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Abstract. Discriminative, or (structured) prediction, methods have pro-
ved effective for variety of problems in computer vision; a notable exam-
ple is 3D monocular pose estimation. All methods to date, however, relied
on an assumption that training (source) and test (target) data come from
the same underlying joint distribution. In many real cases, including stan-
dard datasets, this assumption is flawed. In presence of training set bias,
the learning results in a biased model whose performance degrades on
the (target) test set. Under the assumption of covariate shift we propose
an unsupervised domain adaptation approach to address this problem.
The approach takes the form of training instance re-weighting, where the
weights are assigned based on the ratio of training and test marginals
evaluated at the samples. Learning with the resulting weighted training
samples, alleviates the bias in the learned models. We show the efficacy
of our approach by proposing weighted variants of Kernel Regression
(KR) and Twin Gaussian Processes (TGP). We show that our weighted
variants outperform their un-weighted counterparts and improve on the
state-of-the-art performance in the public (HumanEva) dataset.

1 Introduction

Many problems in computer vision can be expressed in the form of (structured)
predictions of real-valued multivariate output, y ∈ R

dy , from a high-dimensional
multivariate input, x ∈ R

dx . In this paper, we focus on such models in the context
of articulated 3D pose estimation.

Articulated 3D pose estimation, particularly from monocular images and/or
video, is a challenging problem due to variability in person appearance, pose,
body shape, lighting, and motion. Despite these challenges, discriminative meth-
ods, have proved to be effective in recovering the 3D pose [1–17] in variety
of scenarios. In these methods the goal is to learn a direct (and often multi-
modal) mapping, f : R

dx → R
dy , from image features (e.g., bag-of-words of

HoG or SIFT descriptors) x ∈ R
dx to 3D poses y ∈ R

dy , typically expressed as
joint positions or angles. Probabilistic formulations do so by learning the condi-
tional distribution p(y|x) based on the training dataset of ntr image-pose pairs
– {(xtr

i ,y
tr
i )}

ntr

i=1 (assumed to be independent and identically distributed (i.i.d.)
samples from the underlying joint density ptr(x,y)). A number of methods [1–
17] of this form have been proposed over the last decade that explore a gamut
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of models, image features and learning architectures. However, in all cases it has
been assumed that the training and test distributions are one and the same, i.e.,
ptr(x,y) = pte(x,y), and hence the model learned using the training feature-
pose pairs can be directly applied to the test image features, xte, to infer the
output 3D pose yte.

The problem of dataset bias is starting to emerge as very prominent issue
in object categorization [18–22], where even large datasets (e.g., LabelMe or
ImageNet) have shown to exhibit significant (and often unexpected) biases [22]
in the form of lighting, object appearance and viewpoint to name a few. We
argue that similar issues exist in 3D pose estimation and need to be addressed if
one is to build a system that works outside of well calibrated laboratory setups
and datasets. The issues of dataset bias and overfitting to the training set, in 3D
pose estimation, are evident from poor generalization that one often sees when
applying such models to novel data. In addition, we argue that within dataset
bias is, at least in certain cases, as prevalent as the between dataset bias. While
in dataset creation an effort is typically made to make the training and test sets
as similar as possible, this is difficult to achieve precisely. For example, Urtasun
and Darrell in [16] show that performance decreases dramatically (to as low as
25% of the baseline) when training and test sequences are disjoint1. Note that
this is despite the fact that, even in the disjoint case, training and test sequences
were captured by the same static cameras and with no appreciable difference
in subject appearance and lighting. Similar degradation of performance is often
observed when a subject is not included in the training set, or when training
data comes from multiple subjects (and/or motions) and at the test time only
a single subject (and/or motion) is observed [5].

Unfortunately, the domain adaptation approaches proposed in [18–21] are
not adequate for addressing the bias in this case. First, they typically assume
categorical classification, as opposed to multi-valued (structured) predictions.
Second, and more importantly, they are supervised and assume existence of one
or more labeled instances from the test set to allow the transfer learning to
fine tune the source model to a target test set. In many scenarios, such as, 3D
pose estimation, obtaining 3D pose for a test image is infeasible. To this end,
we formulate a novel training instance re-weighting mechanism for addressing
the bias in (structured) prediction problems under the assumption of a covariate

shift [24] in an unsupervised manner; where we assume that p(y|x) = ptr(y|x) =
pte(y|x), but the marginals are different (ptr(x) 6= pte(x)).

Contributions: The key contributions of this work is to shed some light on the
potential issues of dataset bias in the structured prediction problems, mainly,
3D pose estimation, and to propose a simple, yet effective, solution for handling
such bias through training instance re-weighting in a covariate shift adaptation
formulation. We illustrate the efficacy of our approach by proposing weighted
variants of Kernel Regression and Twin Gaussian Processes and showing that

1 The baseline sampled training/test sets on per-frame bases from the full HumanEva-

I [23] dataset.
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they outperform their non-weighted counterparts in various setups and with dif-
ferent image features. As a consequence we achieve state-of-the-art performance
on HumanEva-I dataset. The proposed training instance re-weighting, however,
is general and is amenable to most popular formulations (e.g., Linear Regres-
sion, Mixture of Experts, GPLVM, Kernel Information Embeddings), as well as
to other (structured) prediction problems in computer vision.

2 Related Work

Discriminative models are popular in vision for various tasks, including 3D hu-
man pose [1–17], human shape [25], hand pose [26, 27] and face pose [28] esti-
mation. The focus of this paper is on 3D pose estimation which we discuss next;
we also discuss transfer learning techniques that motivated our approach.

A variety of (structured) prediction methods have been proposed for 3D
pose estimation in the literature, including Nearest Neighbor regression (NN)
[13], linear Locally-Weighted Regression (LWR) [13], Linear Regression (LR)
[2], Relevance Vector Regression (RVR) [2], Kernel Regression (KR) [13] and
Gaussian Process Regression (GPR) [17]. The observation that the mapping
from image features to 3D pose is typically multi-modal, due to inherent imaging
ambiguities, has led to introduction of multi-modal alternatives and mixture
models, including Mixture of Linear Regressors (MoLR) [1], conditional Bayesian
Mixture of Experts (cMoE) [4, 8, 14, 15], Local GP Regression (LGPR) [16] and
Twin Gaussian Processes (TGP) [5], to name a few. Mixture models, such as
MoLR and cMoE, can produce multiple solutions (one for each expert) with
the hope that ambiguities can be resolved by an oracle [4, 8] or over time [14];
alternatively, optimization can be used to ascend to the most prominent mode
of the conditional distribution [5]. We leverage these prior methods and propose
an Importance Weighted Twin Gaussian Processes (IWTGP) model, based on
TGP [5], where importance weights adopt the model to the test data at hand in
an un-supervised fashion.

The methods outlined above differ significantly in learning and inference. The
issue of learning from large datasets was addressed in [4] using a forward feature
selection and bound optimization, allowing training of cMoE models from up-
ward of 100,000 input-output samples. A competing issue of learning from small
datasets has also received much attention, with most methods converging on in-
termediate shared low-dimensional latent representations (e.g., shared GPLVM
(sGPLVM) [6, 9] or shared Kernel Information Embeddings (sKIE) [12]) to ad-
dress overfitting with few input-output samples; some formulations were shown
to be amenable semi-supervised learning settings [8, 9, 12] where a large number
of unpaired marginal samples, which are drawn from the training distribution
(not test distribution), are available. We deal with training from large datasets,
as in [16] and [5], by first selecting an active set of input-output pairs (k Near-
est Neighbors to the test input feature vector x) and then learning an IWTGP
model for this reduced set. This results in a fixed model and inference complexity
regardless of training set size (apart from the initial kNN lookup).
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Our method is also motivated by recent works that study effects of dataset
biases in vision. The issue of dataset bias has recently emerged as a serious
problem in object categorization, with Torralba and Efros [22] showing that
significant biases exist in all current datasets. As a result, techniques for domain

adaptation in object categorization are starting to emerge [18–21]. However,
unlike our method, the focus of such techniques, so far, has been on a supervised
setting where one or more labeled examples are available at test time (in the
target domain). This allows the source models, obtained using training data, to
be adopted to the target test domain explicitly. A more recent variant by Kulis
et al. [19] introduces a method for doing this in a cross-domain setting, where the
representation of the features at train and test time may in itself be different. Our
setting, here, is substantially different, however, as we assume that no labeled
instances are present at test time. This makes the problem more challenging, but
at the same time more realistic for our target application, as it is unreasonable to
assume that accurate 3D pose can be annotated for monocular test images. This
setting is a special case of domain adaptation known as covariate shift [24], where
the training distribution ptr(x) and test distribution pte(x) over the inputs are
different (i.e., ptr(x) 6= pte(x)) but the conditional distribution of output values,
p(y|x), remains same.

The influence of the covariate shift could be mitigated by re-weighting of the
log likelihood terms according to their importance within the test set. Since the
importance is generally unknown, the key issue of covariate shift adaptation is to
estimate these importance weights accurately. Following this idea, several direct
importance weight estimation methods have been recently proposed [29–32]. In
this paper, we adopt a novel importance weight estimation method called relative

unconstrained least-squares importance fitting (RuLSIF) [32], since it holds prac-
tical advantage over competing methods. Mainly, it is computationally efficient
and can naturally control the adaptiveness to the test distribution. In contrast
to [32], however, we adopt RuLSIF for (structured) real-valued predictions and
illustrate it’s efficacy on a real-world vision problem.

3 Covariate Shift in 3D Pose Estimation

At first glance, it may not be evident why dataset bias plays a role in discrimi-
native models, considering that discriminative methods are trying to model the
conditional distribution p(y|x) and it seems reasonable to assume that p(y|x) =
ptr(y|x) = pte(y|x) (even if ptr(x,y) 6= pte(x,y)). In other words, how can the
fact that ptr(x) 6= pte(x) effect the conditional distribution? The issue is that
the conditional models assume a certain functional form and typically choose
the optimal parameters (within this functional form) by minimizing the average
regression error (i.e., average discrepancy between the predicted and true values
on the training set). Intuitively this means that the learned model performs more
accurately in the denser regions than in the sparser regions of ptr(x), because the
denser regions dominate the average regression error. Hence, if ptr(x) 6= pte(x),
the learned model may no longer be optimal for the test set.



Covariate Shift Adaptation for Discriminative 3D Pose Estimation 5

0 0.5 1

0

0.5

1

1.5

x

y

 

 

(xtr, ytr)
(xte, yte)

(a) Data samples

0 0.5 1

0

0.5

1

1.5

x

y

 

 

xtr

xte

f̂(xte)

(b) TGP (MSE=0.038)

0 0.5 1

0

0.5

1

1.5

x

y

 

 

xtr

xte

f̂(xte)

(c) IWTGP (MSE=0.002)

Fig. 1. Predicted outputs y by TGP (b) and IWTGP (c) under covariate shift in green.
(a) Samples from the model x = y+0.3 sin(2πy)+e where e ∼ N (0, 0.052); ◦ and × are
training and test samples respectively (for clarity we also illustrate marginals ptr(x)
and pte(x) in (b) and (c) bottom). Note that the input-output test samples are not
used in the training of TGP and the output test samples are not used in the training
of IWTGP, they are plotted in the figure for illustration purposes.

The formulation outlined in the previous paragraph is known in the transfer
learning community as one of covariate shift [24]. Under covariate shift setup it is
assumed that labeled training image-pose pairs {(xtr

i ,y
tr
i )}

ntr

i=1 drawn i.i.d. from
p(y|x)ptr(x) and unlabeled test image features {xte

j }nte

j=1 drawn i.i.d. from pte(x)
(which is usually different from ptr(x)) are available. The goal of (structured)
prediction is to learn a mapping, f : Rdx → R

dy , which in the most general form
can be expressed as:

y = f (x) + e, (1)

where e ∈ R
dy is the noise. Under covariate shift this mapping is learned based on

a weighted set of training image-pose pairs {(wi,x
tr
i ,y

tr
i )}

ntr

i=1. Re-weighting each
training instances by the ratio (a.k.a., importance weight), wi = w1(x

tr
i ; θ) =

pte(x
tr
i
)

ptr(xtr
i
) , removes the training set bias producing an unbiased model under as-

sumption of covariate shift [24]. Note {xte
j }

nte

j=1 are necessary to estimate the nu-
merator. The main challenge, however, is estimation of the importance weight;
we discuss this in detail in Section 4.

Before proceeding, however, we would like to illustrate the effect of covariate
shift on a synthetic toy example. In Figure 1, we illustrate the efficacy of our re-
weighting scheme under covariate shift by incorporating it into Twin Gaussian
Process (TGP); for details see Section 5.2. As can be seen, Importance Weighted
TGP (IWTGP) can predict the true test output well, while standard TGP fails
to predict the true test output, in particular, around x = 0.5. Note that in this
specific case the mean squared error (MSE) is improved by a large margin (from
0.038 to 0.002) by incorporating the importance weight into the learning.

4 Importance Weight Estimation

The importance weight may be computed by separately estimating densities
ptr(x) and pte(x) from training and test feature vectors and then taking their
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ratio. However, density estimation is known to be a hard problem and taking
the ratio of estimated densities tends to increase the estimation error [30]. Thus,
this two step approach is not appropriate in practice. We adopt a method that
allows us to directly learn the importance weight function without going through
density estimation. The method is called the relative unconstrained least-squares

importance fitting (RuLSIF) [32].
Let us first define the relative importance weight [32]:

wα(x) =
pte(x)

(1− α)pte(x) + αptr(x)
, 0 ≤ α ≤ 1, (2)

where α is the tuning parameter to control the adaptiveness to the test dis-
tribution. If α = 0 (i.e., w0(x) = 1) gives no adaptation, while α = 1 (i.e.,

w1(x) =
pte(x)
ptr(x)

) gives the full adaptation from ptr(x) to pte(x); 0 < α < 1 will

give an intermediate estimator2.
Let X tr(⊆ R

dx) be the domain of training image feature vector xtr and
X te(⊆ R

dy) be the domain of test image feature vector xte. Suppose we are
given ntr and nte i.i.d. training and test image feature vectors, {xtr

i | xtr
i ∈

X tr, i = 1, . . . , ntr}, {xte
j | xte

j ∈ X te, j = 1, . . . , nte}, drawn from distributions
with densities ptr(x) and pte(x), respectively.

The final goal of relative importance weight estimation is to estimate the
relative importance weight based on the training and test image features. Let us
model the relative importance weight wα(x) by the following kernel model:

wα(x; θ) =

nte∑

ℓ=1

θℓ κ(x,x
te
ℓ ) =

nte∑

ℓ=1

θℓ exp

(
−
‖x− xte

ℓ ‖
2

2τ2

)
, (3)

where θ = (θ1, . . . , θnte)
⊤ are parameters to be learned from data samples, ⊤

denotes the transpose, κ(·, ·) is the Gaussian kernel and τ (> 0) is the kernel
bandwidth.

The parameters θ in the model wα(x; θ) are determined so that the following
expected squared-error J is minimized:

J(θ)=
1

2
Eqα(x)

[
(wα(x; θ)− wα(x))

2
]

=
(1− α)

2
Epte(x)

[
wα(x; θ)

2
]
+
α

2
Eptr(x)

[
wα(x; θ)

2
]
−Epte(x)[wα(x; θ)]+Const.,

where qα(x) = (1−α)pte(x)+αptr(x), and we used wα(x)qα(x) = pte(x) in the
third term (see supplemental materials for derivation3).

2
α = 1 (i.e., w1(x) =

pte(x)
ptr(x)

) gives the full adaptation from ptr(x) to pte(x). However,

since the importance weight w1(x) = pte(x)
ptr(x)

can diverge to infinity under a rather

simple setting, e.g., when the ratio of two Gaussian function is considered [33], the

estimation of w1(x) = pte(x)
ptr(x)

is unstable and the covariate shift adaptation tends

to be unstable [24]. To cope with this instability issue, setting α to 0 < α < 1 is
practically useful for stabilizing the covariate shift adaptation, even though it cannot
give an unbiased model under covariate shift [32].

3 http://www.cs.brown.edu/~ls/Publications/eccv2012_supplemental.pdf
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Approximating the expectations by empirical averages, we obtain the follow-
ing optimization problem:

θ̂ = argmin
θ∈Rnte

[
1

2
θ⊤Ĥθ − ĥ

⊤
θ +

ν

2
θ⊤θ

]
, (4)

where νθ⊤θ/2 is included to avoid overfitting, and ν (≥ 0) denotes the regular-

ization parameter. Ĥ is the nte × nte matrix with the (ℓ, ℓ′)-th element

Ĥℓ,ℓ′ =
(1− α)

nte

nte∑

i=1

κ(xte
i ,x

te
ℓ )κ(x

te
i ,x

te
ℓ′ ) +

α

ntr

ntr∑

j=1

κ(xtr
j ,x

te
ℓ )κ(xtr

j ,x
te
ℓ′ );

ĥ is the nte-dimensional vector with the ℓ-th element ĥℓ =
1

nte

∑nte

i=1 κ(x
te
i ,x

te
ℓ ).

Then the solution to Eq. (4) can be analytically obtained as

θ̂ = (Ĥ + νI)−1ĥ, (5)

where I is the nte × nte-dimensional identity matrix.
The performance of RuLSIF depends on the choice of the kernel bandwidth τ

and the regularization parameter ν. Model selection of RuLSIF is possible based
on cross-validation with respect to the squared-error criterion J [32].

Computational complexity: Learning RuLSIF has complexity O(n3
te) due to

the matrix inversion. However, when the number of test data is large, we may
reduce the number of kernels in Eq.(3) to bte(< nte). Then, the inverse matrix
in Eq.(5) can be efficiently computed with complexity O(b3te).

5 Importance Weighted 3D Human Pose Estimation

Given the derivation of the importance weight estimator, in previous section,
we now formulate two regression-based methods that take these weights into ac-
count. We start by formulating ImportanceWeighted Kernel Regression (IWKR),
which has a particularly simple form and allows learning of non-linear mapping
between the image features and the 3D pose. IWKR, similar to standard KR,
is well suited for unimodal predictions. However, in 3D pose estimation, the
mapping from image features to 3D pose has been shown to be multi-modal,
due to the inherent imaging ambiguities [14]. To address this, we also introduce
an Importance Weighted Twin Gaussian Process model, based on [5], which in
addition imposes structure on the output 3D poses. As a result, IWTGP is able
to estimate the most prominent mode, corresponding to the most likely 3D pose,
as opposed to averaging across modes as is the case with KR and IWKR.

5.1 Importance Weighted Kernel Regression

In kernel regression vector-valued regression function f , in Eq.(1), takes the
following form:

f (x;A) = A⊤k(x), (6)
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where A = [α1, . . . ,αdy ] ∈ R
(ntr+1)×dy is a model parameter, dy is the di-

mensionality of pose y, k(x) = [1,K(x,xtr
1 ),K(x,xtr

2 ), . . . ,K(x,xtr
ntr

)]⊤, and
K(x,x′) is a kernel function. We use the Gaussian kernel [34] in our experi-

ments: K(x,x′) = exp
(
− ‖x−x′‖2

2ρ2
x

)
, where ρx is the kernel bandwidth.

Under covariate shift setup, the use of relative importance weighted risk min-
imization was shown to be useful for adaptation from ptr(x) to pte(x) [32]:

min
A




ntr∑

i=1

wα(x
tr
i )‖y

tr
i −A⊤k(xtr

i )‖
2 +

γ

2

dy∑

j=1

‖αj‖
2


 , (7)

where wα(x) is the relative importance weight in Eq.(2), α is the tuning parame-
ter to control the adaptiveness to the test distribution, and γ ≥ 0 is the regular-
ization parameter; we call this importance weighted kernel regression (IWKR).

The solution to Eq.(7) can be obtained analytically by

Â = (K̃
tr
W (K̃

tr
)⊤ + γI)K̃

tr
W (Y tr)⊤, (8)

where K̃
tr
= [k(xtr

1 ), . . . ,k(x
tr
ntr

)] ∈ R
(ntr+1)×ntr , Y tr = [ytr

1 , . . . ,y
tr
ntr

] ∈ R
dy×ntr ,

and W is the ntr × ntr-dimensional diagonal matrix with (i, i)-th diagonal ele-
ment defined by W i,i = wα(x

tr
i ).

The above IWKR method includes two tuning parameters: kernel parameter
ρ and the regularization parameter γ. These parameters can be selected using
importance-weighted variant of cross-validation (IWCV) [35].

Computational complexity: Learning IWKR has complexity O((ntr + 1)3).
Similar to RuLSIF, when the number of training data is large, we may reduce the
number of kernels in Eq.(6) to btr(< ntr+1). Then, the inverse matrix in Eq.(8)
can be efficiently computed with complexity O(b3tr). Since IWKR also includes
the estimation of relative importance weight and its complexity is O(b3te). Thus,
the complexity of IWKR is O(b3tr) +O(b3te).

5.2 Importance Weighted Twin Gaussian Process

We now propose the importance-weighted variant of twin Gaussian processes
[5] called IWTGP. The benefit of IWTGP over IWKR is that it can naturally
take into account the multi-modality present in the human pose estimation, by
incorporating structure over the output poses into the regression.

The Gaussian Process (GP) regression assumes a linear model in the function
space with Gaussian noise for the k-th dimension (e.g., joint position):

yk = fk(x) + ek, ek ∼ N (0, σ2), fk(x) = β⊤
k φ(x), (9)

where there is a zero mean Gaussian prior over the parameters βk ∼ N (0p,Σp);
0p is the p-dimensional zero vector and Σp is the p-dimensional covariance ma-
trix, φ(x) is the function which maps a dx dimensional input vector x into
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an p dimensional feature space. To make prediction for the test sample, one
needs to average over all possible parameter values, weighted by their posterior,
resulting in a Gaussian predictive distribution. GP has similar problems with
multi-modality as KR. To address this limitation, TGP encodes the relations
between both inputs and outputs using GP priors. This is achieved by minimiz-
ing the Kullback-Leibler divergence between the marginal GP of outputs (poses)
and observations (features); we refer the reader to [5] for derivation.

As a result, the estimated pose in TGP is given as the solution of the following
optimization problem [5]:

ŷ=argmin
y∈R

dy

[
L(y,y)−2l(y)⊤u−η log

[
L(y,y)−l(y)⊤(L+λyI)

−1l(y)
]]
, (10)

where u = (K + λxI)
−1k(x), η = K(x,x) − k(x)⊤u, K(x,x′) =

exp
(
− ‖x−x′‖2

2ρ2
x

)
and L(y,y′) = exp

(
− ‖y−y′‖2

2ρ2
y

)
are the Gaussian kernel

function for image feature vector x and pose feature vector y, ρx and
ρy are the kernel bandwidth, l(y) = [L(y,y1), . . . , L(y,yntr

)]⊤, k(x) =
[K(x,x1), . . . ,K(x,xntr)]

⊤, and λy and λx are regularization parameters to
avoid overfitting. This optimization problem can be solved using a second order,
BFGS quasi-Newton optimizer with cubic polynomial line search for optimal
step size selection [5].

Under covariate shift, the likelihood of Gaussian Process can be given as [24]

ntr
∏

i=1

p(y
tr
i
|xtr

i
,β)

wα(xtr
i

) ∝
ntr
∏

i=1

1
√
2πσ

exp



−‖w
1
2
α (xtr

i
)ytr

i
− w

1
2
α (xtr

i
)φ(xtr

i
)⊤β‖2

2σ2



 , (11)

where wα(x) is the relative importance weight function. Note, if we consider
the MAP estimate for Eq. (11) with a prior distribution over β, then we can
show that IWKR and Eq. (11) are one and the same.

Thus, the GP regression model under covariate shift can be represented by

w
1
2
α (x)yk = w

1
2
α (x)φ(x)

⊤βk + ek, ek ∼ N (0, σ2). (12)

That is, to achieve covariate shift adaptation in TGP, we need to simply re-

weight each input and output by w
1
2
α (x). Therefore, the output of the importance

weighted TGP (IWTGP) is given by

ŷ = argmin
y∈R

dy

[
L(y,y)− 2l(y)⊤uw

−ηw log
[
L(y,y)−l(y)⊤W

1
2 (W

1
2LW

1
2 +λyI)

−1W
1
2 l(y)

]]
, (13)

where uw = W
1
2 (W

1
2KW

1
2 + λxI)

−1W
1
2k(x), ηw = K(x,x) − k(x)⊤uw.

IWTGP can also be solved using a second order, BFGS quasi-Newton optimizer
with cubic polynomial line search for optimal step size selection. We ignore the
weighting for certain terms that are independent of y, and hence do not effect
the optimization, for simplicity.
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Computational complexity: IWTGP requires matrix inversions of ntr × ntr

matrices, the complexity of solving Eq.(13) is O(n3
tr), which is impractical when

ntr is large. To deal with this issue, we first find the M nearest neighbors of a
test input and estimate IWTGP on the reduced set of training paired samples.
Then, the inverse matrix in Eq.(13) can be efficiently computed with complexity
O(M3). IWTGP also includes the estimation of relative importance weight, thus
the total complexity of IWTGP is O(M3) +O(b3te).

5.3 Importance Weighting for Other Methods

The proposed weighting methodology is amenable to most popular formulations
(e.g., Linear Regression, Mixture of Experts (MoE), GPLVM, KIE), as well as
to other (structured) prediction problems in computer vision. For example, in
Linear Regression importance weighting can be incorporate via Weighted Lin-
ear Regression. Incorporating importance weighting into MoE would amount
to secondary weighting on top of expert assignment; for MoE models with soft
expert assignments this would require very minor changes to the learning proce-
dure. Latent variants like GPLVM and KIE can also make use of the importance
weighting, for example, in KIE the importance weighted version of Mutual In-
formation can be used to learn an IWKIE model.

6 Experiments

We compare the performance of the proposed methods IWKR and IWTGP with
their un-weighted counterparts, KR [1] and TGP (we use public implementation
from [5]), and weighted k-Nearest Neighbors approach (WkNN) [13]. We report
performance on two publicly available datasets: Poser [2] and HumanEva-I [23].

Parameters: For Poser dataset, we experimentally (through grid search) set
the TGP and IWTGP parameters to λx = λy = 10−4, 2ρ2x = 5, and 2ρ2y = 5000.
For HumanEva-I dataset, we used the original parameter setting of [5]: λx =
λy = 10−3, 2ρ2x = 5, and 2ρ2y = 5× 105. The number of M nearest neighbors in
TGP and IWTGP is set to min(800, ntr). In RuLSIF, we set the α = 0.5 and
bte = min(500, nte). For KR and IWKR, we set btr = min(500, ntr), and all the
parameters are chosen by cross-validation (CV) and importance weighted CV; in
WkNN we set the number of nearest neighbors to 25. In addition, instead of using
the entire test set to adopt the model, we use a temporal window of 20 frames
(feature vectors) around the current test sample to compute the importance
weight for IWTGP and IWKR. This is more efficient and is also more realistic,
as one will typically not see the full set of test examples all at once.

Computational speed: The overhead for importance weighting is small com-
pared to the base methods; for example, IWTGP is about 4% slower than TGP
when entire training set is used. Moreover, experimentally we observed that
IWTGP can be faster than TGP with few samples (see supplemental materi-
als). We attribute this to the fact that weighting in TGP can lead to an easier
optimization problem, offsetting the coast of the weight estimation itself.
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Table 1. Performance of IWKR and IWTGP on Poser dataset.

IWTGP TGP IWKR KR NN [12] GPLVM [6] sKIE [12]

Error (deg) 5.75 5.83 5.72 6.04 6.87 6.50 5.77/5.95

6.1 Poser Dataset

Poser dataset [2] consists of 1927 training and 418 test images, which are syn-
thetically generated, using Poser software package, from motion capture (Mocap)
data (54 joint angles per frame). The image features, corresponding to bag-of-
words representation with silhouette-based shape context features, and error
metric are provided with the dataset [2]. Since the Poser data is synthetically
generated and was tuned to unimodal predictions [2], there exists only a small
bias between training and test images/features.

Error metric: The proposed error measure amounts to the root mean
square error (in degrees), averaged over all joints angles, and is given by:

Errorpose(ŷ,y
∗) = 1

54

∑54
m=1 ‖(ŷ

(m) − y∗(m)) mod 360◦‖, where ŷ ∈ R
54 is

an estimated pose vector, and y∗ ∈ R
54 is a true pose vector.

Performance: Table 1 shows the pose estimation result averaged across the test
set. Proposed IWKR and IWTGP outperform their un-weighted counterparts,
reducing error by 5% and 2% respectively. IWKR and IWTGP also compare
favorably with other existing methods reported elsewhere. It is worth mentioning
that Shared KIE required a local model computed using a small neighborhood of
25 training samples to achieve comparable performance (with the global model
the performance drops from 5.77 to 5.95 degrees on average). In contrast, the
IWKR and IWTGP models are more global, since IWTGP takes 800 neighbors
into account and IWKR uses all the training data4.

6.2 HumanEva-I Dataset

HumanEva-I contains synchronized multi-view video and Mocap data. It con-
sists of 3 subjects performing multiple activities: walking, jogging, boxing, throw
and catch, and gesturing. We use the histogram of oriented gradient (HoG) fea-
tures (∈ R

270) proposed in [5] (we refer to [5] for details5). We use training and
validations sub-sets of HumanEva-I and only utilize data from 3 color cam-
eras with a total of 9630 image-pose frames for each camera. This is consistent
with experiments in [5]. We use half of the data (4815 frames) for training and
half (4815 frames) for testing; the test and training data is disjoint. Where fewer,
e.g., ntr = 500, training samples are necessary (as in Figure 2) we randomly sub-
sample ntr from the full training set; to alleviate the sampling bias we sample
10 times and average the resulting errors.

The bias in pose estimation can come in (at least) two forms: (1) the training
data may simply be biased and, for example, not contain the subject present in

4 While all the data is used it is dynamically re-weighed based on the importance
weight so not all of it is active at all times.

5 We thank the authors for making their features publicly available.
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Table 2. Performance on the entire HumanEva-I dataset averaged over all motions.

Subject
Transfer Type Train Test IWTGP TGP IWKR KR WkNN

S1,S2,S3 S1 54.2 55.1 71.1 80.1 70.2
Selection Bias S1,S2,S3 S2 52.5 53.2 67.6 75.5 71.5

(C1) S1,S2,S3 S3 57.5 57.9 75.1 86.0 72.5

S1,S2,S3 S1 81.9 83.9 101.9 119.9 94.3
Selection Bias S1,S2,S3 S2 72.7 75.1 102.7 120.0 100.7

(C1-3) S1,S2,S3 S3 77.2 86.1 111.7 134.8 110.4

S2,S3 S1 126.2 126.9 137.3 168.4 128.2
Subject Transfer S1,S3 S2 116.7 116.6 130.5 141.5 130.6

(C1) S1,S2 S3 140.0 159.7 168.4 209.1 145.5

the test set (we call this subject transfer), or (2) the training data may contain
data from variety of subjects, motions and cameras, where as at test time only a
sub-set of that data is presented at any given time (we call this selection bias). To
evaluate our methods under such scenarios we propose 3 experiments of interest:

Selection bias (C1): Only camera 1 data is used for training and testing.
Selection bias (C1-3): All camera data is used for training and testing (3 ×

4815 = 14445 frames of training and 14445 frames of test data).
Subject transfer (C1): Test subject is not included in training phase.

Error metric: In HumanEva-I pose is encoded by (20) 3D joint markers de-
fined relative to the ‘torsoDistal’ joint in camera-centric coordinate frame, so y =
[y(1), . . . ,y(20)]⊤ ∈ R

60 and y(i) ∈ R
3. Error (in mm) for each pose is measured

as average Euclidean distance: Errorpose(ŷ,y
∗) = 1

20

∑20
m=1 ‖ŷ

(m) − y∗(m)‖,
where ŷ is an estimated pose vector, and y∗ is a true pose vector.

Performance: Figure 2 shows the average mean pose estimation error as a
function of training set size (averaged over all motions and 10 runs). The graphs
clearly show that IWTGP and IWKR outperform their un-weighted counter-
parts. Moreover, IWTGP overall compares favorably with existing methods in
terms of the overall performance. Table 2 shows performance using the entire
training set. IWTGP tends to have smaller error compared to all other methods.
Note that both the weighted and their un-weighted counterparts use the same
parameters and inference procedures; the key difference is in the interest weight-
ing that alters the learning. Moreover, paired t-tests were conducted for all ex-
periments, we observe that about 80% cases the importance weighted methods,
IWTGP and IWKR, statistically outperform their non-weighted counterparts at
p=0.05 (5%) significance. In certain settings, we see more drastic improvements,
e.g., 14% reduction in error in subject transfer with S3 using IWTGP (and 19%
using IWKR), or over 10% reduction in error in selection bias (C1-3) with S3. We
also see significant improvements on certain specific motions (see supplementary
material), where, for example, on gesture motion under selection bias we observe
improvement by 22.6 mm (reducing error by 20%) or under subject transfer by
64.5 mm (reducing error by 33%).



Covariate Shift Adaptation for Discriminative 3D Pose Estimation 13

500 1000 1500 2000 2500
90

100

110

120

130

140

150

160

Number of Training Samples

E
rr

or
 (

m
m

)

 

 

KR
IWKR
TGP
IWTGP
WkNN

(a) Selec. Bias (C1-3), S1
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(b) Selec. Bias (C1-3), S2
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(d) Subject Transfer, S1
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(e) Subject Transfer, S2
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(f) Subject Transfer, S3

Fig. 2. Performance on HumanEva-I dataset illustrated as a function of the number of
training samples; we averaged the error over all motions for each subject. Comparable
methods according to the paired t-test at the significance level 5% are specified by ‘◦’.

Conclusions: We propose a simple, yet effective, unsupervised method for ad-
dressing training set bias through covariate shift adaptation in (structured) pre-
diction problems. As part of our formulation, we also introduce importance
weighted variants of kernel regression (IWKR) and twin Gaussian processes
(IWTGP) which produce state-of-the-art 3D pose estimation performance on
standard datasets (HumanEva-I and Poser [2]). We view our approach as the
first step towards eliminating bias in structured prediction problems in vision.
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