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ABSTRACT
A narrative relies on the imperfect knowledge of the user to create
interactions between the characters that are ultimately used as a
plot device to drive the narrative. This motivates our exploration
of ways to encode this information, provides means for a user to
both query and influence the knowledge, and guides the user based
on a model of their experience. We developed PICA: a proactive
intelligent conversational agent for interactive narratives that can
guide users through such experiences. The underlying knowledge
base is designed using a sub-symbolic architecture, which encodes
belief models for multiple users and autonomous agents in addi-
tion to the actual story knowledge. We also developed a discourse
module using Behavior Trees to intuitively design the proactive
and reactive capabilities of PICA. We compare our approach to
neural networks and symbolic knowledge bases and demonstrate
its functionality.
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1 INTRODUCTION
The knowledge a user or an agent has about a narrative is often im-
perfect. Tuetenberg and Porteous [35] argue that imperfect knowl-
edge is one of the key components of a narrative. A narrative relies
on imperfect knowledge to stimulate the interactions between the
different characters given their beliefs, desires and intentions. This
is ultimately used as a plot device to drive the narrative, for example
by creating plot twists. However, it is also important to have access
to the perfect knowledge of a narrative, in this paper called story
knowledge, to provide the best possible guidance for the user. By
encoding this information, we are able to reason about the user and
create more compelling narratives using a user’s belief model to
provide better guidance based on their beliefs and preferences.
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We present PICA: a proactive intelligent conversational agent
for interactive narratives. PICA is able to converse using natural
language, react to user input and proactively initiate conversations
about the narrative. PICA encodes the past, present and future of
both story knowledge and belief models and can be used together
with story-authoring systems to guide the user through interactive
narratives by acting as an extradiegetic story guide.We are targeting
narratives where the user is watching a story unfold. Using PICA
as an embodied virtual character, we can increase the immersion
by having a participant of the narrative be explicitly aware of the
user. By reacting to the user’s engagement with the story, PICA is
able to initiate conversations with the user to inform them about
any parts of the story they might have missed and is able to guide
them to the most interesting path through the story. For instance,
Figure 1 shows an example of the user not being very engaged with
the story, when Horton and Victor were talking. Thus, PICA stores
a value close to 0 for its belief of the user knowing about Celia. A
value of -1 indicates that PICA thinks that the user is not aware
of it, while 1 would represent the user definitely knowing about it.
Since this is a crucial part of the story, PICA initiates a conversation
in which it informs the user about this fact, thereby increasing its
belief of the user’s knowledge according to the engagement.

This paper makes the following main technical contributions:
We developed a sub-symbolic architecture, called the Temporal
Knowledge Map (TKM), to encode story knowledge. This archi-
tecture is inspired by neural-symbolic systems [7, 37], where a
symbolic knowledge base provides the foundation to initialize and
design the resulting neural network to model uncertainty and story
graphs [10, 11] to model time. This guarantees a modular structure
at the event level, which cannot be guaranteed by using a neural
network for knowledge representation, and thereby it offers a con-
venient way to selectively update and reason about every node in
the TKM. Compared to symbolic knowledge bases, the TKM is able
to modify parts of its story graph to model the progression of the
story. This is enabled by adding an inference system to the TKM
that handles these modifications. We also developed a discourse
module using Behavior Trees to author a modular representation
of the proactive and reactive capabilities of PICA.

We demonstrate PICA in the context of an existing interactive
narrative planning system, to show its ability to interface with
experience managers [28, 29].

2 RELATEDWORK
Encoding of Knowledge and Narratives:Min et al. [24] propose
using LSTMs to infer the user’s goals during a game. Thue et al. [36]
propose PASSAGE, a system to combine the modelling of the user
with the story generation to provide stories that are tailored for
the user. Ramirez and Bulitko [27] improved PASSAGE further to
dynamically adapt stories depending on the user’s style of play.
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Symbolic Knowledge Base
know(User, Celia)

drink(Horton, Potion)
[-1, -1]
[-1,  1]

Temporal Knowledge Map
know(User, Celia)
drink(Horton, Potion)

[-1, -1]
[-1, -1]

know(User, Celia)
drink(Horton, Potion)

[1, 0.1]
[-1, -1]

know(User, Celia)
drink(Horton, Potion)

[1, 0.8]
[-1, -1]

know(User, Celia)
drink(Horton, Potion)

[1, 0.8]
[1, 0.7]

know(User, Celia)
drink(Horton, Potion)

[1, 0.8]
[1, 0.2]

know(User, Celia)
drink(Horton, Potion)

[1, 0.8]
[1, -0.7]

know(User, Celia)
drink(Horton, Potion)

[ 1,  1]
[-1, -1]

know(User, Celia)
drink(Horton, Potion)

[ 1,  1]
[ 1,  1]

know(User, Celia)
drink(Horton, Potion)

[ 1,  1]
[ 1, -1]

STORY INITIALIZATION

talk(Victor, Horton)
medium user engagement

drink(Horton, Potion)
very high user engagement

PICA: “Did you hear them? There seems
to be a girl called Celia living here...”

USER: “I think that Horton didn’t drink the potion”

PICA: “Thanks for letting me know”

PICA: “Do you think that Horton
drank the potion?”

USER: “No, I don’t think that
Horton drank the potion”

PICA: “Thanks for letting me know”
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Figure 1: An example conversation with PICA using a Symbolic Knowledge Base and a Temporal Knowledge Map. It shows
the updates of two events stored inside the knowledge base and their confidence vector at different points of the story. The
first value is the story knowledge and the second one stores the user belief.

Approaches on modeling story representations are described by
Elson [10, 11] and Eger, Beret and Young [9]. Chekol et al. [4]
encodes time and uncertainty in a knowledge base representing a
general storage of facts.
Conversational Agents: Eliza [38] and ALICE [14] are both chat-
bots using rules and pattern matching. Deep recurrent neural net-
works [18, 31, 33] provide a powerful way of creating general con-
versational agents. Reinforcement Learning [12] enables the agent
to learn during the conversation. However, all of the machine learn-
ing approaches require a large amount of training data which can
easily result in a knowledge acquisition bottleneck. There have
been approaches in using conversational agents [3] in stories and
games [25] as well as in educational environments [30, 34]. Yu and
Riedl [39] propose an invisible story guide guiding the user.
Neural-Symbolic Systems: KBANN [37] and C-IL2P [5–7] pro-
vide simple and intuitive algorithms to translate a symbolic knowl-
edge base into a neural network. To refine their network, they both
still need training data. This obscures the initial facts and rules
that were used to design the neural network. There have also been
discussions [15] concerning the advantages and challenges that
neural-symbolic systems and sub-symbolic systems [22, 32] still
face. A symbolic knowledge base [2] is still the system used in many
applications as it provides an intuitive way of understanding and
reasoning about the knowledge. The issue remains how to acquire
knowledge and modify the knowledge base [19].

Story graphs and symbolic knowledge bases provide a way to
encode narratives. We want to encode uncertainty to model belief
which is made possible by using neural networks. We propose to
combine these approaches to create PICA.

3 OVERVIEW
PICA is designed to be a guide in interactive narratives. Users can
interact with PICA to learn more about the story and influence it.
The flow of a conversation between PICA and the user is depicted

TRAINING

TRANSLATION

Symbolic 
Knowledge Base

Proactive
Discourse Module

Natural Language
Knowledge Interface

USER
QUERY

RESPONSE

Temporal Knowledge Map

Figure 2: PICA constructs its knowledge base using a sym-
bolic representation of the narrative. The knowledge base
can be queried and modified at any time.

in Figure 2. Any user input will be passed through the Proactive
Discourse Module directly to the Natural Language Knowledge
Interface, where the user intention and important parts of the user
input will be extracted before propagating them to the TKM. The
following steps need to be executed for setting up the TKM:

(1) PICA receives information about participants, actions, states
and the story by receiving a symbolic knowledge base en-
coding this information.

(2) It constructs the overall graph given this information using
the rules defined in Section 5.1 to define the edges.

During the execution of the story, the TKM can be modified at any
time. This can be triggered by either the user interacting with PICA
or the story-authoring tool informing PICA about the progression
of the story. To modify the TKM, PICA isolates the corresponding
event in the graph and trains only its direct weights with gradient
descent using exactly one data point. Using a neural network ap-
proach for knowledge representation, one would need to train the
full network. However, in our approach the TKM represents a story
graph that stores a neural network for each event. This modular
representation allows to encode and train the knowledge and the
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user’s belief for each event individually. In the next sections, we
explain the architecture of PICA in more detail.

4 NATURAL LANGUAGE KNOWLEDGE
INTERFACE

The Natural Language Knowledge Interface extracts important
information from the user input. User intent is classified and parsed
data associated with the input is forwarded to the TKM. Extracting
the user intent and parsing the user input are done in parallel.
Intent Classification: Given the user input x , we classify x to
retrieve the most-likely intention i ∈ I , where I is the set of user
intentions. Knowing the intention enables us to improve PICA’s
responses. To classify x , we use the Rasa NLU library [1].We defined
seven user intentions:

• Query: The user queries an action, state or participant.
• Belief: The user agrees or disagrees how certain events in
the story played out.

• Location: The user can ask where someone or something
is and the agent is able to guide the user to its location.

• Narration: The user may not observe all actions and can
ask the agent to narrate the currently executed events.

• Guidance: The user can either learn about the currently
available user interactions, how to follow a certain character
path or how to follow the best possible path in the story as
provided by the story-authoring system.

• Repetition: The user can ask PICA to repeat its responses.
• Narration of Story Information:The user can askwhether
they missed something during an event. PICA will check the
knowledge base and tell the user about any important story
information that was conveyed during that event.

Syntax Parser: The Natural Language Knowledge Interface pro-
vides an intuitive interface to the user to communicate with PICA.
Using Google’s SyntaxNet [17] to extract dependencies from the
user input x , we are able to retrieve the subject, verb (or adjective)
and object and pass them to the TKM.

5 KNOWLEDGE REPRESENTATION USING
TEMPORAL KNOWLEDGE MAPS

Our goal is to create a conversational agent acting as a guide in
interactive narratives. To model the knowledge base for such an
agent, we propose our Temporal Knowledge Map (TKM), which
combines a story graph with a neural network. This enables the
modeling of time and uncertainty in a single knowledge base. The
most important parts of our TKM are:
Affordance: An affordance a ∈ A is an action that is physically
possible for an object or a person as described by Gibson [16]. We
define the affordee as the object or person that offers its affordances,
while the afforder is the person interacting with the affordee.
State: A state s ∈ S describes an attribute and has an afforder
associated with it.

An affordance or state change is stored inside the TKM using
Knowledge Nodes. A Knowledge Node consists of a triple (i,n, f ),
where i ∈ N⩾0 is the global index, n is the neuron inside our TKM
and f ∈ F is the affordance or state. When querying a node, we
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Figure 3: A visualization of our Temporal Knowledge Map.

receive a vector of confidence values. Each confidence value may
describe the actual narrative, the user’s belief or an agent’s belief.
Events: An event e ∈ E consists of a list of states and affordances
that can be executed in parallel or sequentially. Figure 4 visualizes
how an event is represented in the TKM. Each event has its own
network containing knowledge nodes and defining the causal de-
pendencies between them. Section 5.1 defines the logical inference
necessary to construct the event network.
Story Information: A story information t ∈ T describes informa-
tion that is conveyed during the story and is vital for understanding
it. Each t is connected to an event e during which the information
got conveyed. Story information may be used to provide constraints
guiding the narrative progression [26].
User Interaction: User interactions u ∈ U ,U ⊆ E are a special
type of event that the user can trigger by e.g. clicking on an object.
The supplementary material describes how PICA identifies which
user interactions are currently available.
Beats: Each beatb ∈ B describes one time step in a story. It contains
a list of all events [e1, ..., en ] that will be executed in parallel. It holds
that for any two events in the same beat, they cannot have the same
characters involved in them.
Arcs: Each arc c ∈ C stores information about its beats [b1, ...,bn ],
the active user interactions [uc1, ...,ucm ] and the story information
[t1, ..., tl ] constraint associated with the arc. In a linear story, there
would be only one arc containing the narrative. An interactive
narrative consists of multiple arcs that may emerge at any time and
act as branching points throughout the story.
Deviations: The user may interact with the story at any time. This
can result in a deviation d ∈ D,d = [b1, ...,bt ] that needs to be
executed before continuing with the story.

Figure 3 depicts the overall TKM with Figure 4 representing
the internal implementation of each event node in the TKM. The
narrative is structured as a graph G = (L,K). L = (e ∈ E |∃d ∈

D : e ∈ d ∨ e ∈ c , where executed(c)) that defines the story log
describing which arcs and deviations have already occurred. The
first beat serves as the initialization beat. Each state will be set to its
initial value. K = ⟨e1, e2⟩ describes the edges between two events
and it holds that e1, e2 ∈ L ∧ e1 ∈ bi ∧ e2 ∈ bi+1 .

Each layer of our TKM represents one beat in the narrative. PICA
is aware of the active beat and can reason about the past, present
and future. The future is only encoded for the currently executed
arc. As PICA is guiding an interactive narrative, it is possible at
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Figure 4: Each event in our TKMhas its ownnetwork to store
affordances and state changes.

any point that the currently executed arc will change making the
overall future of the story difficult to predict. The retrieval layer
shown in Figure 3 provides a look-up table to query nodes at certain
beats by accessing references to the neurons.

5.1 Setting up the Temporal Knowledge Map
Figure 4 provides an overview of an event structure. Each event
contains affordances and state changes that are causally dependent
on each other.
Implication: The implication represents the connection between
the affordances and the state changes. Each affordance might only
be executed after certain state changes were triggered.
Negation: Not all states might be true from the beginning and
some may be set to false during story execution. We define the
negation function of a neuron n as

val(n) =


1 if the affordance got executed.
−1 if the affordance will not be executed.
1 if the state will be true.
−1 if the state will be false.

Logical Conjunction: Each affordance or state can have multiple
dependencies. If it can only be executed after multiple other affor-
dances or state changes have been executed, we concatenate them
using a soft ∧-operation. The weight function for the resulting
connections iswab =

val (na )
deд−(nb )

.
The activation function is ab =

∑
i ∈deд−(nb )wib · ai .

Meaning that we only activate nb , if all input nodes are active.
Logical Disjunction: If only one of multiple affordances or state
changes need to be executed to start the next one, we use the ∨-
operation. Each dependency is able to activate the outgoing neuron.
This is achieved by setting all weights towab = val(na ).
The activation function is ab = maxi ∈deд−(nb )wib · ai and there-
fore we only activate nb , if at least one input node is active.
Universal Quantification: Each ∀-rule is stored in a separate list.
Before adding a new neuron, we first check whether any stored
∀-rule is applicable. If a ∀-rule is applicable and we haven’t stored
this information before, we add a new instance of this rule to L.

Existential Quantification: This rule represents one type of user
query. Instead of querying the confidence value of a neuron, the
user can ask for all neurons that are related to some event.

5.2 Querying the Temporal Knowledge Map
To match the parsed user input to a Knowledge Node, we need to
compare it to the information stored inside the Knowledge Node. By
searching for an intersection between their synonym groups using
WordNet [13] and utilizing Word2Vec [23] to retrieve a similarity
score, we are able to reliably match the user input to the correct
node and either return its confidence value for the actual story
knowledge (or the relevant participants) or PICA will tell the user
that it couldn’t find any information about it.

5.3 Modifying the Temporal Knowledge Map
The TKM can be modified either by the user or by the story-
authoring system connected to PICA. Depending on the intention,
we either want to modify a belief model or the actual story knowl-
edge. This is stored for each Knowledge Node in a confidence vector
y, where the first value contains the story knowledge and all the
other values map to one of the belief models. The story knowledge
is modified whenever

• an event ends, we receive information of whether it was
interrupted. If it was, we set its story knowledge to -1.

• the currently executed arc changes, any future beats of that
arc will not be executed. We invalidate them by setting the
story knowledge of their events to -1.

The user belief model is modified whenever
• the user states their belief about an affordance or state.
• the end of a beat is reached. The story-authoring tool sends
additional information about the engagement of the user
with regards to the currently executed events to PICA.

To train the TKM and adjust its weightsw , we are using gradient
descent on only the mentioned events, affordances or state changes.
Therefore, we isolate the corresponding Knowledge Nodes and
extract their neurons as well as their direct weights.

5.4 Handling Deviations and Arc Changes
The user is able to interact with the story, which can lead to devia-
tions and arc changes. We need to handle the following deviations:
ArcChange.When an arc change occurs, the current arc is stopped
and all future beats are invalidated. The future arc is retrieved and
all of its beats are added to L by connecting them to the events from
the current beat.
User Interaction Deviation. Every interaction that the user trig-
gers leads to a sequence of events that will be executed and a plan is
computed by the story authoring system to proceed with the story.
These events and the resulting plan can consist of several beats and
we denote the number of beats as l . To handle this deviation d , we
take the following steps and denote the current beat as bt :

(1) All future beats are invalidated and stored temporarily.
(2) The beats of d will be connected to bt .
(3) The stored beats are added to beat bt+l , if the plan results

in coming back to the current story arc. Otherwise, an arc
change will be initiated after adding d .
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Figure 5: An overview of the Proactive Discourse Module.

6 PROACTIVE DISCOURSE MODULE
The Proactive Discourse Module is defined by a Behavior Tree (BT)
[8] and provides the direct interface to the user. BTs provide a
modular and intuitive formalism of modeling an agent’s behavior
and have been successfully used in games like Halo 2 [20]. The
task of the Proactive Discourse Module is to provide a simple and
modular interface for the author to extend the agent with predefined
responses. Figure 5 provides an overview of how we separated the
different types of interactions that the agent can execute.
Active Agent Behavior: The active part of the BT provides PICA
with the ability to initiate conversations. Using the user belief model,
PICA can identify whether the user is about to miss or already has
missed an important event. We want to inform the user about
missed information or guide the user to experience this event. An
example of this is shown in Figure 1. PICA can also make the user
aware of possible user interactions.
Reactive Agent Behavior: The reactive BT is separated into two
parts to define the tasks PICA has to be capable of to correctly
respond to the user input. The Listen subtree simply takes the user
input and passes it to the Natural Language Knowledge Interface.
The Talk subtree handles PICA’s response. Each supported intention
has its own subtree that contains the check for the intention, which
was extracted from the user input as explained in Section 4.1, and
the action needed to be executed.

7 EVALUATION
To evaluate our system, we conducted a performance evaluation to
demonstrate the real-time aspect of PICA, which can be found in
the supplementary material. We compare the TKM with alternative
approaches and show an example of PICA guiding the user through
an interactive experience in the supplementary video.

7.1 Knowledge Base Comparison
As our knowledge base combines a symbolic representation with a
neural network, we compare our system with these two approaches
to evaluate whether our approach overcomes their limitations.
Neural Network. A neural network provides the possibility to
identify complex dependencies and predict the correct outcome
fairly accurately given a suitable set of training data and the correct
architecture for building the neural network. A traditional neural
network is trained by providing values for the input and the output
layer and then use back propagation to update the weights accord-
ingly. When training a neural network, there is a risk of losing parts
of the story as the neural network may decide during training to
store other information and dependencies. In our case, we want to
be able to exactly map each neuron to an affordance or state change
so that we are able to reason about it. Neural networks do not

provide such a modular structure. Our TKM is able to update the
underlying network training any node without having to retrain
the whole network.
Symbolic Knowledge Base.A symbolic knowledge base provides
the possibility to clearly define and understand the structure of the
story. These advantages align with our use case and provide the
possibility to clearly identify the different steps and dependencies
inside the story. However, to provide the best-possible guidance,
we need to store the user’s belief model inside our knowledge base
to identify which parts of the story the user has witnessed and
understood. The TKM provides an inference system that takes as
input observations about the user and retrieves the correct node
and its direct weights that need to be updated to facilitates this. By
using gradient descent to update them, we are able to incorporate
uncertainty and make the overall transition between states more
smooth. Figure 1 illustrates this by showing an example of using a
symbolic knowledge base and the TKM. Both are able to keep track
of the progression of the story. However, the symbolic knowledge
base does not have an inference model and therefore it becomes
much more difficult to model the user’s belief correctly as can be
seen in beat 3 and 4, where PICA is unsure of whether the user was
paying attention to the story and therefore initiates a conversation
with them to ensure they didn’t miss anything important.

7.2 Demonstration of PICA
Interactive narratives allow the user to influence the story. De-
pending on the interactions executed, the chosen story arcs may
change. This allows for a highly interactive and immersive expe-
rience. We integrate PICA into the interactive extension of the
story-authoring tool CANVAS [21] that allows the author to easily
create such interactive narratives.

To ensure that we do not lose the modularity of PICA, we only
loosely couple the two systems. We created an interface that allows
any story-authoring system to communicate with PICA without
direct integration. For this purpose, we defined system commands
to make use of the existing features of PICA. These commands
allow PICA to be aware of the current story progression, whether a
user interaction has happened and whether the story has deviated.

The supplementary video demonstrates PICA’s capabilities in
such a story-authoring tool. The first two interactions between
PICA and the user showed the proactive capabilities that PICA
offers. Due to storing a model of the story knowledge and the
user’s belief model, PICA is able to inform the user about missed
information and nudge them about important events. The other
interactions are examples of how PICA can respond to a variety
of different user inputs by taking into account the derived user
intention and whether the user is talking about the past, present
or future. The last interaction demonstrates the user’s ability to
influence the story by asking PICA for guidance. Depending on
whether they scare Horton when he is about to drink the suspicious
potion, the user will either help to save Celia or Horton.

8 LIMITATIONS & FUTUREWORK
PICA still faces several limitations. PICA is only able to reliably
parse simple sentences. As soon as the user uses a more complex
sentence structure, PICAmight misunderstand the user. Providing a

5



more robust syntax parser would allow PICA to parse more complex
sentence structures. We currently encode seven user intentions.
As we want to encode more intentions, it becomes more difficult
to train them efficiently. Implementing a more advanced intent
classification would allow PICA to identify more intentions.

The TKM can encode multiple belief models at the same time,
but we only explored having one user model. More complex stories
could test how PICA can be used to not only act as a guide, but also
as the underlying AI for NPCs. A future user study could evaluate
how useful PICA’s guidance is to the user and how well the user’s
belief model stored in PICA matches the actual user beliefs.

9 CONCLUSION
We have presented PICA: a proactive intelligent conversational
agent for interactive narratives. Our work is motivated by the value
of representing imperfect story knowledge in interactive narratives.
PICA can be used in story-authoring systems to guide the user
through the experience. By storing the user’s belief model, PICA is
able to initiate conversation with the user whenever necessary and
the user is able to interact with PICA to learn more about the story
and update PICA’s belief model about the user.

PICA’s architecture consists ofmultiple components. TheNatural
Language Knowledge Interface preprocesses the input received
from the user and prepares it for the TKM. The TKM will extract
the corresponding nodes, before sending the results back to the
Proactive Discourse Module to create a response for the user.

We have compared our approach with two alternatives using
neural networks and symbolic knowledge bases. In both cases,
we are able to identify the advantages and limitations. We have
demonstrated that combining both approaches enables us to use
their advantages and overcome their limitations. Our TKM is able
to perform in real-time and can encode both time and uncertainty.
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