a problem first before asking students to work a problem.
- Teachers model their thinking so students can learn how problems are solved.
- Vocabulary is taught in the context of the lesson when it occurs.
- Lessons are taught in small steps with Checking for Understanding at each step. If students cannot answer correctly, the teacher reteaches and provides corrective feedback until students can answer correctly.
- Teachers pre-read, and then students read, all the text in the lesson including the lesson itself.
- Teachers always work a problem first before asking students to work a problem.
- Teachers model their thinking so students can learn how problems are solved.
- Vocabulary is taught in the context of the lesson when it occurs.
- Lessons are taught in small steps with Checking for Understanding at each step. If students cannot answer correctly, the teacher reteaches and provides corrective feedback until students can answer correctly.
- Teachers pre-read, and then students read, all the text in the lesson including the lesson itself.
- Teachers always work a problem first before asking students to work a problem.
- Teachers model their thinking so students can learn how problems are solved.
- Vocabulary is taught in the context of the lesson when it occurs.
- Lessons are taught in small steps with Checking for Understanding at each step. If students cannot answer correctly, the teacher reteaches and provides corrective feedback until students can answer correctly.
- Teachers pre-read, and then students read, all the text in the lesson including the lesson itself.
- Teachers always work a problem first before asking students to work a problem.
- Teachers model their thinking so students can learn how problems are solved.
- Vocabulary is taught in the context of the lesson when it occurs.
- Lessons are taught in small steps with Checking for Understanding at each step. If students cannot answer correctly, the teacher reteaches and provides corrective feedback until students can answer correctly.
- Teachers pre-read, and then students read, all the text in the lesson including the lesson itself.
- Teachers always work a problem first before asking students to work a problem.
- Teachers model their thinking so students can learn how problems are solved.
- Vocabulary is taught in the context of the lesson when it occurs.
- Lessons are taught in small steps with Checking for Understanding at each step. If students cannot answer correctly, the teacher reteaches and provides corrective feedback until students can answer correctly.
- Teachers pre-read, and then students read, all the text in the lesson including the lesson itself.
- Teachers always work a problem first before asking students to work a problem.
- Teachers model their thinking so students can learn how problems are solved.
- Vocabulary is taught in the context of the lesson when it occurs.
- Lessons are taught in small steps with Checking for Understanding at each step. If students cannot answer correctly, the teacher reteaches and provides corrective feedback until students can answer correctly.
- Teachers pre-read, and then students read, all the text in the lesson including the lesson itself.
- Teachers always work a problem first before asking students to work a problem.
- Teachers model their thinking so students can learn how problems are solved.
- Vocabulary is taught in the context of the lesson when it occurs.
- Lessons are taught in small steps with Checking for Understanding at each step. If students cannot answer correctly, the teacher reteaches and provides corrective feedback until students can answer correctly.
- Teachers pre-read, and then students read, all the text in the lesson including the lesson itself.
- Teachers always work a problem first before asking students to work a problem.
- Teachers model their thinking so students can learn how problems are solved.
- Vocabulary is taught in the context of the lesson when it occurs.
- Lessons are taught in small steps with Checking for Understanding at each step. If students cannot answer correctly, the teacher reteaches and provides corrective feedback until students can answer correctly.
- Teachers pre-read, and then students read, all the text in the lesson including the lesson itself.
- Teachers always work a problem first before asking students to work a problem.
- Teachers model their thinking so students can learn how problems are solved.
- Vocabulary is taught in the context of the lesson when it occurs.
- Lessons are taught in small steps with Checking for Understanding at each step. If students cannot answer correctly, the teacher reteaches and provides corrective feedback until students can answer correctly.
- Teachers pre-read, and then students read, all the text in the lesson including the lesson itself.
- Teachers always work a problem first before asking students to work a problem.
- Teachers model their thinking so students can learn how problems are solved.
- Vocabulary is taught in the context of the lesson when it occurs.
- Lessons are taught in small steps with Checking for Understanding a

The EDI teaching methodology incorporates all 12 of these practices identified by Goldenberg.
Instruction is standards-based and focused on concepts & skills

EDI lessons contain 7 specific components that maximize learning for ELs. These include: Learning Objective, Activate Prior Knowledge, Concept Development, Skill Development / Guided Practice, Relevance, Closure, and Independent Practice. Periodic Review is also included for most lessons.

Here are examples of 4 of the 7 components of an EDI lesson. They are usually organized on slides and projected on a screen so teachers can “work the page” and guide the students through the lesson.

COMPONENT 1:
Learning Objective describes the goal of what the students will learn by the end of the lesson. It also guides the teacher and students through the lesson.

Example:
We will write an inequality.

During the Learning Objective, inequality is pre-read for the students. The students are then asked to read the Learning Objective. This is done to start reducing the linguistic demands of the lesson.

COMPONENT 2:
Activate Prior Knowledge help students learn the new content by having them recall or refresh an idea about the new learning objective.

Example:
The teacher works a problem first before asking students to do one. This is quick. The teacher does the first problem and then lets the students do the 2nd problem with a partner. Partners are used extensively throughout EDI lessons so that they can support each other and to practice the language.

SIDEBAR 6 - EL RESEARCH
EDI Activates 18 of the Top 30 Influences on Student Achievement (Research by Hattie)

John Hattie, a professor of education from Australia and New Zealand, published Visible Learning in 2009 (with additional books in 2012 and 2015). The purpose of his research was to identify what works and what doesn’t in education in statistical terms. It was a groundbreaking analysis because, for the first time, educational methods could be compared in terms of effectiveness.

In reviewing Hattie’s descriptions of educational influences, Dataworks has found that Explicit Direct Instruction (EDI) actually activates 18 of top 30 effects (out of 195 total) that influence learning. That means the EDI approach to education is a useful system for making learning visible, according to Hattie’s research.

• Collective Teacher Efficacy
• Conceptual Change Programs
• Teacher Credibility
• Micro Teaching
• Cognitive Task Analysis
• Classroom Discussion
• Interventions for Learning Disabled
• Teacher Clarity
• Feedback
• Formative Evaluation
• Concept Mapping
• Problem-Solving Teaching
• Classroom Behavioral
• Vocabulary Programs
• Spaced vs Massed Practice
• Teaching Strategies
• Direct Instruction
• Repeated Reading Programs
Component 3: Concept Development - It contains written definitions (often color-coded with sub-points), labeled examples, and Checking for Understanding (CFU) questions.

Learning Objective - describes the goal of what the students will learn by the end of the lesson.

Concept is the big idea of the lesson. We declare it with a written definition.

CFU is verifying that students are learning what is being taught while it is being taught.

We will write an inequality.

An inequality compares two values that are not equal.

- The solution includes all values that make the inequality true.

If the value is NOT part of the solution

<table>
<thead>
<tr>
<th>Inequality</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
</table>
| $x > y$ greater than | There are more than 15 eggs left. | $x > 15$ (16, 17, 18...)
| $x < y$ less than | The distance to the store is less than 15 miles. | $x < 15$ (14.9, 14.8, 14.7...)

If the value is part of the solution

<table>
<thead>
<tr>
<th>Inequality</th>
<th>Description</th>
</tr>
</thead>
</table>
| $x \geq y$ greater than or equal to | The height a child to ride the roller coaster is greater than or equal to 54 inches. | $x \geq 54$ (54, 54.1, 54.2...)
| $x \leq y$ less than or equal to | The number of people allowed in the swimming pool is 30 or fewer. | $x \leq 30$ (30, 29, 28...)

Labeled Examples After defining a concept, immediately provide labeled examples that illustrate the definitions. When you teach, you will use the examples to explain what the definition means.

This lesson will be divided into two major parts. The first part will teach the concept of when the value is NOT part of the solution. The second part will teach the concept of when the value IS part of the solution.
COMPONENT 4:
Skill Development/Guided Practice - The teacher explicitly teaches the strategies used to solve problems related to the lesson. It includes steps, process questions, interpretation questions, and remember the concept.

We will write an inequality:

1. Read the word problem.
2. Identify words that tell which inequality sign to use. (underline)
3. Write the inequality.
4. Interpret the inequality. (answer the statements or questions)

We are told that the number of kiwis in each bag have to be over 10.

- **a.** Write the inequality. \(x > 10 \)
- **b.** Write two values that can be a solution. \(11, 12 \)
- **c.** Write two values that cannot be the solution. \(10, 11.1 \)
- **d.** Why is 13.2 not a solution? It is not a solution because **kiwis cannot be cut to be put in a bag.**

Problem to Solve - This follows the steps. It is usually done with Rule of Two: Teacher models, then guides student practice in solving a matching problem.

Remember the Concept - Another important part of the scaffolding is the box that is placed on the side to remind the students about the concept. In this case, it refers to the concept of an inequality that was defined earlier.

Remember the Labeled Examples - This is sometimes used to help students recall details of the concept.
COMPONENTS 5, 6, 7: Relevance, Closure, & Independent Practice - A good lesson continues with these components. Students will understand the relevance of the lessons, be able to prove they can work the problem, and work independently on similar problems.

Teacher removes the scaffolding and provides a slow release until students can solve problems on their own.

At the same time, problems become more challenging. Instead of just solving the problem, students are asked to write a sentence for the inequality.

Example:

\[x > 10 \quad \text{__________} \quad x < 25 \quad \text{__________} \]

How EDI Supports ELs

DataWORKS’ Explicit Direct Instruction (EDI) implements Principle 2 of the English Learner Roadmap, specifically by providing three routes for effective instruction for ELs with language development in all lessons.

Specifically, we have shown how language development is integrated across the curriculum, how instructional materials support intellectual engagement as well as language development, and how instruction is standards-based and scaffolded.

For more information on these procedures, see the sidebars on our two educational bestsellers, Explicit Direct Instruction (2017) and EDI for English Learners (2013), and on our white paper about the difference between Integrated and Designated ELD instruction. (See sidebar 7)
Authors

Silvia Ybarra, D.Ed.
is the chief researcher and co-founder of DataWORKS Educational Research. She came to the U.S. from El Salvador at age 11 as an English Learner, and advanced as a teacher, principal, and assistant superintendent. She knows what English Learners need, based on practical experience and solid research.

John Hollingsworth
is the president and co-founder of DataWORKS. He has applied his analytical and presenting skills to the field of education, transforming lives with his insights into the teaching process. John has published numerous articles, trained thousands of educators, and presented at many conferences. His mastery of lesson delivery is inspiring to educators.

Together, this husband-and-wife team have built Dataworks Educational Research into a leading professional development firm. They have pioneered research-based teaching strategies based on the analysis of two million student assignments and observations of 45,000 teachers in the classroom. This has led to the worldwide use of their collection of effective teaching strategies called Explicit Direct Instruction. They are co-authors of *Explicit Direct Instruction: The Power of the Well-Crafted, Well-Taught Lesson* (2009) and *EDI for English Learners* (2013).
DataWORKS Educational Research was founded in 1997 with the single purpose of improving student learning. Since then, DataWORKS has steadily expanded, working with over 750 schools and districts, in 25 states, in 10 countries, and on five continents around the world. Fundamentally, DataWORKS supports teachers and school administrators as instructional leaders and believes they are the keys to measurable student achievement. That's why DataWORKS offers various professional development trainings, workshops, and tools to help educators take their classrooms, schools, and districts to the next level.

© Copyright 2019 Dataworks Educational Research. All rights reserved.