
ß

Videogame
Developer’s
Strategy Guide

By Chris DeLeon Edited by Laura Schluckebier

Chapters Overview

 Why a Strategy Guide?...........iii

1. Getting Started......................13

2. Questions About Education...73

3. Programming......................109

4. Get Motivated.....................170

5. Game Design.......................208

6. Level Creation....................265

7. Team Projects.....................299

8. Industry..............................348

9. Game Analysis.....................405

 Image Credits.....................443

ii

Why a
Strategy

Guide?

Learning to develop videogames is itself an
open-world adventure. Explore in any direction
you’d like. Develop character skills that are
broad, or specialized. Build a party, or go solo.

While this book can be read cover-to-cover -
I’ve sequenced these chapters and sections to
help that go smoothly - for most people it will
work much better if used as a strategy guide.

If, in playing a game, you ran into trouble in the
Lava World, or wished to learn about Enchanted
Crafting, you’d head to that section of a guide.
Similarly, here, if you’re tinkering on a game type
that has levels, jump to the Level Creation
chapter for terms and processes. If you're in a
group, browse some sections on Team Projects.

There’s also one more way that this is like a
strategy guide: tips in a guide only help if you’re
actually playing the game it’s for. This guide is
for videogame development. For these ideas to
have context and purpose, you really should be
actively making videogames of your own.

If you haven’t yet started creating games:
today’s a great day to finally begin your journey!

iii

CHAPTER 1

Getting Started

1.1! Making Your Own Videogames at Home is Totally Awesome! 14

1.2! How Long Does it Take to Learn Game Programming?! ! ! 19

1.3! Hobby Game Development: 20 Questions! ! ! ! ! ! 25

1.4!Beginners Shouldn’t Start with a Design Document! ! ! ! 39

1.5! Clone Videogames to Learn Real-Time Videogame Design! ! 42

1.6!General Concepts for Beginning Developers!! ! ! ! ! 45

1.7! Learn Videogame Development Like Woodworking!! ! ! 65

1.8! Fan Habits and Focus are Not Developer Habits and Focus!! 70

iv

CHAPTER 2

Questions About Education

2.1! Advice to a New Student in Videogame Design! ! ! ! ! 74

2.2!Questions from an Elementary School Class!! ! ! ! ! 78

2.3! Class Questions About Game Development Career! ! ! ! 83

2.4!Math for Videogame Making (Or: Will I Use Calculus?)!! ! 89

2.5!Question About Comp Sci. and Game Development! ! ! 94

2.6!The Ways of Self-Education! ! ! ! ! ! ! ! ! ! 103

v

CHAPTER 3

Programming

3.1! Game Programming Fundamentals! ! ! ! ! ! ! ! 110

3.2!How Programmers Program! ! ! ! ! ! ! ! ! ! 124

3.3! Position and Speed Variables! ! ! ! ! ! ! ! ! ! 132

3.4!Float and Int Variables: Casting and Other Issues! ! ! ! 138

3.5! Hack Then Refactor! ! ! ! ! ! ! ! ! ! ! ! 145

3.6!Basic Real-Time Videogame Artificial intelligence! ! ! ! 152

3.7! Quick and Dirty Back-Ups! ! ! ! ! ! ! ! ! ! 160

3.8! Steps in Programming a Simple Realtime Strategy Game! ! 165

vi

CHAPTER 4

Get Motivated

4.1! Stop Trying to Learn Everything Before Starting!! ! ! ! 171

4.2!"Overcomplicating Everything"! ! ! ! ! ! ! ! ! 176

4.3!Think by Building, Build to Answer Questions! ! ! ! ! 184

4.4 Your Attitude Matters Even When Working Alone! ! ! ! 187

4.5!Don’t Wait for an Event, Job, Contest, or Assignment! ! ! 191

4.6!The Brain is Not an Emulator! ! ! ! ! ! ! ! ! 193

4.7!Stop Arguing About What Makes a Better Game! ! ! ! 200

4.8!Start Before You Have an Idea! ! ! ! ! ! ! ! ! 204

vii

CHAPTER 5

Game Design

5.1! Modest First Projects and Incremental Learning!! ! ! ! 209

5.2! Bottom-Up vs Top-Down Game Design! ! ! ! ! ! ! 224

5.3! Photographer's Algorithm! ! ! ! ! ! ! ! ! ! 232

5.4!A Little Planning Can Go a Long Way! ! ! ! ! ! ! 236

5.5! Doing More With Less: Short Videogame Design! ! ! ! 242

5.6!Colorful Oceans and Chunky Sauces! ! ! ! ! ! ! ! 251

5.7! Genres and Conventions: Known Patterns of What Works! ! 257

viii

CHAPTER 6

Level Creation

6.1!Anti-Design / Backwards Game Design in GoldenEye! ! ! 266

6.2!Level Design Concepts ! ! ! ! ! ! ! ! ! ! ! 273

6.3!Level Design Process! ! ! ! ! ! ! ! ! ! ! ! 281

6.4!Level Design Q & A! ! ! ! ! ! ! ! ! ! ! ! 288

6.5!Non-Essential Level Art is Essential! ! ! ! ! ! ! ! 293

6.6 Visual Language in Super Mario Bros Level Endings! ! ! 296

ix

CHAPTER 7

Team Projects

7.1! Videogame Project Management for Hobbyists and Students! 300

7.2! Communication is a Game Development Skill, Part 1! ! ! 315

7.3! Communication is a Game Development Skill, Part 2! ! ! 322

7.4!Establishing a Videogame Development Club! ! ! ! ! 337

x

CHAPTER 8

Industry

8.1! A Frank Look at Making Videogames Professionally!! ! ! 349

8.2! Indie Game Development as a Career! ! ! ! ! ! ! 358

8.3! Influence of Business Models on Game Design! ! ! ! ! 368

8.4!What’s Japan Doing Differently! ! ! ! ! ! ! ! ! 375

8.5! Intellectual Property and Hobby Game Development! ! ! 380

8.6!Should I Release a Game as Soon as It’s Done?! ! ! ! ! 392

8.7!How to Get the Most Out of Your First GDC! ! ! ! ! 396

xi

CHAPTER 9

Game Analysis

9.1 Why Minecraft Worked in 2011! ! ! ! ! ! ! ! ! 406

9.2 Reflections on Three Specific Hobby Game Projects! ! ! 422

9.3 Quit Smoking: Effect of Interaction on Interpretation! ! ! 434

xii

If this is the first material that
you’re reading about videogame
development: welcome! The way
forward is long, difficult, at
times frustrating... and totally
worth it. You’re on your way to
learning how to create your own
videogames! There’s nothing
better than homemade fun.

13

Getting Started

1

Making Your Own Videogames at
Home is Totally Awesome

SECTION 1

The original Pac-Man took a team
of nine professional engineers a
year to create. Although we tend
to experience Pac-Man today as
mere software, either downloaded
or played in a web browser, the
original was a 400 lbs. (180 kg.)
painted wooden arcade cabinet of
custom electronics that needed to
be shipped all over the world.

Pac-Man’s development and
distribution required a level of
labor and equipment in 1979 that
could not have been achieved as a
part-time side project.

Now in 2014 virtually any decently
experienced amateur can remake
a videogame similar to Pac-Man,
working alone, mostly in an
evening. It doesn’t even cost
anything to make.

Then you can distribute the game
worldwide instantly for free.

What at one time revolutionized
the game industry is now less
complex than projects that we see
made in weekend game jams.

Things got better. Much better.

14

There has never been a

better time than now to

design and develop your

own videogames. A typical

home computer is all that’s

required. The ways to learn

and share your games are

already huge - and growing!

G
e
t
t
in
g

S
t
a
r
t
e
d

BETTER FOR ALL OTHER GAME MAKERS, TOO
Advancements in development
and distribution options means
that we’re seeing more kinds of
games, released more frequently,
from a larger number of creators.

This is very exciting, for players
and game makers alike. But it’s
essential to recognize that this
does not mean that making games
as a business got easier, too. It’s
true that it’s easier to sell an app
on a smartphone than it was to
sell a game for the old Nintendo
Entertainment System, but that
truth applies to every developer in
the world. As of August 2013 there
were 3 times as many new mobile
apps published per day (~2400;
VentureBeat) than the total
number of unique NES games
released ever (~800; Wikipedia).

The barriers to entry to making
games aren’t just lower for you.
They are lower for millions of other
people making games, too. If your
main goal is to make indie games
professionally, know that you will

be competing against more people
than ever to do so.

I’m not saying this to discourage
anyone. I’m saying it to establish
perspective of what to prepare for.
DANGEROUSLY MISLEADING MYTHS
There are some misleading stories
out there which have tricked
people into thinking that making
videogames is a get-rich-quick
scheme, or that quality and hard
work aren’t necessary to succeed.

The first misleading myth is that of
the overnight millionaires. Some
indies have fared very well. They
are talented, and they put in the
work, but their success appears to
be overnight because you usually
haven’t heard of the first 30-50
games they’ve worked on, or seen
what went into developing their hit
for years leading up to launch.
Most indie developers make very
little money from their games, and
many do paid contract work on
the side to make ends meet.

The second misleading myth is
that simple games that anyone

15

http://venturebeat.com/2013/08/26/700k-of-the-1-2m-apps-available-for-iphone-android-and-windows-are-zombies/
http://venturebeat.com/2013/08/26/700k-of-the-1-2m-apps-available-for-iphone-android-and-windows-are-zombies/
http://en.wikipedia.org/wiki/List_of_Nintendo_Entertainment_System_games
http://en.wikipedia.org/wiki/List_of_Nintendo_Entertainment_System_games

can make easily often explode into
meme-like fame. The few games
like Flappy Bird are the exception,
not the rule. For every tiny, simple
game you see that becomes a hit,
tens of thousands of little games
quietly flopped.

Tossing tiny, unsophisticated
games into digital stores just in
case one takes off is like buying
time-consuming lottery tickets.

The vast majority of successful
games were not simple projects or
lucky breaks, but the result of hard
work, talent, and experience. Nor
does every game that arises from
hard work, talent, and experience
become a hit. No one gets any
guaranteed profits or benefits from
effort or seniority. Every game is a
new, separate effort to excite and
engage demanding audiences.

To make games professionally
your work and skills need to be
extraordinary. It’ll require practice,
persistence, experimentation,
compromises, and humility along
the way.

MOST CUSTOMERS AREN’T GOOD TEACHERS
The marketplace can be a brutal,
risky, and unforgiving environment,
which doesn’t make it very friendly
to beginner learning. People that
insist on releasing their first games
commercially just to see, and
“maybe earn a little on the side”
are seeing discouragement from
dozens of dollars or less for
months of their work. Would we
really expect otherwise though, if
someone just learning guitar sold
their practice attempts on iTunes?

For this reason I advise people
who are in it for the long-haul to at
least begin by making games non-
commercially. What can be done
now without funding is incredible.
It’s a great way to start without
betting the farm, nor mistaking a
lack of paying customer response
as a reliable gauge on whether
you’re learning and progressing.

Like a person going to Hollywood
aspiring to be a movie star, if the
goal is to earn a living making
games as an independent
developer, it would be prudent to

16

have a backup plan, a day job,
and an understanding that it’ll be a
long, bumpy road to success.
BUT IF WHAT YOU WANT IS TO MAKE GAMES
If your near-term goal is to make
games, rather than to make games
as a business, then this is without
a doubt the best, easiest, most
exciting time yet to be doing it.

You have so many options of ways
to learn, ways to create, and ways
to share. I’ve actually heard this
major benefit turned around and
used by someone as an excuse:
there are so many ways to make
games now that they “can’t figure
out the best way to start.” Absurd!
There is no one best way to start,
nor one best way to make games.

Anything that gets you making
games and trying out your ideas is
great. Within this book I’m going
to give you the very best advice
and ideas that I have to offer, but
part of my advice is this: learn
from any and every source that
you can. I’m but one of many
people who have been making
games and is excited to help

others. Not sure whether
something is worth learning? Just
learn it. Then you’ll know if it was.

Along your way you will learn and
use many different programming
languages, tools, and changing
development environments. Don’t
get stubbornly stuck on whichever
you use first, and then it won’t
make much difference which it is.

Know too that if you want to make
videogames, learning can’t just be
book smarts. Your attention has
also be on doing a practical skill.
Reading can be helpful, a good
use of time, but reading alone is
not enough, for the same reason
that someone won’t become a
great painter without a canvas.
GET LOST IN FOLLOWING YOUR INTERESTS
If you wish to establish an identity
of your own as a developer you
can’t get caught up in chasing
trends. Find and develop your own
voice by following your passion.

"Not amusement nor distraction, but the desire to
effect some cherished purpose is the strongest
motive that can move the learner."
" " " " " -John William Adamson

17

In order to create your own little
worlds, you’ve got to be ready to
live a bit in your own little world.

Well before stressing about what
the public thinks, perhaps focus
first and foremost on impressing
and surprising yourself with just
what you can accomplish.

Pull yourself from distractions,
zero in on developing the skills
that you wish you have. No one
can create your many games the
way you want them but you.

Your games will exist. Make up
your mind to figure out whatever
you must as you go to make it so.
Accept that your games existing in
an imperfect way is better than
them not existing at all. (Anything
that ever exists is imperfect!)
ENJOY THE FREEDOM
We’re so fortunate to be alive at a
time when you no longer need
anyone else’s money or approval
to make your game a reality, nor to
get your game in front of other
players around the world. Making
an enjoyable videogame no longer

requires special gear or privileged
access to retail distribution. You
can learn to do it in your free time,
free from external pressures, and
free to share however you wish.

You can bring new games and
ideas into existence simply
because you want them to exist.

If there turns out to be a smaller
audience for it – whether a circle
of your friends, a dozen people
across the globe, or even just you
as the creator – that doesn’t much
matter. A game developed for free
doesn’t have to sell 100,000+
copies just to justify its existence.

As developers we’ve never had
this level of freedom.

It’s a great time to be making
videogames.

18

Pages Removed for the Free Preview

To purchase the complete eBook - which in addition to PDF also includes EPUB,
MOBI, and AZW3 formats - or other training resources visit http://Gamkedo.com

http://gamkedo.com/
http://gamkedo.com/

Even once you know what to do,
you’ve still got to put it into
practice before that knowledge
can do you any good. Becoming
good at anything requires
practice. Let’s look at some
ways to start getting practice
sooner rather than later.

170

Get Motivated

4

Stop Trying to Learn
Everything Before Starting

SECTION 1

Don’t wait until you know
everything there is to know before
starting.

Learn just enough to get started.
That includes having a rough idea
of a realistic scope for a first
project, so that you don’t wind up
lost on a fool’s errand.

Then get started. Get your
development environment set up
and compiling empty, test,
placeholder, or example code.
Just get anything on the screen
that runs, meaning an .exe if

you’re programming for Windows,
a .swf if you’re making a web
game in ActionScript 3, etc.

At this point, you’re already ahead
of an untold number of people that
have only ever thought about
videogame development, but have
been too caught up in waiting for
the perfect idea, or trying
hopelessly to fill their brains with
everything ever written and said
about it before actually getting
started. So far so good.

171

Knowing about something

isn’t the same as knowing

how to do it. The former

comes from reading and

discussion, the latter

requires practice and

experience. When you know

enough to start... start!

G
e
t

M
o
t
iv
a
t
e
d

Find a way in your programming
language or environment to load
an image file and get it on the
screen, to respond to keyboard
and mouse or whatever input is
needed, to load and play back
sound effect files and looping
music. Depending on the platform,
picking a library may be helpful for
this (ex. SFML, SDL, Allegro, or
XNA, if in C/C++), or this may be
functionality built into what you’re
working with (Unity). Often the
easiest way to get to this point is
to just find some simple example
code that already does these
things, then twiddle settings in
your development environment
until you can compile and run it as
expected.

Does the player character need to
move like a truck? A spaceship? A
tank? Mario? Get the input to
move the player’s graphic
(probably an unanimated rough
draft of the graphic at this point,
concerned only with basic
appearance and scale on screen)

moving in the way that it ought to
move.

Get the level structure put
together to position visuals and
handle basic collision against the
player. Save/load the level
structure in some practical format
– never mind getting caught up on
the theoretically optimal
compression of that data, as level
files are virtually always tiny, and if
that becomes a problem later,
cross that bridge when you get
there. Level files initially saved in
ASCII can make debugging
significantly easier anyhow. Is the
game world based on freestanding
obstacles? Grid-based tile
collision? If the camera needs to
pan, add some offsets to the
player draw position and level
draw origin to achieve scrolling, or
a global transform if you’re in 3D
or using hardware acceleration,
and update those offsets to move
the view based on player position.

Add enemies (if needed), items (if
needed), trigger puzzle elements
(if needed), special powers (if

172

needed), ammo limits (if needed).
Add nothing that isn’t needed. If
you’re not sure what else the basic
engine might need – and I’m only
using the word “engine” here only
in the most minimal sense,
meaning the game’s core code,
not the try-to-support-every-
game-imaginable Titanic-seeking-
an-iceberg undertaking – start
putting together playable level
content and see what additional
features or process improvements
you find yourself wanting while
doing that.

The game may not need anything
else.

If and when a situation arises for
which you’re not sure how to
proceed without digging and
experimenting for solutions, that’s
fantastic, welcome to real
programming.

If and when a situation arises for
which you have to make a tradeoff
between burning an uncertain
amount of time on figuring out
something tricky, or working out

how to cut that feature from the
design without the game
completely falling apart, that’s
super cool, and welcome to
production.

Once you finish the game and
people don’t feel about it the way
you hoped they would, first off:
that’s awesome, because hey, you
finished a videogame.
Congratulations! Next time you’ll
be positioned to make
incrementally more informed
tradeoffs with consideration for
implementation realities,
production compromises, and
potential impact on user
experience. It’s only at this point
that someone is beginning to
really do videogame design, as
opposed to talking about
videogames, reading about
programming, or cloning someone
else’s work as an exercise. Note
too that design of a full videogame
is different than level design.
Though the two are sometimes
conflated, since they are often
done by the same people, when

173

done in isolation from other issues
and options about a game’s
development, level design is
another field of content creation,
another skilled technician’s craft
like animation, dialog writing, or
sound editing. Those are hard
things to do, deserving of respect
and worth doing well, but they are
not videogame design. Designing
a videogame is different than
designing for a videogame.

Learning is great. Books are
important. Some amount of
learning does need to happen
before starting, but the amount of
learning needed tends to be far
less than people seem to assume.
Learning, for this type of material,
has to be situated in a context,
demonstrable, useable, and
practical. Contrary to the lay
consumer impression that making
something is a mere variation on
being able to judge something, a
maker has a fundamentally
different set of concerns and
practices than a critic.

Roger Ebert was brilliant, but
wasn’t suited to making a decent
film. (Not hypothetical - see:
Beyond the Valley of the Dolls.)

If your goal is to be a critic: spend
all day studying the form and
discussing it. If your goal is to be a
maker: start making things, keep
making things, and finish making
things. Being reflective on practice
can be helpful, but that requires
actual practice to be reflective
about.

Learning everything there is to
know about programming or
videogame development before
starting is impossible. It simply
won’t – can’t – all fit inside one
head at the same time. Even if that
information somehow could be
learned, memorized in the
abstract, detached, and rote
sense, it would not be of any use
without experience working
through real problems with it.

This is not a decision between
learning versus doing. What I am
proposing is that, within this

174

context, learning without doing
isn’t really learning. Meanwhile
doing without learning is
impossible, because doing will
demand learning.

If you make some wrong
assumptions early on, they’re
often easily corrected. That’s the
nature of digital stuff. We’re not
laying railroads or building
skyscrapers, we’re not cutting
someone open while they’re under
anesthetic – we are dealing in
digital text and other easily
modified, easily backed-up files.
The rework time is nothing
compared to the vast but invisible
damage from never starting,
waiting an infinite amount of time
until everything knowable is
known. That rework is even when
the best learning happens,
because the desire to not lose that
amount time on the next attempt
will help lead to a deeper
understanding of what caused it,
so that it might later be avoided.

Be wary of excessive preparation
serving as a disguise for
procrastination.

175

Pages Removed for the Free Preview

To purchase the complete eBook - which in addition to PDF also includes EPUB,
MOBI, and AZW3 formats - or other training resources visit http://Gamkedo.com

http://gamkedo.com/
http://gamkedo.com/

Image Credits

Cover and Chapter Icons

Cover Heart designed by Raji Purcell from The Noun Project

Ch.1 Power by Jardson A. from The Noun Project

Ch. 2 Teacher by Juan Pablo Bravo from The Noun Project

Ch. 3 Architect by Augusto Zamperlini from The Noun Project

Ch. 4 Tips by Lemon Liu from The Noun Project

Ch. 5 Gears by Edward Boatman from The Noun Project

Ch. 6 Mouse tools icon image in public domain

Ch. 7 Talking by Juan Pablo Bravo from The Noun Project

Ch. 8 Business Connection by Francisca Arévalo from The Noun
Project

Ch. 9 Magnifying Glass by Yazmin Alanis from The Noun Project

Page Background Textures

Page texture from subtlepatterns.com 
CC BY-SA 3.0 - Subtle Patterns © Atle Mo.  
Chapter background pattern made by Olivier Pineda.

443

Getting Started

Making Your Own Videogames at Home is Totally Awesome -
Working At Home by Rutmer Zijlstra from The Noun Project

How Long Does it Take to Learn Game Programming? - Calendar
by Phil Goodwin from The Noun Project

Hobby Game Development: 20 Questions - Quiz by Rémy Médard
from The Noun Project

Beginners Shouldn’t Start with a Design Document - Document by
Piotrek Chuchla from The Noun Project

Clone Videogames to Learn Real-Time Videogame Design - Space
Invader by SuperAtic LABS from The Noun Project

General Concepts for Beginning Developers - Sketchbook by
Edward Boatman from The Noun Project

Learn Videogame Development Like Woodworking - Tools by
Dmitry Baranovskiy from The Noun Project

Fan Habits and Focus are Not Developer Habits and Focus -
Crowd-Surfing by Hum from The Noun Project

Questions About Education

Advice to a New Student in Videogame Design - Education by
Berkay Sargın from The Noun Project

Questions from an Elementary School Class - Students by Piotrek
Chuchla from The Noun Project

Class Questions About Game Development Career - Image in
public domain

Math for Videogame Making (Or: Will I Use Calculus?) - 3D by
Michael Senkow from The Noun Project

444

Question About Comp Sci and Game Development - Network by
Bruno Castro from The Noun Project

The Ways of Self Education - Education by Pete Fecteau from The
Noun Project

Programming

Game Programming Fundamentals - Utility Knife by Hayden
Kerrisk from The Noun Project

How Programmers Program - Code by Nikhil Dev from The Noun
Project

Position and Speed Variables - Directions by Pedro Ramalho from
The Noun Project

Float and Int Variables: Casting and Other Issues - Image in public
domain

Hack then Refactor - Arrows by Juan Pablo Bravo from The Noun
Project

Basic Real-Time Videogame Artificial Intelligence - Robot by
Edward Boatman from The Noun Project

Quick and Dirty Backups - Image in public domain

Steps in Programming a Simple Real-Time Strategy Game - Image
in public domain

Get Motivated

Stop Trying to Learn Everything Before Getting Started - Mind
Blowing by Luis Prado from The Noun Project

“Overcomplicating Everything” - Confusion by Kelcey Benne from
The Noun Project

445

Think by Building, Build to Answer Questions - User by Wilson
Joseph from The Noun Project

Your Attitude Matters Even When Working Alone - User by
Mundo from The Noun Project

Don’t Wait for an Event, Job, Contest or Assignment - Waiting
Room by Luis Prado from The Noun Project

The Brain is Not an Emulator - Thinking by Dirk Rowe from The
Noun Project

Stop Arguing About What Makes a Better Game - Argument by
Michael Thompson from The Noun Project

Start Before You Have an Idea - Image in public domain

A Little Planning Can Go a Long Way - Gantt Chart by Jeremy
Boatman from The Noun Project

Game Design

Modest First Projects and Incremental Learning - Process by Joel
McKinney from The Noun Project

Bottom-Up vs Top-Down Design - Create Database by Ilsur
Aptukov from The Noun Project

Photographer’s Algorithm - Camera by Okan Benn from The Noun
Project

Doing More With Less: Short Videogame Design - Image in public
domain

Colorful Oceans and Chunk Sauces - Noodles by Anna Wojtowicz
from The Noun Project

Genres and Conventions: Known Patterns of What Works - Image
in public domain

446

Level Creation

Anti-Design / Backwards Game Design in Goldeneye - Gun by
Simon Child from The Noun Project

Level Design Concepts - Architect by Joel Burke from The Noun
Project

Level Design Process - Mindmap by Leslie Tom from The Noun
Project

Level Design Q & A - Image in public domain

Non-Essential Level Art is Essential - Graphic Design by Anna
Weiss from The Noun Project

Visual Language in Super Mario Bros Level Endings - Flag by
Ashley van Dyck from The Noun Project

Team Projects

Videogame Project Management for Hobbyists and Students -
Meeting by Ainsley Wagoner from The Noun Project

Communication is a Game Development Skill, Part 1 - Image in
public domain

Communication is a Game Development Skill, Part 2 - Image in
public domain

Establishing a Videogame Development Club - Image in public
domain

Industry

A Frank Look at Making Videogames Professionally - Image in
public domain

447

Indie Game Development as Career - Art Collector by Piotrek
Chuchla from The Noun Project

Influence of Business Models on Game Design - Pay Per Click by
Siwat Vatatiyaporn from The Noun Project

What's Japan Doing Differently? - Japan by James Christopher
from The Noun Project

Intellectual Property and Hobby Game Development - Copyright
by Thomas Hirter from The Noun Project

Should I Release a Game as Soon as It's Done? - Checklist by
Aaron Dodson from The Noun Project

How to Get the Most Out of Your First GDC - Conference by
Wilson Joseph from The Noun Project

Game Analysis

Why Minecraft Worked in 2011 - Cubes by José Manuel de Laá
from The Noun Project

Reflections on 3 Specific Hobby Game Projects - Thinking by
Michael V. Suriano from The Noun Project

Quit Smoking: Effect of Interaction on Interpretation - No Smoking
by Rahul Anand from The Noun Project

448

