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Abstract
Purely image-based approaches to tracking objects in video sequences are more prone to failure the higher an
object’s speed, as it covers a greater distance over the camera’s exposure time and is subject to increased motion
blur. These algorithms are also susceptible to changes in the object’s appearance and illumination. In this paper,
we approach this problem by asynchronously recording local contrast change at high speed, using a type of visual
capture device called a Dynamic Vision Sensor (DVS). We use this additional data to determine motion that takes
place during the exposure of a single video frame. We present a multi-modal capture system incorporating both
a DVS and a traditional video camera, a method to register the different types of sensor information, and finally
apply these datasets to challenging object tracking scenarios.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Sensor fusion I.4.8 [Image Processing and Computer Vision]: Scene Analysis—Tracking

1. Introduction

Tracking the motion of objects across frames of a video se-
quence is at the heart of many applications in computer vi-
sion. If the recorded video sequence is the only data avail-
able, it involves finding corresponding features between
subsequent frames. As each image is exposed over a cer-
tain timespan, it integrates an object’s motion over that pe-
riod. The problem thus becomes more difficult the more
distance an object covers per frame. This is due to larger
search spaces required, potential appearance and illumina-
tion change, and motion blur.

One way of tackling these issues is the use of high-
framerate cameras. However, the additional information to
support feature tracking algorithms comes at the cost of a
steep increase in the amount of high-resolution data to be
stored and processed, as well as putting high requirements
on scene lighting.

Our proposed approach involves the application of a
novel type of visual sensor called a Dynamic Vision Sen-
sor (DVS) [LPD08]. A DVS registers local contrast change
at a very high temporal resolution. These changes are ex-
ported as asynchronous events, consisting of a timestamp,
pixel coordinates, and the direction of change (i.e., increas-
ing or decreasing intensity). As the DVS does not expose

entire frames, events can be emitted immediately with very
low latency. The model used in our experiments provides a
latency that allows each sensor pixel to fire events at more
than 65,000 Hz.

In our experimental setup, we combine a DVS with a tra-
ditional video camera in a beamsplitter configuration, regis-
tering the coordinate systems of the two sensors. This allows
us to correlate events from the DVS with pixels in the full
color video. By synchronizing the camera’s framerate with
the internal clock of the DVS, we can also determine which
frame was being exposed as a specific contrast change event
was triggered. Thus spatially and temporally calibrated, we
receive a point cloud of contrast change events at a very high
temporal resolution, during and in between the exposures of
video frames (fig. 1). As objects moving through the scene
generate a very dense trail of contrast change events, we can
use this information to determine where they have moved
in between the completed exposure of one frame and the
next. Our contributions include insight into fusing the dif-
ferent modalities of data provided by the video camera and
the DVS to calibrate the setup, as well as a novel, frameless,
spline-based tracking approach suitable for the data provided
by the DVS.

Section 3 presents our hardware setup and data capture
workflow, while section 4 explains the method we use to
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Figure 1: A video camera records full frames at regular in-
tervals (blue planes). The DVS registers local change as it
happens, and delivers events asynchronously to the client.
These events (red and green) can fall anywhere within the
full 3D space-time volume, at low spatial, but very high tem-
poral resolution.

register the coordinate systems of the two sensors to a com-
mon basis. Section 5 then goes on to explain our approach at
object tracking in recorded videos. We show results in sec-
tion 6, compare them to those of a state-of-the-art image-
based tracking algorithm in particularly challenging scenar-
ios, and discuss limitations of our own approach. We explore
possibilities for future work and extensions in section 7, be-
fore concluding in section 8.

2. Related work

Developments of bio-inspired, event-based visual sensors
are driven by the need for data that is available with low la-
tency, free of redundance (i.e. information about static parts
of the image), and at extreme lighting conditions [RHK∗03].
An early description of the DVS concept is found in
[AMSB95]. The DVS used in our experiments is detailed
in [LPD08], along with an extensive list of references on
similar developments. Our work focuses on applying the
unique features of DVS data to augment rather than replace
traditional frame-based video.

There has been previous research into applying DVS to
tracking coded LED markers for motion capture [Hof12]
and pose estimation for flying robots [CSB∗13]. Cardi-
nale explored object tracking by tracking clusters of DVS
events [Car06]. In contrast to our approach, these exper-
iments rely on DVS data exclusively, while our method
supports tracking any object visible in a simultaneously
recorded video from a traditional camera.

Extensive research has been performed regarding the
alignment of the optical axes of several cameras to capture
more data of a single view. McGuire et al. have aligned as
many as 8 cameras in an optical splitting tree, increasing the
dynamic range or spatial resolution of the captured view,
or supersampling data by varying other parameters of the
cameras [MMP∗07]. In this work, we apply the concept of
monocular multi-sensor setups to combine two fundamen-
tally different types of visual sensors.

Setups combining sensors of different types are called

multi-modal. Wang et al. combine two video cameras,
one sensitive to visible light, the other to infrared, in a
beamsplitter setup similar to the one presented in this
work [WDC∗08]. Their system uses additional infrared
lighting in order to improve the illumination and color bal-
ance of the main video picture. Joshi et al. add gyroscopes
and accelerometers to cameras in order to deblur images shot
from a moving camera [JKZS10], and hence address issues
related to motion of the viewpoint rather than of the captured
objects.

Image registration is the alignment or superposition of
data from multiple sensors. Multi-modal image registration
is most prevalent in medical imaging, where different scans
of the same body area are combined to form a complete
picture. These and other use cases are presented in the im-
age registration technique survey by Brown [Bro92]. Both
[Sze06] and [ZF03] include extensive reference sections.

Yilmaz et al. provide a comprehensive survey and
classification of image-based approaches to object track-
ing [YJS06]. We compare our results to a state-of-the-art
tracking algorithm by Zhang et al. [ZZY12]. Zhou et al.
tackle problems of object tracking systems by fusing fea-
tures and multiple regular cameras [ZA06]. Our system is
based on adding sensor information traditional cameras are
not able to capture.

3. Hardware setup and acquisition

The DVS used in our experiments is the DVS128 developed
at the Institute of Neuroinformatics, University of Zurich
(http://siliconretina.ini.uzh.ch/). Its array has a
spatial dimension of 128×128 pixels, and changes in in-
tensity can be detected at lighting levels ranging from di-
rect sunlight to as low as 0.1 lux. As contrast change is
registered locally for each pixel, the entire dynamic range
can be present in the scene at once, where a video cam-
era with a fixed exposure time would either underexpose or
saturate certain areas. With a latency of 15 µs, the theoreti-
cal upper limit is upwards of 65,000 events per second and
pixel [LPD08].

Our setup combines the DVS128 with a Ximea xiQ USB3
color video camera recording up to 60 progressive frames
per second at a resolution of 1280×1024 pixels. The camera
and DVS128 are mounted on a mounting plate, along with
a 50/50 beamsplitter to align their optical axes so that they
record the same view of the scene (fig. 2). As the DVS de-
tects contrast change relative to the absolute intensity, it is
less dependent on a sufficiently lit scene, and thus a beam-
splitter that directs more light towards the video camera
could also be used. The two devices are also connected with
a cable for temporal synchronization (see section 4).

A pixel of the DVS generates a signal spike whenever it
detects a change in intensity that exceeds a certain thresh-
old. These spikes are forwarded to the sensor’s output asyn-
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(a) (b)

Figure 2: (a) Capture rig with DVS128 on the left, video
camera in front, and a 50/50 beamsplitter. For recording,
the front side is covered with a black screen so as to capture
only light entering from the left. (b) The image at the bottom
shows a visualization of all DVS events registered during the
exposure of the video frame above. Positive intensity changes
contribute to a pixel’s green channel, negative ones to the
red channel. The race track exhibits change because it has
been moved from the impact of the car.

chronously and combined with a precise timestamp. Rather
than fully integrated frames representing a complete view
of the scene, the client receives a stream of events indicat-
ing local changes in pixel intensity. This encoding is sim-
ilar to the way biological retinas transmit visual informa-
tion to the brain, giving the sensor its nickname "silicon
retina" [LPD08].

A software-controlled trigger starts the recording of data
from both devices. In our experiments, we recorded both the
full color video and the DVS event log to disk, performing
any calculations as a post-processing operation. With the ex-
ception of the image registration step (section 4), which has
to be re-performed only after the physical setup of the cap-
ture rig has been modified, the system could be extended to
perform online processing.

4. Image registration and synchronization

In order to relate the events captured by the DVS to what
is visible in the full color video, the two sensors have to be
both spatially and temporally calibrated. Spatial calibration
establishes a relation between moving scene objects visible
in the camera images, and changes in contrast detected by
the DVS. For this purpose, a mapping between the two coor-
dinate systems has to be found. Furthermore, temporal syn-
chronization enables us to assign DVS events to the video
frames during the exposures of which they occured.

Figure 3: The calibration pattern as captured by the video
camera and the DVS. Events visualized in green are positive
intensity changes, hence these events were generated as the
black grid lines were switched back to white.

4.1. Image registration

Because of the fundamentally different nature of the data
recorded by the DVS, we cannot use traditional approaches
at multi-camera calibration. While calibrating a video cam-
era works best when using a static, sharply defined pattern,
such a pattern is invisible to the DVS, which only registers
parts of the scene that exhibit change. Introducing movement
into the calibration pattern will make it visible to the DVS,
but lead to a less precise calibration for the video camera due
to motion blur accumulated over a frame’s exposure.

We have approached this problem by displaying a calibra-
tion pattern on a screen or tablet computer, while flashing
it on and off at regular intervals. The pattern is sharpely de-
fined in any video frame that depicts it, as it doesn’t move. At
the same time, the DVS registers the full calibration pattern
every time it is turned on or off on the screen. We render
all events registered by the DVS during one camera frame
exposure into an image, to get a full representation of the
pattern in both datasets (fig. 3). In our experiments, we have
used a tablet computer to display a flashing rectangular grid
of black lines against a white background. It has to be noted
that due to the DVS’s low spatial resolution, the grid lines
should have a certain thickness in order for them to trigger
events at all.

Our semi-automatic image registration method involves
finding the grid line intersection points in both the camera
image and renderings of the DVS events. The user deter-
mines the areas depicting the calibration pattern. A standard
line detection algorithm based on the Hough transform as
described in [Hou59] is then used to locate the grid lines
and find their intersection points. We pre-process the images
with a Laplacian of Gaussian edge detector and detect the
edges on either side of the grid lines, using their mean to
find more accurately centered positions of the intersection
points. The grid points in both images are then used to cal-
culate a homography that maps coordinates from the DVS
coordinate system to that of the video camera. The homog-
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raphy is found using the MATLAB Functions for Multiple
View Geometry by Hartley [HZ03] (http://www.robots.
ox.ac.uk/~vgg/hzbook/code). The normalized DLT al-
gorithm is used to arrive at an initial estimate, further refined
using the non-linear MLE minimizing the Sampson estimate
of the geometric error [HZ03, pp. 109, 114 ].

For a homography mapping to be precise, the principal
points of the two optical systems must be aligned [AJN05].
In our setup we have only aligned the optical axes, and ap-
proximated the principal points manually. Due to the low
resolution of the DVS when compared to the video camera,
a DVS pixel will always map to an area several pixels in
diameter in the video image. Thus, we have found a homog-
raphy mapping to be sufficiently precise for our purposes.

4.2. Camera intrinsics

The video camera’s intrinsic parameters and distortion have
been determined using the Camera Calibration Toolbox
for MATLAB by Jean-Yves Bouguet (http://www.vision.
caltech.edu/bouguetj/calib_doc/). We use this cali-
bration information to undistort the camera’s images before
processing them. The DVS’s low spatial resolution presents
a problem when trying to determine the intrinsic parame-
ters of the optical system, as no precise enough calibration
pattern can be made visible. However, we found that in our
setup, the distortion of the optical system doesn’t exceed one
DVS pixel at any point, making an undistortion of DVS event
coordinates unnecessary. It also has to be noted that due to
the sparse, binary nature of contrast change events, as op-
posed to a camera’s color information, the undistortion it-
self would pose a challenge, as interpolating discrete events
would essentially introduce new, spurious events. Intrinsics
calibration of a DVS system remains an open problem.

The nature of DVS data also poses a challenge when set-
ting the focus of its lens, as discrete events cannot be out
of focus. Depending on the contrast, they will either register
or not. The flashing calibration grid can be used to support
manual focussing, by setting up the display in a distance at
which the grid lines are just wide enough to still register, as
long as the image is in focus.

4.3. Temporal synchronization

For the purposes of temporal synchronization, the DVS128
supports injecting special events when a falling edge on an
input pin is detected. We connect it to the output pin of the
video camera, which is set to ground whenever the exposure
of a new frame is started. These synchronization events are
timestamped by the DVS to microsecond precision, and in-
jected into the event stream. Thus, we can determine which
events took place between the exposure of one video frame
and the next, by finding all events which fall between two
synchronization events.

As the camera’s image capturing process has to be started

before the actual recording, there is no guarantee that the
first exposure synchronization signal corresponds to the first
video frame that is actually written to disk. This makes
necessary an additional step to compute the offset between
video frame numbers and synchronization events. We record
a temporal synchronization event that is clearly visible on
both sensors, such as a head slate being shut, at the beginning
of each recording. The offset is currently determined manu-
ally, by rendering all DVS events between two synchroniza-
tion signals to an image, and corresponding this visualization
to the video frame depicting the same state of the synchro-
nization event (such as the falling race car in fig. 2(b)).

5. Object tracking

In order to gain information about object motion from the
DVS data, we make use of the fact that an object generates a
dense trail of events along its edges and contrast features as it
moves through the scene (fig. 4). By following these events,
we can track an object from its initial position throughout the
video, with very high temporal precision. Traditional track-
ing methods use appearance based models, that try to find
regions of similar appearance over subsequent frames. One
could apply these methods by simply creating artificial “ex-
posure” times and binning events into frames. However, due
to the low resolution, binary nature, and noise characteristics
of the DVS data, appearance based methods perform very
poorly. Objects can undergo rapid changes, and the pattern
of events they form in time is unpredictable, as it depends
both on object appearance as well as background appear-
ance. Therefore, we introduce a new method to track objects
that takes advantage of the fact that DVS events are cen-
tered around regions of motion, and performs a geometry-
based fitting of events in the spatiotemporal volume. Our
method works in a few stages. We compute piecewise lin-
ear trajectory estimates for each object by fitting a 3D line
in the spatio-temporal volume using RANSAC. We then fit
a spline to the events that are inliers to this set of linear esti-
mates.

We start by supplying the number of objects to be tracked
along with a bounding box as an input to the algorithm. We
then move a sliding temporal window along the time axis
of the DVS event log, and fit a linear approximation of the
motion for each object in this window. To do this, we use
RANSAC to find the optimal pair of events such that the line
connecting them has the most inliers. We define inliers to be
events that are within the size of the user provided bounding-
box from the line in question. We note that while the motion
in each window is linear, we will only use the inliers from
these trajectories, and as such do not require that the motion
be exactly piecewise linear, only that events from the motion
of the object exist within a region around this linear trajec-
tory.

The temporal extent of the sliding window in content-
dependent, and is based on the number of events, rather than
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(a) (b)

Figure 4: The 3-D plot (b) shows DVS events registered wile
recording the scene depicted in the video frame (a). While it
is hard to tell how many fingers are extended from the video
frame due to strong motion blur, the data in (b) clearly shows
two extended fingers moving through the frame, generating
contrast change events along their edges. (In this rendering,
colors relate to the timestamp, not event polarity.)

a fixed amount of time. In other words, at each step, the
window is grown until τ events have been observed. This
approach has two benefits. First, it is adaptive in that it ac-
counts for the speed of the object; slow moving objects cre-
ate fewer events and piecewise linear trajectory estimates
will be computed over a longer amount of time, while fast
moving objects will be modeled by piecewise linear trajec-
tories that are much shorter in time, giving reliable estimates
without excessive computation. Secondly, this approach nat-
urally handles occlusions; a moving object stops generating
events when it is occluded, and so the rolling window will
grow past that portion of the video until it is visible again
(fig. 5).

In a single temporal window, we start by computing a
RANSAC trajectory estimation for each object. To handle
multiple objects, points are iteratively removed until all ob-
jects are tracked. To do this, we estimate trajectories for each
object near the end point of the track in the previous tempo-
ral window. We define valid start points as those within the
spatial bounding box of end of the trajectory in the previ-
ous temporal window, and then pick random end points until
we find the line with the most inliers. Once estimated, we
remove the events for the object with the most events in its
trajectory, and then refit the remaining ones. This approach
provides robustness when objects cross, as RANSAC will
tend to fit towards the trajectory with the most points.

By using this iterative fitting approach, we are able to
track objects that cross, as long as the trajectory is main-
tained in the crossed region, as shown in fig. 6.

As a final step, we fit a spline through all inliers of an
object’s determined motion path. This yields an accurate,
smooth motion path (with arbitrary sub-frame temporal pre-
cision) for each object for the entire duration of the video
segment. We use piecewise cubic splines, which we found
to have sufficient accuracy and robustness.

Figure 5: For a recording of an object becoming temporar-
ily occluded (top), the rolling window grows longer during
the occlusion, until the object is visible again. This leads to
a longer linear trajectory being estimated, and the occluded
movement interpolated. In the plots at the bottom, the red
line segments are the RANSAC fits of each rolling window,
which determine the set of inliers (red points). The spline
(green curve) is fit based on these control points. The trans-
parent, horizontal planes represent frames of the video. The
ball is only fully occluded in one frame.

Figure 6: Objects crossing paths are handled correctly, as
each trajectory’s inliers are removed from the point cloud
before the trajectory of the next object is determined for the
same temporal window. The inliers determined by the piece-
wise linear trajectories on the left act as support points for
the spline fit, as shown in the plot on the right. Problems can
arise if two objects generate a similarly dense trail of events,
in which case their identities might be switched after the flip,
as described in section 6.
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This approach has few parameters and produces high
quality tracks. However, one important parameter is τ, the
size of the window to use for linear trajectory estimates. Nu-
merous factors influence the optimal choice for the thresh-
old. A moving object triggers a certain amount of events
based on its size, texture, and speed of motion. In general,
this number should be such that the motion of the object can
be roughly approximated by a line in the spacetime volume.
In practice, we set this manually for each dataset, however
the number can be set quite roughly. For all results shown
here, we use τ values between 5000 and 15000.

6. Results and evaluation

We have applied our object tracking method to footage of
several scenes that are particularly challenging to purely
image-basesd techniques.

Figure 7 shows footage of an object (a DVD) being moved
at very high speeds and in constantly changing directions,
leading to very strong motion blur in the video frames. The
heavy blur leads to feature-based tracking failing to detect
the object and losing its track, as shown in fig. 8. The tem-
porally dense information provided by the DVS during the
exposure of just one video frame lets us reliably track the
DVD’s motion, even at very high speeds when the disc is
only very faintly visible in the actual video. A large num-
ber of events generated leads to shorter extents of our rolling
window, and robust estimation over shorter piecewise trajec-
tories.

Figure 9 shows three identical rubber balls moving in
different directions in front of the capture rig. Their high
speeds cause them to cover large distances between subse-
quent frames (fig. 10). The fact that they have a very similar
appearance presents an additional challenge to feature-based
tracking algorithms, which have difficulties distinguishing
between them. Our method is more easily able to tell them
apart, as inlier events from the first object being tracked are
removed before determining the trajectory of the second ob-
ject. It has to be noted, however, that it is still possible for
our algorithm to fail if objects of similar size and speed pass
each other very closely, and their event point clouds cross. If
the temporal window for a new piecewise fit happens to start
at the point in time where the objects are very close, their
identification can flip, as no previous trajectory information
is considered. A higher value for τ can lower the probabil-
ity of this problem occuring, but in turn limits our ability to
track more complex, non-linear motion paths.

Such a failure case is depicted in fig. 11. One of the two
LEDs occasionally moves in front of the other, or very close
to it, causing their DVS event point clouds to coalesce. As
events generated by one LED fall into the bounding box of
the other at the start of the new rolling window, RANSAC
can end up returning the end point of the wrong LED’s tra-
jectory. Hence, the object markers jump from one LED to

Figure 7: Our method accurately tracks the position of the
DVD even in the case of very strong motion blur in the video
image. The red rectangle shows the overlap region of the two
sensors, i.e. the area of the video frame covered by the DVS.

Figure 8: Motion blur is too severe in this scene for feature-
based tracking to detect the object.

Figure 9: Our method tracks the three moving rubber balls
reliably, even the bouncing one (green marker) which is
blurred so heavily as to be almost invisible in the video.

Figure 10: The feature-based object tracker fails to detect
the bouncing ball (green marker). The tracker also fails at
distinguishing the two other balls, because of their similar
appearance. From the moment they pass each other close-
by, the two tracking positions stick together for the rest of
the footage.
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the other in our result. As we don’t include data from the
color video in our algorithm, this can happen even for vi-
sually dissimilar objects. The repeated switching of object
identities would not be the case though if the density of
event trails generated by each LED were sufficiently differ-
ent, such as due to one of them being considerably bigger
or faster. RANSAC will always tend towards fitting the first
object to the trajectory with the most points, before finding
the second object’s trajectory among the remaining outliers.
The removal of the set of inliers before handling of the next
object is also the reason why our object trackers will not
stick together for objects crossing paths momentarily, as has
happened for the feature-based tracker in fig. 10).

Figure 11: When objects move past each other closely
enough, the algorithm is susceptible to confusing them.
Here, the green and blue markers switch hands multiple
times.

7. Future work

While our experimental setup has delivered promising re-
sults, there is potential in increasing the precision of cali-
bration and registration. Alternate calibration patterns could
help calibrate the DVS to sub-pixel precision, alleviating to
some degree the problems of the large disparity in sensor res-
olutions. Calibration could also be simplified and improved
by integrating both sensors in a single-lens system, or even
on a single chip. Sensors that combine a DVS with APS (ac-
tive pixel sensor) video recording functionality are currently
in development.

Our method requires that the number of events in a tem-
poral window be predefined. However, this is in essence a
parameter of the expected motion of the scene, as well as
the objects’ texture, size, lighting conditions, and size of oc-
clusions. One possible direction for future work would be
to dynamically and automatically adapt the threshold based
on information from the scene and currently tracked ob-
jects, improving reliability particularly in the case of mul-
tiple moving objects, objects entering and leaving the scene,
or considerable changes in size. Related to this, approaches
to determine a threshold not globally but per object, in the
vicinity of their last known position, could make our method
more robust in situations where only some of a scene’s mov-
ing objects are occluded, while others continue to generate
events. In our current algorithm, this can lead to relatively
long rolling windows in cases where the remaining objects’

movements would benefit from fitting shorter trajectory seg-
ments.

Of particular interest is also the adaptation of our methods
and algorithms to real-time applications, rather than post-
processing. It is conceivable that the DVS point clouds could
be processed on the fly, and splines fit in stages on a certain
window of previously determined inliers. The asynchronous
nature of the DVS output lends itself inherently well to low-
latency online processing.

Another interesting direction is the incorporation of color
information from the full video frames into the motion esti-
mation process. We found that the discrepancy in sensor res-
olutions makes it difficult to glean useful information from
the video frames, as the area each DVS pixel covers in a
video frame is rather large. Additionally, in the case of ob-
jects moving at high speeds, motion blur makes even sim-
ple color estimates very inaccurate. However, the additional
visual information could support object tracking in cases
where objects are visually easily discernible and of sufficient
size, while the amount of contrast change events they gener-
ate based on their speed and appearance is similar.

We assumed in our experiments that the capture rig is
always stationary, and all motion is due to objects mov-
ing through the scene. It should be possible to determine
which events correspond to camera motion by fitting a plane
through them in the time-space volume, removing them from
consideration, and subsequently determining actual object
motion from the remaining points.

Finally, this work explored just one possible application of
our combined DVS and video camera setup. The DVS’s local
contrast change events, registered with full, high-resolution
color images from a video camera provides valuable addi-
tional information about the dynamic contents of a scene.
This information could potentially find numerous interesting
applications such as supporting traditional image processing
tasks, or taking advantage of the DVS’s sensitivity to pixel-
local contrast change to enhance video shot in poor lighting
conditions.

8. Conclusion

In this work, we have presented a multi-modal visual capture
system consisting of a traditional video camera and a DVS, a
sensor which asynchronously registers local contrast change.
We have shown that the unique information provided by a
DVS can support tasks that are hard or impossible to solve
if the only input are fully exposed video frames. Our experi-
mental application to the tracking of moving objects in video
sequences has delivered reliable results in challenging situa-
tions where traditional approaches fail.

The fundamentally different nature of the two sensors cre-
ates its own set of challenges when the two datasets are
to be registered. Our setup and framework takes first steps
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towards a reliable calibration method, which allows to as-
sociate events generated by the DVS with specific areas in
video frames.

More generally, we believe that this type of capture setup
opens up various exciting paths of research into new scene
analysis and video processing applications, while also show-
ing potential towards improving traditional algorithms. We
see our work as an initial exploration into the possibilities
presented by combining video cameras with temporal con-
trast sensors, while discussing some of the inherent chal-
lenges that arise due to the unique nature of the data the latter
generate. We therefore hope that this first work inspires vi-
sion researchers to apply these sensors in their own areas of
interest, and to find new practices and applications.
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