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Figure 1. A wireless, batteryless game of Tic-tac-toe is designed using components in the RapID standard library, fabricated using laser cutting along
with stick-on RFID tags and foil, and tracked with low latency using the RapID runtime library.

ABSTRACT
RFID tags can be used to add inexpensive, wireless, batteryless
sensing to objects. However, quickly and accurately estimat-
ing the state of an RFID tag is difficult. In this work, we
show how to achieve low-latency manipulation and move-
ment sensing with off-the-shelf RFID tags and readers. Our
approach couples a probabilistic filtering layer with a monte-
carlo-sampling-based interaction layer, preserving uncertainty
in tag reads until they can be resolved in the context of interac-
tions. This allows designers’ code to reason about inputs at a
high level. We demonstrate the effectiveness of our approach
with a number of interactive objects, along with a library of
components that can be combined to make new designs.
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INTRODUCTION
Currently, graphical user interfaces can be constructed very
quickly by composing them from a component library and
writing a small amount of “glue” code to carry out user ac-
tions. Unfortunately, the same cannot yet be said for interfaces
constructed with physical objects although there have been
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significant advances in this direction (e.g., [6, 9, 15]). One
challenge in the design of interactive physical objects is inte-
grating sensing, processing, and communications components
and their associated circuitry. For example, physical objects
must usually be specially designed to make room for circuit
boards, wiring, and power sources. Passive Radio Frequency
Identification (RFID) tags offer a number of potential advan-
tages which might overcome many of these difficulties. Pas-
sive RFID tags use very tiny electronic circuits which can be
easily affixed to, or embedded in, many objects. Each RFID
tag can be programmed with a 12-byte identifier known as
an Electronic Product Code (EPC), which can be wirelessly
queried by devices known as readers. Importantly, they also
operate without a local power source, as they draw power from
the remote reading antenna.

Recent advances in the analysis of the underlying RFID signals
used for identifying tags have demonstrated that manipulations
of tags, such as human touch, cover by conductive or dielectric
materials, and tag motion, can be reliably detected using stan-
dard RFID tags and conventional readers positioned up to sev-
eral meters away [16]. This opens up the possibility of using
these tags as input devices. To produce high accuracy inputs
from these low level signals takes time, waiting for multiple
tag reads or other evidence that the system is correctly under-
standing what manipulations have caused the signal changes
before reporting inputs. This can produce delays on the order
of two seconds for most types of manipulations, limitinga the
kinds of interactions they can be used for.

In this work, we introduce a new probabilistic framework for
processing RFID tag signals which allows the application to



respond to input much more quickly. By accurately modeling
the probabilities of partially understood input (using methods
related to [31]), it is possible to make less conservative, but
more informed decisions, and to deliver them faster – with
typical delays under 200 msec. This means that input can
generally be reported with a latency at, or under, typical mini-
mum human perception-action cycle times [3] – more in line
with most interactive systems than the two second delay that
characterized previous work [16]. Further, the probabilistic
formulation used to process the RFID tag signals can smoothly
incorporate state information from an application, and proba-
bilistic estimates can optionally be exposed to the application
so that it can reason about them in an informed fashion.

To facilitate use of the techniques described here, we have also
built an extension to the SketchUp 3D drawing package [18]
which allows a library of interactive components built using
our techniques to be easily integrated with physical objects
The library we currently provide is implemented entirely with
small, inexpensive UHF RFID tags (which in quantity can
cost as little as USD$0.10 per tag [17]). Fabrication also
requires cut to size copper foil to provide covers that can hide
the RFID tag signal, which is important for several of the
tag manipulations we support. Our system includes the code
necessary to use each library component in our probabilistic
framework at runtime.

After reviewing background on RFID sensing and key con-
cepts needed to interact with them under uncertainty, we pro-
vide a system overview of RapID, our framework for RFID-
based interaction. Following that, we describe the main contri-
bution of this paper, our solution for speeding up interaction
by interpreting interaction with RFID tags as probabilistic
inputs and managing probabilistic states. We then present a
developer API for creating more advanced applications using
these probabilistic inputs, along with a CAD extension for
quickly designing and fabricating interactive objects. Finally,
we validate our method through a series of example applica-
tions implemented with our framework including a tic-tac-toe
game, a pong game and an audio controller, and conclude by
analyzing the strengths and limitations of our approach.

Background and Related Work
There is a rich history of developing systems which enable
users to rapidly prototype interactive objects (e.g., [6, 21, 34,
29]). Since the beginning, such work has emphasized simplic-
ity of programming, often in a fashion mimetic to traditional
UI programming environments (e.g.,[6]). More recently, work
has added a facility to embed electronics in ordinary objects
(e.g., [21, 34, 26]). However these interactive circuits are
limited in scope by the size of their setting, requiring users
to make a tradeoff between small circuit footprints and larger
component devices. An onboard power source must also be
supplied. Further, while these frameworks automate much of
the low-level design work, fabricating circuits is still a manual
process which does not exploit digital manufacturing tools or
the quick peel-and-stick advantages of RFID tags.

Other competing technologies for fabricating custom inter-
active components within physcial objects include acoustic
sensing of gestures and other physical manipulation (e.g., [14,

28] and capacitive touch sensing (e.g.,[10, 29, 7]). However,
each of these technologies needs to create or use intricate and
somewhat bulky components and/or wiring inside objects, all
of which must typically be designed around when creating the
object. It is also possible to use computer vision with depth
or conventional cameras [36]. However, this approach suffers
from occlusion problems and recognition of fine manipula-
tions is difficult. One approach to overcoming this limitation
is to place the camera inside the object [27]. This overcomes
occlusion and resolution issues, but requires hollow objects
with mostly unoccluded interiors, and still requires bulky and
possibly costly electronics and power for each object.

RFID technologies fill an important gap in this body of work
by enabling real-time interaction with objects that are easily
fabricatable, require no on-board power, and require nothing
more than stick-on tags and copper covers to add functionality.
RFID systems consist of small, robust and inexpensive tags
and more complex readers which can interrogate tags within
range. RFID readers are designed to be part of the infras-
tructure of a space and to communicate with a host computer.
Current RFID readers can cost around $130 for embedded
modules [32], and around $1,000 for enterprise grade readers
[13]. The readers used in this work make use of far-field RF
effects at distances as far as 9 meters from the reader antenna
to the tag(s). This can be contrasted with the near-field effects
of readers now being built into some cell phones, which are
limited to a few centimeters in range.

Our work uses passive UHF tags, which are ultra-thin tags
powered solely by the radio frequency energy emitted by the
reader, making them battery-free. Tags operate with low power
because instead of generating a signal, they communicate with
a reader by modulated backscatter, which reflects the reader’s
carrier signal back to the reader along with an encoded tag id.
Manipulations of tags can influence the details of this signal
and past work has demonstrated that it is feasible to detect
these signal changes and interpret them in terms of user input.

Prior work has used RFID tags for input in a number of ways.
Philipose et al. instrumented people with near-field detectors,
and objects with RFID tags to detect activities [25]. Buet-
tner et al. use a custom platform for detecting movement of
tagged objects in large rooms instrumented with RFID read-
ers to disambiguate between twelve daily household activities
[2]. Recent work has demonstrated the feasibility of using
passive UHF RFID tags for detecting motion [5, 24, 16], tag
coverage [16], and touch and swipe gestures [16]. However,
robust detection has required multiple readers and antennas
[5], multiple tags per object [5], or accumulated signal data
for up to 2 seconds [16], limiting the viability of the approach
for interaction. In this paper we demonstrate how to overcome
many of these limitations.

SYSTEM OVERVIEW AND MOTIVATING EXAMPLE
RapID allows for RFID-based interaction at low latencies by
exploiting a probabilistic model of tag state. These probabili-
ties are then managed in an intelligent way by a downstream
application. This process is diagrammed in Figure 2.



Figure 2. RapID propagates uncertainty about RFID tag states to applications by maintaining probability distributions over tag velocity and cover
state, and sampling from these to update the state distributions of application-defined interactions.

Our solution is comprised of:

1. A Tag State Estimation method, which allows a system to
incrementally update probability distributions over the state
of each RFID tag, given a stream of reads from an RFID
reader.

2. An Interaction Update method, which translates these low-
level probabilistic inputs into a probability distribution over
the states of states of higher-level interactions. These in-
teractions can reason about multiple tags at once, and only
need to be written using straightforward, non-probabilistic
code.

3. A runtime API, which makes it easy for a developer to
launch and monitor interactions (both pre-defined and
developer-created).

4. An extension for SketchUp [18], including a standard library
of pre-defined starter interactors and associated code, for
designing physical objects for interaction; including code to
export descriptions of designed objects for use by the API.

Together, these components allow a user to design physical
objects, and with little to no additional code, enable user
input to an application based on how the physical objects
are manipulated.

As a motivating example, consider a scenario in which a devel-
oper desires to create an interactive game of Tic-Tac-Toe. The
application must have the ability to track the game state, which
includes detecting moves and when the game has ended. The
application must also be able to provide feedback to players
by both visually displaying the game state and providing audio
feedback at key moments during the game, such as the game
start, the start of each player’s move, and the game’s end.

Creating Tic-Tac-Toe with our framework is straightforward
(see Figure 1 and video figure). The developer designs the
board in SketchUp. Using our extensions, she creates a 3x3
array of game pieces and slots. The developer then assigns
groups (X, O, board) and IDs (board positions) to the pieces,

and uses our extension to export a table associating these
names with the EPC numbers she will program into the RFID
tags during construction. She exports a .dxf file for laser-
cutting, and fabricates the board and game pieces – attaching
foil and RFID tags where indicated.

In her game code, the developer writes code to initialize our
API (passing it the exported name/EPC table), instantiate a
token/slot interaction from our standard library, associate it
with the appropriate tags, and translate the events it produces
into game actions such as visual and auditory feedback, all of
which can be written compactly.

PROBABILISTIC FORMULATION
One of the challenges in interpreting RFID interaction data
at high speeds is the high level of uncertainty caused by the
noisy signal. Uncertain input is an issue in other domains that
involve recognition such as touch [1] and speech [23].

Several approaches exist for dealing with uncertainty. The
most common but least pliable approach is to remove uncer-
tainty before generating any application input. This approach
is what led to the two second delay in Li et al.’s work, as they
waited to inform the application until input presence and type
was known with high confidence [16]. A second approach
is to model the interface as a type of signal feedback system,
engaging the user in a tight loop that visualizes uncertainty
across the user interface [35]. However, this method requires a
radically different approach to interface construction. A final
approach is to maintain distribution over possible inputs that
could have happened [11, 19, 20, 30, 31]. By modeling this
as a monte-carlo sampling of a distribution over possible ap-
plication states [31], it is possible for the developer to reason
deterministically about the application, while the underlying
infrastructure keeps track of any uncertainty.

This final approach is well suited to handling the type of un-
certainty that arises when interpreting RFID signals as input.
Schwarz et al. [30, 31] assume that each event is a complete
distribution of possible inputs. RFID reads, however, only



provide data on a single tag at a time, providing an incomplete
view of the true interaction state of the population. Attempting
to change the state of the interface from each read event can
cause the order of tag reads to have a serious impact on behav-
ior. Thus, some way of accumulating information over time
is needed. Therefore, we have taken a two-level approach,
where we probabilistically model the state of each tag based
on signal-level information, and use these models to generate
higher level inputs that describe how we believe the tag is be-
ing manipulated. These in turn are used to (probabilistically)
update interactor state.

In the remainder of this section, we first describe the low-
level tag state distribution estimators in more detail, and then
discuss how RapID translates probabilistic input state into
probabilistic interaction state.

Tag State Estimation
For each tag in the environment, RapID maintains a proba-
bilistic estimate of a) whether it is covered/visible and b) its
velocity.

As tag reads arrive, RapID updates these distributions using
Bayes filters. Chapter 2 of [33] provides an introductory back-
ground to Bayes filters. A Bayes filter is a procedure that,
given a system evolving over time and a sequence of i ob-
servations z1:i, estimates the current distribution of possible
states xi. The variable xi can be a discrete or continuous. In
our setting, xi will either correspond to whether the tag is in
a discrete covered or visible state, or it will correspond to a
continuous value representing the tag’s velocity. The condi-
tional distribution of the current tag state, given the sequence
of observations, bel(xi)≡ p(xi|z1:i), is known as the current
belief. The belief at step i−1, is used to estimate the belief at
step i recursively:

bel(xi) =
∫

xi−1

p(xi|xi−1)bel(xi−1) (1)

bel(xi) ∝ p(zi|xi)bel(xi) (2)

These equations first account for the evolution of the sys-
tem’s state between observations using a transition model
prior, p(xi|xi−1); the updated state estimate bel(xi) is then
re-weighted using an observation model p(z|x). We use ∝ in
Equation (2) to indicate that the calculated belief is propor-
tional to the true belief and thus normalization may be required
after this step. The Bayes filter is thus a recursive application
of Bayes’ rule, modulo normalization. For readers who are
familiar with particle filtering, we note that a particle filter is a
special class of Bayes filter where the belief distributions are
approximated through a collection of samples; in our Bayes
filter, the belief distributions are calculated and maintained
explicitly. Since we maintain a visibility filter and a velocity
estimation filter for each tag, for a collection of m tags, we
maintain 2m filters.

In the following sections, we describe the transition and up-
date models for our filters for visibility and velocity estimation.

First, however, we take a moment to describe the RFID proto-
col, which provides our system with its observations.

RFID Protocol
The Gen2 UHF RFID protocol [8] allows a single reader
to inventory a collection of tags. These tags have no local
power source, and communicate by harvesting energy from
the reader’s transmissions and using it to selectively change
the RF reflectivity of their antennae. The reader measures
these reflected emissions to receive information from the tags.

However, if multiple tags modulate their reflectivity at the
same time, the reader cannot properly decode their transmis-
sions. Thus, tag inventory proceeds in a series of rounds,
where, in each round, the reader repeatedly allocates a number
of response slots, and asks all tags that have not yet replied
to reply in one of these slots. When a tag replies in a slot, the
reader queries it for its EPC, and sends this number, along
with ancillary data – in our case, a timestamp, the phase of the
reflected carrier wave, and the channel frequency – to the host
computer. Once no more tags reply, the reader starts a new
round.

In practice, this means that the time between reads of RFID
tags is randomly distributed, and depends on the total number
of uncovered tags.

In turn, we now describe the how we formulate our tag cover
and velocity filters as applications of the general Bayes filter
as described above.

Tag Cover State
When a user action causes a tag to be covered (e.g., by a foil-
covered X or O in Tic-Tac-Toe), it is effectively invisible to the
reader. Conductive (e.g. foil) or dielectric (e.g. hand) material
very close to the tag will have this effect. Thus, the lack of a
read can indicate a user action. The longer the reader fails to
receive reads from a tag over time, the more probable it is that
that tag is covered.

The state space for tag cover state is binary: xi ∈
{visible,covered} – so the corresponding Bayes filter oper-
ates on a distribution represented by a single value vi ≡ P(xi =
visible|z1:i). The observation space is continuous: zi ∈ R+,
and is equal to the time that has elapsed since the previous
read.

The transition function is straightforward – given the amount
of time t since the last observation, the unobserved visibil-
ity distribution vi = bel(xi) is computed from the previous
visibility vi−1 by decaying toward a uniform distribution:

vi←
1
2
+

1
2t/h

(
vi−1−

1
2

)
(3)

where h sets the half-life of the decay. RapID’s default value
of h is 1 second. Developers may override this value if they
know a better model for their application.

Unfortunately, the RFID protocol does not provide informa-
tion about a “missed read.” While the start-of-round signal
might provide some evidence, it isn’t exposed by common
reader interfaces. Instead, we build our observation model
on the elapsed time between subsequent reads. To estimate



Figure 3. The probability a tag will have been read after a given amount
of time, over various tag population sizes. On average, adding another
tag adds approximately 5.13 ms of latency, with a tag in a population of
10 being seen after 140 ms with 95% probability.

the probability densities p(zi|visible) and p(zi|covered) from
data, we conducted two sets of observations.

In the first, we recorded the time between reads for an un-
covered tag with a varying total numbers of tags. The cu-
mulative densities of these read times are shown in Figure 3.
As expected, tag reads are randomly distributed, with larger
population size correlated with more time between reads.

For the second set of observations we measured responses
of covered tags. We used the same setup but covered one
of the tags partially with aluminum foil. The read latency
distributions of this covered tag – as one might expect – had
large variance and mean (on the order of 2 s).

Our final observation model approximates these distributions
as Gaussians, where the visible observation model depends on
tag population size:

zvisible ∼N +(µv(m),σ2
v (m)) (4)

zcovered ∼N +(µc,σ
2
c ) (5)

µv(m) and σ2
v (m) correspond to the mean and variance respec-

tively for the observed uncovered populations of size m; µc
and σ2

c correspond to the mean and variance respectively for
the covered observations. We found that in the uncovered case,
both the mean and variance of the Gaussian had a strong linear
correlation with the tag population size (R2 with mean: 0.92,
R2 with standard deviation: 0.9072). Thus, our distribution
for visible tags is parameteric in the tag population size, m. In
the covered case, the mean and variance were mostly constant
with respect to population size. We write N + to indicate
that RapID discards the negative portion of each Gaussian
(negative read latencies don’t make sense) and normalizes the
remainder.

These Gaussians are well separated (Figure 4), making the
observation very informative.

Figure 4. An example of the fit Gaussians to the covered and uncov-
ered distributions for populations of 8 tags. The variance on the covered
distribution is so large that it appears nearly flat. The covered state be-
comes more probable after 133 ms without a read.

These transition and observation models serve to update the
visibility belief for each tag whenever a new read is received.

However, the visibility distribution is also required between
(potentially sporadic) reads in order to update interaction state.
Between reads, RapID constantly maintains the state belief
by applying the transtion model and then integrating over
the observation model, in order to estimate the probability of
having not read the tag for t seconds:

P(no read for t = T | visible) ∝ 1−
∫ T

0
N +(µv(m),σ2

v (m))dt

(6)

P(no read for t = T | covered) ∝ 1−
∫ T

0
N +(µc,σ

2
c )dt

(7)

Finally, we note that the filters are initialized with a default
v0 = 0.5 for each tag.

Velocity
User interactions that involve motion of a tag can also easily
be sensed in terms of velocity relative to the tag reader. In this
case, the state space is continuous – xi ∈R – so the correspond-
ing Bayes filter operates on a continuous distribution (modeled
as a Gaussian) xi|z1:i ∼N (µV i,σV

2
i ). The observation space

is continuous: zi ∈ R, and in this case is dependent on the
difference in RF phase angles between subsequent tag reads.
RapID represents the tag velocity as a normal distribution, and
updates the distribution’s mean, µV i, and standard deviation,
σV i, at observation i as follows.

RapID models velocity as being influenced by a normally-
distributed acceleration over time t. We let µV i,σV

2
i represent

the updated mean and variance of the velocity estimate after
the transition update. The transition update at observation i is
thus:

µV i←µV i−1 (8)

σV
2
i ←σV

2
i−1 +at (9)



We set a to 1m/s, which works well in practice, though devel-
opers using RapID may override this selection if they have a
better model for their application.

In UHF RFID, the phase of the carrier wave returning to the
reader is proportional to the path length between the antenna
and tag (modulo the wavelength of the signal) [22]. Thus,
given two subsequent reads separated by t seconds and a tag
velocity of V , one would expect to observe a phase difference
of

∆φ =
2tV

λ
+N (10)

where wavelength λ = c
f can be computed from the fre-

quency of the carrier wave and the speed of light, with noise
N ∼ N (0,0.01π−2) according to the manufacturer of our
reader [12]. From this equation, one can immediately com-
pute the observation model p(∆φ |V ). This model works well
as long as t is small; this is typically the case when the tag
is uncovered, and it is not an unnatural constraint to require
uncovered tags for motion-based interactions. Note that both
the observation and transition models are Gaussian, and thus
the velocity belief can be computed as a closed form Gaussian
at each step.

The velocity distribution is updated whenever two consecutive
reads of the same tag are performed on the same channel
(that is, with a carrier wave of the same frequency). However,
RFID readers are required by the FCC to change their carrier
frequency every 400ms [4]. In practice, about 80% of reads
are same-channel, which still provides plenty of data to keep
the model updated.

UHF RFID employs carrier frequencies in the 900-930MHz
range, giving it a wavelength of approximately 32 cm. How-
ever, the reader we are using can only determine phase φ up to
a half-wavelength, so any object that moves more than 8cm
between reads (≈ 2m/s) runs the risk of having its velocity
underestimated; of course, an object moving 2m/s will also
quickly leave the working volume of the reader.

Finally, we note that the filters are initialized with a default
µV 0 = 0,σV 0 = 1 for each tag.

Interaction State Distributions
Since interactions in RapID have uncertain inputs, they may be
in uncertain states. Given a developer-supplied deterministic
state update rule, RapID uses sampling to approximate the
distribution of possible interaction states, similar to [30].

Developers specify an interaction by providing a sampling bud-
get q, a starting state r0, and an update function u(r, i, t)→ r′
which, given a current interaction state r and a sample i drawn
from the current joint tag state distribution distribution, along
with an elapsed time t, produces an updated state sample. Note
that this function does not need to reason about probability
distributions or weights, as it takes as input only concrete
samples, rather than distributions. A typical update function
might do things like implement a finite-state controller for an
interactor.

For every current interaction, RapID maintains a population
of states R, which it updates every timestep in Monte Carlo

fashion by applying u to q sampled inputs and states (Algo-
rithm 1).

Algorithm 1 The update loop run for every interaction.
function UPDATELOOP(q, r0, u)

R0←{r0}
k← 0
while InteractionIsRunning do

t← ElapsedTime()
for i = 1 to q do

r′i ← u(SampleStates(Rk),SampleInput(Ik), t)
end for
Rk+1←{r′i}
k← k+1

end while
end function

A nice property of this method is that the solution is scalable:
updates among samples can occur in embarrassingly parallel
fashion. This means that although Rk is an approximation of
the true distribution, q can be increased and the approximation
thus improved simply by adding more CPU or GPU cores.

By default, interactions run indefinitely. However, developers
may choose to specify a post-update function which is called
after every update step. This function examines the current
interaction state distribution and can, e.g., dispatch events,
update summary statistics, terminate the interaction, or even
modify the sample population. One such post-update function
that we have found convenient terminates the interaction and
dispatches an event whenever an interaction state accounts for
more than a (user-specified) proportion p of the total pool of
states.

DEVELOPER API
Our Development API, which is implemented in C#, includes
three developer-facing classes, Application, Interaction, and
InteractionState. Though these classes may be extended for
custom behavior, RapID already includes subclasses to support
the interactors in its standard library. For example, with the
game piece interactor, developers can use an off-the-shelf
Interaction to track piece placement, and must only specify
what happens when specific game pieces are placed. Figure 5
provides a visualization of how these classes are related in our
API.

Application is a singleton class which handles interaction
with the RFID reader hardware, including setting a tag mask
to avoid reading tags that are currently irrelevant to the Inter-
actions. It also runs tag state estimation and the Interaction
update loop.

We have produced a version of RapID whose Application
class includes additional functionality, including a general-
purpose main loop and functions to visualize the superposition
of interaction states; however, the demos shown in the video
were all produced using a version of RapID whose Application
class sits alongside user code, rather than subsuming it.

The Interaction class represents interaction processes which
run in an Application. Each Interaction is responsible for



Application

Interaction 1

Update()

Interaction 
1 State

Update()

Post-Update()

...

Main 
Loop

C
U
S
T
O
M

U
S
E
R

L
O
G
I
C

Interaction 2

Update()

Post-Update()

Update()

Estimate()

Interaction 1 
State

Update()

Confirm()

Interaction N

Interaction 
2 State

Update()

Interaction 
N State

Update()Update()

Post-Update()

Update()

Figure 5. A visualization of our API. A main application contains a collection of Interactions, each with its own internal probabilistic InteractionState
representation. The application iteratively updates each Interaction, which in turn update their InteractionStates. Additional user code discrete from
inputs can live inside the Application but distinct from our RapID API.

maintaining and updating a distribution over possible Interac-
tionStates and contains an overridable post-update function,
as discussed in the previous section.

Finally, InteractionState wraps the state and update function
for each interaction. Developers creating a new interaction will
generally create a subclass of InteractionState and override its
Update method.

STANDARD COMPONENT LIBRARY
While RFID tags can be embedded on any object, we provide
an interface for designing new objects from scratch. Our
interface is designed as a component library and extension
for SketchUp [18], a commonly used CAD package aimed at
novice designers, which can export designs to .obj and .dxf
files for digital manufacturing.

The component library (Figure 6) contains several basic in-
teractive elements, already marked up with special materials
to indicate where to place foil and tags. The extension script
assigns a unique EPC to every RFID tag placed in the model;
creates a text label so that the developer will know what EPC
to set on their RFID tags during construction; and saves a table
mapping these EPCs to SketchUp object names, for use when
referencing tags in the API.

RapID’s standard library contains the following objects:

Bare Tags and Covers Tags and foil covers are the building
blocks of any interaction, and tags can also be used on their
own to sense motion or touch.

Game Pieces and Slots. Game pieces and slots have tags and
covers placed so that when a piece is inserted into a slot, both
the piece’s tag and the slot’s tag will be covered. Correspond-
ing Interaction code identifies correlated (dis)appearances of
tags to keep track of which pieces have been placed into which
slots. Such objects are a useful building-block for defining
most board games (our Tic-Tac-Toe application uses pieces
for both the "x"’s and the "o"’s; they can also represent pawns

in checkers or various chess pieces), or registration of fig-
urines for applications such as Skylanders or Amiibo1. Pieces
are keyed by trimming a corner to ensure that they are always
placed in an orientation in which the respective tags and covers
to touch.

Sliders. A slider is a row of tags with a sliding cover, allowing
it to take on a range of states depending on which tags are
covered. Sliders are especially useful for range-based inputs,
and the slider can be fabricated at arbitrary lengths. The
number of slider states is linear in its length. The standard
Interaction for sliders estimates the slider state by looking for
either a single covered tag or two adjacent covered tags. Our
standard library provides sliders with and without rails to hold
the cover in place (since “cover not present” can be a useful
interaction signal).

Rotary Encoder. Our rotary encoder places n tags radially
from its center, and uses a foil spinnable cover cut into an n-bit
circular gray-code pattern. An encoder with n tags will have
2n states. The state is estimated by sampling the cover state of
each of the tags - each subset of covered tag states corresponds
to a unique encoder state.

EXAMPLE APPLICATIONS
In order to test the RapID framework and component library,
we created several applications which use tracked RFID tags.
We encourage readers to view the accompanying video to see
these applications in action.

Our testing environment (Figure 7) was a general-purpose
office space. We placed an Alien ALR-9611-CR antenna under
small wooden table (chosen because it is RF-transparent).
Atop the table we placed a monitor for visual feedback, along
with our custom RFID-tracked input devices. We connected
the antenna to an Impinj Speedway Revolution R420 UHF
RFID reader, which, in turn, was connected to the computer
1See http://www.skylanderscharacters.com/figures.asp and http:
//www.nintendo.com/amiibo respectively.

http://www.skylanderscharacters.com/figures.asp
http://www.nintendo.com/amiibo
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Figure 6. Our standard component library for SketchUp includes – from left to right – bare tags and covers, game pieces and slots, sliders without and
with locking rails, and a rotary encoder. Blue material indicates tags, while orange material indicates metallic foil covers.

Figure 7. Our testing area consisted of an RFID antenna placed on the
floor, a non-metallic table, and a monitor for visual feedback. The RFID
reader and the computer running the application (both not shown) are
placed to the side, and connected via ethernet.

running the application via ethernet. Latency of the ethernet
connection, as reported by the ‘ping’ command, was less than
1 ms.

Our applications use our RapID C# API for input, and the
Unity game engine for graphics and sound. All reported num-
bers are from application tests run on a Late 2013 MacBook
Pro Retina, 15-inch, with a 2.6 GHz Intel Core i7 processor
and 16 GB of RAM. In all cases RapID-related processing
was a negligible part (< 10%) of the overall runtime of the
application.

Each example application required fewer than 200 lines of
code to be explicitly written by the developer, with the most
complex (Pong) taking 188 lines (mostly concerned with com-
plex ball physics), and the least complex (Spaceship) only
requiring 73. Sampling budgets were never an isuse.

Figure 8. Our Tic-Tac-Toe application’s X and O markers. From left
to right: as designed in SketchUp; pending RFID and foil attachment;
completed.

Tic-Tac-Toe
Our Tic-tac-toe application, Figure 1 and 8, provides visual
and audio feedback about a game of Tic-tac-toe, prompting
players to place game pieces into slots on a physical fabricated
board, and congratulating them if they win.

Tic-tac-toe was designed by using our SketchUp components
for the physical design, fabricated from laser-cut plywood, and
programmed using RapID’s default “game piece and slot” in-
teraction, which maintains a list of piece/slot correspondences,
incrementally updating the state when the majority of its sam-
ples agree on the correlated (dis)appearance of a pair of “piece”
and “slot” tags.

The finished example has the most tags (18) of any example,
but at 530 reads per second, each tag state is still updated at
approximately 29Hz.

Figure 9. In our spaceship application, a single tag is used to track
the motion of a spaceship model. This motion is used to animate an on-
screen ship.

Spaceship
Our spaceship application (Figure 9) demonstrates how single-
tag motion tracking can add interactivity to an otherwise inert
object. When the user shakes the spaceship prop on the table,
the spaceship on the screen accelerates.

This application animates the on-screen ship using the value
reported by our our default “speed” interaction, which com-
putes the average magnitude of its state’s samples of a tag’s
velocity. This application also serves to test the upper bound
on single-tag update speed – 146 reads per second, of which
approximately 140 were same-channel reads suitable for ve-
locity updates.

Figure 10. In our pong-like application, two slider components fabri-
cated using different technologies are used to control the paddles in the
game.

Pong
Our pong application (Figure 10) uses two slider compo-
nents from the component library to control a pong-like game.



Such a game requires responsive (low-latency) controls to be
playable.

The sliders are basic parts, included in our SketchUp compo-
nent library. We chose to use a different fabrication process
for each slider to show that RapID is material-agnostic. One
slider was printed on an Object Connex 260 3D printer using
Vero Clear material, while the other was made from laser-cut
acrylic, stacked and glued. Both perform well, providing no
noticable advantage in play to one side or the other.

Each slider is read using RapID’s default “slider” interaction.
This interaction’s states each estimate the slider position based
on which tags they see as covered in their sample of the tag
distributions, and a post-update function combines these esti-
mates with a weighted average.

During our tests, RapID processed about 415 reads per sec-
ond – that is, it was able to update each of the eight tags at
approximately 50Hz.

Figure 11. Our audio controller application uses several RapID compo-
nents and associated interactions to enable an interactive music-mixing
experience.

Audio Controller
Another application example is an audio controller (Figure 11).
Users of the controller place pieces associated with music
loops into two slots to activate them, and move sliders to
change the volume of the respective currently active loops.
This audio controller shows how a device can be quickly
composed using different components and interactions from
RapID’s library, and shows how multiple interactions (two
slider interactions and a piece/slot interaction) can be com-
bined to build a more sophisticated experience.

The completed device contains 17 tags, and – in our tests –
produces about 490 reads per second, resulting in an approxi-
mately 28 Hz per-tag update rate.

Quiz Game
In our quiz game application (Figure 12), players are asked a
multiple choice trivia question; players then select their answer
by launching a puff of air from a vortex cannon at one of
three flags. The quiz game example demonstrates how RFID
tracking can be used to build large interactive experiences (the
read range of the tags we are using is several meters), and
shows how custom interactions can be useful.

Figure 12. In this quiz game, the player answers each question by
shooting a puff of air at one of three curtains using a vortex cannon toy.
A custom RapID interaction reads the velocities of tags attached to the
bottom of each curtain to decide which (if any) has been hit.

For this example, an interaction was written that compares the
average speeds of tags attached to the three flags, terminat-
ing with a confirmed selection whenever one tag’s speed is
significantly higher than the others with high probability.

Discussion
As we have demonstrated, off-the-shelf RFID tags and read-
ers can support reasonably low-latency wireless interactivity.
However, our system is not without limitations. Velocity can
only be detected for motion toward or away from the antenna,
so extra antennas would be needed to extract full 3D motion.
Another limitation is that tags cannot be placed directly on
dielectric surfaces, meaning that intermediate surfaces must
be put in between the tags and any dielectric surfaces.

Since the average time between tag reads scales linearly with
the number of tags in view, there is a limit on the number of
tags that can be added before the responsiveness for touch
events begins to suffer. Similarly, because only a limited
number number of tag reads happens within a single channel,
and two reads of the same tag must happen within the same
channel in order to extract motion features, with enough tags
tracking quick motion accurately becomes infeasible. This
wasn’t an issue in any of our demonstrations (up to 20 tags),
but with enough tags we expect it to become one.

The UHF RFID Gen2 protocol includes support for the selec-
tion of subsets of tags using tag masking. This should allow
for responsive interactions with large populations of tags, as
long as only a small subset needed to be read at once, such as
only the X’s and board tags or only the O’s and board tags in
Tic-Tac-Toe. While we did test dynamically changing the tag
mask, we did not include it in any of our examples because we
found changing the mask to be an expensive operation for our
reader (with delays up to 150 ms), and this added overhead
was not worth the increased tag responsiveness in any of our
applications.

While classification with RapID is roughly ten times faster
than the prior state of the art, IDSense [16], the methods
cannot be compared directly. IDSense relies on a discrimina-
tive model for activity recognition whereas RapID employs
a generative model. Thus, IDSense waits and collects suffi-
cient information about a tag before giving a definitive answer
about its state; while RapID immediately responds but only
converges over time to the correct label. In practice, RapID
converges to the correct cover/uncover labels with high proba-
bility and high accuracy within 200ms, ten times faster than



the flat 2s required for IDSense’s method. A more rigorous
probabilistic evaluation and benchmarking of RapID’s meth-
ods may be desired in the future.

Hardware or reader firmware modifications could further lower
latency and improve the range of possible interactions. For
example, modified reader firmware that was more careful
about frequency hopping would allow more tags to be simul-
taneously tracked for speed; while firmware that could poll
different tags at different frequencies would allow for more
flexible interface designs. In addition, it might be possible to
create custom RFID tags specifically for interaction, e.g., by
having them perform some sort of low-power sensing locally,
rather than just reporting an ID. It might also be possible to
create tags which can be placed on more kinds of material
surfaces. Finally, the RFID protocol itself wasn’t designed for
interactive applications; it could be revised to better support
the sorts of sensing we have described. In the future, it would
also be valuable to explore processes that can embed the tags
into objects during digital fabrication.

CONCLUSION
We demonstrated how a designer can use RFID tags to add
inexpensive, wireless, low-footprint, batteryless, low-latency
input sensing to objects. The key to our approach was a
probabilistic formulation which enabled low-level uncertainty
to be handled in a high-level fashion. This, coupled with
an API for managing probabilistic interactions and a simple
design interface embedded in SketchUp makes RapID both an
easy to use and flexible design and development platform. By
making it easy to add RFID-based sensing to objects, RapID
enables the design of new, custom interactive objects with a
very fast development cycle.
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