Name Date

## NEWTON'S NUMBER TRACK PUZZLE 5



Each number in the number track is made by adding the previous 2 numbers.

Example

| 8   11   19   30 | 49 |
|------------------|----|
|------------------|----|





Fill in the missing numbers in these number tracks.

| 1) | 7 | 6 |  |  |  |
|----|---|---|--|--|--|
|----|---|---|--|--|--|

| 10) |  |  | 100 |
|-----|--|--|-----|
|     |  |  | 100 |
|     |  |  | 100 |
|     |  |  | 100 |

Can you find 4 different integer answers for question 10?



Name Date



## NEWTON'S NUMBER TRACK PUZZLE 5 ANSWERS

| 1)  | 7   | 6   | 13  | 19    | 32   |
|-----|-----|-----|-----|-------|------|
| 2)  | 70  | 40  | 110 | 150   | 260  |
| 3)  | 0.3 | 0.5 | 0.8 | 1.3   | 2.1  |
| 4)  | 0.4 | 0.8 | 1.2 | 2     | 3.2  |
| 5)  | 1 ½ | 2 ½ | 4   | 6 ½   | 10 ½ |
| 6)  | 1/4 | 1/2 | 3/4 | 1 1/4 | 2    |
| 7)  | 12  | 9   | 21  | 30    | 51   |
| 8)  | 0.5 | 0.4 | 0.9 | 1.3   | 2.2  |
| 9)  | 8   | 18  | 26  | 44    | 70   |
| 10) | 50  | 0   | 50  | 50    | 100  |
|     | 20  | 20  | 40  | 60    | 100  |
|     | 5   | 30  | 35  | 65    | 100  |
|     | 35  | 10  | 45  | 55    | 100  |
|     | 38  | 8   | 46  | 54    | 100  |

There are an infinite number of solutions to question 10.

As long as  $(2 \times 1^{st} + 1^{$ 

