Corning ${ }^{\circledR}$ ClearCurve ${ }^{\circledR}$ ZBL Optical Fiber Product Information

Bend Performance and Compatibility

Corning ${ }^{\oplus}$ ClearCurve ${ }^{\oplus}$ ZBL Optical Fiber delivers the best macrobending performance in the industry while maintaining compatibility with current optical fibers, equipment, practices and procedures. This full-spectrum single-mode optical fiber when subjected to smaller radii bends experiences virtually no signal loss. ClearCurve fiber exceeds the most stringent bend performance requirements of ITU-T Recommendations G.657.B3, while remaining fully compliant with ITU-T Recommendation G.652.D and the installed base of Corning ${ }^{\circledR}$ SMF-28e ${ }^{\oplus}$ and SMF-28e+ ${ }^{\oplus}$ fiber. Now network planners and designers can design optical fiber into much more challenging installations and environments, and cable designers can offer optical cables with unmatched ruggedness for easier installation and handling.

Optical Specifications

Maximum Attenuation Wavelength $(\mathbf{n m})$	Maximum Value $(\mathrm{dB} / \mathrm{km})^{*}$
1310	$0.33-0.35$
$1383^{* *}$	$0.31-0.35$
1490	$0.21-0.24$
1550	$0.19-0.20$
1625	$0.21-0.23$

[^0]Attenuation vs. Wavelength

Range (nm)	Ref. $\boldsymbol{\lambda}(\mathbf{n m})$	Max. α Difference $(\mathbf{d B} / \mathbf{k m})$
$1285-1330$	1310	0.03
$1525-1575$	1550	0.02

The attenuation in a given wavelength range does not exceed the attenuation of the reference wavelength (λ) by more than the value of α.

Optical Specifications (cont'd)				Dimensional Specifications				
Macrobend Loss				Glass Geometry				
Mandrel Radius (mm)	Number of Turns	Wavelength (nm)	Induced Attenuation* (dB)	Fiber Curl	$\geq 4.0 \mathrm{~m}$ radius of curvature			
				Cladding Diameter	$125.0 \pm 0.7 \mu \mathrm{~m}$			
5	1	1550	≤ 0.10	Core-Clad Concentricity	$\leq 0.5 \mu \mathrm{M}$			
5	1	1625	≤ 0.30	Cladding Non-Circularity	- 0.7%			
*The induced attenuation due to fiber wrapped around a mandrel of a specified diameter.				Coating Geometry				
Point Discontinuity				Coating Diameter		$245 \pm 5 \mu \mathrm{~m}$		
Point Discontin	th (nm)	Point Discontinuity (dB)		Coating-Cladding Concentricity		$<12 \mu \mathrm{M}$		
1310		≤ 0.05		Environmental Specifications				
$1550 \leq 0.05$		≤ 0.05		Environmental Test	Test Condition	Induced Attenuation $1310 \mathrm{~nm}, 1550 \mathrm{~nm}$ \& 1625 nm (dB/km)		
Cable Cutoff W $\lambda_{\text {ccf }} \leq 1260 \mathrm{~nm}$	velength ($\lambda_{\text {c }}$							
Mode-Field Dia	meter			Temperature Dependence	$-60^{\circ} \mathrm{C}$ то $+85^{\circ} \mathrm{C}^{*}$	≤ 0.05		
Wavelen	th (nm)	MFD	($\mu \mathrm{m}$)	Temperature Humidity Cycling	$\begin{gathered} -10^{\circ} \mathrm{C} \text { то }+85^{\circ} \mathrm{C}^{*} \\ \text { up to } 98 \% \mathrm{RH} \end{gathered}$	≤ 0.05		
	1310	8.6 ± 0.4						
1550		9.65 ± 0.5		Water Immersion	$23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	≤ 0.05		
				Heat Aging	$85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}^{*}$	≤ 0.05		
Wavelen	th (nm)	Dispersion Value [ps/(nm*km)]		Damp Heat	$\begin{gathered} 85^{\circ} \mathrm{C}^{*} \text { AT } 85 \% \\ \text { RH } \end{gathered}$	<0.05		
	1550		18	* Reference temperature $=+23^{\circ} \mathrm{C}$ Operating Temperature Range: $-60^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
	1625	≤ 23						
Zero Dispersion Wavelength (λ_{0}): $1304 \mathrm{~nm} \leq \lambda_{0} \leq 1324 \mathrm{~nm}$ Zero Dispersion Slope $\left(\mathrm{S}_{0}\right): \leq 0.092 \mathrm{ps} /\left(\mathrm{nm}^{2} * \mathrm{~km}\right)$				Mechanical Specifications				
Polarization Mode Dispersion (PMD)				Proof Test The entire fiber length is subjected to a tensile stress $\geq 100 \mathrm{kpsi}(0.7 \mathrm{GPa})^{*}$. * Higher proof test levels available.				
		Value ($\mathrm{ps} / \mathrm{Vkm}$)						
PMD Link D	esign Value	$\leq 0.06^{*}$						
Maximum In	ividual Fiber	≤ 0	0.2					
Complies with IEC 60794-3: 2001, Section 5.5, Method 1, ($m=20$, Q = 0.01\%), September 2001.				Length Fiber lengths available up to $50.4^{} \mathrm{~km} /$ spool.				
The link design value is a term used to describe the PMD of concatenated lengths of fiber (also known as PMDo). This value represents a statistical upper limit for total link PMD. Individual PMD values may change when fiber is cabled. Corning's fiber specification supports emerging network design requirements for high-data-rate systems operating at $10 \mathrm{~Gb} / \mathrm{s}$ or higher.				* Longer spliced lengths available.				

CORNING \begin{tabular}{ll}
Corning Incorporated

One Riverfront Plaza

Corning, NY 14831 U.S.A.

Ph: $607-248-2000$

Email: cofic@corning.com

www.corning.com/opticalfiber

\quad

Corning and ClearCurve are registered trademarks

of Corning Incorporated, Corning, NY.
\end{tabular}

[^0]: *Maximum specified attenuation value available within the stated ranges.
 ** Attenuation values at this wavelength represent post-hydrogen aging performance.

 Alternate attenuation offerings available upon request.

