CMA5000/a OTDR Module Series

Optical Time Domain Reflectometer

The CMA5000/a Optical Time Domain Reflectometer (OTDR) application represents the latest offering from a company that’s been in the OTDR business for over 30 years. Our world–class OTDR modules continue this tradition with the latest in high performance hardware and dedicated, easy to use software.

Benefits

• Never obsolete - modular design allows new or additional modules to be added
• Sophisticated analysis software provides consistent and accurate fiber characterization
• Dedicated testing modes simplify commonly performed tasks
• Easy to use for any skill level - testing from fault location to advanced analysis
• Dual touch screen and hard key user interfaces ensure smooth and efficient operation
• Solutions for all network types: Metro, CWDM, ultra-long haul and PON based, FTTP deployments
• Complete fiber characterization from 8 available wavelengths
• Automated, on-the-box reporting

High Performance Hardware

To satisfy even the most demanding testing requirements, the CMA5000/a series OTDR modules, feature a multitude of available wavelengths including 850 nm, 1300 nm, 1310 nm, 1383 nm, 1410 nm, 1490 nm, 1550 nm and 1625 nm. Up to four of these wavelengths can then be combined into a single optical port providing full spectrum fiber characterization at the press of a button and are ideal for testing backbone or metro networks that deploy CWDM. For ultra-long haul systems, the CMA5000/a OTDR modules feature up to 50 dB of dynamic range (enough to see approximately 250 km of fiber) - with an impressive 1 meter resolution.
Dedicated, Ease to Use Software
To simplify testing, the CMA5000/a features dedicated testing modes to automate and simplify the task at hand.

**FAULT LOCATE** mode is designed for the novice just starting out or someone who only uses an OTDR occasionally. Simply connect the fiber and press test, the unit will verify the fiber is connected correctly, select testing parameters, execute the test and provide a text response indicating fault/break location and end to end loss.

![Fig.1: Fault Locate Mode - ease to read results](image)

For those who have more experience or would like to perform more advanced testing, **CLASSIC OTDR** mode allows the user to select all parameters, compare up to eight traces and even generate splice loss reports.

![Fig.2: Classic OTDR - advanced testing](image)

**Reflectance and Optical Return Loss**
With data rates increasing and video applications growing exponentially, reflectance and optical return loss (ORL) become key parameters that will make or break your network. To simplify testing these, Anritsu has developed a unique OTDR based, ORL application that provides meter accuracy, combined with the trouble-shooting ability of an OTDR to add the expertise you need in testing today’s demanding optical systems. Simply connect the fiber, enter your PASS/FAIL threshold and press test. If a test fails ORL, a quick press of our exclusive troubleshooting key presents a table listing the top three contributors to the failing ORL - complete with location. By identifying the problem connector, technicians will save hours of random troubleshooting time. The ORL option also functions as a 1 km single mode launch box increasing its value.
Cable commissioning is also automated through the use of **CONSTRUCTION OTDR** mode where a wizard allows the user to select the required testing wavelengths, number of fibers and file naming scheme. The wizard then becomes the project manager guiding the user through the testing and ensuring consistency with testing parameters and file naming - virtually eliminating user induced errors.

**Fig.3: Construction OTDR - automated multi-fiber testing**

Challenging new architectures such as Fiber-To-The-x (FTTx) deployments that incorporate Passive Optical Networks (PON) are also easily addressed with our exclusive **PON MODE** solution featuring dead zones as small as 1 meter and the ability to classify up to a 1X32 splitter.

**Fig.4: PON Mode - Exclusive testing solution optimized for splitter-based networks.**

**Added Value**

To further increase the value of your CMA5000/a OTDR, it can be equipped with an integrated power meter, a high output stabilized light source and integrated Visual Fault Locator (VFL). These options are integrated into the single slot OTDR module and do not require an additional module slot like some other solutions. In addition, all OTDR wavelengths are available as stabilized light sources reducing the equipment cost and providing a complete end-to-end loss testing solution. Whatever your testing needs, our world-class OTDR products are designed to reduce the time to install, commission and maintain fiber spans.
### Specifications

#### Single Mode Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Wavelength&lt;sup&gt;6&lt;/sup&gt;</th>
<th>Optical Fiber Type</th>
<th>Pulse width&lt;sup&gt;1&lt;/sup&gt;</th>
<th>Dynamic Range (SNR=1)&lt;sup&gt;2&lt;/sup&gt;</th>
<th>Deadzone (back-scattered)&lt;sup&gt;3&lt;/sup&gt;</th>
<th>Deadzone (Fresnel)&lt;sup&gt;4&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>5225</td>
<td>1310±20 nm, 1550±25 nm</td>
<td></td>
<td>5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 ns</td>
<td>37/36 dB</td>
<td>9/9m</td>
<td>4/3.5m</td>
</tr>
<tr>
<td>5235</td>
<td>1310±20 nm, 1550±25 nm</td>
<td></td>
<td>5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 ns</td>
<td>40/40 dB</td>
<td>8/6m</td>
<td>4/3m</td>
</tr>
<tr>
<td>5236</td>
<td>1310±20 nm, 1550±25 nm</td>
<td></td>
<td>5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 ns</td>
<td>40/40/40 dB</td>
<td>8/6/6m</td>
<td>4/3/3m</td>
</tr>
<tr>
<td>5245</td>
<td>1310±20 nm, 1550±25 nm</td>
<td></td>
<td>5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 ns</td>
<td>43/45 dB</td>
<td>10/10m</td>
<td>5/5m</td>
</tr>
<tr>
<td>5246</td>
<td>1310±20 nm, 1550±25 nm</td>
<td></td>
<td>5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 ns</td>
<td>43/45/43 dB</td>
<td>10/10/10m</td>
<td>6/5/5m</td>
</tr>
<tr>
<td>5254</td>
<td>1550±25 nm</td>
<td>Single Mode</td>
<td></td>
<td>50 dB</td>
<td>10m</td>
<td>5m</td>
</tr>
<tr>
<td>5281</td>
<td>1310±20 nm, 1383±3 nm, 1550±25 nm</td>
<td></td>
<td>5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 ns</td>
<td>40/38/41 dB</td>
<td>8/9/6m</td>
<td>4/5/3m</td>
</tr>
<tr>
<td>5283</td>
<td>1310±20 nm, 1383±3 nm, 1550±25 nm</td>
<td></td>
<td>5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 ns</td>
<td>35/35/35/35 dB</td>
<td>8/9/6/6m</td>
<td>4/5/3/3m</td>
</tr>
<tr>
<td>5491&lt;sup&gt;5&lt;/sup&gt;</td>
<td>1310±20 nm, 1490±20 nm, 1550±25 nm</td>
<td></td>
<td>5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 ns</td>
<td>40/40/40 dB</td>
<td>6.5m</td>
<td>1.7m</td>
</tr>
<tr>
<td>5493&lt;sup&gt;5&lt;/sup&gt;</td>
<td>1310±20 nm, 1490±20 nm, 1550±25 nm</td>
<td></td>
<td>5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 ns</td>
<td>37/37/37/37 dB</td>
<td>6.5m</td>
<td>1.7m</td>
</tr>
</tbody>
</table>

#### Quad Single Mode/Multimode and Multimode Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Wavelength&lt;sup&gt;6&lt;/sup&gt;</th>
<th>Optical Fiber type</th>
<th>Pulse width&lt;sup&gt;1&lt;/sup&gt;</th>
<th>Dynamic Range (SNR=1)&lt;sup&gt;2&lt;/sup&gt;</th>
<th>Deadzone (back-scattered)&lt;sup&gt;3&lt;/sup&gt;</th>
<th>Deadzone (Fresnel)&lt;sup&gt;4&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>5260</td>
<td>850±30 nm, 1300±30 nm</td>
<td>Multimode(50 um), SingleMode(8-10 um)</td>
<td>Singlemode: 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 ns</td>
<td>24/26/35/35 dB</td>
<td>7/8/10/10m</td>
<td>5/5/5/5m</td>
</tr>
<tr>
<td>5261</td>
<td>1310±20 nm, 1550±25 nm</td>
<td>Multimode(62.5 um), SingleMode(8-10 um)</td>
<td>Singlemode: 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 ns</td>
<td>24/26/35/35 dB</td>
<td>7/8/10/10m</td>
<td>5/5/5/5m</td>
</tr>
<tr>
<td>5262</td>
<td>1310±20 nm, 1550±25 nm</td>
<td>Multimode(62.5 um), SingleMode(8-10 um)</td>
<td>Singlemode: 5, 10, 20, 50, 100, 200, 500, 1000, 2000 ns</td>
<td>24/26/40/40 dB</td>
<td>7/8/10/10m</td>
<td>5/5/5/5m</td>
</tr>
<tr>
<td>5266</td>
<td>850±30 nm, 1300±30 nm</td>
<td>Multimode(62.5 um)</td>
<td>5, 20, 50, 100, 200, 500, 1000 ns</td>
<td>24/26 dB</td>
<td>5/7m</td>
<td>2.5/2.5m</td>
</tr>
<tr>
<td>5269</td>
<td>850±30 nm, 1300±30 nm</td>
<td>Multimode(50 um)</td>
<td>5, 10, 20, 50, 100, 200, 500, 1000 ns</td>
<td>24/26 dB</td>
<td>5/7m</td>
<td>3/3m</td>
</tr>
</tbody>
</table>

#### Notes

1. Wavelength and range dependent
2. SNR=1, up to 256k averages (typical, subtract approximately 2 dB of range to 98% peak noise. Bellcore/Telcordia TR-TSY-000196 Issue2)
3. Deadzones measured on -45 dB reflections (typical)
4. Using Bellcore/Telcordia TR-TSY-000196 Issue 2 (typical)
5. For 549x Modules, the End-to-End Loss Accuracy for Class B PONs is +/-0.75dB (typical)
6. At 23°C, 10us pulsewidth
### Common Specifications

| **Distance Range** | Single mode: 5, 20, 50, 75, 125, 250, 300 km  
Multimode: 5, 15, 20, 40, 64 km |
|-------------------|---------------------------------------------|
| **Sampling resolution** | Single mode: 0.125, 0.5, 1, 2, 4, 8, 16 m  
Multimode: 0.125, 0.5, 1, 2, 4 m |
| **Sampling Points** | Up to 256,000 |
| **IOR settings** | 1.300000-1.700000 |
| **Distance Measurement Accuracy** | 0.0025% of distance measurement ± distance resolution ± index uncertainty |
| **Loss Measurement accuracy (linearity)** | ±0.04 dB/dB |
| **Loss Resolution** | 0.001 dB |
| **Laser Safety** | Meets IEC60825-1 Class I and CDRH Class 1 Requirements (Eye Safe) 21 CFR 1040 |
| **Optical Connector** | Single mode: Universal with UFC, USC, UST, AFC, ASC  
Multimode: Universal with FC, SC, ST |
| **Operating Modes** | Fault Locate, Standard OTDR, Construction (Automated Multi-wavelength, Multi-fiber testing), NetWorks (data processing and report generation)  
Optional: Power Meter, Stabilized Light Source, Visual Fault Locator (VFL), Video Inspection Probe (VIP) |

### Notes

1 Wavelength and range dependent

### Loss Test Set Option Specifications (optional)

<table>
<thead>
<tr>
<th><strong>Type</strong></th>
<th><strong>Stabilized Light Source</strong></th>
<th><strong>Power Meter</strong></th>
<th><strong>Visual Fault Locator</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Output</strong></td>
<td>-8 dBm (min)</td>
<td>-25dBm (min)</td>
<td>0 dBm into 9/125um fiber (max)</td>
</tr>
<tr>
<td><strong>Stability</strong></td>
<td>±0.2 dB (8 hours)</td>
<td>+0.1 dB (8 hours)</td>
<td></td>
</tr>
<tr>
<td><strong>Modes of Operation</strong></td>
<td>CW, 1 KHz, 2 KHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Detector Type</strong></td>
<td>InGaAs</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Wavelength Range</strong></td>
<td>780-1800nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Calibrated Wavelengths</strong></td>
<td>850, 1300, 1310, 1490, 1550, 1625 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Power Range</strong></td>
<td>+20 to -45 dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Resolution</strong></td>
<td>0.01 dB, 0.01 watts</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Accuracy</strong></td>
<td>±4% (+5 to -50 dBm), ±8% (+10 to +5 dBm, -50 to -55 dBm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Linearity</strong></td>
<td>±0.10 dB (+5 to -50dBm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Connector Type</strong></td>
<td>Universal (uses LP-XX adapters)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Notes

1 At 23°C
2 Quad models 5260, 5261, 5262 only feature single mode light sources.
3 VFL not available on 5260, 5261 or 5262
Ordering Information
The CMA5200 series OTDRs are Single Bay modules that include one OTDR/Source Universal Adapter (UC-130-XX) at no charge. For units with a Power Meter option, a Meter Connector Adapter (LP-XX) is also included at no charge.

**Module Number:**

52_ _ _ _-OTDR-_ _
A  B    C

A = Select OTDR Module (Additional OTDR modules are available in various combinations of wave lengths and dynamic ranges. Please contact Anritsu for a comprehensive list.)

25 = Singlemode, 37/36 dB dynamic range, dual-wavelength 1310/1550 nm
35 = Singlemode, 40/40 dB dynamic range, dual-wavelength 1310/1550 nm
36 = Singlemode, 40/40/40 dB dynamic range, tri-wavelength 1310/1550/1625 nm
45 = Singlemode, 43/45 dB dynamic range, dual-wavelength 1310/1550 nm
46 = Singlemode, 43/45/43 dB dynamic range, tri-wavelength 1310/1550/1625 nm
54 = Singlemode, 50 dB dynamic range, single-wavelength 1550 nm
60 = Quad 24/26 dB 850/1300 nm 50 μm multimode and 35 dB 1310/1550 nm single mode
61 = Quad 24/26 dB 850/1300 nm 62.5 μm multimode and 35 dB 1310/1550 nm single mode
62 = Quad 24/26 dB 850/1300 nm 62.5 μm multimode and 40 dB 1310/1550 nm single mode
63 = Quad 24/26 dB 850/1300 nm 50 μm multimode and 40/40 dB 1310/1550 nm single mode
66 = Multimode 24/26 dB dynamic range, dual-wavelength 850/1300 nm, 62.5 μm
69 = Multimode 24/26 dB dynamic range, dual-wavelength 850/1300 nm, 50 μm
81 = Singlemode, 37 dB dynamic range, tri-wavelength 1310/1383/1550 nm
83 = Singlemode, 37 dB dynamic range, quad-wavelength 1310/1383/1550/1625 nm
91 = Singlemode, 40 dB dynamic range, tri-wavelength 1310/1490/1550 nm
93 = Singlemode, 37 dB dynamic range, quad wavelength 1310/1490/1550/1625 nm

B = Select Meter, Light Source and VFL Options (VFL is not available on 5260, 5261 or 5262 module)

000 = No Meter, Light Source or VFL 001 = VFL Only
210 = +20 dBm Meter and Light Source 211 = +20 dBm Meter, Light Source and VFL

C = Select Connector (APC not available on multimode, for Quad 60, 61, 62 or 63 refer to next section)

UFC = FC/UPC  AFC = FC/APC  USC = SC/UPC
ASC = SC/APC  UST = ST/UPC  AST = ST/APC

C = Connector Options for Quad units (60, 61, 62, and 63 only)
Select connector for each port. (abc : a = SM port, b = MM port, c = PM port)

0 = none  1 = UFC  2 = USC
3 = UST  4 = AFC  5 = ASC
6 = AST  7 = DIN  8 = LC

Example of Order Number and Specification

| 5236-210-OTDR-AFC | Singlemode, 40/40/40 dB dynamic range, tri-wavelength 1310/1550/1625 nm, Power Meter and Light Source with FC/APC connector |
| 5266-001-OTDR-UFC | Multimode 24/26 dB dynamic range, dual-wavelength 850/1300 nm, 62.5 μm, VFL, with FC/UPC connector |
Related Anritsu Products

**MT9083A ACCESS Master**
Anritsu’s new line of MT9083A ACCESS Master OTDRs provides all the measurement functions and performance required for optical fiber construction and maintenance of access, FTTx, LAN and metro networks in a compact, lightweight, all-in-one unit that eliminates the burden of carrying many different test sets and instruments on-site.

The ACCESS Master MT9083A is the first all-in-one tool that does not compromise performance. It features extremely high resolution to see those closely spaces splices and connectors, while still being able to certify 100+ km spans- quickly and accurately. In addition to verifying the integrity of the fiber plant, network performance can also be verified ensuring the customer experience is at its highest level. Whatever your work, construction or maintenance, long haul or intra-building, Anritsu has an MT9083A model for your needs.

**MT9090A Network Master**
The MT9090A Network Master is a palm-size, field modular platform designed for first level fault isolation. Its small size, simple interface, rugged/sealed design and low price make it just right for large-scale technician deployment. Test modules include OTDR/fault locator and CWDM channel analysis.

**CMA50 Optical Loss Test Set**
All-in-one light source, power meter, visual fault locator and optical return loss meter for optical fiber construction and maintenance. They are offered with common calibration wavelength and connector options to meet any testing requirement from FTTx networks to long haul telephony links to multimode LAN, and CATV.

**CMA5 Optical Power Meter and Light Source**
The CMA5 Series Power Meters are ideal for attenuation and power throughput measurements on point-to-point fiber optic links. The CMA5 Series Light Sources provide an economical and stable laser source for use in point-to-point attenuation measurement. They feature a rugged design, built to withstand the difficult testing environment of fiber optic cable installation and maintenance.

**CMA 3000 Mobile and Fixed Access Network Tester**
CMA 3000 is designed specifically for field technicians who install and maintain mobile-access and fixed-access networks. The CMA 3000 is a powerful tool for a wide range of applications, including fast first-aid troubleshooting to comprehensive, in-depth and all-layer analysis of transmission problems. The basic CMA 3000 configuration, with its two 2 Mbps receivers and transmitters, supports framed and unframed testing and monitoring of 2 Mbps systems.