

2017 Rack PDU Product Catalog Zero-U & Rack Mount Power Distribution Units

Be Supported

Switched PDU

Feature ability to turn on, off or reboot outlets individually or as a group.

PRO2[™] PDU

Your Uptime Solution. The next evolution in PDU design; with a shallower form-factor, faster processing & more memory.

Basic & Metered PDU

Entry level reliable power distribution; with or without local current meters.

Smart PDU

Adds local current meters, network accessible power and environmental monitoring.

HDOT[®] PDU

Your High Density Solution. High-density outlet PDUs feature 20% more outlets in the same form factor as traditional PDUs.

BYOPDU

Easy-To-Use Web Tool for building custom PDUs to meet your specific requirements.

PIPS® & POPS® PDU

Power monitoring per outlet or device plus the features of the Smart & Switched PDU.

Sentry Power Manager (SPM)

Your Capacity Planning Solution. Award winning, most comprehensive & affordable rack-level solution for measurement & reporting.

-48VDC PDU

Minimizes the impact of locked-up network devices for mission critical networks.

Corporate

- > Headquartered in Reno, NV
- > 30+ Years of Innovation & Experience

Key Assets

- > We Focus Only on Power
- > Double Digit Growth Year Over Year
- > Fastest Growing PDU Manufacturer for Three Years
- > Largest R&D Team in the Industry
- > Largest Patent Library
- > 500+ Strong Reseller Team
- > ISO 9000 Registered
- > NA, EMEA & APAC Offices
- > Our Customers are Largest in the World

Only with Server Technology Will You:

Over 60,000 customers around the world rely on Server Technology's rack PDUs to maintain uptime, ensure efficiency and facilitate capacity planning. Server Technology provides uncompromising quality, reliability and value for the datacenter. Our customers' state that our quality is the number one reason why they choose Server Technology PDUs.

Be Supported

Year after year our customers rate our support to be a key differentiator between Server Technology and its' competitors. At Server Technology, comprehensive product support starts before you buy, and extends throughout your relationship with Server Technology. Server Technology Power Strategy Experts want you to be more than satisfied with your power solution.

Get Ahead

Server Technology Power Strategy Experts have worked with top performing datacenters for over 30 years. Through this experience we focused on addressing the customers' pain points. This ongoing exercise of designing new solutions has not only helped us secure the largest loyal customer base, but has also resulted in more PDU design innovations then any of our competitors.

Server Technology | Your Power Strategy Experts

Over 12,000+ PDU Configurations to Meet Any Demand

> Smart PDUs > Switched PDUs > POPS[®] PDUs > PIPS[®] PDUs

> HDOT[®] PDUs > PRO2[™] PDUs

> Basic PDUs > Metered PDUs > -48VDC PDUs

HDOT

Your Density Solution: High-Density Outlet Technology > Higher, Up to 65°C, Certified Operating Temps

- > Most Outlets per Form Factor
- > The Right Outlets in the Right Place
- > Build Your Own at ServerTech.com/byopdu
- PROB

Your Uptime Solution: The Next Evolution in PDU Design

- > Maintain High Availability to Your Data
- > Stay Informed of Rising Loads
- > Flexible Shallow Hardware Platform
- > Improved Network Card Serviceability
- > Expanded Warning & Alarm Levels

Your Capacity Planning Solution: SPM | Sentry Power Manager

- > Monitor & Plan Your Growth & Capacity
- > Most Affordable Power Management Solution
- > Get the Reports You Need
- > Seamless Integration

> Alternating Phase

Your Power Redundancy Solution: FSTS | Fail-Safe Transfer Switch

- > Fail-Safe Redundancy for Single or Dual Power Supply Servers & Network Devices
- > Carry Loads on Both A & B Circuits During Normal Operation

Your Telecom Solution: -48VDC

- > Secure Remote Power Management: Reboot Single or Grouped Outlets (SSL, SSH, Telnet, SNMP & RS-232)
- > Environmental Monitoring External Probes for Measuring Cabinet Temperature & Humidity

Your Basic Solution: Basic & Metered PDU

- > Basic PDUs Provide Reliable Power Distribution for All the Devices in Your Equipment Cabinet
- > Metered PDUs Add Local Input Current Monitoring to Verify the Aggregated Load for an Outlet's Circuit or Phase

Server Technology PDUs are loaded with features and technologies that will assist you in managing your data center's equipment cabinet. Throughout this catalog you will find icons that graphically represent Server Technology PDU features, each of which is defined in the list below.

PDU Feature Key*

Branch Circuit Protection

PDUs are UL 60950-1 certified for branch circuit protection and use fuses or circuit breakers to protect each outlet branch.

Input Current Monitoring

Easy-to-read LEDs display current per phase to help prevent overloads & simplify 3-phase load balancing in high density cabinets.

Temperature/Humidity Monitoring

Master and Link units each support two external 10' (3m) T/H probes. Receive SNMP-based alerts and email notifications.

Linked Expansion

Exclusive method for linking additional PDUs together under a single IP address with support for A & B power in-feeds.

Star Multi-link Expansion Kit E202

PRO2 provides the ability to link up to four power circuits using one IP address. Kit sold separately.

IP Access, Security & Communications

Web, SSH, Telnet, SNMPv2c & v3, RS-232 serial, 10/100 Base T-Ethernet, LDAP(S), TACACS+, RADIUS, DHCP, & SMTP/email.

Outlet Control

On Switched PDUs, cycle power to individual outlets or groups of outlets to reboot servers; or to power off unused receptacles.

POPS[®] (Per Outlet Power Sensing)

Monitor Current Load (A), Voltage (V), Power (W), Apparent Power (VA), Crest Factor, Power Factor & Energy per outlet.

PIPS[®] (Per Inlet Power Sensing)

Monitor Current Load (A), Voltage (V), Power (W), Apparent Power (VA), Crest Factor, Power Factor, & Energy per inlet.

Startup Stick[™]

The guick and easy solution to PDU configuration when DHCP is not available.

HDOT[®] (High Density Outlet Technology)

Maximize outlet density with our uniquely designed, high density modules for standard C13 & C19 outlets.

Alternating Phase

Phased power is alternated between each outlet, instead of each branch, which simplifies load balancing and clutter.

Branch Current Monitoring

PRO2 monitors current at each breaker/fuse branch and alerts when high usage risks a tripped circuit.

Products are tested and approved for safe and reliable operation in 60°C (140°F) data center environments.

Hot Swappable Network Card with Backup Power Propa

Network access is ensured when power is lost to the Master unit with backup power provided by the primary link unit.

Power Pivot[™]

The 90° rotatable power cord allows for standardized deployment at any facility no matter where power must be routed.

ST Eye Mobile App with Bluetooth Connectivity

The best PDU LCD is the one in your hand. Attach the ST Eye Bluetooth module for access to power data & system settings.

Includes standard button mounts along with provisions for custom mounting brackets (contact Server Tech for details).

Cable Retention

Reduces accidental disconnects by ensuring that power cords are solidly connected to their respective devices.

Color Coded PDUs

Select from six colors to designate PDU circuits in the data center — black, white, red, green, blue & yellow.

*Some features may only be available on select models. Please consult a Power Strategy Expert for specific product information.

4

High Temperature Rating

Power Pivot/

Basic PDU

Basic PDU is an entry level product that provides reliable power distribution and branch circuit protection for all the devices in the equipment cabinet.

Metered PDU

Metered PDU products provide branch circuit protection and reliable power distribution for all devices in the equipment cabinet. Local input current monitoring allows the installation engineer to verify the aggregate load on the circuit or phase.

Smart PDU

Smart PDU products provide reliable power distribution coupled with remote power and environmental monitoring. Use the network interface to view power, temperature, and humidity levels via Web browser or get SNMP-based and email alerts when conditions exceed defined thresholds. Add an Expansion PDU to Smart & Switched PDUs using a single IP address.

Switched PDU

Switched PDU products provide the same reliable power distribution, monitoring, and alerting as the Smart PDU while adding outlet On/Off/Reboot control. Use the Switched PDU to cycle power on dual power IT equipment with one command. With outlet control, gain features like power-up sequencing and smart load shedding.

POPS® Smart & Switched PDU [2025]

Adds Per Outlet Power Sensing (POPS) to the Smart or Switched PDU which provides power monitoring per an individual outlet/device. Power information per individual outlet /device includes current, voltage, power (kW), apparent power, crest factor, and power factor. Using our grouping technology, power information is available per device, groups of devices (application), individual PDU or cabinet.

PIPS[®] Smart & Switched PDU **PIPS**

Per Inlet Power Sensing (PIPS) PDUs provide expansive high-accuracy power monitoring per inlet/infeed. This includes current, voltage, power (kW), apparent power, crest factor, power factor, and accumulated energy. With this feature there is no need to add more expensive, less accurate panel monitoring upstream.

PRO2™ PDU PROP

Improve uptime by maintaining high availability to your data through redundantly powered hot-swappable network cards and multi-link capability. Gain additional insight into rising loads or heat through multi-level alarms.

-48VDC

Gain control of cabinet equipment at remote locations, including colocation facilities and network ops centers, which gives you the ability to reboot locked up remote servers around the clock.

Certifications, Compliance & Warranty

All products contained within this catalog carry one or more of the certifications below. Additional agency certifications are available based on specific market requirements.

> cTUVus Mark to UL 60950-1:2007 and CAN/CSA 22.2 No. 60950-1-07

> TUVGS Mark to EN 60950-1:2006 + A11

> EMC to EN 55022 Class A, EN 55024, CISPR 22 Class A

> FCC Class A, Part 15

- > CE Mark
 - > RoHS/WEEE
 - > 2-Year Warranty

PIPS Smart & Switched PDU **PIPS**

The best infeed power measurement technology on the market for data center rack-level power monitoring.

PIPS technology replaces power monitoring at the RPP (Remote Power Panel) in data centers with higher accuracy and lower cost monitoring of each power circuit attached to a PDU. This feature enhances equipped Smart, Switched, and POPS PDUs with the most accurate and extensive metrics on the market. Expect the same quality and functionality on current intelligent PDUs, but with an increased level of information to help you make the critical decisions regarding your facility.

PIPS Features **PIPS**

PIPS works in conjunction with all of the features of a Smart, Switched or POPS PDU with the ability to provide power monitoring per inlet/infeed. Power information per infeed includes current, voltage, power, apparent power, crest factor, reactance, power factor and accumulated energy. The PIPS PDU is capable of being accessed through either a secure network or serial connection. The secure integral web interface provides a simple and easy way to monitor the PDU. Configuration choices include: SNMP traps, email alerts, grouping, and all security and communication settings.

PUED Science Information & Management Web Interface

Easy to Read Summary Screen

The summary screen allows users to quickly confirm the status of the rack power & environmental conditions.

Sentry PIPS (Per Inlet/Infeed Power Information)

- > Current (Amps)
- > Power (Watts)> Power Factor
 - > Apparent Power (VA)
 - > Accumulated Energy (kWh)

> Voltage (Volts)

> Neutral Current

Server Technology	Sentry Smart CDU	F Address : 65 214 205 174 - Access : Admin
System	Configuration - System	
Power Monitoring	System	
Environmental Monitoring	System information	
Configuration	Firmware Version: Ethernet N2C S/N:	Sentry Smart CDU Version 6.1c (Denic 1) 8054707
System	Ethersel Address (HAC): Hardware Revision Code:	00-0a-90-50-66-83 32 (ME)
Network	Flash Hemory Size:	2 148
Teinet/SSH	Uptimes	25 daya 11 haura 11 minutes 14 accorda
HTTP/SSL	Configure system options	
serial Ports	Location:	C Bink
Towers	Display Orientation:	Normal
Input Feeds	Strong Passwords:	Disabled *
UPS	Configuration Reset Button:	chabled *
Users	Temperature Scale:	Fahranhait -
FTP	Area (Fostgrint):	0.0 Square Feet +
SNTP/Syslog	Power Factor:	1.00
snup/Thresholds	C11 Session Timeout:	2 moutes
LDAP	Web Session Timeout:	3 modes
TACACS+	Apply Cencel	
RADBUS		
Email	Configure login banner and system names	
Features	Login Banner	
ioola	Tower Names Irgut Feed Names	
Legest	Outlet Names Serial Port Names	

System Configuration

Intelligent PDUs enable network access to remotely configure access, outlets, alarms, thresholds, and more.

Server Technology	Sentry Sma	In CDU		P Address 65 214 205 174 c Access : Admin
System	Environmen	tal Monitoring - Sensors		
Power Monitoring	Temperatur	e and Relative Humidity		
Environmental Monitoring	Monitor I Sensor	semperature and humidity sensor values Sensor Name	Temperature	Relative
Contacts ADCs Configuration	A1 A2 B1 82	Senser_A1_front_Bottom Sensor_A2_front_Niddle Temp_Humid_Sensor_B1 Temp_Humid_Sensor_B2	(*f) 79.0 78.0 78.0 79.5	(%) 15 18 22 19
Tools	Water Monitor Sensor ID	vater sensor states Sensor Name	Sersor Status	
		Water_Sensor_B	Normal	

Environmental Monitoring

No additional IP address needed to obtain temperature and humidity readings. A pair of probes (EMTH-1-1) can be added to any intelligent master PDU (Smart or Switched). Additional probes can be added using an EMCU-1-1B (see page-38).

POPS Smart & Switched PDU

The best outlet power measurement technology on the market for data center rack-level power monitoring.

Blade servers and high density computing power requirements continue to increase and POPS is the right PDU for that environment. With devicelevel output control, you can monitor, track and manage servers, IT equipment and the equipment cabinet infrastructure. With the ability to measure, monitor, and report power down to the rack or outlet level, this solution follows the Green Grid's recommendations for acquiring the most accurate power monitoring data.

POPS Features **POPS**

- > Simple, secure, integral web interface GUI configuration tool
- > Temperature and Humidity Support
- > Authentication logging, configuration changes and system events
- > Secure Syslog protocol support
- > Automatic Firmware Updates via FTP server

- > Emails log, event, authorization, power & configuration messages
- > Strong Password Support and Pre-Login Banner
- > Ability to Ping an IP address to see if the device is responding
- > Grouping of outlets across Master & Expansion PDUs
- > SNMP: Traps based on Status, Changes, Load, Temperature & Humidity

POPS Power Information & Management Web Interface

Server Technology	Sentry Switche	rd CDU				P Addre	Locator es 100 211 205 100	Abcess Ab	inin I
System	Outlet Control -	Individual							
Cutlet Control	Individual Outle	it Costrol							
Individual	Control p	ower to individual cutlets							
Group	Outlet	Outlet	Outlet	Outlet	Outlet		Cantrol	Contro Action	
Power Monitoring		ancel	Reireah	(A)	CW0		2000	- Autor	
	643	Towark Infeed& Outlet1	De	0.00	0	Catals	01	Note	
Brvironmental Honitoring	442	Towerk_IntentA_Outlet2	100	0.00	0	Details	05	NOTE	
Configuration	643	Customer, A. Server, A. PS	-	0.00	0	Details	01	NOTE	-
look	4.5.4	TowerA InfeedA Cutlet4	Dw	0.00	0	Details	01	None	
(DORS)	ALL	Towerk Infeeda Outlets	De	0.00	0	Details	On	Nane	
	6.0.6	Customer & Server A PL	Ow	0.00	0	Details	01	Note	
	447	Towers_Infeeds_Cullet?	De	0.00	0	Cetals	0.9	None	
	440	Towerk Infeeda Cutiets	Con .	0.00	0	Details	0.5	None	
	401	TowerA InfeedD Outlet1	Dw	0.09	0	Details	On.	None	
	462	Towerk_InfeedD_Cutlet2	De	0.00	0	Details	01	None	
	683	Toward_Infeed8_Outlet3	On	0.00	0	Catals	On	Note	
	484	Towers_Infeed8_Cudiets	08	0.00	Ó	Cetals	01	None	
	405	Towerk_Infeedb_Outlets	00	0.00	0	Details	07	None	
	486	Customer_C_Server_A_F1	De	0.00	0	Cetals	01	Note	
	A87	TowerA_InfeedD_Outlet?	(Dec	0.00	0	Details	On	None	
	488	Toward_Infeed8_Outlet8	City	0.00	0	Details	On	None	
	401	Towers_InfeedC_Outlets	De	0.00	0	Cetals	01	None	
	402	Towerk_infeedC_Outlet2	CON .	0.00	0	Details	-	None	•
10000	ACS	Customer_A_Server_A_P2	Des	0.45	91	Details	01	Note	
Logout	404	TowerA_InfeedC_OutletA	The	0.00	0	Details	04	None	

Outlet Control Power Monitoring

- > Individual Outlet Control
- > Current Load Monitoring
- > Power Monitoring > Additional Details

Server Technology	Sentry Switched CDU				P Address : 0	Location o User ADMI () 0.214.200.100 o Acceso Admin
System	Outlet Contr	rol - Group				
Dutiet Control	Group Oatle	t Centrol				
Individual	Control p	ower to ALL outlets in the selected arou	p .			
Group	Selected	Group:	Dieves_Test .			
over Honitoring	Group Cor	stral Action	None -			
and the second se	Apply (Cancel				
invironmental Monitoring	interest of the					
onfiguration	Status of	foutlets in the selected group				
	Outlet	Outlet	Outlet	Outlet	Outliet.	Corbial
906	1D	Nore	Edited	Leed (A)	Paner (W)	State
	643	Towera infeeda Carleri	Cm.	0.00	0	Or
	4.4.7	Towerà Infeedà Cutlet?	On	0.00	0	Or
	443	Customer, A. Servier, A. Pl	Om	0.00	0	Or
	4.8.4	Towark Infoodk Outlet4	Om	0.00	0	On
	AAS	TowerA InfeedA Outlet5	On	0.00	0	On
	AAB	Customer, 8, Server, A, PI	Cin .	0.00	0	OK NO
	4.47	Towers_Infeets_Curlet?	On	0.00	0	OP.
	4.4.8	TowerA_Infeed3_Outlet#	Om	0.00	0	Qr.
	A01	TowerA_InfeedB_Outlets	Om	0.00	0	Or.
			Refresh			

Grouped Outlets Power Information*

- > Cabinet (single IP address using master/exp config for 2-PDUs)*
- > Device (Multiple Outlets)*
- > Group of Devices (Application)*
- > Individual PDU

Server Technology	Sentry Suitched CDU Platters - 6 to Platters - 6 214 201 100 - Acces				Location : User : 205 153 Access :	HAR ACTUR OF	
System	Outlet Cont	rol - Individual					
Oublet Control	Outlets						
	Monitor	outlots					
Power Monitoring	D.OM	Outet	Outet	Dutlet	Cutet	Outlet	
Outlets	10	have	Status	Loed	VOTADE	Pawer	
			6.edneck	(4)	642	(80)	
Input Feeds	841	Towera_Infeeda_Outlet1	On	0.00	238.1		Detail
System	.842	TewerA_InfeedA_Outlet2	On	0.00	230.1		Detail
UPS	AA3	Customer_A_Server_A_F1	0e	0.00	230.1		Detail
UPS	2,24	TowerA_bifeedA_Outlet4	Ow	0.00	238.1	0	Detail
Envronmental Monitoring	3,43	TowerA_InfeedA_Dutlets	Com.	0.00	238.0		Cetal
and the second se	3.56	Costomer_B_Server_2_Pt	On	0.00	238.0	0	Detai
Configuration	3.67	Teward_SofeedA_Outlet7	On	0.00	238.0	0	Detail
	840	TawarA_3HeedA_Dudet0	0=	0.00	238.0	0	Detail
Tools	A01	TowerA_Infeed8_Outlets	Ow	0.00	239.8	0	Detail
	A52	Towerk_Infeed8_Outlet2	0.6	0.00	239.8	0	Detai
	283	Towerk_Infeed8_Outlet3	On	0.00	239.8	0	Detail
	A84	TewerA_InfeedB_Outlet4	On	0.00	239.8		Detail
	A00	TewerA_Infeed0_Outlet5	On	0.00	239.7		Detail
	A00	Castonier, C. Server, A. Pl.	On	0.00	239.7		Defai
	A67	Towerk_syleeds_Dutlet7	0.0	0.00	239.7		Cetal
	1.80	TewerA_3rdeed8_Outlet8	On	0.00	239.7	0	Detail
	AC1	Tewark_ShfeedC_Outlets	Om	0.00	239.3	0	Detail
	802	TowerA_SrfeedC_Outlet2	Ow	0.00	239.3		Detail
	803	Customer A Server A #2	De	0.44	239.3	69	Detail
	40.4	Towers_InfeedC_Curlets	1200	0.00	239.5		Cetal
	ACS	Towerk_InfeedC_OutletS	On I	0.00	239.4		Detail
	306	Towark_InfeedC_Outlets	On	0.00	239.4		Detail
	AC7	Customer_6_Server_A_F2	On	0.43	239.4	87	Detail
	ACE	TawerA arfeedC Outlets	Om	0.00	239.4		Detail
	BAI	TowerB_InfeedA_0.dlet1	0a	0.00	237.9		Detail
	842	Tewer8_3r/eed3_0utiet2	Ow	0.00	237.9	0	Detail
Legout	843	Tewer8_3rfeedA_Outlat3	On	0.00	237.9		Detail
	244	TaiwerD Scheed& Outleton	Ow	0.00	237.9		Detail

Per PDU Power Information

- > Current Load
- > System Total Watts (W)
- > Infeed Voltage (VAC)
- > System Footprint (SqFt / SqM)
- > Input Feed Watts (W)

- > System Watts (W/SqFt / W/SqM)

Server Technology	Sentry Switched CDU	Lacator: U User: ADIM P Address: 01.214.200.100 Access: Admin	-
System	Power Monitoring - Outlets - Details		
Outlet Control	Outlets		
Perer Monking Oakte Pout Fedel System UPS Brukonneckal Horikasing Confloatekin Tools	Outre stable Dates 10 Dates 10 Dates House Dates House Case of (Area): Case of (Area): Area of Area Dates of Area (Area): Case of (Area): Area (Area): Case of	Administ Administry, Tatlenda, Gadiett General Merenal 2000 2004 2004 2004 2004 2004 2004 200	

Sentry POPS (Per Outlet Power Sensing)

- > Current Load (A)
- > Voltage (V) > Power (W)
- > Crest Factor > Power Factor

> Apparent Power (VA)

High Density Outlet Technology

Increase Rack Space in High Density Rack Environments. With tens of thousands of HDOT PDUs already installed, Server Technology has now completed its most popular and innovative product line ever with the addition of the HDOT Switched and Smart POPS (Per Outlet Power Sensing) PDU. Now with device level monitoring, the most uniquely valuable rack PDU on the market provides the #1 solution for density, capacity planning and remote power management for the modern data center.

HDOT Custom Outlets

HDOT is a custom designed IEC C13 & C19 outlet made specifically to answer the customer's call on wanting more outlets in less space. We achieve this by removing the unnecessary material around the outlets and placing the functional cores together as close as possible.

Taller racks with smaller footprints push the need for smaller, denser PDU's. Server Technology's HDOT provides the highest outlet density of any network PDU on the market. Another feature of HDOT outlets is the high native power cord retention. This is important to our customers as it greatly reduces the chances of power cords coming loose between the PDU and rack equipment.

HDOT Alt-Phase PRO2

The inherent design of Server Technology's Alternating Phase PDUs simplifies the task of balancing equipment loads across the multiple branches of the PDU. The alternating phase outlet arrangement allows a simple 'top down' deployment of the equipment connections to the PDU, resulting in minimal cord runs, which unclutters the back of the rack and improves air flow.

Unbalanced branches can result in a circuit breaker trip during a fail over event. Alternating phase PDU's minimize the chance of running with unbalanced loads due to the ease of balancing.

Large phase imbalances in the data center can lead to voltage and current distortions on the individual phases, increased heat dissipation, and reduced equipment life. Phase balancing in the data center starts at the PDU. Alternating Phase PDU's simplify the phase balancing challenge.

Key HDOT Benefits:

- > Right Outlets in the Right Place
- > Most Outlets to PDU Form Factor
- > Easy Load Balancing with Alternating Phase
- > Minimum 60C Operating Temperature
- > High Native Cable Retention
- > Smart & Switched Available
- > Per Outlet Power Sensing (POPS)

What Types of HDOT PDUs Are Available?

HDOT Alt-Phase PRO2 is designed for four rack power configurations:

> 3PH Delta 208V 60A > 3PH WYE 415V 30A > 3PH Delta 208V 30A > 3PH WYE 400V 32A

Server Technology offers Smart, Switched and now Smart POPS and Switched POPS technologies.

Due to its modular design, each product type gives the customer the opportunity to configure the number and location of C13 & C19 outlets. This results in numerous product configurations for our customers.

To simplify the product configuration process, Server Technology has a Build Your Own PDU website that will take you through four easy steps right to the final product you are after. BYOPDU can be accessed through any web equipped computer or mobile device <u>www.servertech.com/byopdu</u>.

Build Your Own PDU Web Configuration Tool

Easy-To-Use Online Tool for Building Custom HDOT PDUs to Meet Your Specific Requirements. To simplify the product configuration process, Server Technology has created a Build Your Own PDU website that will take you through four easy steps right to the final product you need. The site can be accessed through any web equipped computer or mobile device.

Server Technology's Build Your Own PDU online configuration tool takes a Smart or Switched 42-outlet High Density Outlet Technology (HDOT) PDU chassis and allows you to build a customized HDOT PDU in just a few easy steps. With thousands of configurations possible, you are sure to find the right density solution the first time with Build Your Own PDU & HDOT.

Power Options

1 | PDU Type & Outlet Quantity

Select Your PDU Outlet Type, Quantity, Phase & Chassis To begin building your own HDOT PDU, simply make one selection from the three columns presented. Determine how many outlets you need and what type of outlet functionality is desired.

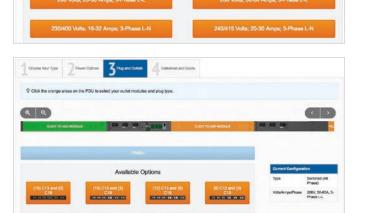
2 | Power Options

Select Your Desired Voltage & Amperage

The next step is selecting the proper voltage and amperage for your PDU's application. Available voltages are 208V, 230/400V or 240/415V.

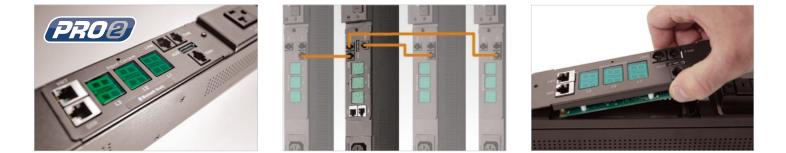
3 | Outlets & Plug

Select the Required Outlet Mix & Plug Type

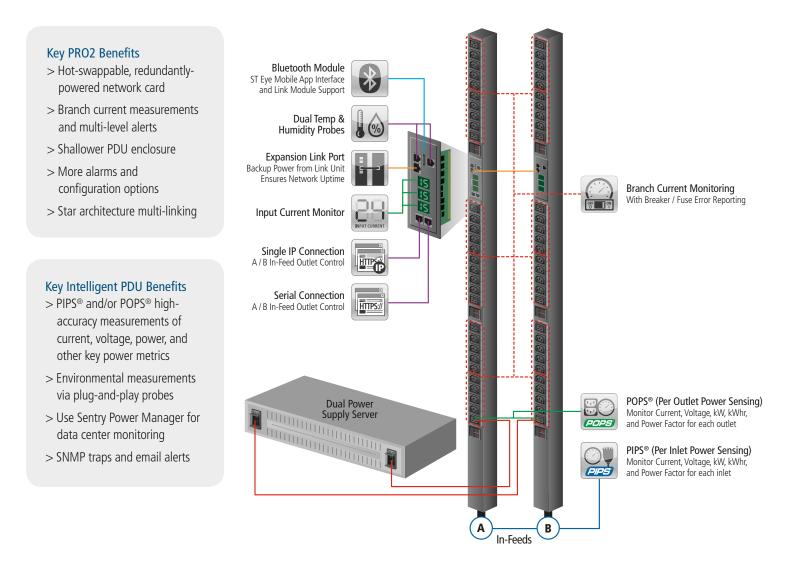

The third step is to select the outlet modules and plug type and position. Click on the orange hot-spots on the display and select the outlet mix and plug needed.

4 | Quantity & Color

Select Quantity & Color of PDUs


The final step is to select the quantity and color of the master and expansion PDUs needed. Simply use the drop-down boxes below the image.

Once satisfied with your selections, click **Download Datasheet** for your PDUs specifications & **Request a Quote** to have a Power Strategy Expert contact you within 24-hrs.


To get started building your own PDU, visit Server Technology's website at: <u>www.servertech.com/byopdu</u>

PRO2 PDU PROP

The Next Evolution in PDU Design.

The PRO2 platform continues Server Technology's more than 30 year tradition of customer driven power solutions development. PRO2 features a flexible hardware platform with more outlets, a faster processor, improved firmware and increased security and redundancy. With PRO2 you can maintain high availability to your data, stay informed of rising loads and be proactive on your power supply management.

-48VDC Switched PDU Overview

The Switched -48VDC Rack Power Distribution Unit (PDU) minimizes the impact of locked-up routers, servers and other network devices for mission critical networks. CLEC's, ILEC's & ISP's use -48VDC PDUs to manage equipment in remote sites, co-location facilities and network operations centers. Remote devices that are locked-up can be easily rebooted without the need to send a technician to the site. Key applications include power distribution and remote management for a cabinet with -48VDC powered switches and high-amp network equipment.

The -48VDC Switched products provide power distribution and remote power management in a compact 19" rack-mount enclosure. Other features include always-on technology for the highest level of fault tolerance, grouping of outputs to ensure that multiple supply devices come up at the same time across A & B power feeds, linking for cost savings and doubling the number of outputs available on a single IP address.

Each power output terminal is protected by a GMT fuse, TPC fuse or circuit breaker, available in a wide range of capacities.

Fused Power Output Protection

Each low and high current output are individually protected by their own fuse. A variety of current capacities are available. Both the low current GMT and high current TPC fuses have a visual indicator when blown. The fuses are rated as disconnect switches therefore they may be hot-swappable without removing power to input-feeds or requiring special tools.

Dual 70-600A DC Power Input Feeds

Distribute 70-600A of DC power through low and high current outputs. Each output circuit is designed with their own over current protection.

Environmental Monitoring

External probes, with 3m cable, capable of measuring temperature & humidity. Receive SNMP-based or email alert notifications when conditions exceed defined thresholds.

IP Access, Security & Communications

Web interface, SSL, SSH, Telnet, SNMP & RS-232 access, 10/100 Base T-Ethernet, SSLv3/TLSv1, SNMPv2c & v3, RADIUS, TACACS+, LDAP, LDAPS, DHCP, SMTP/Email, and Syslog.

Key Features

In addition to the features listed on the left, the -48V also contains the following:

Remote Power Management

Combines power distribution with network power management and monitoring.

Multiple DC Outlet Circuits Protected by GMT or TPC fuses.

Variable Amperage / Changeable Fuses Match fuse values to the amp rating of each outlet circuit.

IP Access

For Remote Power On, Off & Reboot.

Alerts

Provide automated SNMP-based alarms or email alerts for power & environmental conditions

Load & On Sense

Real time current draw reporting, in amps, for each outlet. Power verification at each DC input/output.

Expansion Units

Link a Master to an Expansion unit to control both via a single IP address.

Sentry Power Manager (SPM)

Capacity Planning Solved

Why Every Data Center Manager Should Use SPM

Award-Winning Data Center Mgt Solution

- > Provides one central location to manage, monitor & control intelligent PDUs.
- > Cost-effective software solution.
- > Complete visibility to both power & environmental monitoring.
- > Easy installation & setup.

Easy Configuration

- > SNAP feature allows SPM users to create templates then automatically push down key system, IP & security settings to the PDU.
- > Automate PDU firmware updates

Versatile Reporting

- > NOC views allow the user to "at a glance" understand overall system status.
- > Schedule, view, export & email System reports, including information on billing, carbon footprint, cabinet redundancy & total energy.
- > Trending of key power & environmental info

Capacity Planning

- > Trending feature that predicts what the power usage might be in the future.
- > Min/Max/Average values along with predictive trends showing two ascension rates based on different times.

Seamless Integration

- > Open API that is well documented allows SPM to share critical power and environmental information with other systems like BMS and DCIM solutions.
- > Services include key information like system, location, cabinet, outlet, PDU, phase, branch & sensor information.

Get Ahead with SPM

12

- > Get better control of your datacenter.
- > Optimize your datacenter power.

*Please refer to your product manual for browser version compatibility.

What is Sentry Power Manager?

SPM is the most comprehensive and affordable rack-level solution to measure, monitor and trend power and environmental information in your data center.

Get all the power, environmental monitoring and reporting Big W I N N E R you need to plan your data center capacity and uptime. SPM provides the features you need at a lower investment than the

competition, allows you to receive data moments after installation, and manages your entire PDU network from anywhere. SPM features a user friendly, single pane of glass dashboard view of your data center or enterprise, and is a flexible, standalone power monitoring system or middleware for DCIM or BMS integration which simplifies the management of your PDUs. In a recent survey of Server Technology customers, the top reasons for picking SPM are its easy integration with current infrastructure, accurate reporting, capacity planning tools, and ease of use.

	Inake Interior (IN Sets				Name Tread Bass (pater	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	Dates . Collect	- it tand it findame			late without a	* - 12 B *
		-	NROS		Location Total Power	
	821	830	831	840	Lass.	Line Martin
					-	ALL DE LE DE
			Net CI		1 ILA IL IS ADDRESS	
					- Internet and the second	
				10.000	" Independent of the dealership of the	
					Jun 10 2015 20154 - Jun 11 2015 8:54 (Lest 12 mars)	
1	820	811	810	B01	Biles lantar 1282 IS 1284 28 1305 4	
	Mater Raba			6	Teast Zuri Power	8-1-X 8(7,10-4)
	Sere .	Sector Net	the bests	Bed Tre-	Jone Total Power	
	1 848.00		IN IN INCOME IN THE OWNER OF THE OWNER OWNE			
	No. MILLIN		Correct Statuching Harry			
			RealistLineColl, Just New Village TableCon Alexe)		-	
	the expectation		Other pro- divergence of the second s	APR 2 101	=	
	5 A2436.81	a 0	Other an INJACH (COLDICATION) Restored, Seelland, Ann Indep Marcine Rent	2010220		
	I NOVEM		Andread loss: and has been extended from the solution	2040228	*	
	-		Realing Subject, And Holp Solution Static	-	Am 10 2015 20154 - Am 12 2015 8154 (Last 12 Hours)	
	- sources	· ·	Colorige MULTIAL AND ADDRESS (ADDRESS)			
	1 - No. 6, 45 + 6 Z			Datases 1-20 at 10	5 197.0 43.0 198.0	
line line	A LUM BULLEW Scholas In Alleh	Insent Patels Reding	and adding LTURING		ana faa	IncerTee, New 11, 2019 (1919) 14
1 1-					the second se	the second se
A second						and the second se
Annual Content	T			w		The state of the s
				r ,		

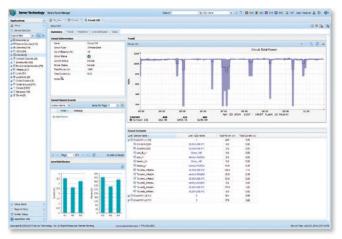
Network Operations Center (NOC): Capacity Planning Made Easy

- > A single point to access all of your PDUs > Live-updating trends for all your critical data
- > Central location for alarms
 - > Identify available power

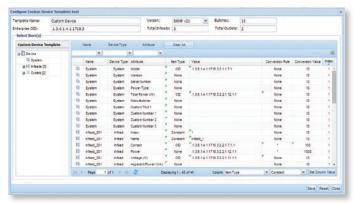
> Predictive Trending

- > Virtual or Appliance
- > Alternate Manufacturer Support & Management

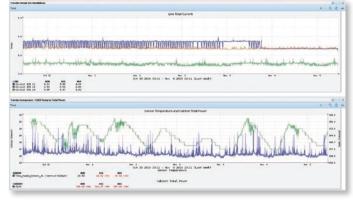
Improve Your Efficiency


The best power measurement technology on the market for data center rack-level power monitoring.

You'll know and understand everything that's going on with your power with the data from your PDUs, collected and aggregated within SPM. SPM's interface makes it easy to set up your own customizable network operations center (NOC) views. Customize your views to help you make key power management decisions.


Overall Summary: Maintain Uptime & Improve Efficiency

- > Cabinet Redundancy checks
- > Power management
- > Cabinet device elevations
- Environmental monito
- > Reports and Predictive Trends
- > Environmental monitoring


Circuits: Virtual View Into Your Entire Power Distribution Chain

- > Balance 3-phase power systems
- > Get alerts on UPS, PDU, RPP line currents, & non-network devices
- > Compare PDU measurements with other devices to identify losses

Custom Devices: Query More than Just Your PDUs

- > Monitor power from SNMP-capable power devices at every level
- > Walk the MIB and determine what you need to know
- > Watch trends and get alerted

Trends & Comparisons: Track Critical Power & Environmental Data

- > Benchmark energy usage for efficiency improvements
- > Understand growth with predictive trending
- > Send information to key personnel on a schedule

Sentry Power Manager (SPM)

Capacity Planning Solved

SPM 120-DAY Free Trial Download

6 Reasons Why Every Datacenter Manager Should Use SPM

- > Award Winning
- > Easy Configuration
- > Versatile Reporting
- > Capacity Planning
- > Seamless Integration
- > Get Ahead with SPM

SPM 120-Day Free Trial Rules

Eligibility: Only end users and must have no prior purchase of SPM.

Operation Period: After installing SPM, you will have 120 days of access.

Minimum Resource Requirements: The brackets [] used in the following items indicate VMware Server options that are not present in the VMware Player options.

- > [connect at power on]
- > [Adaptor = E1000]
- > Minimum 2 processors
- > Minimum 2GB RAM (For large systems, the recommended allocation is 8-16GB RAM, especially with POPS units.)

Note: To verify optimal processor and RAM resources for your installation size, contact Server Technology's Tech Support.

Learn more at **www.servertech.com/spm** or contact your local Server Technology Power Strategy Expert.

SPM; it's a SNAP!

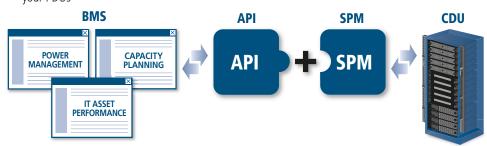
Log on. Auto Discover. Auto Configure. Relax.

Configuring your rack-level PDU network is a simple process, especially if you have hundreds or thousands of PDUs in your network. With Sentry Power Manager's exclusive SNAP technology, you can manage your entire network from a single user friendly dashboard.

The combination of Server Technology's intelligent power distribution units (PDUs) and Sentry Power Manager (SPM) enhanced by Server Tech's SNAP technology gives you the most comprehensive system of power available for rack-level data center power distribution and data center control, monitoring and measurement.

SNAP Functionality

- Ø Plug & Play PDU installation and configuration
- O Plug PDU into network, right out of the box


- SPM auto-discovers PDU and brings into SPM
- 𝐼 Create custom templates for easy PDU configuration
- Ø PDU is configured and ready to go, providing power information right away
- Ø Once discovered, SPM can push SNAP configuration templates to PDU

Middleware or Stand-Alone Flexibility

SPM provides the best of both worlds. SPM can serve as a middleware solution with your Building Management System (BMS) or other Data Center Monitoring software package. When used this way, SPM provides power and environmental information via a well-documented Application Programming Interface (API) for a "single pane of glass" view. SPM's API is based on industry standard Simple Object Access Protocol (SOAP) and Representational State Transfer (REST) XMLbased tools which allow SPM to communicate to third party systems. SPM can be a stand-alone operation and information solution, for power and PDU device management including setup, configuration, firmware upgrades and other functions.

API Key Features

- > The API allows a "single pane of glass" view in your central system while also providing one location to monitor and manage all of your PDUs
- > Communicates power and environmental information to existing software systems

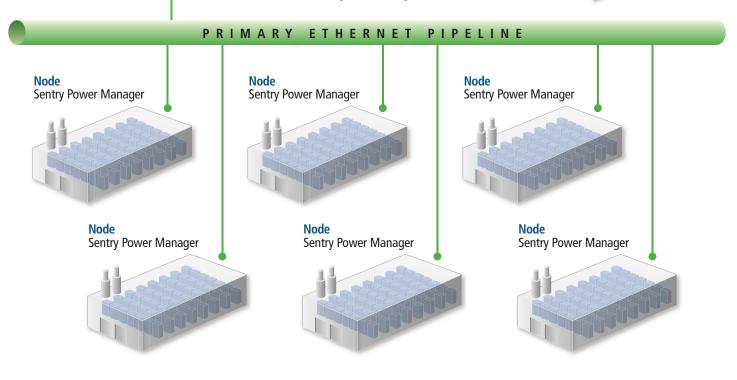
Hub & Node Management

Do you need the power monitoring and management convenience or administrative rights broken up between data center locations? Hub-and-Node SPM architecture will provide the solution for you. Individual Node SPM systems are managed as if they were stand-alone. The Hub monitors conditions at the Nodes and allows overall administrative access to monitor and manage the multiple Nodes and their corresponding PDUs.

Hub & Node Key Features

- > Hub can also monitor its own PDUs
- > SNAP can be used from the Hub to configure PDUs at any or all Nodes
- > Alerts roll up from Node to Hub
- > Energy rolls up Node to Hub
- SPM (Appliance or Virtual)

 Hub Location Sentry Power Manager (May or may not manage its own PDUs)


 Enterprise cabinet power management

 Hub shows status for each Node

 Nodes added/deleted at Hub

 Communication via HTTPS

 Node PDUs info rolled into Hub (owned by Node)
 - > PDU configuration changes can be made at Hub

Learn more at: www.servertech.com/spm

POPS[®] Switched PDU **POPS** Zero-U Vertical Enclosures

	Switched Pl	OU <i>(pops)</i>			F.E.B.B.B.B.B.B.	All Harrison
Model Outlets Input Voltage Max Amps Typical Power Output Voltage Circuit Protection Height	CWG-24VE-C1 (18) C13 + (6) C19 220-240V 16A or 32A 3.6kW or 7.3kW 220-240V Circuit Breakers 40U 1753mm	CWG-24V4-A1 (18) C13 + (6) C19 3-Phase 230/400V 16A or 32A 112kW or 22kW 230V Circuit Breakers 40U 1753mm	STV-6501 (24) C13 + (6) C19 220-240V 16A or 32A 3.6kW or 7.3kW 220-240V Circuit Breakers 40U 1753mm	STV-6503 (24) C13 + (6) C19 3-Phase 230/400V 16A or 32A 11kW or 22kW 230V Circuit Breakers 41U 1778mm	C2WGxxCE-4 (config) Up to (36) C13 or (12) C19 3-Phase 230/400V 16A or 32A 11kW or 22kW 230V Circuit Breakers 41U 1778mm	STV-6304 (36) C13 + (12) C19 3-Phase 230/400V 16A or 32A 11kW or 22kW 230V Circuit Breakers 40U 1753mm

POPS[®] Switched PDU **POPS**

Horizontal Rack Mounted Enclosures

	Switched PDU (POPS) Rack Mounted Enclosures	100000000000000000000000000000000000000	
Model		CWG-8HE	
Outlets		(8) C13	
Input Voltage		220-240V	
Max Amps		16A or 32A	
Typical Power		3.6kW or 7.3kW	
Output Voltage		220-240V	
Circuit Protection		Circuit Breakers	
Height & Depth		1U 178mm Depth	
5 1			

Model


Outlets Input Voltage Max Amps Typical Power Output Voltage **Circuit Protection** Height & Depth

Switched PDU

Zero-U Vertical Enclosures

Constants					1001 III Incellitie
Switched Zero-U Vertical					
Model Outlets Input Voltage Max Amps Typical Power Output Voltage Circuit Protection Height	CW-16VE (16) C13 220-240V 16A or 32A 3.6kW or 7.3kW 220-240V Fuses 29U 1257mm	STV-4101 (18) C13 + (6) C19 220-240V 16A or 32A 3.6kW or 7.3kW 220-240V Circuit Breakers 40U 1753mm	STV-4102 (24) C13 220-240V 16A or 32A 3.6kW or 7.3kW 220-240V Circuit Breakers 40U 1753mm	CW-24V4 (24) C13 3-Phase 230/400V 16A or 32A 11kW or 22kW 230V Circuit Breakers 40U 1753mm	STV-4501 (24) C13 + (6) C19 220-240V 16A or 32A 3.6kW or 7.3kW 220-240V Circuit Breakers 40U 1753mm

Switched PDU

P

Switcheo Zero-U Vertica					ACA III IN THIS AND
STV-4503	C2WxxCE-4 (config)	STV-4511	CW-48V4	STV-4523	C2WxxCE-4 (config)
(24) C13 + (6) C19	Up to (42) C13 or (18) C19	(48) C13	(36) C13 + (12) C19	(48) C13	Up to (54) C13 or (18) C19
3-Phase 230/400V	3-Phase 230/400V	220-240V	3-Phase 230/400V	3-Phase 230/400V	3-Phase 230/400V
16A or 32A	16A or 32A	16A or 32A	16A or 32A	16A or 32A	16A or 32A
11kW or 22kW	11kW or 22kW	3.6kW or 7.3kW	11kW or 22kW	11kW or 22kW	11kW or 22kW
230V	230V	220-240V	230V	230V	230V
Circuit Breakers	Circuit Breakers	Circuit Breakers	Circuit Breakers	Circuit Breakers	Circuit Breakers
41U 1778mm	41U 1778mm	40U 1753mm	40U 1753mm	40U 1753mm	46U 2032mm

000

Switched PDU

E

сто

НПР5://

Switched Horizontal Rac	PDU k Mounted Enclosures		Ale a
Model		CW-8HE	
Outlets		(8) C13	
Input Voltage		220-240V	
Max Amps		16A or 32A	
Typical Power		3.6kW or 7.3kW	
Output Voltage		220-240V	
Circuit Protection		Circuit Breakers	
Height & Depth		1U 178mm Depth	

Model	CW-16HE	CW-16HDE
Outlets	(16) C13	(16) C13
Input Voltage	220-240V	220-240V
Max Amps	16A or 32A	16A or 32A
Typical Power	3.6kW or 7.3kW	7.3kW or 14.7kW
Output Voltage	220-240V	220-240V
Circuit Protection	Circuit Breakers	Circuit Breakers
Height & Depth	2U 178mm Depth	2U 254mm Depth

POPS[®] Smart PDU *POPS*

Zero-U Vertical Enclosures

POPS [®] S Zero-U Vertica	mart PDU (POPS) Enclosures	10101010101010101011111111111111111111
Model	CSG-24VE	C2SGxxCE-4 (config)
Outlets	(18) C13 + (6) C19	(36) C13 + (12) C19
Input Voltage	220-240V	3-Phase 230/400V
Max Amps	16A or 32A	16A or 32A
Typical Power	3.6kW or 7.3kW	11kW or 22kW
Output Voltage	220-240V	230V
Circuit Protection	Circuit Breakers	Circuit Breakers
Height	35U 1550mm	41U 1778mm

START 1 5

Smart PDU Zero-U Vertical Enclosures

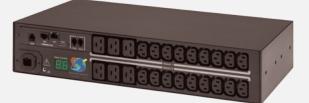
Smart PDU Zero-U Vertical Enclosures					
Model Outlets	C1SxxCS-E (config) Up to (14) C13 or (5) C19	CS-24V4-A1 (18) C13 + (6) C19	C1SxxCB-4 (config) Up to (14) C13 or (5) C19	STV-3101 (24) C13 + (6) C19	
Input Voltage	220-240V 16A or 32A	3-Phase 230/400V 16A or 32A	220-240V 60A	220-240V 32A	
Max Amps Typical Power	3.6kW or 7.3kW	11kW or 22kW	41.4kW	7.3kW	
Output Voltage	220-240V	230V	230V	220-240V	
Circuit Protection Height	Circuit Breakers 22U 947mm	Fuses 40U 1753mm	Circuit Breakers 41U 1778mm	Circuit Breakers 35U 1520mm	

Smart PDU Zero-U Vertical Enclosures

Smart PDU Zero-U Vertical Enc	losures		A CONTRACTOR OF THE PARTY OF TH	12121220 ALTER ALTER
STV-3104 (24) C13 + (6) C19 3-Phase 230/400V 16A or 32A 11kW or 22kW 230V Circuit Breakers	CSxxCS-E (config) Up to (42) C13 or (15) C19 220-240V 16A or 32A 3.6kW or 7.3kW 220-240V Circuit Breakers	CSxxCS-4 (config) Up to (42) C13 or (15) C19 3-Phase 230/400V 16A or 32A 11kW or 22kW 230V Circuit Breakers	C2SxxCE-4 (config) Up to (42) C13 or (18) C19 3-Phase 230/400V 16A or 32A 11kW or 22kW 230V Circuit Breakers	C2SxxCE-4 (config) Up to (54) C13 or (18) C19 3-Phase 230/400V 16A or 32A 11kW or 22kW 230V Circuit Breakers
				46U 2032mm

Smart PDU Horizontal Rack Mounted Enclosures

Model	CS-10HE (config)	CS-12HDE
Outlets	Up to (10) C13 or (2) C19	(12) C19
Input Voltage	220-240V	220-240V
Max Amps	16A or 32A	16A or 32A
Typical Power	3.6kW or 7.3kW	7.3kW or 14.7kW
Output Voltage	220-240V	220-240V
Circuit Protection	Circuit Breakers	Circuit Breakers
Height & Depth	1U 178mm Depth	2U 254mm Depth


Model

Outlets Input Voltage Max Amps Typical Power Output Voltage Circuit Protection Height & Depth

CS-xxHE (config) Up to (26) C13 or (6) C19 220-240V 16A or 32A 3.6kW or 7.3kW 220-240V Circuit Breakers 2U | 178mm Depth

Metered PDU

Zero-U Vertical Enclosures

Metered PDU Zero-U Vertical Enclosures	5	<u>aaaa</u>	1997
Model	STV-2001	CxxCS-E (config)	CxxCS-4 (config)
Outlets	(24) C13 + (6) C19	Up to (42) C13 or (15) C19	Up to (42) C13 or (15) C19
Input Voltage	220-240V	220-240V	3-Phase 230/400V
Max Amps	16A or 32A	16A or 32A	16A or 32A
Typical Power	3.6kW or 7.3kW	3.6kW or 7.3kW	11kW or 22kW
Output Voltage Circuit Protection	220-240V	220-240V Circuit Breakers	230V Circuit Breakers
Height	Circuit Breakers 35U 1520mm	40U 1753mm	41U 1781mm

Metered PDU Horizontal Rack Mounted Enclosures

Metere Horizontal R	d PDU ack Mounted Enclosures		000000000000000000000000000000000000000
Model		C-12HE	
Outlets		(12) IEC C13	
Input Voltage		220-240V	
Max Amps		16A or 32A	
Typical Power		3.6kW or 7.3kW	
Output Voltage		220-240V	
Circuit Protection		Fuses	
Height & Depth		1U 178mm Depth	

Model

Outlets Input Voltage Max Amps Typical Power Output Voltage Circuit Protection Height & Depth

C-12HDE	
(12) C19	
220-240V	
16A or 32A	
7.3kW or 14.7kW	
220-240V	
Circuit Breakers	
2U 254mm Depth	

Basic PDU Zero-U Vertical Enclosures

Model	CB-12H2	CB-26HE
Outlets	(12) C13	(24) C13 + (2) C19
Input Voltage	220-240V	220-240V
Max Amps	16A	16A or 32A
Typical Power	3.6kW	3.6kW or 7.3kW
Output Voltage	220-240V	220-240V
Circuit Protection	—	Circuit Breakers
Height	10U 432mm	21U 902mm

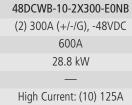
D

and a start of the start of the start

-48VDC Horizontal Rack Mounted Enclosures

Mo Ou Input Vol Max A Typical Po Output Vol Circuit Protec Height & De

DC al Rac	k Mounted Enclosures	100000000000000000000000000000000000000
Model	4805-XLS-16B	48DCWB-04-2X100-DONB
)utlets	(2) 100A (+/–/G), -48VDC	(2) 100A (+/–/G), -48VDC
oltage	200A	200A
Amps	9.6kW	9.6kW
Power	Low Current: (16) 10A*	—
oltage	—	High Current: (4) 70A
ection	GMT Fuses	TPC Fuses
Depth	2U 406mm Depth	2U 406mm Depth



Model Outlets Input Voltage Max Amps Typical Power Output Voltage **Circuit Protection** Height & Depth

48DCWB-04-4X070-DONB (4) 70A (+/-/G), -48VDC 280A 13.4kW High Current: (4) 70A TPC Fuses 2.5U | 406mm Depth

TPC Fuses or Circuit Breakers 3U | 508mm Depth

48DCWB-12-2X100-A1NB
(2) 100A (+/-/G), -48VDC
200A
9.6kW
Low Current: (8) 10A
High Current: (4) 70A
GMT & TPC Fuses
2U 406mm Depth

48DCWB-08-2X100-B0NB (2) 100A (+/-/G), -48VDC 200A 9.6kW ____ High Current: (8) 25A TPC Fuses 2U | 254mm Depth

48DCWB-04-4X125-E0NB	
4) 125a (+/-/G), -48VDC	
500A	
24kW	
High Current: (4) 125A	
TPC Fuses	
2.5U 407mm Depth	

48DCWB-16-2X600-E0 (2) 600A (+/-/G), -48VDC 1200A 57.6kW ----High Current: (16) 125A TPC Fuses or Circuit Breakers 4U | 813mm Depth

Server Technology provides 20A, 30A, 50A, & 60A products with a variety of input cord options available. Please refer to the Power Cords and cordset options below for different configurations. Shown below are standard power cord and cordset options.¹²

- IEIEIEIEIE

20A Plugs & Cords										
Model	PTCORD-L1	PTCORD-L5	PTCORD-L6	PTCORD)-L7	Hard-Wired	Hard-Wired			
Outlets	L6-20P to C19	5-15P to C19	5-20P to C19	L5-20P to	C19	NEMA L15-20P	NEMA L21-20P			
Voltage	208-240V	100-120V	100-120V	100-12	0V	3-Phase 208V, Delt	a 3-Phase 208V, Wye			
Amps	20A	15A	20A	20A		20A	20A			
Length	3m	3m	3m	3m		3m	3m			
30A Plugs	& Cords									
Model	Hard-Wired	Hard-Wired	l Ha	rd-Wired	ŀ	lard-Wired	Hard-Wired			
Outlets	NEMA L5-30P	NEMA L6-30	P NEM	IA L15-30P	NE	MA L21-30P	NEMA L22-30P			
Voltage	100-120V	208-240V	3-Phas	e 208V, Delta	3-Ph	ase 208V, Wye	277/480V, Wye			
Amps	30A	30A	30A			30A	30A			
Length	3m	3m	3m			3m	3m			
	and the	200	8			())				
50A & 60A Plugs & Cords										
Model	Hard-V	Vired	Ha	ard-Wired		Hard-Wired				
Outlets	CS83	65C	IEC 60.	309 (4pin, 9hr)	IEC 60309 (5pin, 9hr)					
Voltage	3-Phase 208-	240V, Delta	3-Phase	208-240V, Delta	3-Phase 208V, Wye					
Amps	50			60A	60A					
Length	Varies Based	d on Model	Varies E	ased on Model	Varies Based on Model					
			23	Ra						
Accessory	Options									
Model	EMTH	I-1-1	E	MCU-1-1B		KIT-0016				
Туре	Temp & Hum			Monitoring Control	Unit	C20 Inlet Retention Bracket				
Function	Measures			additional EMTH-1-1,		Securely fastens C19				
	temperature		water & 4 dry c	ontact closure door sen	sors	cord to chassis				
Length	3r	n								

¹Server Technology offers a wide range of products for North America and global markets. For more information on global products visit our website at www.servertech.com ²Custom cable lengths available; contact a Server Technology Power Expert to determine the correct solution.

PDU Power Cords Plug & Connector Power Cord Options for PDUs

PDU Power Cords Plug & Connector Power Cord Options for PDUs												
	Plug			Conne	ctor		Туре	Length	Voltage	Amps	Part#	Description
	BS 1363		4	C19			Standard	3m	250V	13A	PTCORD-L4	BS 1363 (UK) to Locking IEC 60320 C19; Fused, EU Approved
	CEE 7/7			C19			Standard	3m	250V	16A	PTCORD-L2	CEE 7/7 Schuko to Locking IEC 60320 C19; EU Approved
	60309	0	e Pr	C19			Standard	3m	250V	16A	PTCORD-L3	IEC 60309 to Locking IEC 60320 C19; EU Approved
	5-15P	0		C19	-		Standard	3m	125V	15A	PTCORD-L5	NEMA 5-15P to Locking IEC 60320 C19; UL & CSA Approved
	5-20P	9	M	C19			Standard	3m	125V	20A	PTCORD-L6	NEMA 5-20P to Locking IEC 60320 C19; UL & CSA Approved
	L5-20P	•	A.	C19			Standard	3m	125V	20A	PTCORD-L7	NEMA L5-20P to Locking IEC 60320 C19; UL & CSA Approved
	L6-20P	•	A	C19			Standard	3m	250V	20A	PTCORD-L1	NEMA L6-20P to Locking IEC 60320 C19; UL & CSA Approved
	C20	-		C19			Standard	.5m	100-250V	16A	CAB-S2019-CV	Black LockedIn™ IEC 60320 C20 to C19; EUApproved
	C14			5-15R		1 Martin	Standard	.31m	100-125V	10A	CAB-1305	IEC 60320 C14 to NEMA 5-15R; UL & CSA Approved
	5-15P	0		C13	(¹)		Standard	.45m	100-125V	10A	CAB-1301D	NEMA 5-15P to IEC 60320 C13; UL & CSA Approved
	5-15P	0		C13	(¹)		Standard	.9m	100-125V	10A	CAB-1301C	NEMA 5-15P to IEC 60320 C13; UL & CSA Approved
	5-15P	0		C13	(¹)		Standard	1.8m	100-125V	10A	CAB-1301A	NEMA 5-15P to IEC 60320 C13; UL & CSA Approved
	AS 3112	•	Ņ	C19			Special Order	2.5m	250V	15A	CAB-1342	Australia/New Zealand AS3112 to IEC 60320 C19; SAA Approved
	BS 546			C19			Special Order	2.5m	250V	16A	CAB-1345	Old British Std. (India/S. Africa) BS 546 to IEC 60320 C13; SABS Approved
	CEI 23-16	œ		C19			Special Order	2.5m	250V	16A	CAB-1361	Italy CEI 23-16 to IEC 60320 C19
	GB 2099	•)	C19			Special Order	3m	250V	16A	CAB-1362A	China GB2099 to IEC 60320 C19
	GB 2099	•		C19			Special Order	2.5m	250V	16A	CAB-1362B	China GB2099 to IEC 60320 C19
	IRAM 2073	•		C19			Special Order	2.5m	250V	10A	CAB-1364	Argentina IRAM 2073 to IEC 60320 C19; IRAM Approved
	JIS 8303			C19			Special Order	2.4m	125V	15A	CAB-1365	Japan JIS 8303 to IEC 60320 C19; PSE Approved
	SEV 1011			C19	-		Special Order	2.5m	250V	16A	CAB-1366	Switzerland SEV1011 to IEC 60320 C19
	SI32			C19			Special Order	2.5m	250V	16A	CAB-1363	Israel SI32 to IEC 60320 C19
	6-20P	6	A.	C19			Special Order	2.4m	250V	20A	CAB-1354	NEMA 6-20P to IEC 60320 C19
	5-15P	0		C19			Special Order	2.4m	125V	15A	CAB-1313	NEMA 5-15P to IEC 60320 C19; UL & CSA Approved
	Blunt Cut			C19			Special Order	6.1m	—	—	CAB-1339	IEC 60320 C19 molded to 3-wire bare, 20'; UL & CSA Approved (Call before ordering. Custom length cord using a mechanically attached plug body)

31)

YOUR POWER STRATEGY EXPERTS

NORTH AMERICAN HEADQUARTERS

1040 Sandhill Drive Reno, NV 89521 United States Tel +1.775.284.2000 Fax +1.775.284.2065 sales@servertech.com www.servertech.com www.servertech.blog.com

UK, WESTERN EUROPE, ISRAEL & AFRICA

Fountain Court 2 Victoria Square Victoria Street St. Albans AL1 3TF United Kingdom Tel +44 (0) 1727 884676 Fax +44 (0) 1727 220815 salesint@servertech.com

Stay Powered

GERMANY, CENTRAL EUROPE, EASTERN EUROPE & RUSSIA

10th + 11th Floor Westhafen Tower Westhafenplatz 1 60327 Frankfurt Germany Tel +49 697 1045 6205 Fax +49 697 1045 6450 salesint@servertech.com

Be Supported

HONG KONG & APAC

Level 43, AIA Tower 183 Electric Road, North Point, Hong Kong Tel +852 3975 1828 Fax +852 3975 1800 salesint@servertech.com

INDIA & MIDDLE EAST

RMZ Infinity 1st floor Tower D Municipal No. 3 Old Madras Road Benniganahalli Village Krishnarajpuram Hobli Bangalore, 560016 India Tel +91 99022 44534 salesint@servertech.com

©2016 Server Technology, Inc. Revision 12/16/16 (Update 04-13-17). Sentry & Server Technology are registered trademarks of Server Technology Incorporated. All rights reserved. Information is subject to change without notice. Printed in USA. Server Technology offers a wide range of products for North America and Global markets. For more information on global products visit our website at www.servertech.com

