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Abstract—We present a novel computational approach to
optimizing the morphological design of robots. Our framework
takes as input a parameterized robot design and a motion plan
consisting of trajectories for end-effectors, as well as optionally,
for its body. The algorithm we propose is used to optimize
design parameters, namely link lengths and the placement of
actuators, while concurrently adjusting motion parameters such
as joint trajectories, actuator inputs, and contact forces. Our
key insight is that the complex relationship between design and
motion parameters can be established via sensitivity analysis if
the robot’s movements are modeled as spatio-temporal solutions
to optimal control problems. This relationship between form and
function allows us to automatically optimize robot designs based
on specifications expressed as a function of range of motion
or actuator forces. We evaluate our model by computationally
optimizing two simulated robots that employ linear actuators:
a manipulator and a large quadruped. We further validate our
framework by optimizing the design of a small quadrupedal robot
and testing its performance using a hardware implementation.

I. INTRODUCTION

In the not-so-distant future, a rich ecosystem of robots for
service, search and rescue, personal assistance and education
have the potential to improve many aspects of our lives.
The process of creating new types of robots, however, is
notoriously challenging because their motor capabilities are
intimately related to how they are designed. For this reason,
creating new robots requires a great deal of experience, and
is a largely manual and time-consuming task. This tedious
and error-prone approach to creating robots is unfortunately
necessitated by the lack of formal models that can predict the
complex interactions between the design of a robot and its
ability to effectively serve its intended purpose.

Rather than relying on trial-and-error approaches, we seek
to develop a computational model with the predictive power
required to inform design decisions. To achieve this goal, we
must establish a relationship between the form and function of
robotic devices. To this end, we model a robot’s movements
as spatio-temporal solutions to optimal control problems. The
sensitivities of these optimal solutions enable a guided ex-
ploration of the manifold that relates a robot’s morphological
design parameters and its motor capabilities (Fig. 1).

To test the effectiveness of our computational approach,
we use it to optimize the design of linearly actuated robotic
devices, a manipulator and a large quadruped, with the goal
of minimizing the actuator forces required to drive desired

Fig. 1. A set of motion and task constraints implicitly define a manifold of
valid designs.

motions. Further, to validate the result of our simulations,
we create an optimized design for a small quadrupedal robot,
and compare the performances of the original and optimized
designs on fabricated hardware.

II. RELATED WORK

Designing hardware and motion of robots is a complex
task which needs to consider numerous parameters and non-
intuitive relationships between them. To obtain a good initial
guess for this challenging problem, robot designers often get
inspiration from creatures in nature. Under this paradigm,
many robots have been successfully designed and built by
mimicking morphology and locomotion of real-life animals
including salamanders [8], cheetahs [26], kangaroos [11], and
chimpanzees [18]. Although these animals can be good sources
of inspiration, designing robots is still a time-consuming pro-
cess that requires repetitive design revisions and performance
tests. In this work, we focus on providing an intuitive design
framework that allows editing with shorter cycles by identify-
ing relationships between design parameters and performance
criteria.

To overcome the complex problem of designing robots,
there exists prior work to automate the design by optimiz-
ing morphology for a given performance criterion, such as
locomotion speed or energy consumption. In particular, evo-
lutionary algorithms (EA), such as Genetic Algorithm (GA)
or Simulated Annealing (SA), have received considerable
attention for solving design optimization due to its capability



to handle discrete changes. This approach has been success-
fully deployed to find the optimal morphology for various
types of robots, including virtual creatures [27], manipulators
[19], tensegrity robots [20], and soft robots [6]. Although
evolutionary algorithms have been proven to be simple yet
effective for exploring various designs, the key limitations
are limited guarantee on optimality of the final design and
difficulty to reproduce the same results on subsequent trials.
Instead of relying on stochastic operations, our framework
directly identifies the required changes for optimizing the
performance of the robot.

In the robotics community, a number of researchers take
the approach of automating the design process by optimizing
the morphology of a robot for a given task. In general, this
approach solves a large optimization problem that minimizes
a performance criterion while satisfying kinematic and dy-
namic constraints. The task-based design optimization has
been widely applied to manipulators [22, 5, 28] and paral-
lel manipulators [17, 7, 30] for reaching desired workspace
and avoiding joint singularities. However, there exist only a
few studies on under-actuated robots, such as pipe-cleaning
robots [15], stair-climbing mobile robots [16], virtual creatures
[29, 10], or quadrupeds [12] due to complexity of required
models.

Such monolithic design optimization is often not easy
to use in practice. One of the main problems is that this
approach usually takes long time (a few hours for simple
robots) to optimize the design. Furthermore, as the first run
of optimization rarely results in a satisfactory design, the user
needs to repeat the optimization many times while adjusting
the objective function. Instead, our framework provides an
iterative editing method that the user can provide the change
directions any time during the optimization process.

Two of the three examples used in this paper utilize
linear actuators, motivated by the recent robots empow-
ered by hydraulic or electronic linear actuators to realize
large joint torques in manipulators [2], humanoids [1], and
quadrupeds [25, 24, 3, 4]. One of the difficulties of using
linear actuators is finding their optimal layout to realize large
moment arms while achieving the necessary range of motion,
which is not intuitive due to nonlinear relationships between
joint positions and forces. The examples demonstrate that our
framework can effectively handle linear actuators by including
their attachment locations as part of the design parameters.

III. BACKGROUND: IMPLICIT FUNCTION THEOREM

The implicit function theorem [13] is a tool for converting
an implicitly defined relationship between two sets of variables
to an explicit function. Let the following implicit function f :
Rn+m → Rm be a relationship between two sets of variables,
y ∈ Rn and z ∈ Rm:

f(y, z) = 0. (1)

For the given implicit relationships f , our goal is to convert
it to an explicit function g : ∆y 7→ ∆z within a small disk

around the current point, (y0, z0). The Jacobian Df describes
linearized changes around the given point as:

(Df)(y, z) =
[ δf
δy1

, · · · , δf
δyn
| δf
δz1

, · · · , δf
δzm

]
(2)

where y1, · · · , yn and z1, · · · , zm are entries of y and z. When
we change y0 and z0 by ∆y and ∆z, the change of the
function ∆f should be zero to remain on the manifold defined
by f :

∆f = 0 = (Df)(y0, z0)[∆y; ∆z]

=
[ δf
δy1

, · · · , δf
δyn

]
∆y +

[ δf
δz1

, · · · , δf
δzm

]
∆z.

(3)

If there are no additional inequality constraints, the explicit
function g can be obtained by simply taking the inverse of the
Jacobian matrix with respect to z:

∆z = −
[ δf
δz1

, · · · , δf
δzm

]−1[ δf
δy1

, · · · , δf
δyn

]
∆y. (4)

For the general k dimensional function f : Rn+m → Rk,
we could take the Moonre-Penrose pseudoinverse or employ
numerical optimization to obtain ∆z that satisfies Eq. (3) as
we describe in the next section.

IV. ALGORITHM

When a robot executes a motion, the robot and motion can
be described by a set of design and motion parameters. Our
goal here is to develop a tool that can efficiently navigate
through the implicitly defined manifold of valid parameters.
In this section, we first describe how the implicit function
theorem can be applied to interactive robot design, followed
by the details of our problem formulation. We then present the
details on how to formulate the relationships between various
parameters as a linear system using the implicit function
theorem, and how to efficiently solve it using the null space
of the linear system.

A. Overview

A robot design can be described by a set of parameters such
as link lengths and actuator attachment points. A robot motion,
on the other hand, can be described by joint positions, joint
torques, and contact forces at every time frame. These vari-
ables collectively form a set of design and motion parameters
that defines a robot design and its motion.

The design and motion parameters must satisfy various
constraints such as the equation of motion. In some cases, the
desired motion may be given as end-effector trajectories that
provide additional constraints on the end-effector positions at
every frame.

These constraints form the implicitly-defined manifold of
valid robot designs and their corresponding motions. We apply
the implicit function theorem to derive the relationships among
the design and motion parameters. By grouping the parameters
in various combinations into y and z, we can compute how
to change a subset of parameters in response to the changes
in the other parameters while maintaining the constraints. For
example, if we form y by all the design parameters and include



all motion parameters in z, we can compute how the motion
should be changed according to a design change.

We can even perform certain types of optimization using
this technique. Consider choosing the maximum force of a
specific actuator as the only element of y, and giving a
small negative value as ∆y. In this case, Eq. (4) gives how
to concurrently change the design and motion to reduce the
peak force. Alternatively, we can choose to fix the design and
change only the motion by adding the design parameters to y
and specifying zero changes for them.

This formulation provides an entirely new approach to the
robot design problem: the user can choose the subset of
parameters and their change directions, and the algorithm will
automatically compute how the other parameters should be
changed for the system to stay on the constraint manifold.
In contrast to traditional numerical optimization, the user no
longer has to formulate the cost function for each set of op-
timization variables, or indirectly manipulate the optimization
result by adjusting the weights in the cost function.

B. Problem Description

1) Parameters: In our problem, we have two sets of pa-
rameters: design parameters and motion parameters. Design
parameters, such as link lengths l and attachment points of
linear actuators α, define the robot’s morphology that is
constant over time. On the other hand, motion parameters
describe the state and control signals of the motion at each
of the N sample frames. Motion parameters include joint
positions qi, actuator forces τ i, and contact forces at the
M end-effectors fi,j (i = 1, 2, . . . , N, j = 1, 2, . . . ,M). We
assume that only the end-effectors make contact with the
environment.

By collecting all the design and motion parame-
ters, we define the parameter vector x as x =
[lT ,αT ,qT

1 , . . . ,q
T
N , τ

T
1 , . . . τ

T
N , f

T
1,1, · · · , fTN,M ]T . We de-

note the size of x by P .
2) Constraints: A set of design and motion parameters is

valid only when it satisfies the task and physics constraints.
The first constraint we consider is that the motion of the

robot must satisfy the equation of motion. We therefore define
the objective function associated with the equation of motion
as

wEOM
i (x) = |Mq̈i + c−Rτ i −

M∑
j

JT
j fi,j |2 = 0 (5)

where M is the joint-space inertia matrix, c is the sum of
gravitational, centrifugal and Coriolis forces, R is a moment
arm matrix that maps actuator forces to joint torques, and Jj is
a Jacobian matrix of the position of the jth end-effector with
respect to the joint positions. For a robot with rotary actuators,
R becomes an identity matrix. For floating-base robots such
as legged robots, R contains a zero matrix corresponding to
the unactuated floating base.

For brevity of representation, we omit the dependency of
matrices: for instance, the moment arm matrix R depends on

l, α, and qi. The velocity q̇i and acceleration q̈i are computed
from finite differences of qi.

Many tasks can be described by a set of desired end-effector
trajectories and its objective function can be defined as:

wEE
i,j (x) = |ej(l,qi)− ēi,j |2 = 0 (6)

where ej(∗) evaluates the j-th end-effector position and ēi,j is
the desired position of the j-th end-effector at the i-th frame.

In case of cyclic motions such as locomotion, we place an
additional constraint that the joint positions for the first and
last frames must be identical:

wLoop(x) = |q1 − qN |2 = 0 (7)

In addition to the equality constraints that represent the
implicit relationships, we need to define a set of inequality
constraints to limit the range of some of the parameters
and enforce contact forces to stay within a friction cone.
For brevity, we will omit the details of these straightforward
inequality constraints.

For robots with rotary actuators, the lower and upper limits
for joint positions can be simply defined as bounds on the
elements of qi. If the robot includes linear actuators, their
joint positions are limited by the stroke ranges. Therefore, we
place the following constraint on the positions of each of the
K actuators as

llok ≤ li,k(x) ≤ lhik (8)

where llok and lhik are the lower and upper bounds of the k-th
linear actuator, and li,k(∗) computes its position at the i-th
frame.

C. Formulation of Linear System

A change in any subset of parameters will likely cause
violation of some constraints, and such violation must be
corrected by changing the other parameters. We apply the
implicit function theorem to obtain the linear relationships
between the parameters in order to constrain the parameter
changes to stay on the manifold. In the following, we refer to
the previously defined H(= N + N × M + 1) constraints
as w1, . . . , wH , and their gradients with respect to x as
C1, · · · ,CH .

Defining f = (w1 . . . wH)T may seem to be the
most natural choice to apply the implicit function theorem.
Unfortunately, we cannot directly use the objective functions
because their gradients are always zero for all parameters on
the manifold due to their quadratic forms. Instead, we use the
gradient Ci of the constraints as the implicit relationships,
where the Jacobian of gradients (i.e. Hessian of Wi) must be
equal to zero.

Because the change of the gradient function ∆Ci should be
zero, we can build a linear system of ∆x as:

∆Ci = Di∆x = 0, (9)

where Di is the Jacobian of the gradient [δCi/δx]. We apply
finite difference to compute Di because it is impossible or
very difficult to analytically compute them. To improve the



accuracy, however, we use analytical gradients for computing
Ci with respect to some of the parameters as detailed in
Section IV-F1.

The constraints on linear actuator positions (Eq. (8)) are
also converted to a linear system of ∆x using the chain rule:

llok ≤ l0i,k + Li,k∆x ≤ lhik (10)

where l0i,k is the initial actuator position li,k(x0) and Lk is the
Jacobian matrix δli,k/δx.

By collecting all equality and inequality constraints, the
linear system is formulated as follows:

A1∆x = b1

A2∆x ≥ b2,
(11)

where

A1 =

 δC1/δx1 δC1/δx2 . . . δC1/δxP
...

...
. . .

...
δCH/δx1 δCH/δx2 . . . δCH/δxP

 (12)

b1 =
[
0 · · · 0

]T
(13)

A2 =


L1,1

−L1,1

...
−LN,K

 (14)

b2 =
[
llo1 − l01,1 −(lhi1 − l01,1) · · · −(lhiK − l0N,K)

]
.
(15)

Note that the matrices of the formulated linear system are
very sparse, because the motion parameters only affect the
constraints on the corresponding frames.

The final component of the system is the user input speci-
fying the desired changes of a subset of parameters ∆ȳ. We
denote the remaining unknown parameters by ∆z, which we
shall determine such that the constraints are maintained after
∆ȳ is applied. Without losing generality, we can divide the
equality and inequality constraints of Eq. (11) as

A1y∆ȳ + A1z∆z = b1

A2y∆ȳ + A2z∆z ≥ b2.
(16)

D. Optimization

Instead of using the pseudoinverse as in Eq. (4), we compute
z by applying numerical optimization because 1) we also
have inequality constraints, and 2) there may exist multiple
solutions or there may be no exact solution, depending on
the size of ȳ. The optimization problem can be derived from
Eq. (16) as

min
∆z

∆zTS∆z

s.t. A1z∆z = b1 −A1y∆ȳ

A2z∆z ≥ b2 −A2y∆ȳ,

(17)

where S is a positive definite, diagonal weight matrix, where
we use 0.01 for actuator forces τ , 10.0 for contact forces f ,
and 1.0 for others.

Although this is a standard quadratic programming problem,
it is numerically difficult to solve due to a large number of
constraints. We therefore represent the feasible solution space
with respect to the linear constraints using the null space of
the coefficient matrix A1z:

∆z = ∆z0 + Nu (18)

where ∆z0 = A+
1z(b1 − A1yȳ) and N represents the null

space of A1z . Note that both A+
1z and N can be efficiently

computed from one singular value decomposition. Eq. (17)
can now be reduced into

min
u

(∆z0 + Nu)TS(∆z0 + Nu)

s.t. A2z(∆z0 + Nu) ≥ b2 −A2y∆ȳ
(19)

which can be solved much more efficiently than the original
optimization problem.

E. Summary

Algorithm 1 summarizes the optimization algorithm de-
scribed in this section. It takes the initial parameters x0 as
input, and finds the optimal parameters x∗ that realizes the
desired change and also maintain the design and motion on
the constraint manifold. In Algorithm 1, E represents the sum
of the objective functions:

E =

H∑
i

wi(x). (20)

A non-zero E implies violation of constraints due to numerical
errors caused by linear approximation. At each iteration, we
attempt to correct this error as described in Section IV-F2. We
run the optimization until it reaches the maximum iteration
(1000 in our implementation), or the error E is greater than a
threshold Ē (10−6).

Algorithm 1 Design Optimization Algorithm
Require: Initial design and motion parameters x0

1: x← x0.
2: while not reach the maximum iteration do
3: determine ∆ȳ by selecting the desired changes.
4: formulate A1, b1 from the equality constraints.
5: formulate A2, b2 from the inequality constraints.
6: obtain ∆z by solving Eq. (17).
7: x← x + (∆ȳT ∆zT )T .
8: correct numerical errors (Section IV-F2)
9: calculate E using Eq. (20).

10: if E > Ē then
11: break.
12: end if
13: x∗ ← x.
14: end while
15: return x∗

In line 3 of Algorithm 1, we could also let the user
interactively choose ∆ȳ as demonstrated in Section V-A. This
version of the algorithm provides an intuitive interface for



TABLE I
THE PROBLEM PARAMETERS

Problem # Parameters # Expanded Nodes

Robot Actuation # Actuators # Frames Lengths Actuator
Points

Joint
Positions

Actuator
Forces

Contact
Forces

# Total
Parameters

Time per
Iteration

Manipulator Linear 4 7 4 8 28 28 0 68 0.8s
Large Quadruped Linear 16 13 8 16 208 208 156 596 40.2s
Small Quadruped Rotary 14 13 5 N/A 182 182 120 489 32.1s

optimizing the design of a robot by specifying desired changes
to any of the design or motion parameters. For example, the
user could choose to reduce the maximum torque, or adjust
the link length depending on the design requirements.

F. Implementation Note

1) Computation of Gradients: It is desirable to calculate the
analytical gradient vector Ci with respect to all parameters.
Unfortunately, most of the constraints are nonlinear and it is
difficult to analytically calculate their gradient with respect
to some of the parameters, such as the partial derivative of
the Coriolis forces with respect to the joint velocities. Instead,
we only compute the analytical gradients that can be easily
derived. In our experience, this compromise provides enough
accuracy while keeping the computational cost reasonable.

For instance, the gradient of end-effector constraints with
respect to the link lengths can be simply computed as:

δwEE/δl = JT
j (ej(l,q)− ē). (21)

Similarly, the analytical gradients of the equation of motion
constraint can be easily calculated for the joint forces and
contact forces as:

δwEOM/δτ = RT (Mq̈i + c−Rτ i −
M∑
j

JT
j fi,j)

δwEOM/δf =

[J1 · · ·JM ]T (Mq̈i + c−Rτ i −
M∑
j

JT
j fi,j).

(22)

2) Correction of Numerical Errors: Because we apply
linear approximation to the nonlinear constraints, numerical
errors will accumulate and eventually lead to physically invalid
solutions. Our framework prevents this numerical deviation
by re-optimizing only the motion parameter for the equality
constraints.

First, we optimize the joint angles considering only the end-
effector constraints (Eq. (6)):

qi = argmin
qi

wEE . (23)

We then optimize the actuator forces and contact forces to
satisfy the equation of motion (Eq. (5)):

τ i, fi,1, · · · , fi,M = argmin
τ i,fi,1,··· ,fi,M

wEOM . (24)

Note that the design parameters are not changed in the error
correction process.

TABLE II
THE RESULTS ON MANIPULATORS WITH LINEAR ACTUATORS

Link Lengths(cm) Actuator
Positions (cm)

Maximum
Force (N)

Design Link1 Link2 Link3 Link4 Link2 Link3 Manipulation
Initial 20.0 30.0 30.0 20.0 15.0 5.0 5.89×102

Motion Optimized 20.0 30.0 30.0 20.0 15.0 5.0 4.87×102

Design Optimized 19.7 24.4 29.5 24.9 14.5 8.3 3.83×102

Length Edited 24.0 24.4 29.1 24.9 10.8 8.3 4.80×102

V. EXPERIMENTS

In this section, we discuss the simulation and hardware
experiments for validating the proposed design optimization
algorithm. We tested three sets of examples: simulation of
linearly actuated manipulators, simulation of linearly actuated
quadrupeds, and hardware of quadrupeds with off-the-shelf
rotary servos. The algorithm is implemented in Python with the
PyDART [23] and SciPy library [14] on Ubuntu Linux, and the
computations are conducted on a single core of 3.40GHz Intel
i7 processor. The parameters for all problems are described in
Table I.

A. Simulation of Manipulators with Linear Actuators

We first show a proof of concept of our algorithm by
optimizing the design of a linearly actuated manipulator. First,
we provide an initial manipulator design with link lengths of
20 cm, 30 cm, 30 cm, and 20 cm. The manipulator has four
degrees of freedom fully actuated by four actuators, each of
which with 25 cm body length and 16 cm stroke. The actuators
are monoarticular with 5 cm moment arms except the second
biarticular actuator with a 15cm moment arm. The attachment
points of actuators can be adjusted vertically, except the points
on the base link that can adjusted horizontally. The input task
is to move a 5 kg-object along the target trajectory that has
the 60cm maximum distance from the base link. Note that the
initial design is generated based on simple rules rather than
pre-tuned for any performance index. In our experience, our
framework is not very sensitive to the initial parameters.

In this example, we demonstrate two editing modes: force-
driven mode for reducing the maximum actuator force, and
length-driven mode for adjusting the length of the target link.

We begin with the force-driven editing mode, which pro-
vides an intuitive interface for editing the design such that
the maximum actuator force is reduced. At each iteration,
our algorithm selects the maximum force parameter during
the entire motion, and set the desired change as −1 %
of its value. Using our algorithm, we are able to find the
optimal design that reduces the maximum actuator force from
589 N to 383 N, which happens at the third actuator. The



Fig. 2. Comparison of the original (top) and optimized (bottom) manipu-
lators. Note the larger moment arm for the third actuator in the optimized
manipulator.

Fig. 3. Force profiles of the third actuator in three designs: the initial design
and motion (red), the initial design with optimized motion (green), and the
concurrently optimized design and motion (blue). The concurrent optimization
of the design and motion parameters results in the most efficient actuator force
profile.

Fig. 4. Changes in link lengths and the maximum actuator force the third
actuator during the manipulator design optimization process. The first half
was edited in the force-driven mode for minimizing the maximum torque,
while the second half was edited in the length-driven mode for increasing the
length of the first link.

parameters of the resulting design are shown in Table II, and
the visual comparison is provided in Fig. 2. In general, the
algorithm increases the moment arm for the third actuator
by changing its attachment point, and adjusts the second and
fourth link lengths to secure the necessary range of motion.
Further increasing the moment arm of the third actuator cannot
maintain the range to perform the entire desired motion, which
triggers the break condition in line 10 of Algorithm 1.

Our algorithm also allows optimization of the motion pa-
rameters only, which gives another pair of design and motion
where the design is the same as the initial one but the force
profile is different. Figure 3 compares the torque profile of
the third actuator for the three pairs of design and motion.
Although optimizing only the motion can also reduce the
maximum torque, its final result (487 N) is worse than the
result of concurrent design and motion optimization (382 N).

Let us consider the scenario where the user is not satisfied
with the proportion of the optimized design and is willing to
sacrifice the maximum force to increase the length of the first
link. The user can then start the length-driven editing mode
and set the desired change of the first link length as +1 mm.
Given the new input, the algorithm successfully increases
the link length while properly adjusting other design and
motion parameters as shown in the second half of Fig. 4. The
maximum achievable length is 24 cm, beyond which the range
of motion becomes too small to perform the desired motion.
Our algorithm automatically relocates the bottom attachment
point of the second actuator closer to the joint in order to
obtain the required range of motion.

B. Simulation of Large Quadrupeds with Linear Actuators

This set of examples involves a large-size quadruped robot
with linear actuators. The initial design of the quadruped has
1.2 m body length and 0.95 m shoulder height at its rest
pose with a mass of approximately 90 kg. Each leg has four
degrees of freedom digitigrade configuration with four linear
actuators. Two biarticular actuators are attached to the hip
joints, and two monoarticular actuators are attached to the
knee and ankle joints. All the actuators have the same length
(25 cm) and stroke range (16 cm) as the actuators for the
manipulator example. The design parameters are constrained
to be left-right symmetric during the optimization process. We
choose a manually-created initial design and generate the input
base link and end-effector trajectories by solving space-time
optimization using the technique described in Megaro et al.
[21]. We treat the motion of the floating base as input.

The goal of this experiment is to optimize the initial design
and motion parameters for two different tasks: slow walking
with 0.15 m step length and fast walking with 1.0 m step
length. In both cases, we optimize the design and motion
parameters such that the maximum actuator force is reduced.

Our algorithm successfully derives different designs that
reduce the maximum torques by 48 % and 40 % for the
slow and fast walking tasks respectively (Table III). Figure 5
compares the optimized design and motion while Figure 6
plots the force profile of the knee actuator that requires



TABLE III
THE RESULTS ON LARGE QUADRUPEDS WITH LINEAR ACTUATORS

Link Lengths(cm) Actuator
Positions (cm)

Maximum
Force (N)

Design Rear
Hip

Rear
Thigh

Rear
Shin

Rear
Foot

Rear
Knee

Rear
Ankle

Slow
Walking

Fast
Walking

Initial 15.0 30.0 30.0 20.0 4.0 4.0 1.30×103 2.15×103

Slow Walking 10.0 35.2 31.9 16.1 9.2 9.0 0.68×103 N/A
Fast Walking 16.1 31.2 32.2 17.1 6.1 3.3 0.89×103 1.29×103

Fig. 5. Comparison of the optimized linearly actuated quadrupeds for
slow (top) and fast (bottom) walking tasks. We highlighted a few noticeable
differences. In general, the design for slow walking has larger moment arms
than the design for fast walking.

Fig. 6. Force profiles of the back right knee in the slow walking optimized
(top) and fast walking optimized (bottom) designs.

TABLE IV
THE RESULTS ON SMALL QUADRUPEDS WITH ROTARY ACTUATORS

Link Lengths(cm) Maximum Torque

Design Front
Thigh

Front
Shin

Rear
Thigh

Rear
Shin

Rear
Feet

Simulation
Torque (Nm)

Hardware
Current (mA)

Initial 8.00 16.0 8.00 8.00 8.00 2.08 (7.66±0.37)×102

Optimized 7.87 12.9 9.43 7.28 8.00 1.42 (5.35±0.23)×102

the maximum force in the original design. Please refer to
the supplemental video for the details of the metamorphosis
process. The most notable difference of the two optimized
designs is in their knees: the moment arm is increased in
the slow walking quadruped while it is kept small in the fast
walking optimized design in order to realize larger range of
motion. In addition, the algorithm elongated the rear thigh
for the slow walking task, while increasing the length of
the rear hip for fast walking. For the slow walking task, we
have expected straight-knee configuration similar to those of
elephants or rhinos, but the algorithm did not result in such
design because the enlargement of moment arm has larger
effect than the reduction of the joint torque.

We also cross-validated the optimal designs by re-
optimizing the motion parameters with fixed design param-
eters. As we expected, the fast walking optimized requires
31 % more maximum actuator forces than the slow walking
optimized design due to larger moment arms at knees. On the
other hand, the slow walking optimized design cannot execute
the fast walking task due to its limited range of the motion.

C. Hardware of Small Quadrupeds with Rotary Actuators

Finally, we validate our algorithm in hardware by im-
plementing a small-size quadruped with off-the-shelf rotary
actuators and 3D printed links. The robot has 20 cm body
length and 24 cm shoulder height at its rest pose. Each leg has
four Dynamixel XM-430 W-210 [9] servos that have 3.7 Nm
stall torque at 14.0 V, and each foot is fabricated as rubber-
coated hemisphere. For testing purpose, we put four 500 g
weights on the top of the base link. We tether the robot to
an external computer and replay the motion plan without any
balance controller.

We manually choose an initial design of the quadruped and
optimize the design such that the maximum joint torque is
minimized. Once again, the initial motion plan is generated
using the method described in Megaro et al. [21]. Table IV
compares the initial and optimized parameters. Because the
initial design requires a maximum torque of 2.08 Nm at its
front knees, the algorithm reduces the lengths of the front
leg links to create near singular configurations. On the other
hand, the algorithm applies minor changes to the rear leg
because their torque profiles are predicted to be lower than
the front legs. As a result, the algorithm successfully reduces
the maximum torque to 1.42 Nm, which is 32% less than the
original value (Fig. 7).

For hardware validation, we 3D-print new links with the
optimized lengths and assembled a new quadruped (Fig. 8).
After fabrication, we replay the new motion plan that is also
concurrently optimized with the design parameters. As the



Fig. 7. Comparison of the front right knee torques in simulation (top) and
on fabricated hardware (bottom).

Fig. 8. Comparison of the original (top) and optimized (bottom) small
quadrupeds with rotary actuators.

actuators do not have torque sensors, we use the maximum
current as the performance criteria. Figure 7 shows the current
profiles of two designs at the front right knee for a single cycle
of the motion. The maximum current is successfully reduced
to 535 mA in the optimized design, which is 30 % less than
the original maximum current (766 mA) and roughly matches
the reduction ratio in simulation. The predicted torque and
actual current profiles do not exactly match but show a large
positive Pearson’s correlation coefficient of 0.7.

VI. DISCUSSION AND FUTURE WORK

We presented a novel algorithm for optimizing robot design
parameters, such as link lengths and actuator layouts, and

the associated motion parameters including joint positions,
actuator forces, and contact forces at every frame. To guide the
optimization, our algorithm first linearizes the local manifold
of valid designs implicitly defined by a set of constraints. It
then changes the design parameters in the direction of the
locally defined gradient. Our problem formulation can also
take additional inequality constraints, such as position limits
of linear actuators or friction cones of contact forces. We
demonstrated that our algorithm is general enough to optimize
designs of various types of robots such as manipulators and
legged robots, with both linear and rotary actuators. We also
validated the optimized designs in simulation as well as
on fabricated hardware using off-the-shelf actuators and 3D-
printed links.

There are a few possible directions for future work.
The presented design optimization algorithm selects one

taget parameter and specifies its change, and determines the
changes in other parameters required to stay on the constraint
manifold. We implemented this simple update rule because
it only needs to select a single parameter for each time
step. Although we demonstrated that the proposed scheme
is sufficient in various optimization scenarios, it may require
many iterations to reach the desired design or even fall into
sub-optimal solutions. Therefore, it would be interesting to
incorporate more complex optimization algorithms into our
framework for selecting the target parameters and their desired
changes.

Our algorithm can only consider continuous parameters,
such as link lengths or actuator forces. For future research, we
would like to include discrete variables, such as the number
of actuators, footfall patterns, or the number of joints actuated
by a single actuator (e.g. monoarticular or biarticular), because
they are also critical to robot performance. However, current
implementation of the framework cannot handle discrete vari-
ables because it requires the first and second derivatives of
the constraints with respect to the parameters. For instance, the
moment arm of a linear actuator discontinuously changes when
the actuator switches between monoarticular and biarticular
configurations.

In all examples, our input motion plans are quite simple con-
sisting of only a single instance of manipulation or locomotion,
resulting in designs specialized for the given motion plan. It
would be also interesting to optimize the design for a family
of parameterized motion plans, such as walking with different
turning angles. We could also consider tasks that require more
complex interactions with the environment, such as climbing
up stairs.
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