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Abstract

Despite its normative appeal and widespread use, Bayes’ rule has two well-known
limitations: first, it does not predict how agents should react to an information to which
they assigned probability zero; second, a sizable empirical evidence documents how agents
systematically deviate from its prescriptions by overreacting to information to which they
assigned a positive but small probability. By replacing Dynamic Consistency with a
novel axiom, Dynamic Coherence, we characterize an alternative updating rule that is not
subject to these limitations, but at the same time coincides with Bayes’ rule for “normal”
events. In particular, we model an agent with a utility function over consequences, a prior
over priors ρ, and a threshold. In the first period she chooses the prior that maximizes
the prior over priors ρ - a’ la maximum likelihood. As new information is revealed: if the
chosen prior assigns to this information a probability above the threshold, she follows
Bayes’ rule and updates it. Otherwise, she goes back to her prior over priors ρ, updates
it using Bayes’ rule, and then chooses the new prior that maximizes the updated ρ. We
also extend our analysis to the case of ambiguity aversion.
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Modeling the Change of Paradigm: Non-Bayesian

Reactions to Unexpected News∗

Pietro Ortoleva

1. Introduction

One of the most widespread assumptions in economics is that agents update their beliefs
using Bayes’ rule. There seem to be many reasons for this popularity. First of all, it an
extremely intuitive procedure, so intuitive that it is often considered one of the features
of rationality. Moreover, there are many situations in which Bayes’ rule provides an
accurate description of the agents’ reactions to information. In addition, its extremely
convenient functional form facilitates its application in economic models. Despite these
advantages, however, Bayes’ rule has two well-known limitations. First, it has no pre-
scription about how should the agent react to an information to which she assigned
probability zero – Bayes’ rule is simply not defined in that case. This limitation has
well-known consequences: for example, the notion of Bayesian Nash Equilibrium is often
criticized (and then refined) since it posits no restrictions on the beliefs of the agents out
of equilibrium path – which is an immediate consequence of the fact that Bayes’ rule has
no prescription about how should these beliefs be formed.

Moreover, even in the cases in which Bayes’ rule does apply, a sizable amount of
evidence collected in the past two decades has documented that decision makers sys-
tematically depart from its prescriptions.1 While these departures take many forms, one
seems to be of particular relevance: people tend to violate Bayes’ rule when they receive
news that they did not foresee, i.e. information to which they originally assigned a posi-
tive but small probability: “in violation of Bayes’ rule most people tend to overreact to
unexpected and dramatic news events” (De Bondt and Thaler (1985, pg. 804)). This
tendency seems to persist even when appropriate incentives are given to the subjects,
and also when subjects are experts on the area in which they have to make predictions.

∗I would like to thank Kim Border, Paolo Ghirardato, Federico Echenique, Leeat Yariv, Leonardo
Pejsachowicz, Gil Riella, and the participants at seminars at ASU, Caltech, Collegio Carlo Alberto, and
SWET 2010 for useful comments and discussions.

1For experimental evidence of violations of Bayes’ rule in general, and for low probability events in
particular, see, among others, Tversky and Kahneman (1974, 1981), Kahneman and Tversky (1982),
Griffin and Tversky (1992), Grether (1992) Holt and Smith (2009) and the surveys in Camerer (1995)
and Rabin (1998).



The goal of this paper is to develop axiomatically an alternative updating rule that
tries to maintain the elements of appeal of Bayes’ rule, including its simplicity, while
reconciling with the two limitations mentioned above. In particular, we model an agent
who reacts according to Bayes’ rule when “normal” news is given to her, but who might
overreact, and change her prior beyond the bayesian prescriptions, when she receives
some information that she “did not expect.” To give an example of the behavior we
have in mind, think about an investor who is constructing a portfolio to allocate her
wealth. To guide her decision, our investor has a belief over the returns of each possible
investment, a belief that could originate from some properly calibrated economic model.
As time goes by, our investor receives new information, e.g. from observing the stock
market, and revises her belief. In normal times it is reasonable to expect that she revises
her belief following Bayes’ rule. But what happens if a big, shocking news is revealed, like
a financial crisis? While such crisis might have been considered possible by our investor
– in the sense that she might have assigned it a positive probability – it might also have
been very unlikely for her – she could have assigned to it a very small probability. How
will she react? The point is, in light of this unexpected event our investor might go
beyond updating her prior using Bayes’ rule: she might think that she used the wrong
prior to begin with, given that it assigned such a small probability to the realized event,
and that she should therefore pick a whole new prior based on the new information.
The arrival of unexpected news might therefore lead her to a “change of paradigm” that
entails a change of belief beyond Bays’ rule. For example, if she was using an economic
model to form her original belief, and this model assigned a small probability to the
information that was later revealed, then she might question the validity of this model
and look for a new one. In this paper we aim to characterize this behavior.

Many generalizations of Bayes’ rule have been proposed in the literature. Among the
many (non-axiomatic) behavioral models, see for example the Jeffrey’s rule, Mullainathan
(2002), Rabin (2002), Mullainathan, Schwartzstein, and Shleifer (2008), Gennaioli and
Shleifer (2009).2 A common feature of these contributions is that they propose signif-
icant generalization of Bayes’ law; by contrast, we wish to focus on over-reactions to
unexpected events, or to null events, while maintaining the elements of appeal of the
standard model for other non-unexpected news. Moreover, none of these papers have an
axiomatic foundation, which makes it hard to test empirically which of them provides
the most accurate description of the behavior.

Within the small axiomatic decision theory literature, Epstein (2006) and Epstein,
Noor, and Sandroni (2008) model agents who might be tempted to use a posterior that is
different from the Bayesian Updating of their prior: for example, they might be tempted
to overweigh or underweight new evidence. (Consequences of this behavior are discussed
in Epstein, Noor, and Sandroni (2010).) Both models differ from ours in two aspects.
First, they study a setup of preferences over menus, and a central point of their analysis
is that the agent is aware of the possible biases she can be subject to in the future. By
contrast, we look at a standard dynamic Anscombe-Aumann setup, and such awareness

2See also Brav and Heaton (2002) and Brandt et al. (2004) for additional references to the behavioral
literature.
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in inessential in our case. Furthermore, they present models that allow for significant
departures from the standard Bayesian one, while we wish to confine our departure to
addressing the two issues mentioned above. The recent work of Kochov (2009) studies a
Non-Bayesian behavior in the presence of unforeseen contingencies – agents who fail to
properly account for event that will take place in the non-immediate future, a behavior
very different from the one we are interested in. Both the lexicographic beliefs of Blume,
Brandenburger, and Dekel (1991), and the conditional probability systems of Myerson
(1986a,b) address the issue of beliefs for null events, with important results on the agent’s
reaction to them. Neither of these theories, however, seem to extend to non-bayesian
reactions to unlikely but non-null events, one of the goals of this paper; furthermore, they
are based on preferences that depart from standard expected utility maximization also
for the static case – for example in Blume, Brandenburger, and Dekel (1991) preferences
are not fully Archimedean. By contrast, we wish to study an agent that is completely
standard in the static case, but might have a non-standard reaction to news.

In the game theory literature Foster and Young (2003) present a model in which agents
use a procedure similar to ours to learn which strategies are used by their opponents.
In particular, just like in our model, their agents “test” whether their current belief is
correct, and perform a paradigm change if this hypothesis is rejected. Their analysis,
however, is focused on learning in games, and does not apply to the standard framework.
Also, it contains no prescription about how a new belief should be chosen if the current
one is rejected, while this is an essential component of our findings. Finally, as opposed
to what happens in our model, their agents do not act as standard Bayesian agents if an
hypothesis is not rejected. In this sense, their model has a similar spirit in terms of when
a paradigm change should take place in a game, but is very different in all other aspects.

Finally, in the literature on ambiguity a large attention is devoted to the issue of
updating ambiguous beliefs, and since the Bayesian postulates seems problematic in that
framework, many generalizations of them have been proposed.3 These generalizations,
however, are aimed at reconciling the standard approach with the presence of ambiguity
aversion, and most of them reduce to Bayes’ rule in the case in which the agent is an
expected utility maximizer (ambiguity neutrality). By contrast, our main goal is to study
violations of Bayes’ rule even in this standard case.4

We consider a standard dynamic Anscombe-Aumann model in which we observe the
preferences of the agent before and after she receives some information about the state of
the world. The main result of this paper is to provide an axiomatic foundation for what
we call the Hypothesis Testing representation. According to this representation, the agent
has a utility function u over consequences, a prior over priors ρ, and a threshold ε between
0 and 1. In the first period, our agent chooses the prior π that maximizes her prior over

3See, among others, Gilboa and Schmeidler (1993), Epstein and Le Breton (1993), Epstein and Schnei-
der (2003), Maccheroni, Marinacci, and Rustichini (2006), Siniscalchi (2006), Hanany and Klibanoff
(2006), Epstein and Schneider (2007) and Ghirardato, Maccheroni, and Marinacci (2008).

4In Section 3 we will extend our analysis to the case of ambiguity aversion, and obtain a model for
updating ambiguous beliefs that does not reduce to Bayes’ rule in the case of ambiguity neutrality.
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priors ρ, and she uses it to to form her preferences as an expected utility maximizer. In
our example of the investor, we can see ρ as a belief over the possible economic models
she can use (each of which entails a certain belief over the state of the world), where
the agent uses the model that she considers the most likely – in a maximum likelyhoood
fashion. As new information i is revealed, our agent acts as follows. If the probability
that her prior assigned to the information is above the threshold ε, i.e. π(i) > ε, then
the model is not rejected and she simply updates her prior π using Bayes’ rule, thus
acting like a standard agent. If, however, the probability that her belief assigned to the
information is below the threshold, i.e. π(i) ≤ ε, then the model is rejected and our agent:
goes back to her prior over priors ρ; updates it using the additional information that she
has received; then chooses the prior π′ that maximizes her updated prior over priors;
using this prior she forms her preferences maximizing the expected utility. That is, if
the model is rejected by the data she goes back and picks the new maximum likelihood
model, using the updated prior over priors.

The axiomatic foundation of the Hypothesis Testing representation maintains the
standard axioms of Bayesian Updating in an Anscombe-Aumann setup, but replaces Dy-
namic Consistency with a novel axiom, Dynamic Coherence. The basic idea of this axiom
is to impose that the agent behaves coherently also when she acts in a dynamically-
inconsistent manner, or when she faces some information to which she assigned prob-
ability zero (null events). In this sense, Dynamic Coherence is neither stronger nor
weaker than Dynamic Consistency: it is not stronger since it allows the agent to act in
a dynamically-inconsistent manner, albeit in a regulated way; and it is not weaker than
Dynamic Consistency since it restricts the behavior of the agent when she faces an infor-
mation to which she assigned probability zero – events on which Dynamic Consistency
has no bite.

Next, we extend our analysis to the case in which the agent is not a standard expected
utility maximizer, but rather is ambiguity averse. We show that if we posit that both
before and after the arrival of information the agent’s preferences satisfy the axioms in
Gilboa and Schmeidler (1989), together with the same two axioms that we imposed in the
previous case, Dynamic Coherence and Consequentialism, then we obtain the following
representation. The agent has a utility function u, prior over sets of priors ρ and a
threshold ε. In the first period the agent chooses the set of priors Π that maximizes the
prior over sets of priors ρ, and evaluates each act by the expected utility computed using
the most pessimistic prior in the set. As new information is revealed, two things can
happen. If every prior in Π assigns to the revealed information a probability above the
threshold ε, then the agent uses as a new set of prior the set with the Bayesian updates
of every prior in Π. Otherwise, she updates the prior over sets of priors ρ, and chooses
the new set of priors Π′ that maximizes it.

The remainder of the paper is organized as follows. Section 2 presents the setup,
the axiomatic foundation, the main representation, and the extension to the case of an
infinite state space. Section 3 introduces the extensions of the model to the case of
ambiguity aversion. Section 4 concludes. The proofs appear in the appendix.
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2. The Hypothesis Testing Model

2.1 Setup and foundations

We adopt a standard dynamic version of the Anscombe-Aumann setup. We have a finite
(non-empty) set Ω of states of the world, a σ-algebra Σ over Ω, and a (non-empty) set
X of consequences, which is assumed to be a compact subset of a metric space.5 Let
∆(X) stand for the set of all Borel probability measures (lotteries) on X. Denote by
F the set of all simple acts, that is, the set of all finite-valued Σ-measurable functions
f : Ω→ ∆(X). With a standard abuse of notation, for any p ∈ ∆(X) denote by p ∈ F
the constant act that yields the consequence p at every state ω ∈ Ω. For any A ∈ Σ,
f, g ∈ F , denote by fAg ∈ F the act that coincides with f in A and with g outside of
it, that is, fAg(ω) = f(ω) for every ω ∈ A, and fAg(ω) = g(ω) for every ω ∈ Ω\A. For
any function u : X → R and p ∈ ∆(X), denote by Ep(u) the expected value of u with
respect to p. As standard, metrize F by the product Prokhorov metric, and define null
states as follows.

Definition 1. For any preference relation � on F , we say that B ∈ Σ is �-null if
fBg ∼ g for any f, g ∈ F .

The primitive of our analysis is a class of non-degenerate preference relations {�A
}A∈Σ, where by �A we understand the preference of the agent after she receives the
information A ∈ Σ, while we denote by �=�Ω the preference at time 0, before the agent
receives any information.

We start by imposing two standard postulates.

A.1 (Well-Behaved Standard Preferences (WbP)). For any A ∈ Σ, f, g ∈ F :

1. ( Continuity): the sets {f ′ ∈ F : f ′ �A f} and {f ′ ∈ F : f �A f ′} are closed;

2. ( Independence): for any α ∈ (0, 1) and h ∈ F

f �A g ⇔ αf + (1− α)h �A αg + (1− α)h;

3. ( Monotonicity): if f(ω) �A g(ω) for all ω ∈ Ω, then f �A g.

4. ( Constant Preference Invariance): for any p, q ∈ ∆(X), p �A q ⇔ p � q

A.2 (Consequentialism (C)). For any A ∈ Σ, and f, g ∈ F , if f(ω) = g(ω) for all
ω ∈ A, then f ∼A g.

Axiom WbP (Axiom 1) is a collection standard postulates that guarantee that both
before and after the arrival of information our agent acts like a standard expected utility

5In Section 2.5 we generalize our analysis to the case in which Ω is infinite.
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maximizer (part (1), (2) and (3)), and that the arrival of information does not affect the
agent’s ranking of the consequences in ∆(X) (part (4)). Consequentialism (Axiom 2) is
another standard postulate that guarantees that the agent “believes” in the information
she receives: if she is told that the true state lies inside some A ∈ Σ, then she is indifferent
between two acts that differ only outside of A.

We now turn to restrict the way beliefs evolve with information. To this end, the
standard postulate is Dynamic Consistency.

A.3 (Dynamic Consistency (DC)). For any A ∈ Σ, A not �-null, and for any
f, g ∈ F , we have

f �A g ⇔ fAg � g.

The basic idea of Dynamic Consistency is that the arrival of some information A ∈ Σ
should not modify the ranking of two acts that coincide outside of A. It is well known that
adding Dynamic consistency to WbP and Consequentialism implies that the agent follows
Bayes’ rule. (We refer to Ghirardato (2002) for an in-depth discussion of this standard
postulate of its implications.) While appealing, however, Dynamic Consistency has two
important limitations. First of all, it disciplines agent’s preferences only if the event A is
not �-null, that is only if A is assigned a positive probability to begin with. This implies
that any theory that derives from Dynamic Consistency is bound to have no predicting
power on the agent’s reaction to events to which she assigns probability zero. Second, as
we mentioned in the introduction, a sizable experimental evidence documents systematic
violations of Bayes’ rule in general, and of Dynamic Consistency in particular. This seems
to be especially true when the revealed information was assigned a small probability. In
other words, despite its normative appeal on the one hand Dynamic Consistency seems
to be too strong to be accepted as a positive axiom, while on the other hand it seems
not strong enough since it doesn’t restrict the agent’s behavior in the case of null events.

To reconcile with the empirical evidence, we then replace Dynamic Consistency with
an axiom that allows the agent to behave in a dynamically-inconsistent manner, but that
guarantees that she does so in a regulated manner. At the same time, we posit this
regularity to apply also to the agent’s reaction to null events, so that we can develop
a theory that applies to that case as well. The basic idea is that want to rule out the
possibility that our agent could have a circular reaction to information. To illustrate,
consider three possible events A1, A2, A3 ∈ Σ such that: after being told that the true
state lies in A1, then the agent is sure that it also lies in A2; if instead she were told that
it lies either in A2, than she is sure that it lies also in A3; but if she is told that it lies
in A3, then she is sure that is lies in the first event A1. That is, being told that the true
state is in one event, she thinks it is also in the next one; but were she told that it is in
the last one, then she is sure it is also the first. Now, this would be naturally true if the
agent had the same preferences after each of these events, i.e. if �A1=�A2=�A3 : if this
were the case, then after each of these events she would be sure that the true state lies
in A1 ∩ A2 ∩ A3, giving us the beliefs described above. But, what if this is not the case,

6



i.e. �A1 6=�A2 6=�A3? Then the agent’s beliefs react to information in a circular manner:
beliefs keep changing, but they form a loop, since at the end the agent is sure that the
true state lies in the first event. Notice that this circularity could never take place when
an agent is Bayesian, at least if A1, A2, and A3 are non-null: Bayes’s rule would prevent
it by construction. But of course Bayes’ rule is stronger than simply postulating the lack
of this circularity – it entails a much stronger form of consistency. By contrast, in the
next axiom we simply posits that this circularity could not take place, for cycles of any
length.

A.4 (Dynamic Coherence). For any A1, . . . , An ∈ Σ, if (Ω\Ai+1) is �Ai
-null for

i = 1, . . . , (n− 1), and (Ω\A1) is �An-null, then �A1=�An.

It is not hard to see that Dynamic Coherence is neither stronger nor weaker than
Dynamic Consistency. It is not stronger since it does allow violations of Dynamic Con-
sistency, albeit regulating them – as we mentioned before, Bayes’ rule is stronger than
the lack of circularity that we posit with Dynamic Coherence. At the same time, it is
not weaker than Dynamic Consistency since it disciplines the reaction to null events, on
which Dynamic Consistency has no bite. (Since the two Axioms are not nested, then
the representation Theorem in Section 2.3 will analyze also the case in which both hold
true.)

2.2 The model

We are now ready to introduce our main representation. For simplicity, let us define a
notation for Bayesian Updating. For any π ∈ ∆(Ω) and A ∈ Σ such that π(A) ≥ 0,
define BU(π,A) ∈ ∆(Ω) (bayesian update of π using A) as

BU(π,A)(B) :=
π(A ∩B)

π(A)
(1)

for all B ∈ Σ. Abusing notation, for any ρ ∈ ∆(∆(Ω)) and A ∈ Σ such that π(A) > 0
for some π ∈ supp(ρ), define also

BU(ρ,A)(π) :=
π(A)ρ(π)∫

∆(Ω)
π(A)ρ(dπ)

(2)

for all π ∈ ∆(Ω).

Definition 2. A class of preferences relations {�A}A∈Σ admits an Hypothesis Testing
Representation if there exists a continuous function u : X → R, a prior ρ ∈ ∆(∆(Ω))
with finite support, and ε ∈ [0, 1) such that for any A ∈ Σ there exist πA ∈ ∆(Ω) such
that:

7



1. for any f, g ∈ F

f �A g ⇔
∑
ω∈Ω

πA(ω)Ef(ω)(u) ≥
∑
ω∈Ω

πA(ω)Eg(ω)(u);

2. {πΩ} = arg max
π∈∆(Ω)

ρ(π);

3.

πA =


BU(πΩ, A) if πΩ(A) > ε

BU(π∗A, A) otherwise

where {π∗A} = arg max
π∈∆(Ω)

BU(ρ,A)(π);

4. for any A ∈ Σ there exist π ∈ supp(ρ) such that π(A) > 0.

In an Hypothesis testing representation the agent has a utility function, a prior over
priors ρ, and a threshold ε. In the first period she chooses the prior π that maximizes the
prior over priors ρ. She behaves as if she were choosing which “theory” to use to forecast
the states of the world: given a certain belief ρ over the possible theories, she picks the
most likely one – in a maximum likelihood fashion. As new information A is revealed,
two things can happen. If the prior she was using assigned to this event a probability
above the threshold, i.e. π(A) > ε, then our agent “keeps” her prior, and simply updates
it with Bayes’ rule. That is, if the information is not unexpected, then we are in the
“business as usual” situation, and our agent behaves like a standard Bayesian one. If,
however, she is given an information that she did not expect, that is, if the likelihood
that her prior assigned to that information is below the threshold, i.e. π(A) ≤ ε, then our
agent revises her prior. It is as if she thought: “If the prior I am using did not forecast
what happened, then, maybe, it is the wrong prior!” From this point of view, our agent
acts as if she were “testing” her prior and “rejecting” the hypothesis that it is correct
if it falls below the threshold, as if it were a confidence level – hence the name of the
model. And how does she choose a new prior? She updates her prior over priors using
Bayes’ rule; then she chooses the prior that maximizes the updated prior over priors; and
finally she uses this prior until a new information is revealed.

The decision rule that we have just described in words, however, might leave some
room to indeterminacy: what would happen if there is more than one prior that maxi-
mizes the updated prior over priors? Which one is chosen? To avoid this indeterminacy,
in an Hypothesis Testing model ρ is constructed in such a way that the argmax of the
updated prior over priors is always unique. We should emphasize that this condition is
much more than a technical detail: rather, it is an essential condition for an Hypothesis
Testing model to have any empirical content. Put another way, without this condition
the model would have no predictive power: any agent who maximizes expected utility
in every period could be described by an Hypothesis Testing model without this condi-
tion, no matter how her beliefs are formed. To see why, consider any such agent and
construct ρ as the uniform distribution over all possible priors. Then, notice that after

8



every information A, the prior that the agent uses after A must belong to the argmax
of the updated ρ, since it must give probability one to A: this means that we can a
representation this behavior with an Hypothesis Testing representation with ε = 1 but
without the uniqueness requirement.

Just like Dynamic Coherence is neither stronger nor weaker than Dynamic Consis-
tency, an Hypothesis Testing representation is neither more general nor more restrictive
than the standard Bayesian model. To see why, notice that if ε = 0, then our agent
behaves exactly like a standard Bayesian agent whenever Bayes’ rule applies; but her
behavior is disciplined also when Bayes’ rule does not apply (null events), thus extending
the predictive power of the theory to all possible events and making this model a special
case of the Bayesian one. On the other hand, when ε > 0 the Hypothesis Testing repre-
sentation allows non-bayesian reactions to non-null events. In this sense, the Hypothesis
Testing representation generalizes the Bayesian approach to allow for that over-reaction
to unexpected news that has been documented empirically.6

Since there could be multiple values of ε that represent the same preferences (see
Section 2.3), we focus on the representations with the smallest possible values of ε.

Definition 3. An Hypothesis Testing Representation (u, ρ, ε) is minimal if there is no
ε′ ∈ [0, 1) such that ε′ < ε and (u, ρ, ε′) is an Hypothesis Testing Representation of the
same preferences.

2.3 Representation Theorem

Theorem 1. A class of preference relations {�A}A∈Σ satisfies WbP, Consequentialism,
and Dynamic Coherence if and only if it admits a minimal Hypothesis Testing Represen-
tation (u, ρ, ε).
Moreover, ε = 0 if and only if {�A}A∈Σ satisfies also Dynamic Consistency.

Theorem 1 shows that by replacing Dynamic Consistency with Dynamic Coherence we
obtain exactly the Hypothesis Testing Representation. Moreover, it shows that Dynamic
Consistency and Dynamic Coherence together guarantee that our agent behaves like a
standard Bayesian agent whenever Bayes’ rule applies, but reconsider which prior to use
whenever she faces an information to which she assigned probability zero.

We now turn to discuss the uniqueness properties of an Hypothesis Testing Repre-
sentation. It is standard practice to show that the utility function is unique up to a
positive affine transformation. The threshold ε is unique, but only thanks to our focus
on minimal representations: in general there might be a continuum of values of ε that

6More precisely, if ε = 0 then the Hypothesis Testing model is a special case of the Bayesian one.
The converse is true if there are no null events. This means that if both conditions hold then the two
models coincide.
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would work.7 As for the prior over priors ρ, it turns out that it is not unique, and that
even its support is not unique. There are essentially three reasons why this is the case.
(To avoid confusion we address the elements of the support of ρ as “models.”) First, we
can always add to the support of ρ an additional model with a likelihood so low that it
will never be used. That is, we can always add “redundant” models leaving the behavior
unaffected. Second, even if we removed these redundant ones, we are bound to identify
models only after the events that trigger the agent to use them, and therefore we have no
control over what these models prescribe outside of these events.8 For the same reason,
moreover, there might be multiple ways to combine these models, making not unique
also the cardinality of the support of ρ.9

2.4 Discussion: the Hypothesis Testing model as a form of bounded rationality

One characteristic of the Hypothesis Testing model is that agents forms beliefs in a non-
standard way even in the first period, before any information is revealed. In fact, we
can think of the agent as if she had in mind a set of “conceivable” priors (the support
of ρ), which she can rank in terms of plausibility (forming ρ), of which, however, she
uses only one, the most likely one – a’ la maximum likelihood.10 The other priors in the
support of ρ, albeit “conceivable,” are in fact not used to make decisions unless some
unexpected news is revealed.11 This is in contrast to the behavior prescribed by the
standard Bayesian approach, according to which if the agent has a prior over priors, she

7To see why, call a the likelihood of the least likely event that does not trigger a violation of Bayes’
rule, and call b the likelihood of the most likely event that does trigger a violation of Bayes’ rule. Then,
we must have b < a, and any ε ∈ [b, a) would work. The reason is, our space of events might not be
“dense” in this sense, and therefore the threshold ε is not uniquely identified. On the other hand, any ε
must lie in this range.

8Consider a model π used after the arrival of some information A ∈ Σ. Since all we observe is
BU(π,A), then we can replace π with any π′ such that BU(π|A) = BU(π′|A) and π(A) = π′(A).

9Consider four events A,B,C,D ∈ Σ, all with a likelihood below ε, such that A ⊃ B, C ⊃ D and
A ∩ C = ∅. Denote by πi the priors that are used after event i. Assume that we have BU(πA, B) 6= πB
and BU(πC , D) 6= πD. There are at least three ways to represent this case. First, we can create four
distinct models, one for each event, giving to ρ the appropriate weights. Second, we can have only two
models, π1 and π2, such that BU(π1, A) = πA, BU(π1, C) = πC ,BU(π2, B) = πB , BU(π2, D) = πD.
(Model π1 is used after A and C, while model π2 is used after B and D.) Third, we could use two other
models, π3 and π4, such that BU(π3, A) = πA, BU(π3, D) = πD,BU(π4, B) = πB , BU(π4, C) = πC .
(Model π3 is used after A and D, while model π4 is used after B and C.) Unfortunately, this example
also shows that we cannot find a unique ρ with “minimal” support.

10Of course this chosen prior might itself be the combination of multiple priors with given weight. For
example, the many priors in the support of ρ might originate from different weights put on a fixed set
of beliefs.

11This suggests that our agent might have two layers of belief, what is conceivable but not used, and
what is actually used. The idea of multiple layers of beliefs is explored also in Blume, Brandenburger,
and Dekel (1991), who consider the lexicographic probabilities. As we mentioned before, however, their
model studies the reactions to null-events by allowing non-standard (non-archimedean) preferences in
the static case. By contrast, our model has standard preferences on the static case but a non-standard
dynamic, and moreover allows for non-standard reactions to events that are not null but simply low
probability.
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should choose as a belief its expectation, not its maximizer. That is, she should consider
all conceivable priors and weight them appropriately, instead of using only the most likely
one. While these two approaches are behaviorally indistinguishable in a static case, since
all we can see is the belief that is used and not where it comes from, it is the analysis
of the dynamic case that allow us to set them apart. In particular, it is by observing
violations of Dynamic Consistency that we can infer how has the agent formed her beliefs
in the first place.

While seemingly irrational, we consider the use of only a subset of all possible theories
as rather realistic. To see why, let us go back to our original example of the investor.
When she chooses a portfolio, our investor could indeed considers all possible economic
and statistical models that she can come up with, assign to them a relative likelihood,
estimate them all, look at their predictions, and finally come up with a belief which is the
weighted average of the predictions of all of these models. This is a behavior prescribed
by the standard approach. Alternatively, our agent could choose just a subset of these
models, the ones that she consider the most likely, estimate only these, and then use as
a belief the weighted average of the predictions of only this selected subset of models.12

She would then consider alternative models only if some unexpected news is revealed.
We consider the latter behavior more realistic.

This leaves us with the question of why should the agent adopt this behavior, since by
restricting her attention to a specific subset of models she could end up with inaccurate
predictions. There are at least four reasons why this could be the case. First, it could be
a rational reaction to a form of bounded rationality/costly thinking/cost of considering
models. In fact, if estimating a model is costly, as in most cases it is, then our agent
has an incentive to be parsimonious in the number of models she considers.13 Such cost
could also be psychological: agents might not like to be reminded that they have a limited
knowledge of the reality, and that they do not even know which model to use, and might
therefore prefer to focus on a single one as if it were true – a tendency highly emphasized
in the psychology literature. Second, it could be seen simply as another instance of
the standard behavioral bias that leads the agents to disregard low probability events.14

Third, this behavior could stem for a preference for simplicity : considering only a few
models is simpler, and the agent might prefer it in an Occam’s Razor sense. Finally,
it turns out that considering such simpler theories might actually be optimal even if
there were no cost of considering models or other additional costs. In fact, Gilboa and
Samuelson (2008) show that considering complex theories might induce people to overfit
the data and engage in ineffective learning, generating worse predictions. By contrast,
simpler theories do not have this problems, and might lead to optimal behavior. We refer
to their work for an detailed analysis.

12Once again, notice that the chosen prior in an Hypothesis Testing representation could come from
averaging a set of models with a relative weight.

13In fact, it is easy to see that we could have re-written our representation as a representation in which
the agent is choosing the optimal number of models given a cost of considering each of them.

14That is, the models to which ρ assigns a small probability could be disregarded just like low proba-
bility events are often disregarded in the choice among gambles.
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2.5 Extension: Infinite State Space

Theorem 1 shows the existence of an Hypothesis Testing representation under the as-
sumption that the state space Ω is finite. We now turn to study the more general case
in which Ω could be infinite, and show that the same axioms that we used before are
equivalent to the existence of a very similar representation. There are, however, a few
differences. The main one is the following. If Ω is finite, when the agent receives an
information to which she assigns a probability below the threshold ε, she chooses the
prior that maximizes the updated prior over priors ρ. As we have discussed, her behavior
is well defined since ρ is constructed in such a way to guarantee that this maximizer is
always unique. This might be no longer possible when Ω is infinite, and therefore our
agent will have to be endowed with a decision rule that allows her to choose between
multiple maximizers. Specifically, for a generic Ω our agent has a linear order B over the
priors such that, if there is more then one maximizer, she chooses among them using B.
Moreover, this linear order B and the likelihood over priors ρ will be coherent: for any
π, π′ ∈ ∆(∆(Ω)), if π B π′ then ρ(π) ≥ ρ(π′).

Besides this change, there are two more differences of a more technical nature. First,
as usual when we have an infinite state space, we obtain a representation with probability
charges instead of probability measures. (A probability charge is a probability measure
that only needs to be finitely additive but not necessarily countably additive).15 For
any state space Ω and σ-algebra Σ, denote by ∆F (Σ) the set of probability charges on
Σ. Second, let us go back to (2), the updating rule the for prior over priors. Notice
that when Ω is infinite, then also ∆(Ω) is infinite, which means that for any non-simple
ρ ∈ ∆(∆(Ω)) we will have ρ(π) = 0 for all π: but this makes (2) meaningless, since
there is no point in “updating zeros.” In fact, for non-simple priors it is customary in
Bayesian statistics to express updating rules using the density of the probability measure.
We will therefore modify (2) along these lines. There are, however, two caveats. First,
it is not obvious what do we mean by a density of a prior over priors, since there is
no obvious reference measure on ∆F (Σ) that we should use to define it.16 Second, we
might be in a situation in which there is no non-zero density that can express the relative
likelihood in the mind of the agent. (As we know, this is connected with the previous
issue of countable additivity). For example, consider the case of an agent who consider
equally likely every prior in ∆(R): it is not hard to see that whatever reference measure
we use on ∆(R), there is no non-zero density on ∆(R) that can express this belief. For
this reasons, to express the relative likelihood of events we will simply use a function

15Whether countable additivity is a desirable property in the context of subjective probabilities is an
issue that dates back to de Finetti and Savage. (See de Finetti (1931, 1970), Savage (1954).) Since
we find it restrictive, because for example it rules out the possibility that the agent has a uniform
prior over the natural numbers, here we focus only on probability charges. At the same time, we can
obtain a similar theorem with probability distributions by adding the additional requirement that every
preference in the class {�A}A∈Σ satisfies also an additional property, Arrow’s Monotone Continuity.
(See Chateauneuf, Maccheroni, Marinacci, and Tallon (2005) for more.)

16That is, while the density of some π ∈ ∆(R) is of course the Radon-Nikodym derivative w.r.t. the
Lebesgue measure l , there is no obvious reference measure to use to define densities on ∆(∆(R)).
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ρ : ∆F (Σ)→ [0, 1] such that ρ(π) > 0 for some π ∈ ∆F (Σ). This ρ will play the role of a
density in our analysis by representing the relative likelihood of priors:17 before receiving
any information our agent chooses the prior that maximizes ρ; then, when information
A is revealed, if her prior assigned to this information a probability below the threshold,
our agent would pick the prior that maximizes the “updated” ρ, i.e. ρ(π)π(A).

For simplicity let us add the following notation. For any linear order B on a set Y ,
and for any A ⊆ Y , define

max
B

A := {x ∈ A : xB y ∀y ∈ A}.

This is the set of elements of A that maximize the linear order B.
Definition 4. A class of preferences relations {�A}A∈Σ admits an Extended Hypothe-
sis Testing Representation if there exists a continuous function u : X → R, a function
ρ : ∆F (Σ)→ [0, 1], a linear order B over ∆F (Σ), and ε ∈ [0, 1], such that for any A ∈ Σ
there exist πA ∈ ∆F (Σ) such that:

1. for any f, g ∈ F

f �A g ⇔
∫

Ω

Ef (u)dπA ≥
∫

Ω

Eg(u)dπA;

2. {πΩ} = max
B

arg max
π∈∆F (Σ)

ρ(π);

3.

πA =


BU(πΩ, A) if πΩ(A) > ε

BU(π∗A, A) otherwise

where {π∗A} = max
B

arg max
π∈∆F (Σ)

ρ(π)π(A);

4. for any A ∈ Σ there exist π ∈ ∆F (Σ) such that ρ(π) > 0 and π(A) > 0;

5. for any π, π′ ∈ ∆F (Σ), if π B π′ then ρ(π) ≥ ρ(π′);
Definition 5. An Extended Hypothesis Testing Representation (u, ρ,B, ε) is minimal
if there is no ε′ ∈ [0, 1) such that ε′ < ε and (u, ρ,B, ε′) is an Hypothesis Testing Repre-
sentation of the same preferences.

Finally, the representation theorem.18

Theorem 2. For any state space Ω, a class of preference relations {�A}A∈Σ satisfies
WbP, Consequentialism, and Dynamic Coherence if and only if it admits a minimal
Extended Hypothesis Testing Representation (u, ρ,B, ε).
Moreover, ε = 0 if and only if {�A}A∈Σ satisfies also Dynamic Consistency.

Theorem 2 shows that the same axioms that we used when Ω is finite are necessary
and sufficient for the existence of an Extended Hypothesis Testing representation for any
Ω.

17In fact, if the prior over prior had a density, then we could simply use it and follow the standard
Bayesian updating interpretation of densities.

18We should point out that the proof of Theorem 2 relies on the Szpilrajn Extension Theorem and
therefore implicitly requires the Axiom of Choice.
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3. The Hypothesis-Testing model with ambiguity aversion

Our analysis thus far was carried out under the assumption that in every period, and after
every information, the decision maker behaves like a standard expected utility maximizer
with a well-formed (and unique) prior over the states of the world. This is an immediate
consequence of axiom WbP (Axiom 1) which includes independence. Since the Ellsberg
paradox, however, it is well known that independence is often violated, and agents do
not behave like standard expected utility maximizers with a single prior over the states
of the world. Rather, they are shown to be ambiguity averse: instead of using expected
utility, they dislike betting on outcomes that depend on the realization of unknown states
of the world, and have a preference for hedging. This seems all the more problematic in
our analysis since the instances in which we should expect a violation of the Bayesian
model are also the ones in which we should expect ambiguity aversion. The goal of this
section is to show that an appropriate extension of our results, using the same axiom,
Dynamic Coherence, would hold true also in the more general case in which agents are
ambiguity averse.

The issue of updating beliefs under ambiguity has been studied by an extensive liter-
ature.19 Almost all of these works, however, have focused on the complicated interaction
between ambiguity aversion and Bayesian updating, without questioning the updating
procedure in the first place. In particular, most of these model reduce to the case of
Bayes’ rule if the agent is ambiguity neutral (expected utility maximizer). By contrast,
in Section 2 we have suggested an alternative to Bayesian updating in the case of ambi-
guity neutrality, and we now wish to do the same in the case of ambiguity aversion. For
simplicity, we carry out this analysis in the same setup as Theorem 1, that is when the
state space Ω is finite. (An extension analogous to the one in Section 2.5 can be done
following almost identical passages.)

3.1 Foundations with Ambiguity Aversion

In what follows we model ambiguity aversion using the well-known model of Gilboa
and Schmeidler (1989). In particular, we replace standard Independence with their’s
C-independence and Ambiguity Aversion axioms, and obtain WbP-AA (Axiom 5) to
replace WbP (Axiom 1). We refer to Gilboa and Schmeidler (1989) for a more detailed
discussion.

A.5 (Well-Behaved Standard Preferences with Ambiguity Aversion (Wbp-AA)).
For any A ∈ Σ, f, g, h ∈ F :

1. ( Continuity): the sets {f ′ ∈ F : f ′ �A f} and {f ′ ∈ F : f �A f ′} are closed;

19See, among others, Gilboa and Schmeidler (1993), Epstein and Le Breton (1993), Epstein and Schnei-
der (2003), Maccheroni, Marinacci, and Rustichini (2006), Siniscalchi (2006), Hanany and Klibanoff
(2006), Epstein and Schneider (2007) and Ghirardato, Maccheroni, and Marinacci (2008).
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2. ( C-Independence): for any α ∈ (0, 1), x ∈ ∆(X)

f �A g ⇔ αf + (1− α)x �A αg + (1− α)x;

3. ( Uncertainty Aversion) for any α ∈ (0, 1), if f ∼A g then αf + (1− α)g �A f .

4. ( Monotonicity): if f(ω) �A g(ω) for all ω ∈ Ω, then f �A g.

5. ( Constant Preference Invariance): for any B ∈ Σ, p, q ∈ ∆(X), p �A q ⇔ p �B q

It is well-known that WbP-AA (Axiom 5) guarantees that in every period and after
every information the agent has a closed and convex set of prior beliefs over the states
of the world (instead of a unique prior), and judges every act by the expected utility
computed with the most pessimistic prior for that act. (Again, we refer to Gilboa and
Schmeidler (1989) for a discussion on the properties of this representation.)

While we replace WbP (Axiom 1) with WbP-AA above (Axiom 5), we posit that
Consequentialism and Dynamic Coherence hold as before also for the case with Ambiguity
Aversion – with the same intuition. This is in contrast with what happens with Dynamic
Consistency, since it is well know that when agents are ambiguity averse, especially
a’ la Gilboa and Schmeidler (1989), Dynamic Consistency might be too strong of a
requirement. For example, consider an agents who updates her set of priors by updating
each prior using Bayes’ rule: Epstein and Schneider (2003) show that such agent might
violate Dynamic Consistency.20 In fact, Ghirardato et al. (2008) show that this model
is equivalent to the agent satisfying a weakening of Dynamic Consistency, in which this
axiom applies only to a subset of the original preference relation, which they call the
“unambiguously preferred” relation. In particular, following the analysis in Ghirardato
et al. (2004) and Ghirardato et al. (2008), for any A ∈ Σ define the preference relation
�∗A as follows:

f �∗A g if λf + (1− λ)h �A λg + (1− λ)h

for all λ ∈ [0, 1] and all h ∈ F . (It is not hard to see that �∗A is the largest restric-
tion of �A that satisfy independence, and we clearly have �∗A=�A if the latter satisfies
independence.) Correspondingly, we can also define the set of unambiguously non-null
events.

Definition 6. An event A ∈ Σ is �-unambiguously non-null if for all p, q ∈ ∆(X)
we have that {z ∈ X : xAy �∗ z} ⊃ {z ∈ X : y �∗ z}.

(The idea is that an event is unambiguously non-null if betting on A is unambiguously
better than getting the loss payoff y for sure. See Ghirardato et al. (2008) for more
discussion.) The idea of the axiom is to impose a dynamically consistent behavior on
this restricted preference and on unambiguously non-null events.

20In particular, they show that the agent satisfies Dynamic Consistency if and only if the set of priors
they use in the first period satisfies a property called rectangularity. But this means that a postulate
that is supposed to regulate only the reaction to information is actually constraining the beliefs even
before any information is revealed.
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A.6 (Restricted Dynamic Consistency (RDC)). For any A ∈ Σ, A �-unambiguously
non-null, and for any f, g ∈ F , we have

f �∗A g ⇔ fAg �∗ g.

We refer to Ghirardato, Maccheroni, and Marinacci (2008) for further discussion.
Notice that if every preference satisfies independence (Axiom 1), then Restricted Dynamic
Consistency (Axiom 6) is clearly equivalent to standard Dynamic Consistency (Axiom
3).21

3.2 The representation with Ambiguity Aversion

In the case of ambiguity aversion modeled a’ la Gilboa and Schmeidler (1989) the agent
has not one, but a set of priors. As she receives new information this sets of priors will
be modified: a natural extension of the standard Bayesian approach to this case is the
model in which the agent reacts to this new information by updating using Bayes’ rule
each of the priors in her set of priors. Just like in the first part of the paper we started
from the Bayesian model and defined the Hypothesis Testing one, in our analysis here
we start from this generalization to extend the Hypothesis Testing model to the case of
ambiguity aversion. The idea of this generalization is that our agent has a prior over sets
of priors, and picks the set of priors that maximizes it. Then, she tests this set of prior
using a threshold: if it passes the test, she updates every prior in the set using Bayes’
rule. Otherwise, she updates her prior over sets of priors, and chooses the new set that
maximizes it.

For simplicity, we introduce a notation for the extension of the notion of Bayesian
Updating to updating a set of priors and a prior over sets of priors. By C denote the set
of closed and convex subsets of ∆(Ω). For any Π ⊆ C and A ∈ Σ such that π(A) > 0 for
all π ∈ Π, define B̂U(Π, A) as

B̂U(Π, A) := {π ∈ ∆(Ω) : π = BU(π′, A) for some π′ ∈ Π}.

Moreover, for any ρ ∈ ∆(C ) and A ∈ Σ such that for some Π ∈ supp(ρ) we have π(A) > 0
for all π ∈ Π, define BU(ρ,A) as

BU(ρ,A)(Π) :=
min
π∈Π

π(A) ρ(Π)∫
C

min
π∈Π

π(A) ρ(dΠ)
.

Definition 7. A class of preferences relations {�A}A∈Σ admits an Hypothesis Testing
Representation with Ambiguity Aversion if there exists a continous function u :
X → R, a prior ρ ∈ ∆(C ) with finite support, and ε ∈ [0, 1] such that for any A ∈ Σ
there exist ΠA ∈ C such that:

21Moreover, it turns out that if there are no null events, then under WbP and Consequentialism we
have that Dynamic Coherence is weaker than Restricted Dynamic Consistency. (This is an immediate
consequence of Theorem 3 below.)
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1. for any f, g ∈ F

f �A g ⇔ min
π∈ΠA

∑
ω∈Ω

π(ω)Ef(ω)(u) ≥ min
π∈ΠA

∑
ω∈Ω

π(ω)Eg(ω)(u);

2. {ΠΩ} = arg max
Π∈C

ρ(Π);

3.

ΠA =


B̂U(ΠΩ, A) if π(A) > ε for all π ∈ ΠΩ

B̂U(Π∗A, A) otherwise

where {Π∗A} = arg max
Π∈C

BU(ρ,A)(Π);

4. for any A ∈ Σ there exist Π ∈ supp(ρ) such that π(A) > 0 for all π ∈ Π.
Definition 8. An Hypothesis Testing Representation with Ambiguity Aversion (u, ρ, ε)
is minimal if there is no ε′ ∈ [0, 1) such that ε′ < ε and (u, ρ, ε′) is an Hypothesis Testing
Representation with Ambiguity Aversion of the same preferences.

Finally, the representation theorem.
Theorem 3. A class of preference relations {�A}A∈Σ satisfies Wbp-AA, Consequential-
ism, and Restricted Dynamic Coherence if and only if it admits a minimal Hypothesis
Testing Representation with Ambiguity Aversion (u, ρ, ε).
Moreover, ε = 0 if and only if {�A}A∈Σ satisfies also Restricted Dynamic Consistency.

Theorem 3 shows that the same postulates that we have imposed for the standard
expected utility case, Dynamic Coherence and Consequentialism, gives us the desired
representation also for the case in which agents are ambiguity averse a’ la Gilboa and
Schmeidler (1989). Moreover, when Restricted Dynamic Consistency is satisfied as well,
we obtain a representation in which the agent updates the set of prior using Bayes’ rule if
she faces an event to which every prior in her set assigns positive probability; otherwise,
she picks a new set of priors by maximizing the updated prior over sets of priors.

4. Conclusion

In this paper we have developed axiomatically an alternative to the standard Bayesian
model. We study an agent who behaves like a standard Bayesian when she receives an
information that is not “unexpected,” i.e. to which she assigned a probability above
a threshold. If this is not the case, however, instead of following Bayes’ rule an agent
reconsiders her prior by updating a prior over priors and picking the most likely one after
the update. We have also discussed an extensions of the model to the case in which the
preferences are ambiguity averse.

Appendix: Proofs

17



Proof of Theorem 1

[Sufficiency of the Axioms] Given Axiom 1, it is standard practice to show that for any A ∈ Σ, there
exist uA : X → R, πA ∈ ∆(X) such that for any f, g ∈ F

f �A g ⇔
∑
ω∈Ω

πA(ω)Ef(ω)(uA) ≥
∑
ω∈Ω

πA(ω)Eg(ω)(uA), (A.1)

where πA is unique and uA is unique up to a positive affine transformation. It is also standard practice
to show that Axiom 1.(4) implies that, for any A ∈ Σ, all uA are positive affine transformations of uΩ,
which means that we can assume uΩ = uA for all A ∈ Σ. Define u : X → R as u = uΩ and π = πΩ.
Claim 1. For any A,B ∈ Σ, A ⊇ B, if (Ω\B) is �A-null, then �A=�B .

Proof. Consider A,B ∈ Σ, A ⊇ B such that (Ω\B) is �A-null. Notice that since A = A∪B, then (Ω\B)
is �A∪B-null. At the same time, since (Ω\A) is �A∪B-null by Axiom 2. But then, Axiom 4 implies
�A=�B as sought.

Claim 2. For any A,B ∈ Σ, if πA(B) = 1 = πB(A), then πA = πB .

Proof. Consider any A,B ∈ Σ such that πA(B) = 1 = πB(A). Notice that by construction of πA and
πB we must have πA(A ∩ B) = 1 = πB(A ∩ B). But then, by Claim 1 we must have πA = πA∩B = πB
as sought.

Define now the set K ⊆ Σ as follows:

K := {A ∈ Σ : A is � -null} ∪ {A ∈ Σ : ∃f, g ∈ F s.t. f �A g and g � fAg, or f �A g and g � fAg}.

These are the events after which either Dynamic Consistency does not apply (null-events), or after which
it is violated. Define now ε as ε := max{π(B) : B ∈ K } if K 6= ∅, ε = 0 if K = ∅. Notice also that,
by construction of K , this implies that ε ≥ π(A) for all A ∈ K . Also, by construction we must have
ε ∈ [0, 1). To see why, consider any A ∈ Σ such that π(A) = 1. This implies that (Ω\A) is �-null. But
then, �A=�Ω by Claim 1, hence A /∈ K . This implies that max{π(B) : B ∈ K } < 1, hence ε ∈ [0, 1).

Consider now A ∈ Σ\K (notice that this set includes all A ∈ Σ such that π(A) > ε, by construction of
ε).
Claim 3. For any f, g, h ∈ F , A ∈ Σ\K we have

f �It,A g ⇔ fAh �It
gAh

Proof. Consider f, g, h ∈ F , and A ∈ Σ\K . By construction of K , for any r, s ∈ F we have rAs � s
iff r �A s. Notice now that by Axiom 2 we have fAh ∼A f and gAh ∼A g. This implies f �A g iff
fAh �A gAh. Define f ′ := fAh and g′ := gAh. Notice that we have fAh �A gAh iff f ′ �A g′ iff
f ′Ag′ �It

g′ iff fAh �It
gAh (where the last passages use the fact that π(A) > ε).

Claim 4. For any A ∈ Σ\K , πA(B) = π(A∪B)
π(A) = BU(π,A).

18



Proof. Now first of all that for any A ∈ Σ\K we must have π(A) > 0, because any A which is �-null
belongs to K . We then have that for any f, g ∈ F

f �A g ⇔ fAh � gAh
⇔

∑
ω∈A

π(ω)Ef(ω)(u) +
∑

ω∈Ω\A

π(ω)Ef(ω)(u) ≥
∑
ω∈A

π(ω)Eg(ω)(u) +
∑

ω∈Ω\A

π(ω)Eg(ω)(u)

⇔
∑
ω∈A

π(ω)Ef(ω)(u) ≥
∑
ω∈A

π(ω)Eg(ω)(u)

⇔ 1
π(A)

∑
ω∈A

π(ω)Ef(ω)(u) ≥ 1
π(A)

∑
ω∈A

π(ω)Eg(ω)(u)

Since πA is unique, this proves that for any A ∈ Σ\K , πA(B) = π(A∪B)
π(A) as sought. In particular, this

is also true for any A ∈ Σ such that π(A) > ε.

Define now the set K ∗ as follows.

K ∗ := {A ∈ Σ : πΩ(B) ≥ πΩ(A) for some B ∈ K }.

Notice that we must have K ∗ = {A ∈ Σ : π(A) ≤ ε} by construction of ε. This is the set of events such
that there exist an event in K that is more likely than some of them. Define now the sets H := K ∗∪{Ω}
and M := {πm ∈ ∆(Ω) : m ∈ K ∗} ∪ {πΩ}.
Claim 5. The following holds for no A,B,C,D ∈ K ∗∪{Ω}: πA = πB , πC = πD, πC(A) = 1, πA(C) < 1,
πB(D) = 1 and πD(B) < 1.

Proof. Say by means of contradiction that such A,B,C,D ∈M and notice that πC = πD and πC(A) = 1
imply πD(A) = 1. Similarly, πA = πB and πB(D) = 1 imply πA(D) = 1. But then, Claim 2 implies
πA = πD, which means πA = πC . But by construction of πC this contradicts πA(C) < 1.

Define now the binary relation B on M as

πm B πm′ ⇔ πm′(m) = 1 and πm(m′) < 1.

Notice that B is well defined by Claim 5, and it is also irreflexive for the same reason.
Claim 6. Consider π1, . . . , πn ∈ M such that π1 B · · · B πn. Then, there exist A1, . . . , An ∈ K ∗ such
that πi = πAi

, πAi+1(Ai) = 1 and πAi
(Ai+1) < 1 for i = 1, . . . , (n− 1).

Proof. For simplicity for focus on the case in which n = 3: it is trivial to show that the proof extends
to the general case. Consider π1, π2, π3 ∈ M such that π1 B π2 B π3. By construction of B we know
that there exist A1, A2, A

′
2, A3 ∈ K ∗ such that π1 = πA1 , π2 = πA2 = πA′2 , π3 = πA3 and πA2(A1) = 1,

πA1(A2) < 1, πA3(A′2) = 1, πA′2(A3) < 1. Since πA2 = πA′2 , we must also have πA′2(A1) = 1. If we can
prove that we also have πA1(A′2) < 1, then we are done. Say, by contradiction, that πA1(A′2) = 1. But
then, since πA′2(A1) = 1, by Claim 2 we have πA1 = πA′2 , hence π1 = π2, which contradicts the fact that
B is irreflexive.

Claim 7. B is acyclic.

Proof. By means of contradiction consider π1, . . . , πn ∈M such that π1B . . . πnB π1. By Claim 6 there
exist A1, . . . , An ∈ K ∗ such that πi = πAi

, πAi+1(Ai) = 1 and πAi
(Ai+1) < 1 for i = 1, . . . , (n− 1), and

πA1(An) = 1 and πAn
(A1) < 1. Since B is irreflexive notice that we must have that πAi

6= πAi+1 for
i = 1, . . . , (n− 1), and πA1 6= πAn . But this contradicts Axiom 4.
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Define γ∗ := max{πA(B) : A,B ∈ K ∗, πA(B) < 1}. (Notice that γ∗ is well defined since M is finite.)
If γ∗ > 0, define δ := 1

|M |
1−γ∗
γ∗

; otherwise, if γ∗ = 0, define δ = 1. (Since γ∗ ∈ [0, 1), we must have
δ > 0.) Notice also that since M is finite and B is acyclic. Consider now the transitive closure of B
and call it B̂. Since B is irreflexive and antisymmetric, so must B̂. To see why, say, by contradiction,
that we have A,B ∈ M such that AB̂BB̂A. Then, by definition of transitive closure, there must exist
m1, . . . ,mn+m ∈M such that ABm1B · · ·BmnBB and BBmn+1B · · ·Bmm+nBA. But this violates
the acyclicity of B.

Since M is finite, enumerate it and construct the function f as follows. Set f(m1) = 0. Consider mn.
Assign to f(mn) any value such that: for all i < n, f(mn) 6= f(mi); f(mn) > f(mi) if mnB̂mi; and
f(mn) < f(mi) if miB̂mn. To see why this is always possible, notice that for all mn,mi,mj , with
n ≥ i, j, if we have mnB̂mi and mjB̂mn, then we must also have that mjB̂mi since B̂ is transitive,
which implies that we must also have f(mj) > f(mi). Thus f is well defined. Normalize now the
function f so that it has a range in (0, δ) and call it v. Notice that we must have that π B π′ implies
v(π) > v(π′), and such that v(π) 6= v(π′) for all π, π′ ∈M .

Construct now ρ ∈ ∆(∆(Ω)) as

ρ(π) :=
v(π) + 1

|M |∑
m∈M (v(π) + 1

|M | )
.

for all π ∈M , ρ(π) = 0 otherwise.

We now turn to show that M and ρ that we just constructed are the ones that we are looking for.
Claim 8. {πΩ} = arg max

π∈∆(Ω)

ρ(π).

Proof. Say, by means of contradiction that there exist π ∈ ∆(Ω) such that π 6= πΩ and ρ(π) ≥ ρ(πΩ).
For this to be possible we must have ρ(π) > 0, which in turns implies that π = πm for some m ∈ H.
Say first that we have that πΩ(m) = 1 for all m ∈ H such that πm = π. Then, since we also have
that πm(Ω) = 1 for all m ∈ H such that πm = π, then Claim 2 would imply π = πΩ, a contradiction.
This means that we must have πΩ(m) < 1 for some m ∈ H such that πm = π. Also, notice that we
must have πm(Ω) = 1 (by definition), which implies that we have πΩ B πm = π. But then we must
have v(πΩ) > v(π) by construction of v, which in turns implies that we must have ρ(πΩ) > ρ(π), a
contradiction.

Notice now that for any A ∈ Σ, given the definition of ε, the agent will behave as prescribed in the
representation if π(A) > ε. We now turn to analyze the events with probability below the threshold.
Claim 9. For any A ∈ H, if π ∈ arg max

m∈M
BU(ρ,A), then π(A) = 1.

Proof. Consider A ∈ H and say by means of contradiction that there exist π ∈ arg max
m∈M

BU(ρ|A) such

that π(A) < 1. This means that we must have π(A)ρ(π) ≥ πA(A)ρ(πA). Notice that since A ∈ H,
by construction we must have πA(A) = 1, which implies that we must have π(A)ρ(π) ≥ ρ(πA). By
construction of ρ this is possible only if π ∈M and

(v(π) +
1
|M |

)πA ≥ v(πA) +
1
|M |

.

Notice that by construction v(πA) > 0. Moreover, since π(A)ρ(π) ≥ πA(A)ρ(πA), it must be that
π(A) > 0, hence γ∗ > 0. Therefore, by definition of γ∗ > 0, we have πA ≤ γ∗. This implies

(v(π) +
1
|M |

)γ∗ >
1
|M |

⇒ v(π) >
1
|M |

1− γ∗
γ∗

.
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But since v has range (0, 1
|M |

1−γ∗
γ∗

), this is a contradiction.

Claim 10. For any A ∈ H we have {πA} = arg max
m∈M

BU(ρ,A).

Proof. Consider A ∈ H and say, by means of contradiction, that we have π ∈ arg max
m∈M

BU(ρ|A) for some

π 6= πA. This means that we have π(A)ρ(π) ≥ πA(A)ρ(πA). By Claim 9 we know that we must have
π(A) = 1 and since πA(A) = 1, then this means that we must have ρ(π) ≥ ρ(πA). For this to be possible
we must have π ∈ M , which implies that there exists B ∈ H ∪ {Ω} such that πB = π. Now, if we have
πA(B) = 1, then since πB(A) = π(A) = 1, by Claim 2 we have π = πA, a contradiction. Therefore,
we must have πA(B) < 1. But then, we must have πA B πB = π, which implies v(πA) > v(πB), hence
ρ(πA) > ρ(π), a contradiction.

Claim 10 proves the representation. Notice also that point (4) of the representation is trivially true by
our construction of ρ. We have therefore found an Hypothesis Testing Representation (u, ρ, ε). Notice
that by the definition of ε, u, ρ, ε is also a minimal representation.

[Necessity of the Axioms] The proof the necessity of Axiom 1 (WbP) and Axiom is standard practice.
Axiom 2 is immediate from the representation. We are left with Axiom 4. Say by means of contradiction
that there exist A1, . . . , An ∈ Σ such that �A1 6=�An , (Ω\Ai+1) is �Ai-null for i = 1, . . . , (n − 1), and
(Ω\A1) is �An

-null. Consider first the case in which π(Ai) > ε for i = 1, . . . , n. By the representation,
this means that we must have πAi

= BU(π,Ai) for i = 1, . . . , n. But since (Ω\Ai+1) is �Ai
-null for

i = 1, . . . , (n− 1), hence πAi
(Ai\Ai+1) = 0, then by construction of BU we must have π(Ai\Ai+1) = 0

for i = 1, . . . , n. For the same reason we must also have π(An\A1) = 0. But then we must have that
π(∩ni=1Ai) = π(∪ni=1Ai), and so, by definition of BU, we must have πA1 = πAn , hence �A1=�An , a
contradiction.

Consider now the more general case in which there exist some i such that π(Ai) > ε. Say without loss
of generality that we have π(A1) > ε. By the representation it must be πA1 = BU(π,A1). At the same
time we have πA1(A1\A2) = 0, and by definition of BU this means that we have π(A1) = π(A1 ∪ A2).
But then, π(A2) ≥ π(A1), so π(A2) > ε. Proceed like this to prove that we must have π(Ai) > ε for
i = 1, . . . , n. But we have already shown that this leads to a contradiction.

We are left with the case in which π(Ai) ≤ ε for i = 1, . . . , n. By construction we must have that
BU(π∗Ai

, Ai)(Ai+1) = 1 for i = 1, . . . , n − 1 and BU(π∗An
, An)(A1) = 1. This implies π∗Ai

(Ai+1) ≥
π∗Ai

(Ai) for i = 1, . . . , n − 1 and π∗An
(A1) ≥ π∗An

(An). Now, notice that since π∗Ai
is the unique ele-

ment in arg maxπ∈∆(Ω) BU(ρ,Ai)(π) for i = 1, . . . , n, then we must have that for all i, j = 1, . . . , n,
ρ(π∗Ai

)π∗Ai
(Ai) > ρ(π∗Aj

)π∗Aj
(Ai) if π∗Ai

6= π∗Aj
. This, together with the fact that π∗Ai

(Ai+1) ≥ π∗Ai
(Ai)

for i = 1, . . . , n − 1 and π∗An
(A1) ≥ π∗An

(An), implies that ρ(π∗Ai
)π∗Ai+1

(Ai+1) ≥ ρ(π∗Ai+1
)π∗Ai+1

(Ai+1),
where the inequality is strict if π∗Ai

6= π∗Ai+1
. Hence for i = 1, . . . , (n − 1), ρ(π∗Ai

) ≥ ρ(π∗Ai+1
), where

the inequality is strict if π∗Ai
6= π∗Ai+1

, and ρ(π∗An
) ≥ ρ(π∗A1

), where the inequality if strict if π∗A1
6= π∗An

.
But then we have ρ(π∗A1

) ≥ ρ(π∗A2
) ≥ . . . ρ(π∗An

) ≥ ρ(π∗A1
), and so none of this inequalities can be

strict, hence π∗A1
= π∗Ai

for i = 1, . . . , n. But then, BU(π∗A1
, Ai)(Ai+1) = 1 for i = 1, . . . , n − 1, and

BU(π∗A1
, An)(A1) = 1, which means π∗A1

(Ai\Ai+1) = 0 for i = 1, . . . , n − 1, and π∗A1
(An\A1) = 0.

This means π∗A1
(∩ni=1Ai) = π∗A1

(∪ni=1Ai). But this implies that BU(π∗A1
, An) = BU(π∗A1

, A1), hence
πA1 = πAn

and �A1=�An
, a contradiction.

[ε = 0 iff Dynamic Consistency ] Notice first of all that if ε = 0, then the agent updates her prior
using Bayes’ rule every time she is told that a non-null event has occurred, which it is well know
to imply that Dynamic Consistency is satisfied. Consider now the case in which the {�A}A∈Σ satisfies
Dynamic Consistency. Let us say, by means of contradiction, that we have a minimal Hypothesis Testing
representation (u, ρ, ε) of {�A}A∈Σ in which ε 6= 0. Since {�A}A∈Σ satisfies Dynamic Consistency,
however, then (u, ρ, 0) must also represent it, contradicting the minimality of (u, ρ, ε). Q.E.D.
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Proof of Theorem 2

To prove the sufficiency of the axioms we follow similar steps as in the proof of the sufficiency of the
axioms in Theorem 1. (For brevity we highlight only the difference between the two proofs.) In particular,
define u, πA for all A ∈ Σ, K and K ∗. (Notice that for each A ∈ Σ, here πA will belong to ∆F (Σ) and
not necessarily to ∆(Ω).) Define now K̄ ∗ as follows.

K̄ ∗ := {A ∈ Σ : ∃(An) ∈ (K ∗)∞ such that π(An)→ π(A)}.

Define ε := sup
A∈K ∗

π(A) if K 6= ∅ (hence K ∗ 6= ∅), ε = 0 if K = ∅. Proceed following the steps of the

proof of Theorem 1 simply using K̄∗ and ∆F (Σ) whenever we used K ∗ and ∆(Ω), therefore defining
H := K̄ ∗∪{Ω} and M := {πm ∈ ∆F (Σ) : m ∈ K̄ ∗}∪{πΩ}, until the point in which we define B̂ as the
transitive closure of the binary relation B. Notice that here as well we would have that the acyclicity of
B implies that B̂ must be antisymmetric, which implies that B̂ is a strict partial order. By means of the
Szpilrajn Extension Theorem we know that that there exist a linear order on M that completes B̂ and
hence B. (See, for example, Rothmaler (2000, p. 88).) Call this linear order B′. Extend now B′ to a
linear order B̄ on ∆F (Σ) in any way that guarantees that for any π, π′ ∈ ∆F (Σ), if π ∈M and π′ /∈M ,
we have πB̄π′. (The existence of this extension is trivial.) Define now ρ : ∆F (Σ) → R as ρ(π) = 1 for
all π ∈M , and ρ(π) = 0 otherwise.

We now prove that (u, ρ, B̄, ε) is an Extended Hypothesis Testing representation. Notice first of all that
we must have that πA ∈ arg maxπ∈∆(Ω) ρ(π)π(A): this is trivially true since ρ is uniform and πA(A) = 1.
For the same reason we also have that if π ∈ arg maxπ∈∆(Ω) ρ(π)π(A), then π(A) = 1. Finally, condition
(5) is trivially true since ρ is uniform. We are left with the following claim.
Claim 11. For all A ∈ Σ, {πA} = max

B̄
arg max
π∈∆F (Σ)

ρ(π)π(A).

Proof. Consider any π ∈ arg maxπ∈∆F (Σ) ρ(π)π(A). Since ρ(πA) = 1, and ρ(π) = 1 iff π ∈ M , then we
must have that π = πB for some B ∈ K

∗ ∪ {Ω}. At the same time, we must also have that πB(A) = 1.
If we also had πA(B) = 1, then by Claim 2 in the proof of Theorem 1 (which applies here as well) we
would have πA = πB . If, instead, πB(A) < 1, then we have πA B πB , hence πAB̄πB . This proves the
claim. �

The minimality follows trivially. Finally, the proof of the necessity of the axioms is then identical to
the one of the proof of Theorem 1, and the same holds true for the proof that ε = 0 if and only if the
preference satisfies also Dynamic Consistency. Q.E.D.

Proof of Theorem 3

[Sufficiency of the Axioms] We proceed in a similar way to how we proceeded for the proof of Theorem
1. Given Axioms 5, from Gilboa and Schmeidler (1989) we know that for any A ∈ Σ, there exist
uA : X → R, ΠA ⊆ ∆(Ω), Π convex and compact, such that for any f, g ∈ F

f �A g ⇔ min
π∈ΠA

∑
ω∈A

π(ω)Ef(ω)(u) ≥ min
π∈ΠA

∑
ω∈A

π(ω)Eg(ω)(u) (A.2)

where ΠA is unique and uA is unique up to a positive affine transformation. It is also standard practice
to show that Axiom 5.(5) implies that, for any A ∈ Σ, all uA are positive affine transformations of uΩ,
which means that we can assume uΩ = uA for all A ∈ Σ. Define u : X → R as u = uΩ and π = πΩ.
Moreover, notice that for any A,B ∈ Σ A is �B-null if and only if π(A) = 0 for all π ∈ ΠB .
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Notice that Claims 1 holds true here as well. Moreover, notice the following claim (which parallels Claim
2 in the proof of Theorem 1).
Claim 12. For any A,B ∈ Σ, if πA(B) = 1 = πB(A) for all πA ∈ ΠA and πB ∈ ΠB , then ΠA = ΠB .

Proof. Consider any A,B ∈ Σ such that πA(B) = 1 = πB(A) for all πA ∈ ΠA and πB ∈ ΠB . Notice that
by construction of ΠA and ΠB we must have πA(A∩B) = 1 = πB(A∩B) for all πA ∈ ΠA and πB ∈ ΠB .
Hence (Ω\(A∩B)) is both �A-null and �B-null But then, by Claim 1 we must have ΠA = ΠA∩B = ΠB

as sought. �

Define now the set KAA ⊆ Σ as KAA := {A ∈ Σ : A is not � -unambiguously non-null} ∪ {A ∈ Σ :
∃f, g ∈ F s.t. f �∗A g and g �∗ fAg, or f �∗A g and g �∗ fAg}. These are the events after which
either Reduced Dynamic Consistency (Axiom 6) does not apply (not unambiguously non-null events),
or after which it is violated. Define ε as ε := max

A∈KAA

max
π∈ΠΩ

π(A) if KAA 6= ∅, ε = 0 if K ∗
AA = ∅. (This is

well defined since Ω is finite.)

Consider now A ∈ Σ\KAA (notice that this set includes all A ∈ Σ such that π(A) > ε for all π ∈ ΠΩ,
by construction of ε).
Claim 13. For any A ∈ Σ\KAA , f, g, h ∈ F , we have

f �A g ⇔ fAh �Ω gAh

Proof. Consider f, g, h ∈ F , A ∈ Σ\KAA. Notice first of all that by Axiom 2 we have fAh ∼A f and
gAh ∼A g. This implies that we have f �A g iff fAh �A gAh. Define f ′ := fAh and g′ := gAh. Notice
that we have fAh �A gAh iff f ′ �A g′ iff (since A /∈ K ∗

AA) f ′Ag′ �Ω g′ iff fAh �Ω gAh, as sought. �

Finally, from Ghirardato, Maccheroni, and Marinacci (2004) we know that for any A ∈ Σ, �∗A satisfies
monotonicity, continuity and independence, and it can be represented by

f �∗A g ⇔
∑
ω∈Ω

π(ω)Ef(ω)(u) ≥
∑
ω∈Ω

π(ω)Ef(ω)(u) ∀π ∈ ΠA

where ΠA is a compact and convex subset of ∆(Ω), it is the same as the one in Equation A.2, and it is
unique.22 This means that for any A ∈ Σ such that π(A) > ε for all π ∈ ΠΩ (which also means π(A) > 0
for all π ∈ ΠΩ) we have

f �∗A g ⇔ fAh �∗Ω gAh

⇔
∑
ω∈A

π(ω)Ef(ω)(u) +
∑

ω∈Ω\A

π(ω)Ef(ω)(u) ≥
∑
ω∈A

π(ω)Eg(ω)(u) +
∑

ω∈Ω\A

π(ω)Eg(ω)(u) ∀π ∈ ΠΩ

⇔
∑
ω∈A

π(ω)Ef(ω)(u) ≥
∑
ω∈A

π(ω)Eg(ω)(u) ∀π ∈ ΠΩ

⇔ 1
π(A)

∑
ω∈A

π(ω)Ef(ω)(u) ≥ 1
π(A)

∑
ω∈A

π(ω)Eg(ω)(u) ∀π ∈ ΠΩ

22See Ghirardato, Maccheroni, and Marinacci (2004). In Section 5.1 they discuss how their Theorem
14 implies that the set of priors found by the representation of �∗ using their Theorem 11 must coincide
with the one found with a representation of � a la Gilboa and Schmeidler (1989).
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Since ΠA is unique, this proves that for any A ∈ Σ such that π(A) > ε for all π ∈ ΠΩ, then ΠA(B) =
B̂U(ΠΩ, A).

Define now the set K ∗
AA as follows.

K ∗
AA := {A ∈ Σ : π(A) ≤ ε for some π ∈ Π}.

Define the sets HAA := K ∗
AA ∪ {Ω} and MAA := {πm ∈ ∆(Ω) : m ∈ K ∗

AA} ∪ {πΩ}.

We can now proceed replicating exactly the steps in the proof of Theorem 1 and prove the claims that
parallel Claims 5, 6, and 7, with the following modifications: we use sets of priors Πm instead of priors
πm; whenever we have πm(A) = 1 replace it with π(A) = 1 for all π ∈ Πm; replace the conditions
π(A) ≤ ε with the corresponding condition π(A) ≤ ε for some π ∈ ΠΩ; use the set K ∗

AA, HAA,MAA

instead of K ∗, H,M . In particular, construct the preference B on MAA.

Define γ∗AA := max{ min
π∈ΠA

π(B) : A,B ∈ K ∗
AA, π(B) < 1 for some π ∈ ΠA}. (Notice that γ∗ is well

defined since M is finite.) If γ∗ > 0, define δ := 1
|M |

1−γ∗
γ∗

; otherwise, if γ∗ = 0, define δ = 1. (Since we
must have γ∗ ∈ [0, 1), then δ > 0.) Proceed like in the proof of Theorem 1 in constructing constructing
the transitive closure of B̂ of B, and the function f and v on MAA, and construct ρ ∈ ∆(C ) as

ρ(Π) :=
v(Π) + 1

|M |∑
m∈M (v(Π) + 1

|M | )
.

for all Π ∈M , ρ(Π) := 0 otherwise. Finally, we need to prove that MAA and ρ that we just constructed
are the ones that we are looking for. But it’s easy to replicate the passages in the proof of Claims 8,
9, 10 in the proof of Theorem 1 (once again whenever we have πm(A) = 1 we need to replace it with
π(A) = 1 for all π ∈ Πm, and use MAA, v, and ρ as constructed here). Condition (4) will also be trivially
true here as well by construction, since for any event A ∈ K ∗

AA we construct Π ∈ supp(ρ) such that each
π(A) > 0 for all π ∈ Π.

[Necessity of the Axioms] Axiom 1 and Axiom 2 are immediate. We are left with Axiom 4. Consider
A1, . . . , An ∈ Σ such that �A1 6=�An , (Ω\Ai+1) is �Ai-null for i = 1, . . . , (n−1), and (Ω\A1) is �An -null.
Consider first the case in which π(Ai) > ε for all π ∈ Π, for all i = 1, . . . , n. Since (Ω\Ai+1) is �Ai-null
for i = 1, . . . , (n − 1), then it must be that π(Ai\Ai+1) = 0 for all π ∈ ΠAi

for i = 1, . . . , (n − 1), and
π(An\A1) = 0 for all π ∈ ΠAn

. Notice that by the representation it must be that ΠAi
= BU(ΠΩ, Ai) for

i = 1, . . . , n. But then, for all π ∈ ΠΩ we have π(Ai\Ai+1) = 0 for i = 1, . . . , (n−1), and π(A1\An) = 0.
Hence π(∪ni=1Ai) = π(∩ni=1Ai) for all π ∈ ΠΩ, and so BU(ΠΩ,∩ni=1Ai) = BU(ΠΩ, Aj) for j = 1, . . . , n.
But this implies �A1=�An , a contradiction.

Consider now the more general case in which there exist some i such that π(Ai) > ε for all π ∈ ΠΩ.
Say without loss of generality that we have π(A1) > ε for all π ∈ ΠΩ. By the representation it must be
ΠA1 = BU(ΠΩ, A1). At the same time we have π(A1\A2) = 0 for all π ∈ ΠA1 , and by definition of BU
this means that we have π(A1) = π(A1 ∩A2) for all π ∈ ΠΩ. But then π(A2) ≥ π(A1), hence π(A2) > ε,
for all π ∈ ΠΩ. Proceed like this to prove that we must have π(Ai) > ε for all π ∈ ΠΩ for i = 1, . . . , n.
But we have already shown that this leads to a contradiction.

We are left with the case in which for i = 1, . . . , n we have π(Ai) ≤ ε for some π ∈ Π. Since (Ω\Ai+1)
is �Ai-null for i = 1, . . . , (n − 1), then we must have that BU(π,Ai)(Ai+1) = 1 for all π ∈ Π∗Ai

for i = 1, . . . , (n − 1). For the same reason, we must have BU(π,An)(A1) = 1 for all π ∈ Π∗An
.

This implies that for i = 1, . . . , n − 1 we have that for all π ∈ Π∗Ai
we have π(Ai+1) ≥ π(Ai),

and for all π ∈ Π∗An
we have π(A1) ≥ π(An). Therefore, minπ∈Π∗Ai

π(Ai+1) ≥ minπ∈Π∗Ai
π(Ai) for

i = 1, . . . , n − 1 and minπ∈Π∗An
π(A1) ≥ minπ∈Π∗An

π(An). Now, notice that since Π∗Ai
is the unique

element in arg maxΠ∈C B̄U(ρ,Ai)(Π) for i = 1, . . . , n, then we must have that for all i, j = 1, . . . , n,

24



ρ(Π∗Ai
) minπ∈Π∗Ai

π(Ai) > ρ(Π∗Aj
) minπ∈Π∗Aj

π(Ai) if Π∗Ai
6= Π∗Aj

. This, together with the fact that
minπ∈Π∗Ai

π(Ai+1) ≥ minπ∈Π∗Ai
π(Ai) for i = 1, . . . , n − 1 and minπ∈Π∗An

π(A1) ≥ minπ∈Π∗An
π(An), im-

plies that ρ(Π∗Ai
) ≥ ρ(Π∗Ai+1

) for i = 1, . . . , (n − 1), where the inequality is strict if Π∗Ai
6= Π∗Ai+1

, and
ρ(Π∗An

) ≥ ρ(Π∗A1
), where the inequality is strict if Π∗A1

6= Π∗An
. But then we have ρ(Π∗A1

) ≥ ρ(Π∗A2
) ≥

. . . ρ(Π∗An
) ≥ ρ(Π∗A1

), and so none of this inequalities can be strict, hence Π∗A1
= Π∗Ai

for i = 1, . . . , n.
But then, for all π ∈ Π∗A1

we have BU(π,Ai)(Ai+1) = 1 for i = 1, . . . , n − 1, and BU(π,An)(A1) = 1,
which means π(Ai\Ai+1) = 0 for i = 1, . . . , n− 1, and π(An\A1) = 0. This means that for all π ∈ Π∗A1

we have π(∩ni=1Ai) = π(∪ni=1Ai). But this implies that B̂U(Π∗A1
, An) = B̂U(Π∗A1

, A1), hence ΠA1 = ΠAn

and �A1=�An
, a contradiction.

[ε = 0 iff Reduced Dynamic Consistency ] Ghirardato, Maccheroni, and Marinacci (2008) show that the
agent updates her set of priors using Bayes’ rule every time she is told that a �-unambiguously non-null
event has occurred if and only if she satisfies Reduced Dynamic Consistency. If ε = 0, therefore, Reduced
Dynamic Consistency applies. Conversely, assume that Reduced Dynamic Consistency is satisfied and
let us say, by means of contradiction, that we have a minimal Hypothesis Testing representation with
Ambiguity Aversion (u, ρ, ε) of {�A}A∈Σ in which ε 6= 0. Since {�A}A∈Σ satisfies Reduced Dynamic
Consistency, however, then (u, ρ, 0) must also represent it, contradicting the minimality of (u, ρ, ε).

Q.E.D.
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