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Figure 1. Design and fabrication of custom input devices (from left to right): the designer creates a set of example deformations (1) and roughly indicates
where to place internal sensors. Our optimization algorithm then refines the sensor placement to maximize reconstruction accuracy (2). We fabricate
our designs by inserting piezoresistive wires in-between 3D-printed body parts (3), then calibrate using motion capture (4). Our customized flexible
input devices can be used in a variety of applications, e.g., to animate digital characters (5).

ABSTRACT
We present a novel optimization-based algorithm for the de-
sign and fabrication of customized, deformable input devices,
capable of continuously sensing their deformation. We pro-
pose to embed piezoresistive sensing elements into flexible
3D printed objects. These sensing elements are then utilized
to recover rich and natural user interactions at runtime. De-
signing such objects manually is a challenging and hard prob-
lem for all but the simplest geometries and deformations. Our
method simultaneously optimizes the internal routing of the
sensing elements and computes a mapping from low-level
sensor readings to user-specified outputs in order to minimize
reconstruction error. We demonstrate the power and flexibil-
ity of the approach by designing and fabricating a set of flex-
ible input devices. Our results indicate that the optimization-
based design greatly outperforms manual routings in terms of
reconstruction accuracy and thus interaction fidelity.
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INTRODUCTION
Consumer-level 3D-printers are becoming increasingly pow-
erful and sophisticated, enabling end-users to create tangible
artifacts with custom shape, appearance, and even function-
ality. In particular, multi-material printers can now fabricate
objects with spatially-varying mechanical properties that de-
form in desired ways. The ambition of this work is to enable
such objects to sense their deformation, thereby opening the
door to a range of exciting applications such as personalized
interactive toys, custom game controllers, and other flexible
input devices. As the enabling technology, we focus on sen-
sors made from piezoresistive materials that change their re-
sistivity as a function of deformation. By embedding chan-
nels of such material into a 3D-printed object, we can infer
its deformation based on the measured resistivity.

Novel input devices are of central interest to HCI and flexible
input devices in particular hold the promise of making inter-
actions more natural [2, 6, 23, 32]. However, existing de-
vices are specialized, two-dimensional designs that were cre-
ated manually by experts with extensive domain knowledge
on both hardware and algorithmic levels. By contrast, we
envision a design tool that allows non-expert users to create
custom-shaped, flexible objects that can sense rich, continu-
ous and user-specified deformations without requiring deep
domain knowledge.

The goal of usable custom-designed input devices in this con-
text critically depends on: (a) the richness of interactions that
it supports, (b) how well user inputs can be recognized, and
(c) the knowledge required to design such devices. As we
show in this work, recognition accuracy strongly depends on
the routing of the internal sensors. Even for moderately com-
plex shapes, simple interactions lead to inhomogeneous de-
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formation fields inside the object. The questions of how to
route sensors and interpret their readings thus becomes, for
any but the most trivial cases, a complex and difficult design
problem. Furthermore, to afford rich and natural interactions,
we do not want to constrain the allowed deformations to be
mutually orthogonal. In consequence, there will generally not
be a simple one-to-one mapping between sensor reading and
deformation. Hence, without significant guidance, it is diffi-
cult for non-experts to design effective sensor layouts.

To address these challenges, we propose a novel optimization
algorithm that computes sensor layouts based on user spec-
ified example deformations. Furthermore, we provide rich
visual feedback to allow for an iterative, user-in-the-loop ap-
proach to custom controller design and fast exploration of the
solution space. The key idea in our algorithm is to use recon-
struction error as objective for the optimization — thus mini-
mizing the quantity of greatest interest to the user. Relying on
finite element simulations, we relate internal deformation to
change in sensor response and simultaneously compute rout-
ings of conductive wires and a mapping between sensor val-
ues and 3D deformation. After fabrication, we leverage a
machine-learning algorithm to robustly recover complex 3D
deformations in real time, despite the presence of material
imperfections and modeling errors.

We demonstrate our approach by designing and fabricating a
set of flexible input devices, each adapted to a specific appli-
cation. We furthermore show that a manual approach to sen-
sor network design is not only a difficult and exhaustive ex-
ercise, but is also easily outperformed by our computational
design approach. Experimental results yield significant re-
ductions in reconstruction error between best-guess manual
routings and our optimized solutions.

RELATED WORK
Fueled by innovations in sensing and additive manufacturing
technologies, customized input devices have garnered a lot of
attention recently. We concentrate on input devices that are
self-sensing, i.e., we omit approaches relying on external sen-
sors such as depth-cameras or motion capture systems; for a
survey of externally sensed input we refer to Rendl et al. [23]
and Steimle et al. [32].

2D rapid prototyping for IO devices
The Gummi system [26] simulated a hand-held, flexible dis-
play via two resistive pressure sensors. It demonstrated the
rich interactive possibilities afforded by flexible input devices
and inspired several related projects. With the introduction
of 2D rapid prototyping techniques capable of printing basic
electronic components, fully customized IO devices, such as
capacitive buttons [37], transparent touch and pressure sen-
sors [22], ink-jet printable touch pads [6], and even printed
displays [17] have started to emerge. Still relying on 2D sens-
ing elements several attempts exist to extend the input space
to 2.5D. Early work used the ShapeTape sensor [5] for input
into a 3D modeling application [2]. Kato et al. [13] replace
the use of ShapeTape with piezoelectric thin films. More re-
cently Rendl et al. [23] leveraged ink-jet printed piezoelectric
sensors to reconstruct deformations of a transparent screen

overlay with high accuracy and in real-time. Due to the manu-
facturing process, the above approaches are limited to 2D sur-
faces only. Furthermore the design of electronics and choice
of sensor placement remains a manual and difficult-to-master
process. Where prior work concentrated primarily on input
sensing (with fixed hardware), our main contribution is an in-
teractive method to aid novice users in designing sensor net-
works for custom controllers.

3D printed IO devices
3D printing has great potential for creating interactive ob-
jects. For example, printing tangibles that recognize input via
acoustic sensing [24], or embedding optical elements into 3D
objects to sense input [36] or to illuminate curved surfaces [4]
were proposed. Moreover, flexible devices that sense topol-
ogy changes via embedded contact switches have been ex-
plored [28]. Vázquez et al. [35] propose pneumatically ac-
tivated 3D printed devices and Peng et al. [18] the printing
of soft, interactive objects via fabric layering. Jacobson et
al. [9] propose a modular, tangible input device for character
animation based on Hall sensors and 3D printed parts. While
providing high accuracy, the device requires an elaborate as-
sembly process and is highly specific to 3D animation.

Recently, hybrid manufacturing systems that integrate stere-
olithography and direct print technologies have been pro-
posed, enabling rapid prototyping and fabrication of 3D struc-
tures with embedded electronic circuits [10]. Leigh et al. [14]
developed a conductive composite material for 3D printing.
Although requiring specialized printers, these technologies
demonstrate that the capability to 3D print electronically
functional parts is within reach. Inspired by this vision, we
explore the fully integrated design of flexible custom input
devices, capable of reconstructing rich and continuous defor-
mations.

Fabrication oriented computational design
The graphics community has recently begun to embrace the
challenge of creating 3D-printable content. Among the vari-
ous fabrication-oriented design tools that have been proposed
so far, most relevant to our setting are methods for designing
physical artifacts with controllable deformation behavior [3,
27]. Our method complements these works by augmenting
the designs with embedded sensor networks, thereby enabling
deformable objects to sense their state of deformation.

The problem of embedding sensing elements directly into 3D
printed objects has been investigated [4, 28, 35, 36]. The
design of such devices is notoriously hard and beyond the ca-
pabilities of average users — no automated solution has been
proposed so far. While the related problem of automatically
routing optical fibers [19] or general purpose channels [25]
through 3D-printable objects has been explored, these works
focus on optimizing primarily geometric properties such as
channel curvature or inter-channel distance. Our setting is
different in the sense that we have to simultaneously consider
sensor deformations induced by multiple deformation fields,
and account for the complex mapping between sensor read-
ings and reconstructed deformation. This difference in goals
requires different optimization strategies.



Figure 2. Design process overview (from left to right): (A) User specifies example deformations. (B) Planar cross section of internal deformation field.
(C) Initial routing of sensor elements. (D) Optimization algorithm refines sensor configuration interactively. (E) Final routing ready for fabrication.

Computational UI design
UI design has traditionally been dominated by an expert
driven design process. Recently, optimization techniques for
UI design have begun to emerge, including methods to gen-
erate single-pointer touch keyboards [12, 29], menu layouts
[1], and in-air gestures [31]. While related in spirit, these
approaches have an almost orthogonal set of goals and con-
straints to ours. Previous work has attempted to optimize in-
teraction techniques or UI layouts given an existing input de-
vice — the limitations of the sensor are a limiting factor in
this setup. In our approach, we optimize the sensor configu-
ration with respect to a set of desired interactions.

COMPUTATIONAL SENSOR DESIGN
The technical core of our work is an optimization-based de-
sign tool that allows non-expert users to quickly create flex-
ible input devices with custom interaction spaces that can
sense deformations on continuous scales. The underlying
design problem is highly challenging, exhibiting a mix of
discrete and continuous components as well as many local
minima. Instead of seeking a fully-automated solution, we
therefore propose a user-guided, optimization-in-the-loop ap-
proach that can leverage the intuition and experience of hu-
man designers to guide the optimization algorithm. In the
following, we briefly summarize the design process, then pro-
ceed to the formal description of our method.

Overview
Using a physics-based deformation metaphor, the user starts
by specifying a set of example deformations to define the in-
teraction space (Fig. 2 A). We assume that, together with the
undeformed state, these examples define a continuous space
of expected user input, i.e., the space in which the device
should be able to recognize its state of deformation. For each
example pose, we compute an internal deformation field us-
ing finite element simulation. These deformation fields are
used for automated sensor refinement and for providing vi-
sual feedback to the user during the design.

In the next step, the user incrementally adds deformation sen-
sors, i.e., curved channels of piezoresistive material. In or-
der to simplify fabrication and assembly, we layout individual
sensors as planar curves, but allow the corresponding planes
to be different for each sensor. The user can adjust the posi-
tion and orientation of the planar crosscut. For guidance the
user is shown a visualization of the deformation of the ele-
ments intersected by the current crosscut (Fig. 2 B). While

the precise location and orientation is not critical, we ob-
tained best results when ensuring that, for each sensor, the
corresponding plane passes through at least one region that
exhibits large deformation and displays variations in defor-
mation across the different example poses. After choosing
the sensor plane, the user defines an initial guess for the sen-
sor path using a spline tool (Fig. 2 C). Except for the position
of inlets and outlets, the exact paths of the sensors are not
critical at this point. However, running the sensing element
coarsely through regions of high deformation, and preferably
high variance in deformation, helps the automatic refinement
step to find a good solution. Once sensors are laid out, our
optimization algorithm refines their paths by minimizing re-
construction error on the user-specified output (Fig. 2 D). The
result of the optimization is displayed to the user by visual-
izing reconstruction error per example deformation. The user
can then make an informed decision on whether to rearrange
existing sensors, add additional sensors, or to finalize the de-
sign (Fig. 2 E).

Complemented by interactive visualization and editing tools,
the pivotal element of our approach is a highly efficient sensor
refinement algorithm and is described below.

Optimization-based Sensor Configuration
Our optimization algorithm builds on two basic principles.
First, the sensors assume the deformation induced by their
surrounding (3D-printed) material, and the sensor responses,
i.e., their conductivity, changes as a function of their total
deformation. With the user-defined deformations given as in-
put, we can change the paths of the sensors in order to change
their deformation and, thus, their response. Second, if we
know the mapping from input (sensor response) to output (re-
constructed geometry) signals, we can compute the paths of
the sensors in order to minimize the discrepancy between re-
constructed deformation and target deformation. While the
mapping between input and output signals is not known a
priori, we can optimize for it if we assume that the relation is
affine; in our experiments, affine mappings have lead to good
reconstruction accuracy. We explain the central components
of this strategy in the following, starting with the computation
of sensor deformations.

Computing Sensor Deformations
The deformation between the undeformed state of the model,
described by positions x, and its deformed state, described by
positions x′, is characterized at any point by the deformation



gradient F = ∂x′
∂x . In practice, we compute the deformation

gradient in the discrete setting, using a standard finite element
approach based on linear tetrahedral elements.

For simplicity, we start by considering a single sensor repre-
sented by a curve C, defined in the undeformed state of the
model. At a given point x(γ) along the curve, the deforma-
tion gradient of the surrounding material F(x) transforms the
curve’s normalized tangent vector t(γ) to its deformed coun-
terpart t′(γ) = F(x)t(γ). Normalizing the induced change in
length

√
t′T t′ −

√
tT t gives rise to the Cauchy strain

ε(γ) =
√

t(γ)T F(x)T F(x)t(γ) − 1 . (1)

In order to compute the total deformation of the sensor, we
integrate the Cauchy strain along C,

∆l =

∫
C

ε(γ) dγ .

Note that a positive value for ∆l is obtained if stretch out-
weighs compression in total, and vice versa.

Sensor Response
Piezoresistive materials generally exhibit a deformation-
dependent resistivity, and often this relation is close to linear
even for large deformations. As can be seen in Fig. 3, our
experiments with pre-fabricated wire consistently exhibited
good linearity across a wide range of stretching and compres-
sion. Hence, we model the change in resistivity as a linear
function w(ε) = kres · ε, where the coefficient kres is obtained
by a least-squares fit to experimental data (see Sec. on Mate-
rials, Fabrication and Calibration for details). The total signal
change for a deformed sensor then follows as

s(C) =

∫
C

w(ε) =

∫
C

kres ·
(√

tT FT Ft − 1
)
. (2)

To discretize the integral, we sample the curve with K sam-
ples xk

sC =

K−1∑
k=1

kres ·

(√
dT

k F(mk)T F(mk)dk − 1
)
, (3)

where dk = xk+1 − xk are the difference vectors and mk =
1
2 (xk + xk+1) the midpoints.

Multiple Sensors and Spline-based Curve Representation
In practice, the user specifies multiple sensor curves C j. To
facilitate their intuitive and easy editing, we model each sen-
sor curve C j as a piecewise cubic Hermite spline. These
splines depend on control points and tangent vectors, which
we collect in a parameter vector p j. To allow for precise
placement of inlets and outlets, we leave the last two con-
trol points and last tangent vector at either end of each sensor
curve unparametrized. In addition to evaluating the position
of sample points xk in Eq. (3), sensor placement optimization
also requires the derivatives of position with respect to the
spline parameters p j, which are readily derived analytically.

Sensor Optimization
The goal of sensor optimization is to find parameter values
for sensor placement and a mapping between input (sensor re-
sponse) and output (deformed geometry) signals, minimizing

reconstruction error. Our experiments showed that an affine
mapping obtained through ridge regression yields sufficiently
small reconstruction errors; see also [23] for similar findings.
We formalize this approach below.

We represent the output geometry through O output coordi-
nates that correspond to a set of marker points. For each out-
put coordinate o, let oo denote the vector that collects the de-
formed positions for the N examples. Furthermore, for each
deformation-sensor pair (i, j), let si j denote the measured sen-
sor signal. By collecting all of these M sensor signals in a
M + 1-row vector

si =
[
si1 . . . , si j, . . . , siM , 1

]
, (4)

we can define an affine mapping between input and output
signals,

siβ
o = oo

i . (5)
If we further summarize all signals in an N × (M + 1) matrix
S, we obtain the linear system

Sβo = oo . (6)

Our goal is now to minimize the error between the affinely
mapped inputs and the desired outputs oo. To this end, we
define a corresponding objective function

f (p,β) =
∑

o

ro with ro = ||S(p)βo − oo||2 + ||λÎβo||2 , (7)

where Î is the identity matrix with a zero for entry (M+1,M+
1), leading to a regularizer (controlled by λ) that only penal-
izes linear coefficient terms.

Numerical Solution
In order to minimize Eq. (7), we employ a standard Newton-
type solver, requiring that the gradient of the objective vanish
with respect to all variables, i.e., both the sensor parameters
p and the entries of the linear mapping β. While the mapping
parameters are regularized by construction, we also explic-
itly regularize the sensor parameters by penalizing changes
in total length per sensor. The solution then yields optimized
sensor routings as well as an output mapping, which provides
feedback to the user about the expected reconstruction error
per deformation.

RECOVERING USER INPUT
After fabrication (which we detail below) we wish to recover
user input in real-time. Solving Eq. (7) for β will provide the
desired mapping from resistance changes to outputs. How-
ever, during optimization, the signal matrix S is synthesized
using an approximate model of the sensor response on a sim-
ulated interaction space. This clearly is an abstraction of the
real-world: imprecision of our two-step manufacturing and
discrepanices between simulated and physical interactions at-
tenuate the signal. The dynamics of user interaction are also
unknown during the design phase. Finally, for many cases
there will be more output coordinates o than sensor readings.
In order to obtain good sensing fidelity despite these chal-
lenges, we employ a simple data-driven technique to learn
the input-output mapping. This step only needs to be per-
formed once per fabricated sensor. Note that we use the same



mapping as in Eq. (7) while keeping the sensor curves fixed.
Thus, both learning and sensor refinement algorithms mini-
mize the same objective and as such are directly linked with
one another.

For learning, we first acquire a training set of T signal vectors
st together with O coordinates of a set of O/3 maker positions
on the fabricated models. For acquisition, we use a standard
motion capture system. Note that the sensor response is in-
variant to global rigid body motion and hence global trans-
lation and rotation need to be removed from motion capture
data. We use Kabsch’s algorithm [11] to pair marker coordi-
nates with their correspondences in the rest pose.

By setting the gradients of the residuals ∂ro
∂βo to zero, we learn

an optimal mapping that minimizes the objective of Eq. (7),

(ST S + λ2Î)βo = ST oo , (8)

where matrix S and the output vectors oo now have T rows
instead. To prevent overfitting, we use k-fold cross validation
(in our case k = 5) to identify the optimal λ.

At runtime, 3D marker positions can then be recovered from
resistances alone (i.e., not requiring the external capture sys-
tem) by evaluating Eq. (5). To approximate the deforming
surface we use the As-Rigid-As-Possible (ARAP) surface
modeling technique by Sorkine et al. [30], with marker co-
ordinates as position constraints.

While this linear regression scheme is simple, it has proven to
be sufficiently powerful in our experiments. Similar findings
were reported in [23]. The simplicity has further benefits in-
cluding small model size and low computational cost for both
training and evaluation. However, we would like to highlight
the generality of using reconstruction error as objective dur-
ing optimization. This idea can be applied to different, more
powerful machine-learning models that can be formulated as
regression problems of the form L‖◦‖ + R‖◦‖, where L is a
loss function and R a regularization term.

MATERIALS, FABRICATION AND CALIBRATION
In addition to the placement of the sensors and the mapping
between sensor readings and deformation, a third factor that
strongly influences recognition accuracy are the materials and
the process used for fabrication. We performed an extensive
set of experiments with different materials and fabrication
processes which we detail in the Appendix.

3D-Printed Conductive Channels
We found that current multi-material 3D printers and avail-
able filaments cannot provide the level of quality and re-
liability required for our application. In printable piezore-
sistive polymer filaments, the relation between conductivity
and deformation exhibits strong time-dependence and hys-
teresis. Furthermore, these polymers display high fluctua-
tion between different samples and test runs (see Fig. 10).
Plastic-based filaments show good conductivity behavior but
they are brittle and will break when pushed beyond small de-
formations. Commercially-available piezoresistive polymers

Figure 3. Fitted signal response function w(ε) (black), acquired from
specimens of length 150 and 200 mm. Inset: Calibration of specimen
l̄ = 200 mm and r̄ = 150 mm.

with good conductivity and deformation properties are avail-
able (cf. Melnykowycz et al. [15]) but cannot be used for 3D
printing yet.

Fabrication Process
In the light of these findings, we resort to a two-stage fabrica-
tion process, in which we first 3D-print deformable parts en-
dowed with groves to host conductive material that we man-
ually insert and secure with adhesives in a second step. Due
to this fabrication process, complex spatial sensor paths be-
come difficult to fabricate. In order to make this process
tractable, we restrict our algorithm to generate planar rout-
ings. It should be noted, however, that planar sensor layouts
do not not restrict interaction spaces to planar deformations
as illustrated by our results. Furthermore, our formulation is
general. As soon as 3D-printable piezoresistive materials of
good quality are available, our method can be used to create
3D sensor routings with little modification.

Calibration
Optimizing for sensor layouts requires an accurate model for
predicting the changes in resistivity as function of deforma-
tion. In order to obtain such models, we have developed a
simple yet effective calibration method, applicable to our ma-
terials and others. The resulting calibration can then be used
in our method without requiring any changes other than re-
placing the function w(ε) in Eq. (2).

To calibrate the material, we 3D-printed a special-purpose
specimen, which is seen inset at the bottom of Fig. 3. This test
piece has three channels for embedding piezoresistive wire:
one in the neutral plane, and two offset by margin ō from the
top and bottom boundary of the parts. In addition, we print
rigid parts of various radii of curvature r̄ (Fig. 3, inset). This
part is then used to precisely bend the flexible calibration test
piece, allowing us to measure and normalize the change in
resistivity. The relative length change of the stretched and
compressed wires can then be computed from the radius of
curvature and the dimensions of the specimen, leading to two
sample points for the relative signal responses. The resistance
of the wire in the neutral plane serves as a sanity check as it is
supposed to remain constant during bending. We performed



Figure 4. Comparing routing strategies. Top row (from left to right): schematic sensor routings obtained using best-guess manual placement without
assistance from our tool (manual), our tool for feedback on deformations and predicted reconstruction error (visual), and our tool with automatic
sensor refinement (full). Bottom row: Ground truth (gray) vs. reconstruction (orange) for each routing strategy. Insets show error on a heat map scale,
with maximum error (white) at 22 mm (darker is better). The manual (left) routing exhibits large reconstruction error already for the simpler bend
deformation. Our method with sensor refinement (right) leads to low error even for the challenging twist example, showing a clear improvement over
the routings obtained using our design tool without refinement (middle).

this procedure for parts of length l̄ = 150 mm and l̄ = 200
mm, of thickness 15 mm, and offset ō = 2 mm. We used cur-
vature radii 75, 87.5, 100, 112, 150, 175, 200, 225, and 250
mm. Fig. 3 shows the final averaged fitted response function,
along with the relative signal responses for each specimen.

RESULTS
We have evaluated the proposed sensor design method and
our overall pipeline in a number of experiments designed to
illustrate our main contributions: an interactive design tool,
leveraging a visualization of internal deformation fields to aid
users in the sensor placement task, and an iterative refinement
algorithm for optimizing the placement of the sensors.

Quantitative Evaluation
To assess the impact on reconstruction error, we fabricated
three variants of a simple, yet instructive 3D object — an
elongated box shape — and tested these variants with three
challenging deformations: bending the object up and down,
and twisting the object along its longest axis. We compare
three routing strategies (cf. Fig. 4):

• manual: best-guess routing created without assistance
from our tool which, in this case, is to route straight wires.

• visual: leverages visualization of internal deformations
and predictions of reconstruction error to manually select
the best planar cross section for each of the wires and cor-
responding example deformations.

• full: using our tool with several iterations of automatic sen-
sor refinement and sensor plane adjustments.

In order to perform a quantitative comparison between these
routing strategies, we acquire test sequences of equal length
using a marker-based ground-truth acquisition system and
compute the difference between measured and predicted
marker positions in 3D. For each design, we used a 70-
30 training/test split approach, with the split performed in
temporal order. Since the deformations are performed by
a user, there is variation in the exact execution. However,

the length of the test sequences of 2040 frames allows us
to compare the recognition accuracy based on the collected
data. Table 1 summarizes the reconstruction accuracy in
terms of root-mean-square error (RMSE), overall maximum
error (peak), and average of peak errors over the entire se-
quence (avg. peak).

RMSE peak avg. peak
manual 4.46 ±1.76 mm 21.78 mm 8.98 mm
visual 3.66 ±1.33 mm 17.13 mm 7.12 mm
full 1.17 ±0.71 mm 10.13 mm 2.16 mm

Table 1. Reconstruction error in millimeters.

In our experiments, the visual approach consistently outper-
formed the manual counterpart, but our full pipeline per-
forms best on all measures. While all three designs can recon-
struct bending reasonably well, manual struggles the most
in differentiating up and down directions (explained by the
fact that all sensors are co-planar) and has the highest error
on twisting. The visual routing tracks bending in both di-
rections fairly well, as does full. However, visual performs
significantly worse than full on twisting. A one-way ANOVA
revealed a statistically significant main effect for RMSE in-
dependent of deformation (p < 0.001) and post-hoc tests
showed that full is the most accurate out of the three designs
(all p < 0.05).

These results indicate that our design tool aids the user in se-
lecting the most appropriate planar sensor embedding, and is
indeed useful. In particular, the interplay between visualiza-
tion of internal deformations and immediate display of pre-
dicted reconstruction error makes this task significantly eas-
ier. Furthermore, the iterative refinement of sensor routings
using our optimization algorithm provides additional benefits
over purely manual routings, illustrated by the differences in
accuracy between full and visual.

Finally, we conducted another experiment in order to better
isolate the effect of sensor placement optimization from hu-
man contributions. To this end, we designed a 3D bar with



Figure 5. Single refinement step. Left: Initial condition. Right: Refine-
ment produces symmetric routing for twist deformation.

a single sensor to reconstruct twisting about the major axis.
We fabricate a best-guess version and then run a single re-
finement step (i.e., no user input). Fig. 5 shows the resulting
routings. The predicted RMSE for the manual design is 4.2
times higher (2.542 mm) than the optimized version (0.643
mm). After fabrication, we measured an improvement of ap-
proximately 2.0 (2.397 mm versus 1.191 mm).

Sensor Count
The number of sensors is a central factor for recognition ac-
curacy. Especially for untrained users, however, it is typically
difficult to estimate how many sensors are required in order to
obtain satisfying results. As illustrated with our two bar ex-
amples, a one-to-one mapping between user-provided exam-
ple poses and sensors can lead to good results for simple ge-
ometries and few deformations. For geometrically more com-
plex objects with an increasing number of example deforma-
tions, however, this simple scheme soon becomes intractable.
Our design tool supports the user in this decision: sensing el-
ements can be added and refined in an iterative fashion until
the predicted reconstruction accuracy, immediately displayed
by our tool, is sufficiently low. This workflow, which is best
seen in the accompanying video, is illustrated in Fig. 6, which
shows the example of a thin deformable sheet. To design this
input device, we started with two sensors, which we refined
and edited in several iterations. Although some deforma-
tion modes could be recognized accurately, the reconstruction
error remained high for the remaining deformations. After
adding two more sensors, we obtained a sufficiently low error
for all three input deformations (the two front corners bend-
ing up individually, and together). The final specimen has

Figure 6. Snapshots of the design process. Top-left: the user placed, re-
fined, and edited two sensors; expected reconstruction error remained
high for a subset of deformations (middle-left). Final routing and (re-
duced) reconstruction error for a set of four sensors. Bottom row: inter-
action with fabricated device (left) and ground truth comparison (right).

Figure 7. Continuous deformation of the Armadillo reconstructed from
sensor data. Color coded error map on the right — darker is better.

an avgerage RMSE error of 1.38 mm (peak error 9.61 mm,
avg. peak error 3.7 mm), again measured against ground truth
data over a sequence of 2100 frames. As for our other proto-
types, the discrepancy between predicted and measured accu-
racy can be attributed to modeling errors, sensor and measure-
ment noise, and error introduced by the fabrication process.

Qualitative Evaluation
In addition to quantitative experiments we fabricated further
3D examples, tailored to specific application scenarios, and
illustrating the utility of our method in creating fully cus-
tomized deformable input devices.

3D Character Control
One interesting but also challenging application scenario is
that of 3D character animation. We envision an artist or even
an end-user creating a physical instance of an on-screen char-
acter by simply 3D printing it. After fabrication, the custom
controller may be used to animate the on-screen character in
a very direct and natural fashion. Fig. 1 depicts a custom
controller based on the well-known Armadillo model. Fig. 7
illustrates the reconstruction accuracy achieved by the con-
troller under different deformations. In general the recon-
struction quality is good (avg. RMSE of 2.023 mm over 2100
frames) and the controller is responsive even under challeng-
ing out-of-plane deformations.

The armadillo created with our method also performs better
than a best-guess manual routing. Fig. 8 illustrates this fact

Figure 8. Comparison of best-guess manual and optimized routings.



Figure 9. Two example deformations of the organ pipe model designed
with our method.

for an example deformation. Notice how the optimized char-
acter reconstructs the desired deformation with very low over-
all error, while the manually designed controller produces
larger reconstruction errors that concentrate in regions around
both the left foot and left hand of the character.

Musical Instrument
For a final example, we fabricated a custom musical instru-
ment inspired by an organ pipe. The 3D object is designed to
be held in one hand and manipulated by the other. Four de-
formations (two bends, a twist, and a pull) of the pipes were
specified by the user. We use six internal sensing elements
to recover these deformations (cf. Fig. 9 and video). Be-
yond reconstructing deformed geometry, the output could be
mapped to, e.g., tone, pitch, and amplitude of a simple midi-
synthesizer. This example demonstrates that our method can
be used to design and fabricate more complex, fully three-
dimensional objects achieving good reconstruction accuracy.

LIMITATIONS
We have proposed an approach for design and fabrication of
custom-shaped, flexible, and self-sensing input devices. The
technical core of our method is an algorithm for computing
optimal sensor routings that directly minimize reconstruction
error. Experimentally, we have shown that the method pro-
duces routings that outperform best-guess manual versions
by significant margins and hence provide higher interaction
fidelity. We have furthermore shown that the visualization
of internal deformation fields, in combination with our opti-
mization algorithm, can help in designing better sensor con-
figurations than those obtained with best-guess manual place-
ment. We have demonstrated the utility and flexibility of our
method by fabricating several flexible input devices.

However, our method is not without limitations. Currently,
we rely on example poses as input. While our method is
capable of recognizing continuous deformations in the en-
tire space spanned by this set of poses (including in between
poses), our method is currently not capable of reconstructing
entirely unseen deformations. For example, if the user pro-
vides only a pose for the Armadillo with one leg raised, recon-
structing a sideways motion or a bend of the leg in opposite
direction would be failure cases. Alleviating this limitation is
an interesting direction for future work and possible solutions
may include easier methods to define interaction spaces (such
as programming-by-demonstration). A different but equally
promising direction could be to leverage modal analysis to
identify areas of high deformation for sensor refinement.

We generally found that the predicted reconstruction error in
our design tool was a good indicator of real world perfor-
mance. However, there is still a considerable gap between
simulation and real-world, best illustrated by the need for a
machine-learning-based reconstruction algorithm. In some
cases, fabricated specimens would perform poorly or not
work at all. We have identified a number of factors that in-
fluence the success of the fabricated prototypes, and not all of
them are modeled accurately or even included in our model.
However, the limitations relating to the current state of fab-
rication technologies and available materials certainly have a
significant impact. For example, in our model we assume
a single solid object with perfectly embedded sensing ele-
ments, whereas in the real world we print objects in parts and
manually embed conductive traces before assembly. Further-
more, our sensor response model is certainly not accurate and
real sensor readings can deviate considerably from simulated
values. These and other factors can contribute to situations
where large reductions in error residual during optimization
do not necessarily translate into good real-world behavior.

Future Work
We hope that future progress in digital fabrication technology
will soon remove the necessity for a two-step fabrication pro-
cess. There is already some success in improving printable
conductive and stretchable elastomers with favorable proper-
ties for strain sensors [16]. Future printers will open up the
possibility of printing with a wider selection of materials, and
will thus solve the limitations of the current conductive ma-
terials and printing processes. In anticipation of these emerg-
ing technologies and materials, we have developed a compu-
tational design algorithm that, thanks to its generality, will
transfer well to these new technologies. The changes intro-
duced to accommodate the limitations of current fabrication
technologies are minimal and do not restrict the method’s ap-
plicability in the future.

We support the user in utilizing the method effectively via
an easy-to-use graphical UI. However, we do currently not
support the user in selecting which deformations should be
sensed particularly well. We believe that the current divi-
sion of labor between user and algorithm leverages the re-
spective strengths of each. Nonetheless, this is an interesting
area for future research, in particular the idea of combining
computational design of interactions (i.e., which deformation
is mapped to which task).

Finally, while we have performed and discussed extensive
technical evaluations of our system, we have yet to perform
extensive user tests. In particular, we would like to evalu-
ate how successful our design tool is at enabling end-users to
fabricate custom input devices.

CONCLUSION
In summary, we have proposed a computational design ap-
proach to the digital fabrication of deformable input devices.
Our approach leverages internally routed piezoresistive wires
for sensing of user input. In particular we have demonstrated
rich natural interactions via continuous 3D deformations. We



consider the insight to leverage the reconstruction error di-
rectly as optimization objective one of our core contributions.
While limitations of current fabrication technologies still im-
pact interaction fidelity our work highlights the exciting pos-
sibilities that lie ahead in terms of fully customized, end-user
designed interactive devices.
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Mengüç, David B Kolesky, Robert J Wood, and
Jennifer A Lewis. 2014. Embedded 3D Printing of
Strain Sensors within Highly Stretchable Elastomers.
Advanced Materials 26, 36 (2014), 6307–6312.

17. Simon Olberding, Michael Wessely, and Jürgen Steimle.
2014. PrintScreen: Fabricating Highly Customizable
Thin-film Touch-Displays. In Proceedings of the 27th
annual ACM symposium on User interface software and
technology - UIST ’14. ACM Press, New York, New
York, USA, 281–290. DOI:
http://dx.doi.org/10.1145/2642918.2647413

18. Huaishu Peng, Jennifer Mankoff, Scott E. Hudson, and
James McCann. 2015. A Layered Fabric 3D Printer for

http://dx.doi.org/10.1145/2617814
http://dx.doi.org/10.1145/300523.300536
http://dx.doi.org/10.1145/2501988.2502027
http://dx.doi.org/10.1117/12.339112
http://dx.doi.org/10.1145/2556288.2557173
http://www.ninjaflex3d.com
https://eu.makerbot.com/shop/de/3d-drucker/replicator-2x
https://eu.makerbot.com/shop/de/3d-drucker/replicator-2x
http://dx.doi.org/10.1145/2601097.2601112
http://dx.doi.org/10.1108/13552541211212113
http://dx.doi.org/10.1145/2642918.2647382
http://dx.doi.org/10.1109/ICIT.2003.1290252
http://dx.doi.org/doi:10.1371/journal.pone.0049365
http://dx.doi.org/doi:10.1371/journal.pone.0049365
http://dx.doi.org/10.3390/s140101278
http://dx.doi.org/10.1145/2642918.2647413


Soft Interactive Objects. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). ACM, New York, NY,
USA, 1789–1798. DOI:
http://dx.doi.org/10.1145/2702123.2702327

19. Thiago Pereira, Szymon Rusinkiewicz, and Wojciech
Matusik. 2014. Computational Light Routing: 3D
Printed Optical Fibers For Sensing and Display. ACM
Transactions on Graphics 33, 3 (June 2014), 1–13.
DOI:http://dx.doi.org/10.1145/2602140

20. 3D Prima. Accessed: 2015-08-03. 3D Prima Conductive
ABS. http://www.3dprima.com/en/
filaments-for-3d-printers/abs-175mm/
3d-prima-conductive-abs-175mm-1-kg-spool-black.
html. (Accessed: 2015-08-03).

21. Recreus. Accessed: 2015-08-07. Recreus Filaflex
filament.
http://recreus.com/en/4filaflex-filaments.
(Accessed: 2015-08-07).

22. Christian Rendl, Patrick Greindl, Michael Haller, Martin
Zirkl, Barbara Stadlober, and Paul Hartmann. 2012.
PyzoFlex: printed piezoelectric pressure sensing foil. In
Proceedings of the 25th annual ACM symposium on
User interface software and technology - UIST ’12.
ACM Press, New York, New York, USA, 509. DOI:
http://dx.doi.org/10.1145/2380116.2380180

23. Christian Rendl, David Kim, Sean Fanello, Patrick
Parzer, Christoph Rhemann, Jonathan Taylor, Martin
Zirkl, Gregor Scheipl, Thomas Rothländer, Michael
Haller, and Shahram Izadi. 2014. FlexSense: A
Transparent Self-sensing Deformable Surface. In
Proceedings of the 27th Annual ACM Symposium on
User Interface Software and Technology (UIST ’14).
129–138. DOI:
http://dx.doi.org/10.1145/2642918.2647405

24. Valkyrie Savage, Andrew Head, Björn Hartmann,
Dan B. Goldman, Gautham Mysore, and Wilmot Li.
2015. Lamello: Passive Acoustic Sensing for Tangible
Input Components. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing
Systems - CHI ’15. ACM Press, New York, New York,
USA, 1277–1280. DOI:
http://dx.doi.org/10.1145/2702123.2702207

25. Valkyrie Savage, Ryan Schmidt, Tovi Grossman, George
Fitzmaurice, and Björn Hartmann. 2014. A Series of
Tubes: Adding Interactivity to 3D Prints Using Internal
Pipes. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’14). 3–12. DOI:
http://dx.doi.org/10.1145/2642918.2647374

26. Carsten Schwesig, Ivan Poupyrev, and Eijiro Mori.
2004. Gummi: A Bendable Computer. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’04). ACM, New York, NY,
USA, 263–270. DOI:
http://dx.doi.org/10.1145/985692.985726

27. Mélina Skouras, Bernhard Thomaszewski, Stelian
Coros, Bernd Bickel, and Markus Gross. 2013.
Computational Design of Actuated Deformable
Characters. ACM Trans. Graph. 32, 4, Article 82 (July
2013), 10 pages. DOI:
http://dx.doi.org/10.1145/2461912.2461979

28. Ronit Slyper, Ivan Poupyrev, and Jessica Hodgins. 2011.
Sensing through structure: designing soft silicone
sensors. In Proceedings of the fifth international
conference on Tangible, embedded, and embodied
interaction. ACM, 213–220.

29. Brian A. Smith, Xiaojun Bi, and Shumin Zhai. 2015.
Optimizing Touchscreen Keyboards for Gesture Typing.
In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’15). ACM,
New York, NY, USA, 3365–3374. DOI:
http://dx.doi.org/10.1145/2702123.2702357

30. Olga Sorkine and Marc Alexa. 2007.
As-rigid-as-possible surface modeling. In Symposium on
Geometry processing, Vol. 4.

31. Srinath Sridhar, Anna Maria Feit, Christian Theobalt,
and Antti Oulasvirta. 2015. Investigating the Dexterity
of Multi-Finger Input for Mid-Air Text Entry. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’15). ACM,
New York, NY, USA, 3643–3652. DOI:
http://dx.doi.org/10.1145/2702123.2702136

32. Jürgen Steimle, Andreas Jordt, and Pattie Maes. 2013.
Flexpad: Highly Flexible Bending Interactions for
Projected Handheld Displays. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’13). ACM, New York, NY, USA,
237–246. DOI:
http://dx.doi.org/10.1145/2470654.2470688

33. Stratasys. Accessed: 2015-09-25. Objet Connex 3D
Printers. http://www.stratasys.com/3d-printers/
design-series/connex-systems. (Accessed:
2015-09-25).

34. Creative Tools. Accessed: 2015-08-03. Palmiga
conductive TPU. http://www.creativetools.se/
pi-etpu-95-250-carbon-black-1kg-se. (Accessed:
2015-08-03).

35. Marynel Vázquez, Eric Brockmeyer, Ruta Desai, Chris
Harrison, and Scott E. Hudson. 2015. 3D Printing
Pneumatic Device Controls with Variable Activation
Force Capabilities. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing
Systems (CHI ’15). ACM, New York, NY, USA,
1295–1304. DOI:
http://dx.doi.org/10.1145/2702123.2702569

36. Karl Willis, Eric Brockmeyer, Scott Hudson, and Ivan
Poupyrev. 2012. Printed optics: 3D Printing of
Embedded Optical Elements for Interactive Devices. In
Proceedings of the 25th annual ACM symposium on
User interface software and technology - UIST ’12.

http://dx.doi.org/10.1145/2702123.2702327
http://dx.doi.org/10.1145/2602140
http://www.3dprima.com/en/filaments-for-3d-printers/abs-175mm/3d-prima-conductive-abs-175mm-1-kg-spool-black.html
http://www.3dprima.com/en/filaments-for-3d-printers/abs-175mm/3d-prima-conductive-abs-175mm-1-kg-spool-black.html
http://www.3dprima.com/en/filaments-for-3d-printers/abs-175mm/3d-prima-conductive-abs-175mm-1-kg-spool-black.html
http://www.3dprima.com/en/filaments-for-3d-printers/abs-175mm/3d-prima-conductive-abs-175mm-1-kg-spool-black.html
http://recreus.com/en/4filaflex-filaments
http://dx.doi.org/10.1145/2380116.2380180
http://dx.doi.org/10.1145/2642918.2647405
http://dx.doi.org/10.1145/2702123.2702207
http://dx.doi.org/10.1145/2642918.2647374
http://dx.doi.org/10.1145/985692.985726
http://dx.doi.org/10.1145/2461912.2461979
http://dx.doi.org/10.1145/2702123.2702357
http://dx.doi.org/10.1145/2702123.2702136
http://dx.doi.org/10.1145/2470654.2470688
http://www.stratasys.com/3d-printers/design-series/connex-systems
http://www.stratasys.com/3d-printers/design-series/connex-systems
http://www.creativetools.se/pi-etpu-95-250-carbon-black-1kg-se
http://www.creativetools.se/pi-etpu-95-250-carbon-black-1kg-se
http://dx.doi.org/10.1145/2702123.2702569


ACM Press, New York, New York, USA, 589–598.
DOI:http://dx.doi.org/10.1145/2380116.2380190

37. Martin Zirkl, Anurak Sawatdee, Uta Helbig, Markus
Krause, Gregor Scheipl, Elke Kraker, Peter Andersson
Ersman, David Nilsson, Duncan Platt, Peter Bodö,
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APPENDIX
DISCUSSION OF MATERIALS AND FABRICATION
There is a wide variety of different conductive materials avail-
able that one can use for 3D printing deformable objects.
Rubber and ABS filament for extrusion printers can be cre-
ated in conductive versions by adding carbon black powder
[14] or graphene (the result is often called a composite mate-
rial). In contrast to printed electronics, where high electrical
conductivity is of uttermost importance, in our case we can
relax this requirement and work with weakly conductive ma-
terial. In our experiments, we tested two commercially avail-
able 3D printing filaments: electrically conductive ABS from
3D-Prima [20] (eABS) and electrically conductive thermo-
plastic polyurethane (eTPU) from Creative Tools [34]. While
eABS is often used as a non-deformable print material, thin
sheets and wires can be bent easily within a reasonable range
without breaking and exhibit easily measurable changes in
resistance. In contrast, eTPU is highly deformable and has a
fracture strain of approximately 250%. Note that inks based
on silver, carbon black, or other conductive materials can also
be applied to models to make conductive wires. However, in
our experiments, they turned out to be very brittle and easily
break when used on deformable models.

In addition to piezoresistive filaments, we also investigated
a commercially available flexible cylindrical cord from Im-
ages Scientific Instruments Inc. (eCord), which we manually
embed in a two-step fabrication process in 3D printed objects.
As the cord is stretched 50%, its resistivity will approximately
double.

In a first experiment, we studied the relation of strain to resis-
tivity change. While all materials showed a significant change
of resistivity under deformation, we observed a substantial
difference in time-dependence and fluctuations between test
runs. In our experiments, the response of eABS and eCord
under deformation was close to linear and the dependence on
the rate of change small, which makes them both ideal for our
purposes. In contrast to these materials, we observed various

complex effects with eTPU which make the resistance highly
dependent on the rate of deformation over time and the gen-
eral history of the material deformation. This makes it ex-
tremely hard to reliably predict deformations solely based on
observations of the resistivity change. Figure 10 illustrates
this effect with a simple example in which we repeatedly
elongated a 67 mm long eCord sample and eTPU filament.
Based on these findings, depending on the required accuracy,
we carefully trade complexity of the deformation-to-signal
correlation with fracture strain and manufacturing complex-
ity. For the directly 3D printed examples, we choose to use
dual head extrusion printing using an inexpensive, commer-
cially available printer (MakerBot Replicator 2X [8]). We
note, however, that in extrusion based prints, not all filament
types stick to one another. For instance, conductive ABS does
not stick well to NinjaFlex from Fenner Drives Inc. [7], but
bonds well with Filaflex from Recreus [21], a thermoplas-
tic elastomer (TPE) material. With very soft TPU filament
also coming in a conductive version, eTPU, we have a natural
choice for a reliable printing processes.

For examples that require a more accurate deformation re-
construction, we resort to eCord. We split the virtual object
in multiple pieces such that the cords can be easily embed-
ded in a postprocess and 3D print the individual pieces on
a Stratasys Connex machine using TangoBlackPlus [33], a
non-conductive rubber-like material. To prevent slipping of
the cord inside the model, we glue all the pieces, including
the eCord material, using a stretchable Silicone glue.

Figure 10. Characterization of electrically conductive filament. Using a
tensile test machine (left), we measured the resistance change of eTPU
(top, right) and eCord (center, right) twice, using the displacement pat-
tern shown on the bottom right.
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