Automatic Multiview Synthesis – Towards a Mobile System on a Chip

Michael Schaffner 1,2, Frank K. Gürkaynak 1, Hubert Kaeslin 1, Luca Benini 1,3, Aljosa Smolic 2

1 Integrated Systems Laboratory, ETH Zürich, Switzerland
2 Disney Research Zurich, Switzerland
3 Università di Bologna, Italy

{schaffner,kgf,kaeslin,benini}@iis.ee.ethz.ch, smolic@disneyresearch.com

Abstract—Over the last couple of years, multiview autostereoscopic displays (MADs) have become commercially available which enable a limited glasses-free 3D experience. The main problem of MADs is that they require several (typically 8 or 9) views, while most of the 3D video content is in stereoscopic 3D (S3D) today. In order to bridge this gap, the research community started to devise automatic multiview synthesis (MVS) methods. These algorithms require real-time processing and should be portable to end-user devices to develop their full potential. In this paper, we present a complete hardware system for fully automatic MVS. We give an overview of the algorithmic flow and corresponding hardware architecture, and provide implementation results of a hybrid FPGA/ASIC prototype – which is the first complete hardware system implementing image-domain-warping-based MVS. The proposed hardware IP could be used as a co-processor in a system-on-chip (SoC) targeting 3D TV sets, thereby enabling efficient content generation in real-time.

I. INTRODUCTION

Over the last couple of years, video capture, post-processing and distribution technologies for stereoscopic 3D (S3D) content have become mature enough for broad commercialization. Coupled with the box office success of S3D movies, this has brought on renewed interest in the development of S3D-capable consumer-electronic devices such as TV sets. However, most such devices require the viewers to wear some sort of shutter- or polarization glasses, which is often regarded as an inconvenience. Recently, so-called multiview autostereoscopic displays (MADs) [1], [2] have become commercially available. These are able to project several views of a scene simultaneously - enabling a glasses-free 3D experience and a limited motion parallax effect in horizontal direction. However, appropriate content for such displays is largely inexistent since storage and transmission of high definition (HD) content with more than two views is impractical and even infeasible in some cases. The fact that each MAD has different parameters exacerbates the problem. In order to bridge this content-display gap, multiview synthesis (MVS) methods [3], [4] have been devised over the past couple of years. These methods are able to generate M virtual views from a small set of N input views.

Common MVS methods are based on depth image based rendering (DIBR) [4], [5], where a dense depth map of the scene is used to reproject the image to new viewpoints. Although physically correct, this approach requires accurate depth maps and additional inpainting steps. Our work uses an alternative conversion concept suggested by [6] which is based on image domain warping (IDW). The IDW framework allows to locally distort image regions via a non-linear, two-dimensional transformation which is obtained by solving a least squares (LS) problem. The constraints for this problem are formulated using image features extracted from the input images. This technique is promising as it does not rely on pixel dense depth, but only on robust, sparse point correspondences. Further, no inpainting is required which is still an algorithmically difficult step of DIBR-based view synthesis methods [7].

Multiview synthesis, using IDW methods as well as alternative approaches, are computationally intensive - yet they should run efficiently in real-time and should be portable to end-user devices to develop their full potential. To this end, we develop an efficient hardware architecture for fully automatic MVS. The proposed architecture could be used as a co-processor in a system-on-chip (SoC) targeting 3D TV sets, thereby enabling efficient content generation in real-time. This paper1 gives an overview of the algorithmic flow and the corresponding architecture, as well as implementation results of our hardware prototype – which is the first IDW-based real-time MVS system.

II. RELATED WORK

The IDW method used in this work relies heavily on prior work on warping approaches for video content adaption such as aspect-ratio retargeting [9], S3D retargeting [10] and non-linear disparity mapping [11]. In these applications, the video is warped in a content-aware manner in order to fulfill certain constraints. Image features (such as edges) and visual importance maps (saliency) are used in order to determine which parts of the image are important and should be preserved. Unavoidable distortions are moved to visually unimportant regions. This IDW framework has been extended for automatic MVS by [6]. The artifacts caused by geometrical incorrectness are minor and visually hardly noticeable. In fact, exhaustive and formal subjective experiments performed by MPEG [6] revealed that IDW as proposed here performs at least as well as DIBR-based [3], [5] methods, even if those used pre-computed and hand-tuned depth maps. Based on these results, MPEG adopted warp coding for the 3D extension of the new HEVC standard [12], thereby enabling IDW-based MVS.

1A longer, more detailed description of the system has been submitted to TCSVT for review [8].
In multiview synthesis, the disparities are the most important features since they reveal the 3D geometry of the observed scene. Yet these have to be robust in order to get good results. As opposed to DIBR-based methods, the IDW approach used here works on sparse disparities. In this work we adopted features based on semantic kernels binarized (SKB) [20], since they work very well in the setting of almost ideally rectified stereo video. SKB features a low outlier rate and, therefore, it is possible to use the point correspondences without an additional RANSAC filtering step, which would be costly in hardware. Occasional outliers can be tolerated since the warp calculation process enforces spatial and temporal smoothness. Furthermore, since SKB is a binary descriptor, it can be calculated and matched very efficiently in hardware. Descriptors containing fixed-point or even floating-point entries such as SURF or SIFT are much more costly in this respect.

2) Saliency and Edges: A saliency map identifies the visually important regions in the image, and is used to guide the warp calculation such that deformations are hidden in unimportant regions (e.g. homogeneous parts such as blue sky). Extracting visual saliency is difficult since it is a subjective measure that depends to some extent on video content, viewer, and application. Here we use the quaternion-Fourier-transform-based (QFT) algorithm from [21] which exhibits a good tradeoff between computational complexity and quality. The algorithm leverages the phase-spectrum of a video sequence, which carries information on where discernible objects are located in an image. The QFT can be efficiently calculated using two separate 2D Fast Fourier Transforms (FFTs).

Very salient lines should also be preserved in order to avoid bending them in the warped images. This can be done using several methods, e.g. by extracting straight lines using the Hough transform. However, since this feature is not as important as the saliency and the point correspondences, simple gradient-magnitude maps without Canny edge post-processing are used here. Such gradient-magnitude maps can be extracted very efficiently using 3×3 Sobel filters.

B. Warp Generation

1) Energy Minimization: The warps are calculated by solving a quadratic energy minimization problem of the form
\[
\min_{t} (E(f)) = \min_{t} (E_{data}(f) + E_{smooth}(f))
\]
where the data term E_{data} enforces function values at certain coordinate positions, and the smoothness term E_{smooth} is a regularizer that propagates these known values to adjacent sampling positions. The vector f holds the samples of the unknown warp vertices. The data term itself is composed of the energy term E_{pt} containing the desired vertex positions in the target image, and the energy term E_{t} which enforces temporal consistency:

\[
E_{data} = \lambda_{pt} E_{pt} + \lambda_{t} E_{t}.
\]

The parameters λ_{pt} and λ_{t} are weighting parameters that can be used to set the relative importance of a particular constraint. Analogously, the smoothness term comprises the two constraints E_{sat} and E_{edge} that determine the local smoothing strength (also called stiffness sometimes):

\[
E_{smooth} = \lambda_{sat} E_{sat} + \lambda_{edge} E_{edge}.
\]
Again, the parameters λ_{sal} and λ_{edge} are relative importance weights. Recall that we solve for two warps, each of which maps either the left or the right image to a virtual view at position 0.5 on the normalized baseline (see Figure 1). This asks for setting up four quadratic energy functionals E^{lx}, E^{ly}, E^{rx} and E^{ry} (two coordinate dimensions for each input view) which can all be minimized independently. More details on how the constraints are formulated can be found in [6], [19].

2) Sparse Linear System: Since the energy functionals to be minimized are quadratic in the elements of f, the solution of the problem in (1) is a least-squares (LS) solution. The constraints are defined on small neighbourhoods, and therefore the corresponding linear system is very sparse and only contains one main- and nine off-diagonals. Further, the matrix dimension is in the order of tens of thousands - depending on the resolution of the warping grid. The resolution of current video content is predominantly 1920×1080, resulting in four equation systems (E^{lx}, E^{ly}, E^{rx} and E^{ry}) with nearly two million variables for each frame in the video. Solving such large systems at frame rates of up to 30 fps is computationally very demanding and infeasible for embedded real-time applications. Also, such pixel-dense solutions are not necessary as even 10× sub-sampled grids result in sufficient synthesis quality on many S3D HD sequences [6]. This results in realistic grid sizes of about 180×100, which corresponds to 18k variables. Based the evaluations by [19], we decided to use a Cholesky-decomposition-based solver in our hardware implementation, since it provides a good tradeoff between memory bandwidth and hardware complexity in this setting.

C. Warp Interpolation and Rendering

In the rendering step, the two warps are first bilinearly upsampled in order to form pixel-dense warps. Then, these two warps are linearly inter- and extrapolated to all desired view positions on the normalized baseline. As illustrated in Figure 1, eight views are generated in this setting: four views are from the left image, and the other four views are generated from the right image. Note that this view interpolation can be used to linearly scale the depth range of the scene at runtime. The input images are then resampled using elliptical weighted average (EWA) splatting [22], which is a forward-mapping method. Although EWA is more complex than traditional bilinear backward mapping, it has the advantage that no warp inversion is required as the warps are generated in forward format in this application. The EWA framework uses Gaussian filter kernels and local, affine approximations of the image warp in order to calculate the footprint of an input image pixel in the output image. Input pixels thus correspond to Gaussian splats in the output image, which are rasterized within a bounding box and accumulated in a frame buffer. Since Gaussians are closed among themselves and under affine transformations, an anti-aliasing filter for the output image sampling grid can be easily incorporated analytically [23].

IV. HARDWARE ARCHITECTURE

Figure 2 provides a high-level block diagram of our MVS system and can be conceptually divided into two parts: the core view synthesis components (numbered from 1. through 6.) which are, in principle, device-independent and can be ported to other FPGA/ASIC technologies; and an infrastructure part handling all FPGA board and I/O specific controllers. The core components 1. to 6. process the input video according to the algorithmic flow presented in Section III: 1. The input scaler block scales the input video to the different resolutions that are required later on, and stores them in the memory. 2. The video analysis block extracts the saliency- and edge maps, and calculates the point correspondences using these scaled video frames. 3. The warp calculation block contains a constraints assembly core and a Cholesky-decomposition-based linear solver. The former is a microcode-programmable unit that builds the LS-problem matrices, and the latter is a fixed function solver. 4. The warp interpolation stage upsamples the two warps to 1080p resolution, and interpolates them to the desired view positions. The rendering block 5. prepares a filter kernel for each input pixel/warp-vertex pair, evaluates it on the sampling lattice of the assigned view on the display, and sends it to the accumulation stage 6. which fuses all subpixels to form the interleaved output image.

V. IMPLEMENTATION RESULTS

Table I provides a summary of the resource utilization of the multiview prototype (shown in Figure 3). The system has been designed to provide enough throughput to process 1080p S3D input footage @30 Hz using warps with 180 × 100 vertices. Note that the same rendering architecture implemented in the ASIC could easily support UHD (3840 × 2160) output.
resolution at the same frame rate by increasing the I/O bandwidth. This has not been carried out here due to practical I/O limitations (no flip-chip packaging). The only other systems with similar functionality are the works by [17] and [18]. [17] implement a system based on a dual processor workstation with two Intel Xeon 5690 CPU’s and two NVIDIA GTX 590 graphics cards. It has almost the same performance as ours and is able to synthesize 8 interleaved views for an Alioscopy display from 1080p S3D content at 24 fps. Clearly, the size of this system, the cost, and power consumption make it unsuitable for integration into consumer devices. [18] implement a single-view synthesis pipeline on a FPGA able to produce depth-adjusted S3D content generated from 1080p S3D input video at 60 fps. In order to do so, they synthesize one virtual view and bypass one of the input views. However, their implementation is not a complete MVS system since it only renders one virtual view and not up to nine views as in our work and [17]. [18] also make the assumption that the input video is perfectly rectified, i.e. there is no y-disparity between the left and right image, which simplifies all 2D-problems to 1D-problems. Yet such rectification is not easily achieved, and therefore systems should be designed to tolerate y-disparities. For example, our system is designed to support up to ±11 pixels of y-disparity.

VI. CONCLUSIONS

To our knowledge, this is the first hardware implementation of a complete, ID-based MVS system, capable of full HD view synthesis with 8 views in real-time. During informal subjective tests using full-length S3D movie footage, we found that the hardware system works well on a broad range of content using the same set of parameters. The current hardware prototype is based on an FPGA platform, combined with a custom rendering ASIC. The developed hardware IP could be integrated within a SoC where it would act as an energy-efficient co-processor – thereby paving the way towards mobile MVS in real-time.

REFERENCES

TABLE I: Physical characteristics of the different parts of the multiview system. The FPGA is an Altera Stratix IV (EP4SGX530KH40C2), and the ASIC has been fabricated in 65 nm technology from UMC.

<table>
<thead>
<tr>
<th>FPGA</th>
<th>Logic</th>
<th>RAM</th>
<th>Freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LUTs</td>
<td>Regs</td>
<td>DSPs</td>
</tr>
<tr>
<td>Scalers</td>
<td>4.1k</td>
<td>7.1k</td>
<td>24</td>
</tr>
<tr>
<td>Analysis</td>
<td>43.3k</td>
<td>47.3k</td>
<td>177</td>
</tr>
<tr>
<td>Warp Calc.</td>
<td>51.9k</td>
<td>67.4k</td>
<td>420</td>
</tr>
<tr>
<td>Subtotal</td>
<td>99.3k</td>
<td>121.8k</td>
<td>621</td>
</tr>
<tr>
<td>IO/Infra.</td>
<td>22.1k</td>
<td>35.5k</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>121.4k</td>
<td>157.3k</td>
<td>621</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASIC</th>
<th>Logic</th>
<th>RAM</th>
<th>Freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LUTs</td>
<td>Regs</td>
<td>DSPs</td>
</tr>
<tr>
<td>IO/Infra.</td>
<td>0.28</td>
<td>195</td>
<td>-</td>
</tr>
<tr>
<td>Warp Interp.</td>
<td>0.314</td>
<td>218</td>
<td>0.76</td>
</tr>
<tr>
<td>Rendering</td>
<td>2.317</td>
<td>1’609</td>
<td>-</td>
</tr>
<tr>
<td>Accumulator</td>
<td>0.385</td>
<td>267</td>
<td>3.6</td>
</tr>
<tr>
<td>Total</td>
<td>3.296</td>
<td>2’289</td>
<td>4.36</td>
</tr>
</tbody>
</table>