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Abstract

We present a VAE architecture for encoding and
generating high dimensional sequential data, such
as video or audio. Our deep generative model
learns a latent representation of the data which is
split into a static and dynamic part, allowing us to
approximately disentangle latent time-dependent
features (dynamics) from features which are pre-
served over time (content). This architecture gives
us partial control over generating content and dy-
namics by conditioning on either one of these
sets of features. In our experiments on artificially
generated cartoon video clips and voice record-
ings, we show that we can convert the content of
a given sequence into another one by such content
swapping. For audio, this allows us to convert
a male speaker into a female speaker and vice
versa, while for video we can separately manipu-
late shapes and dynamics. Furthermore, we give
empirical evidence for the hypothesis that stochas-
tic RNNS as latent state models are more efficient
at compressing and generating long sequences
than deterministic ones, which may be relevant
for applications in video compression.

1. Introduction

Representation learning remains an outstanding research
problem in machine learning and computer vision. Re-
cently there is a rising interest in disentangled representa-
tions, in which each component of learned features refers
to a semantically meaningful concept. In the example of
video sequence modelling, an ideal disentangled representa-
tion would be able to separate time-independent concepts
(e.g. the identity of the object in the scene) from dynamical
information (e.g. the time-varying position and the orien-
tation or pose of that object). Such disentangled represen-
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tations would open new efficient ways of compression and
style manipulation, among other applications.

Recent work has investigated disentangled representation
learning for images within the framework of variational
auto-encoders (VAEs) (Kingma & Welling, 2013; Rezende
et al., 2014) and generative adversarial networks (GANs)
(Goodfellow et al., 2014). Some of them, e.g. the 5-VAE
method (Higgins et al., 2016), proposed new objective func-
tions/training techniques that encourage disentanglement.
On the other hand, network architecture designs that directly
enforce factored representations have also been explored
by e.g. Siddharth et al. (2017); Bouchacourt et al. (2017).
These two types of approaches are often mixed together,
e.g. the infoGAN approach (Chen et al., 2016) partitioned
the latent space and proposed adding a mutual information
regularisation term to the vanilla GAN loss. Mathieu et al.
(2016) also partitioned the encoding space into style and
content components, and performed adversarial training to
encourage the datapoints from the same class to have similar
content representations, but diverse style features.

Less research has been conducted for unsupervised learning
of disentangled representations of sequences. For video
sequence modelling, Villegas et al. (2017) and Denton &
Birodkar (2017) utilised different networks to encode the
content and dynamics information separately, and trained
the auto-encoders with a combination of reconstruction loss
and GAN loss. Structured (Johnson et al., 2016) and Fac-
torised VAEs (Deng et al., 2017) used hierarchical priors to
learn more interpretable latent variables. Hsu et al. (2017)
designed a structured VAE in the context of speech recogni-
tion. Their VAE architecture is trained using a combination
of the standard variational lower bound and a discrimina-
tive regulariser to further encourage disentanglement. More
related work is discussed in Section 3.

In this paper, we propose a generative model for unsuper-
vised structured sequence modelling, such as video or audio.
We show that, in contrast to previous approaches, a disentan-
gled representation can be achieved by a careful design of
the probabilistic graphical model. In the proposed architec-
ture, we explicitly use a latent variable to represent content,
i.e., information that is invariant through the sequence, and
a set of latent variables associated to each frame to represent
dynamical information, such as pose and position. Com-
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pared to the mentioned previous models that usually predict
future frames conditioned on the observed sequences, we
focus on learning the distribution of the video/audio content
and dynamics to enable sequence generation without condi-
tioning. Therefore our model can also generalise to unseen
sequences, which is confirmed by our experiments. In more
detail, our contributions are as follows:

e Controlled generation. Our architecture allows us to
approximately control for content and dynamics when
generating videos. We can generate random dynamics
for fixed content, and random content for fixed dynam-
ics. This gives us a controlled way of manipulating a
video/audio sequence, such as swapping the identity of
moving objects or the voice of a speaker.

e Efficient encoding. Our representation is more data
efficient than encoding a video frame by frame. By
factoring out a separate variable that encodes content,
our dynamical latent variables can have smaller di-
mensions. This may be promising when it comes to
end-to-end neural video encoding methods.

e We design a new metric that allow us to verify disen-
tanglement of the latent variables, by investigating the
stability of an object classifier over time.

e We give empirical evidence, based on video data of a
physics simulator, that for long sequences, a stochastic
transition model generates more realistic dynamics.

The paper is structured as follows. Section 2 introduces
the generative model and the problem setting. Section 3
discusses related work. Section 4 presents three experiments
on video and speech data. Finally, Section 5 concludes the
paper and discusses future research directions.

2. The model

Let 1.7 = (x1,@2,...,x7) denote a high dimensional
sequence, such as a video with 7" consecutive frames. Also,
assume the data distribution of the training sequences is
Pr-u-(T1.7). In this paper, we model the observed data
with a latent variable model that separates the representation
of time-invariant concepts (e.g. object identities) from those
of time-varying concepts (e.g. pose information).

Generative model. Consider the following probabilistic
model, which is also visualised in Figure 1:

T

po(@11, 211, f) = po(F) [ [ po(2i|2<)po (@i |2, £).

t=1

(1
We use the convention that zg = 0. The generation of frame
x, at time ¢ depends on the corresponding latent variables
z: and f. 6 are model parameters.

Ideally, f will be capable of modelling global aspects of
the whole sequence which are time-invariant, while z;
will encode time-varying features. This separation may
be achieved when choosing the dimensionality of z; to be
small enough, thus reserving z; only for time-dependent
features while compressing everything else into f. In the
context of video encodings, z; would thus encode a “mor-
phing transformation”, which encodes how a frame at time
t is morphed into a frame at time ¢ + 1.

Inference models. We use variational inference to learn
an approximate posterior over latent variables given
data (Jordan et al., 1999). This involves an approximat-
ing distribution ¢q. We train the generative model with the
VAE algorithm (Kingma & Welling, 2013):

max
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To quantify the effect of the architecture of g on the learned
generative model, we test with two types of ¢ factorisation
structures as follows.

The first architecture constructs a factorised g distribution

T
9¢(z1.1, flT1ir) = gp(flT17) HQ¢(Zt|wt) 3)

t=1

as the amortised variational distribution. We refer to this as
“factorised ¢” in the experiments section. This factorization
assumes that content features are approximately indepen-
dent of motion features. Furthermore, note that the distribu-
tion over content features is conditioned on the entire time
series, whereas the dynamical features are only conditioned
on the individual frames.

The second encoder assumes that the variational posterior of
z1.7 depends on f, and the ¢ distribution has the following
architecture:

q¢(z1.1, Flz1ir) = 4o (flerr)qe (210 | fr21:7),  (4)

and the distribution ¢(z1.7|f, x1.7) is conditioned on the
entire time series. It can be implemented by e.g. a bi-
directional LSTM (Graves & Schmidhuber, 2005) condi-
tioned on f, followed by an RNN taking the bi-LSTM
hidden states as the inputs. We provide a visualisation of
the corresponding computation graph in the appendix. This
encoder is referred to as “full ¢”. The idea behind the struc-
tured approximation is that content may affect dynamics: in
video, the shape of objects may be informative about their
motion patterns, thus z;.p is conditionally dependent on f.
The architectures of the generative model and both encoders
are visualised in Figure 1.

Unconditional generation. After training, one can use
the generative model to synthesise video or audio sequences
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Figure 1. A graphical model visualisation of the generator and the encoder.

by sampling the latent variables from the prior and decod-
ing them. Furthermore, the proposed generative model
allows generation of multiple sequences entailing the same
global information (e.g. the same object in a video se-
quence), simply by fixing f ~ p(f), sampling different
zsz ~ p(z1.1),k = 1,..., K, and generating the observa-
tions ¥ ~ p(x¢|2F, f). Generating sequences with similar
dynamics is done analogously, by fixing z1.7 ~ p(z1.7)
and sampling f*, k = 1, ... KX from the prior.

Conditional generation. Together with the encoder, the
model also allows conditional generation of sequences.
As an example, given a video sequence xi.p as refer-
ence, one can manipulate the latent variables and generate
new sequences preserving either the object identity or the
pose/movement information. This is done by conditioning
on f ~ q(f|x1.r) for a given x1.7 then randomising 2.7
from the prior, or the other way around.

Feature swapping. One might also want to generate a
new video sequence with the object identity and pose in-
formation encoded from different sequence. Given two
sequences x¢,» and x¥ ., the synthesis process first in-
fers the latent variables f¢ ~ q(f|x%.) and 20, ~
q(z1.7|x4.1)!, then produces a new sequence by sampling
x! ~ p(x¢|2?, £%). This allows us to control both the
content and the dynamics of the generated sequence, which
can be applied to e.g. conversion of voice of the speaker in
a speech sequence.

3. Related work

Research on learning disentangled representation has mainly
focused on two aspects: the training objective and the gener-
ative model architecture. Regarding the loss function design
for VAE models, Higgins et al. (2016) propose the 5-VAE
by scaling up the KL[¢(z|x)||p(z)] term in the variational
lower-bound with 8 > 1 to encourage learning of inde-
pendent attributes (as the prior p(z) is usually factorised).
While the 3-VAE has been shown effective in learning bet-
ter representations for natural images and might be able to
further improve the performance of our model, we do not

"For the full ¢ encoder it also requires £ ~ q(f|z8.1).

test this recipe here to demonstrate that disentanglement can
be achieved by a careful model design.

For sequence modelling, a number of prior publications
have extended VAE to video and speech data (Fabius &
van Amersfoort, 2014; Bayer & Osendorfer, 2014; Chung
et al., 2015). These models, although being able to generate
realistic sequences, do not explicitly disentangle the repre-
sentation of time-invariant and time-dependent information.
Thus it is inconvenient for these models to perform tasks
such as controlled generation and feature swapping.

For GAN-like models, both Villegas et al. (2017) and Den-
ton & Birodkar (2017) proposed an auto-encoder architec-
ture for next frame prediction, with two separate encoders
responsible for content and pose information at each time
step. While in Villegas et al. (2017), the pose information
is extracted from the difference between two consecutive
frames x;_1 and x;, Denton & Birodkar (2017) directly en-
coded x; for both pose and content, and further designed a
training objective to encourage learning of disentangled rep-
resentations. On the other hand, Vondrick et al. (2016) used
a spatio-temporal convolutional architecture to disentangle
a video scene’s foreground from its background. Although
it has successfully achieved disentanglement, we note that
the time-invariant information in this model is predefined to
represent the background, rather than learned from the data
automatically. Also this architecture is suitable for video
sequences only, unlike our model which can be applied to
any type of sequential data.

Very recent work (Hsu et al., 2017) introduced the factorised
hierarchical variational auto-encoder (FHVAE) for unsu-
pervised learning of disentangled representation of speech
data. Given a speech sequence that has been partitioned into
segments {x7}_,, FHVAE models the joint distribution
of {7 }»_, and latent variables as follows:

N
p({afr, 27, 25}, a) = plp2) [ p(atip, 21, 25 |na),
n=1
p(@lr; 21, 23 |p2) = p(27)p(23 [pa)p(2T 7|27 25).
Here the z% variable has a hierarchical prior p(z%|ps) =
N (pa,0°T), p(pa) = N(0, AI). The authors showed that
by having different prior structures for z7* and 23, it al-
lows the model to encode with 2§ speech sequence-level



Disentangled Sequential Autoencoder

attributes (e.g. pitch of a speaker), and other residual infor-
mation with 2. A discriminative training objective (see
discussions in Section 4.2) is added to the variational lower-
bound, which has been shown to further improve the quality
of the disentangled representation. Our model can also
benefit from the usage of hierarchical prior distributions,
e.g. f" ~ p(flp2), 2 ~ p(p2), and we leave the investi-
gation to future work.

4. Experiments

We carried out experiments both on video data (Section 4.1)
as well as speech data (Section 4.2). In both setups, we
find strong evidence that our model learns an approximately
disentangled representation that allows for conditional gen-
eration and feature swapping. We further investigated the
efficiency for encoding long sequences with a stochastic
transition model in Section 4.3. The detailed model ar-
chitectures of the networks used in each experiment are
reported in the appendix.

4.1. Video sequence: Sprites

We present an initial test of the proposed VAE architecture
on a dataset of video game “sprites”, i.e. animated cartoon
characters whose clothing, pose, hairstyle, and skin color we
can fully control. This dataset comes from an open-source
video game project called Liberated Pixel Cup?, and has
been also considered in Reed et al. (2015); Mathieu et al.
(2016) for image processing experiments. Our experiments
show that static attributes such as hair color and clothing are
well preserved over time for randomly generated videos.

Data and preprocessing. We downloaded and selected
the online available sprite sheets®, and organised them into
4 attribute categories (skin color, tops, pants and hairstyle)
and 9 action categories (walking, casting spells and slashing,
each with three viewing angles). In order to avoid a combi-
natorial explosion problem, each of the attribute categories
contains 6 possible variants (see Figure 2), therefore it leads
to 6% = 1296 unique characters in total. We used 1000 of
them for training/validation and the rest of them for testing.
The resulting dataset consists of sequences with 7" = 8
frames of dimension 64 x 64. Note here we did not use the
labels for training the generative model. Instead these labels
on the data frames are used to train a classifier that is later
deployed to produce quantitative evaluations on the VAE,
see below.

Qualitative analysis. We start with a qualitative evalu-
ation of our VAE architecture. Figure 3 shows both re-

http://lpc.opengameart .org/
*https://github.com/jrconway3/
Universal-LPC-spritesheet
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Figure 2. A visualisation of the attributes and actions used to gen-
erate the Sprite data set. See main text for details.

constructed as well as generated video sequences from our
model. Each panel shows three video sequences with time
running from left to right. Panel (a) shows parts of the origi-
nal data from the test set, and (b) shows its reconstruction.

The sequences visualised in panel (c) are generated using
z; ~ q(z¢|xy) but f ~ p(f). Hence, the dynamics are
imposed by the encoder, but the identity is sampled from the
prior. We see that panel (c) reveals the same motion patterns
as (a), but has different character identities. Conversely, in
panel (d) we take the identity from the encoder, but sample
the dynamics from the prior. Panel (d) reveals the same
characters as (a), but different motion patterns.

Panels (e) and (f) focus on feature swapping. In (e), the
frames are constructed by computing z; ~ ¢(z¢|x+) on one
input sequence but f encoded on another input sequence.
These panels demonstrate that the encoder and the decoder
have learned a factored representation for content and pose.

Panels (g) and (h) focus on conditional generation, showing
randomly generated sequences that share the same f or z1.p
samples from the prior. Thus, in panel (g) we see the same
character performing different actions, and in (h) different
characters performing the same motion. This again illus-
trates that the prior model disentangles the representation.

Quantitative analysis. Next we perform quantitative eval-
uations of the generative model, using a classifier trained
on the labelled frames. Empirically, we find that the fully
factorized and structured inference networks produce almost
identical results here, presumably because in this dataset the
object identity and pose information are truly independent.
Therefore we only report results on the fully factorised ¢
distribution case.

The first evaluation task considers reconstructing the test
sequences with encoded f and randomly sampled z; (in the
same way as to produce panel (d) in Figure 3). Then we
compare the classifier outputs on both the original frames
and the reconstructed frames. If the character’s identity is
preserved over time, the classifier should produce identical
probability vectors on the data frames and the reconstructed
frames (denoted as Pyqtq and Precon respectively).
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(c) reconstruction with ran-(d) reconstruction with ran-
domly sampled f domly sampled z1.7

(e) reconstruction with swapped (f) reconstruction with swapped
encoding f

encoding z1.7

(g) generated sequences with (h) generated sequences with
fixed f fixed z1.7

Figure 3. Visualisation of generated and reconstructed video se-
quences. See main text for discussions.

We evaluate the similarity between the original and recon-
structed sequences both in terms of the disagreement of the
predicted class labels max;[Drecon(i)] # max;[Pdata(i)]
and the KL-divergence KL[p,econ||Pdata]- We also com-
pute the two metrics on the action predictions using recon-
structed sequences with randomised f and inferred z;. The
results in Table 1 indicate that the learned representation
is indeed factorised. For example, in the fix- f generation
test, only 4% out of 296 x 9 data-reconstruction frame pairs
contain characters whose generated skin color differs from
the rest, where in the case of hairstyle preservation the dis-
agreement rate is only 0.06%. The KL metric is also much
smaller than the KL-divergence KL[prandom ||Pdata] Where
Drandom = (1/Nclass; ---, 1 /Nelass)» indicating that our re-
sult is significant.

In the second evaluation, we test whether static attributes
of generated sequences, such as clothing or hair style, are
preserved over time. We sample 200 video sequences from
the generator, using the same f but different latent dynam-
ics z1.7. We use the trained classifier to predict both the
attributes and the action classes for each of the generated
frames. Results are shown in Figure 4(a), where we plot the
prediction of the classifiers for each frame over time. For
example, the trajectory curve in the “skin color” panel in
Figure 4(a) corresponds to the skin color attribute classifica-
tion results for frames x;.7 of a generated video sequence.
We repeat this process 5 times with different f samples,

Table 1. Averaged classification disagreement and KL similarity
measures for our model on Sprite data. Note here KL-recon =
KL[precon||Pdata) and KL-random = KL[prandom||Pdata]-

attributes disagreement KL-recon KL-random
skin colour 3.98% 0.7847 8.8859
pants 1.82% 0.3565 8.9293
tops 0.34% 0.0647 8.9173
hairstyle 0.06% 0.0126 8.9566
action 8.11% 0.9027 13.7510

where each f corresponds to one color.

It becomes evident that those lines with the same color are
clustered together, confirming that f mainly controls the
generation of time-invariant attributes. Also, most charac-
ter attributes are preserved over time, e.g. for the attribute
“tops”, the trajectories are mostly straight lines. However,
some of the trajectories for the attributes drift away from
the majority class. We conjecture that this is due of the
mass-covering behaviour of (approximate) maximum like-
lihood training, which makes the trained model generate
characters that do not exist in the dataset. Indeed the middle
row of panel (c) in Figure 3 contains a character with an un-
seen hairstyle, showing that our model is able to generalise
beyond the training set. On the other hand, the sampling
process returns sequences with diverse actions as depicted in
the action panel, meaning that f contains little information
regarding the video dynamics.

We performed similar tests on sequence generations with
shared latent dynamics z;.p but different f, shown in Fig-
ure 4(b). The experiment is repeated 5 times as well, and
again trajectories with the same color encoding correspond
to videos generated with the same z;.7 (but different f).
Here we also observe diverse trajectories for the attribute
categories. In contrast, the characters’ actions are mostly
the same. These two test results again indicate that the
model has successfully learned disentangled representations
of character identities and actions. Interestingly we observe
multi-modalities in the action domain for the generated se-
quences, e.g. the trajectories in the action panel of Figure
4(b) are jumping between different levels. We also visualise
in Figure 5 generated sequences of the “turning” action that
is not present in the dataset. It again shows that the trained
model generalises to unseen cases.

4.2. Speech data: TIMIT

We also experiment on audio sequence data. Our disentan-
gled representation allows us to convert speaker identities
into each other while conditioning on the content of the
speech. We also show that our model gives rise to speaker
verification, where we outperform a recent probabilistic
baseline model.
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(b) Trajectory plots on the generated sequences with shared z;.7.

Figure 4. Classification test on the generated video sequences with
shared f (top) or shared zi.7 (bottom), respectively. The exper-
iment is repeated 5 times and depicted by different color coding.
The x and y axes are time and the class id of the attributes, respec-
tively.

Figure 5. Visualising multi-modality in action space. In this case
the characters turn from left to right, and this action sequence is
not observed in data.

Data and preprocessing. The TIMIT data (Garofolo
et al., 1993) contains broadband 16kHz recordings of
phonetically-balanced read speech. A total of 6300 utter-
ances (5.4 hours) are presented with 10 sentences from each
of the 630 speakers (70% male and 30% female). We follow
Hsu et al. (2017) for data pre-processing: the raw speech
waveforms are first split into sub-sequences of 200ms, and
then preprocessed with sparse fast Fourier transform to ob-
tain a 200 dimensional log-magnitude spectrum, computed
every 10ms. This implies 7" = 20 for the observation x.7.

Qualitative analysis. We perform voice conversion ex-
periments to demonstrate the disentanglement of the learned
representation. The goal here is to convert male voice to
female voice (and vice versa) with the speech content being
preserved. Assuming that f has learned the representa-
tion of speaker’s identity, the conversion can be done by
first encoding two sequences %€ and z!*7¥° with ¢ to
obtain representations { fmle, zmale} and { flemale femaley
then construct the converted sequence by feeding ffemale
and 2™ to the decoder p(x¢|z, f). Figure 6 shows the
reconstructed spectrogram after the swapping process of
the f features. We also provide the reconstructed speech
waveforms using the Griffin-Lim algorithm (Griffin & Lim,

1984) in the appendix.

(d) male to female

(c) male speech (original)

Figure 6. Visualising the spectrum of the reconstructed speech
sequences. Here we show the spectrogram for the first 2000ms,
with horizontal axis denoting time and the vertical axis denoting
frequencies. The red arrow points to the first harmonics which
indicates the fundamental frequency of the speech signal.

The experiments show that the harmonics of the converted
speech sequences shifted to higher frequency in the “male to
female” test and vice versa. Also the pitch (the red arrow in
Figure 6 indicating the fundamental frequency, i.e. the first
harmonic) of the converted sequence (b) is close to the pitch
of (c), same as for the comparison between (d) and (a). By
an informal listening test of the speech sequence pairs (a, d)
and (b, ¢), we confirm that the speech content is preserved.
These results show that our model is successfully applied to
speech sequences for learning disentangled representations.

Quantitative analysis. We further follow Hsu et al.
(2017) to use speaker verification for quantitative evaluation.
Speaker verification is the process of verifying the claimed
identity of a speaker, usually by comparing the “features”
w'™" of the test utterance '}, with those of the target utter-
ance %' from the claimed identity. The claimed identity
is confirmed if the cosine similarity cos(w™", w™*e) is
grater than a given threshold e (Dehak et al., 2009). By
varying € € [0, 1], we report the verification performance in
terms of equal error rate (EER), where the false rejection
rate equals the false acceptance rate.

The extraction of the “features” is crucial for the perfor-
mance of this speaker verification system. Given a speech se-
quence containing /N segments {wgn%}fy:l, we constructed
two types of “features”, one by computing p1 ¢ as the mean
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of q(£() |a:(1nT)) across the segments, and the other by ex-
tracting the mean p,, of ¢(z|x1.7) and averaging them
across both time 7" and segments. In formulas,

N
1 n
e = D owgns mpn = Eggpnian )7,
n=1

;| LN
Hz = TN z; Z:I Kzp,  Hzp = Eq(z;?\:c;ﬁT) [z(']-
t=1 n=
We also include two baseline results from Hsu et al. (2017):
one used the i-vector method (Dehak et al., 2011) for feature
extraction, and the other one used g1 and po (analogous to
p and pg in our case) from a trained FHVAE model on
Mel-scale filter bank (FBank) features.

The test data were created from the test set of TIMIT, con-
taining 24 unique speakers and 18,336 pairs for verification.
Table 2 presents the EER results of the proposed model and
baselines.* It is clear that the p feature performs signifi-
cantly better than the i-vector method, indicating that the f
variable has learned to represent a speaker’s identity. On the
other hand, using u as the features returns considerably
worse EER rates compared to the i-vector method and ¢
feature. This is good, as it indicates that the z variables
contain less information about the speaker’s identity, again
validating the success of disentangling time-variant and
time-independent information. Note that the EER results for
1~ get worse when using the full ¢ encoder, and in the 64
dimensional feature case the verification performance of pf
improves slightly. This also shows that for real-world data
it is useful to use a structured inference network to further
improve the quality of disentangled representation.

Our results are competitive with (or slightly better than)
the FHVAE results (a« = 0) reported in Hsu et al. (2017).
The better results for FHVAE (o = 10) is obtained by
adding a discriminative training objective (scaled by «)
to the variational lower-bound. In a nutshell, the time-
invariant information in FHVAE is encoded in a latent vari-
able 2% ~ p(z%|u2), and the discriminative objective en-
courages zy encoded from a segment of one sequence to
be close to the corresponding pto while far away from o
of other sequences. However, we do not test this idea here
because (1) our goal is to demonstrate that the proposed
architecture is a minimalistic framework for learning disen-
tangled representations of sequential data; (2) this discrim-
inative objective is specifically designed for hierarchical
VAE, and in general the assumption behind it might not
always be true (consider encoding two speech sequences
coming from the same speaker). Similar ideas for discrimi-
native training have been considered in e.g. Mathieu et al.
(2016), but that discriminative objective can only be applied

* Hsu et al. (2017) did not provide the EER results for o = 0
and ;1 in the 16 dimension case.

Table 2. Speaker verification errors, comparing the FHVAE with
our approach. Static information is encoded in p2 / py and dy-
namic information in w1 / p, for the FHVAE / our approach,
respectively. Large errors are expected when predicting based on
p1/ pz, and small errors for po / iy, respectively (see main text).
Our data-agnostic approach compares favourably.

model feature dim EER
- i-vector 200  9.82%
FHVAE (a = 0) o 16 5.06%
FHVAE (a = 10) Ho 32 238%
1 32 2247%
factorised q ur 16  4.78%
7 16 17.84%
factorised q 1% 64  4.94%
[T 64  17.49%
full q wr 16 5.64%
7 16 19.20%
full q ur 64  4.82%
iy 64  18.89%

to two sequences that are known to entail different time-
invariant information (e.g. two sequences with different
labels), which implicitly uses supervisions. Nevertheless,
a better design for the discriminative objective without su-
pervision can further improve the disentanglement of the
learned representations, and we leave it to future work.

4.3. Comparing stochastic & deterministic dynamics

Lastly, although not a main focus of the paper, we show that
the usage of a stochastic transition model for the prior leads
to more realistic dynamics of the generated sequence. For
comparison, we consider another class of models:

T
p(@ir, z, f) = p(H)p(z) [ [ plailz, £).

The parameters of p(x|z, f) are defined by a neural net-
work NN(h, f), with h; computed by a deterministic RNN
conditioned on z. We experiment with two types of deter-
ministic dynamics. The first model uses an LSTM with z
as the initial state: hg = z, hy = LSTM(h;—1). In later
experiments we refer this dynamics as LSTM-f as the la-
tent variable z is forward propagated in a deterministic way.
The second one deploys an LSTM conditioned on z (i.e.
hg = 0,h; = LSTM(h;_1, 2)), therefore we refer it as
LSTM-c. This is identical to the transition dynamics used
in the FHVAE model (Hsu et al., 2017). For comparison,
we refer to our model as the ’stochastic’ model (Eq. 1).

The LSTM models encodes temporal information in a global
latent variable z. Therefore, small differences/errors in z
will accumulate over time, which may result in unrealis-
tic long-time dynamics. In contrast, the stochastic model
(Eq. 1) keeps track of the time-varying aspects of x; in z;
for every ¢, making the reconstruction to be time-local and
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Figure 7. Predicted and reconstructed video sequences. The videos
are shown as single images, with colour intensity (starting from
black) representing the incremental sequence index (’stochastic’ is
proposed). The missing/predicted frames are shown in green.

therefore much easier. Therefore, the stochastic model is
better suited if the sequences are long and complex. We
give empirical evidence to support this claim.

Data preprocessing & hyper-parameters. We follow
Fraccaro et al. (2017) to simulate video sequences of a
ball (or a square) bouncing inside an irregular polygon us-
ing Pymunk.> The irregular shape was chosen because it
induces chaotic dynamics, meaning that small deviations
from the initial position and velocity of the ball will cre-
ate exponentially diverging trajectories at long times. This
makes memorizing the dynamics of a prototypical sequence
challenging. We randomly sampled the initial position and
velocity of the ball, but did not apply any force to the ball,
except for the fully elastic collisions with the walls. We
generated 5,000 sequences in total (1000 for test), each of
them containing 7" = 30 frames with a resolution of 32 x 32.
For the deterministic LSTMs, we fix the dimensionality of
z; to 64, and set h; and the LSTM internal states to be
512 dimensions. The latent variable dimensionality of the
stochastic dynamics is dim(z;) = 16.

Qualitative & quantitative analyses. We consider both
reconstruction and missing data imputation tasks for the
learned generative models. For the latter and for 7' = 30,
the models observe the first { < T frames of a sequence
and predict the remaining 7' — ¢ frames using the prior
dynamics. We visualise in Figure 7 the ground truth, recon-
structed, and predicted sequences (t = 20) from all models.

Shttp://www.pymunk.org/en/latest/. For sim-
plicity we disabled rotation of the square when hitting the wall, by
setting the inertia to infinity.
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Figure 8. Reconstruction error of different models as a function of
the number of consecutive missing frames (see main text). Lower
values are better. ’stochastic’ refers to the proposed approach.

We further consider average fraction of incorrectly recon-
structed/predicted pixels as a quantitative metric, to evaluate
how well the ground-truth dynamics is recovered given con-
secutive missing frames. The result is reported in Figure 8.
The stochastic model outperforms the deterministic models
both qualitatively and quantitatively. The shape of the ball
is better preserved over time, and the trajectories are more
physical. This explains the lower errors of the stochastic
model, and the advantage is significant when the number of
missing frames is small.

Our experiments give evidence that the stochastic model is
better suited to modelling long, complex sequences when
compared to the deterministic dynamical models. We expect
that a better design for the stochastic transition dynamics,
e.g. by combining deep neural networks with well-studied
linear dynamical systems (Krishnan et al., 2015; Fraccaro
et al., 2016; Karl et al., 2016; Johnson et al., 2016; Krishnan
et al., 2017; Fraccaro et al., 2017), can further enhance the
quality of the learned representations.

5. Conclusions and outlook

We presented a minimalistic generative model for learn-
ing disentangled representations of high-dimensional time
series. Our model consists of a global latent variable for con-
tent features, and a stochastic RNN with time-local latent
variables for dynamical features. The model is trained using
standard amortized variational inference. We carried out
experiments both on video and audio data. Our approach
allows us to perform full and conditional generation, as well
as feature swapping, such as voice conversion and video
content manipulation. We also showed that a stochastic
transition model generally outperforms a deterministic one.

Future work may investigate whether a similar model ap-
plies to more complex video and audio sequences. Also,
disentangling may further be improved by additional cross-
entropy terms, or discriminative training. A promising av-
enue of research is to explore the usage of this architecture
for neural compression. An advantage of the model is that it
separates dynamical from static features, allowing the latent
space for the dynamical part to be low-dimensional.


http://www.pymunk.org/en/latest/
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Figure 9. A graphical model visualisation of the generator and the encoder.

A. Computation graph for the full ¢ inference network

In Figure 9 we show the computation graph of the full ¢ inference framework. The inference model first computes the mean
and variance parameters of ¢( f|x.r) with a bi-directional LSTM (Graves & Schmidhuber, 2005) and samples f from the
corresponding Gaussian distribution (see Figure (a)). Then f and x;.p are fed into another bi-directional LSTM to compute
the hidden state representations h; and g7 for the z; variables (see Figure (b)), where at each time-step both LSTMs take
[+, f] as the input and update their hidden and internal states. Finally the parameters of ¢(z.7|x1.7, f) is computed by a
simple RNN with input [k}, gf] at time .

B. Sound files for the speech conversion test

We provide sound files to demonstrate the conversion of female/male speech sequences at https://drive.google.
com/file/d/1zpiZINJjGWwIpGPYVxgSeoipiZdegHatY/view?usp=sharing. Given a spectrum (magnitude
information), the sound waveform is reconstructed using the Griffin-Lim algorithm (Griffin & Lim, 1984), which initialises
the phase randomly, then iteratively refine the phase information by looping the SFFT/inverse SFFT transformation until
convergence or reaching some stopping criterion. We note that the sound quality can be further improved by e.g. conjugate
gradient methods. Also we found in general it is more challenging to convert female speech to male speech than the other
way around, which is also observed by (Hsu et al., 2017).

We also note here that the phase information is not modelled in our experiments, nor in the FHVAE tests. First, as phase
is a circular variable ranging from [—, 7], Gaussian distribution is inappropriate, and instead a von Mises distribution is
required. However, fast computation of the normalising constant of a von Mises distribution — which is a Bessel function —
remains a challenging task, let alone differentiation and optimisation of the concentration parameters.

C. Network architecture

Sprite. The prior dynamics pg(z:|z<;) is Gaussian with parameters computed by an LSTM (Hochreiter & Schmidhuber,
1997). Then x; is generated by a deconvolutional neural network, which first transforms [z;, f] with a one hidden-layer
MLP, then applies 4 deconvolutional layers with 256 channels and up-sampling. We use the ¢5 loss for the likelihood term,
i.e. log p(wi|2e, f) = —3||@r — NN (24, f)|3 + const.

For the inference model, we first use a convolutional neural network, with a symmetric architecture to the deconvolutional
one, to extract visual features. Then ¢(f|x1.7) is also a Gaussian distribution parametrised by an LSTM and depends
on the entire sequence of these visual features. For the factorised ¢ encoder, ¢(z;|x;) is also Gaussian parametrised by a
one-hidden layer MLP taking the visual feature of x; as input. The dimensions of f and z; are 256 and 32, respectively, and
the hidden layer sizes are fixed to 512.

TIMIT. We use almost identical architecture as in the Sprite data experiment, except that the likelihood term p(x|z¢, f)
is defined as Gaussian with mean and variance determined by a 2-hidden-layer MLP taking both z; and f as inputs. The
dimensions of f and z; are 64 if not specifically stated, and the hidden layer sizes are fixed to 256.


https://drive.google.com/file/d/1zpiZJNjGWw9pGPYVxgSeoipiZdeqHatY/view?usp=sharing
https://drive.google.com/file/d/1zpiZJNjGWw9pGPYVxgSeoipiZdeqHatY/view?usp=sharing
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For the full g inference model we use the architecture visualised in Figure 9. Again the bi-LSTM networks take the features
of x; as inputs, where those features are extracted using a one hidden-layer MLP.

Bouncing ball. We use an RNN (instead of an LSTM as in previous experiments) to parametrise the stochastic prior
dynamics of our model, and set the dimensionality of z; to be 16. For the deterministic models we set z to be 64 dimensional.
We use a 64 dimensional f variable and Bernoulli likelihood for all models.

For inference models, we use the full ¢ model for the stochastic dynamics case. For the generative models with deterministic
dynamics, we also use bi-LSTMs of the same architecture to infer the parameters of ¢( f|x1.7) and ¢(z|x1.7). Again a
convolutional neural network is deployed to compute visual features for LSTM inputs.

All models share the same architecture of the (de-)convolution network components. The deconvolution neural network
has 3 deconvolutional layers with 64 channels and up-sampling. The convolutional neural network for the encoder has a
symmetric architecture to the deconvolution one. The hidden layer sizes in all networks are fixed to 512.



