Date

GEOMETRY QUICK GUIDE 5: 3D SHAPE FORMULAS

3D SHAPES

All 3d shapes can be described in terms of their faces, vertices and edges.

Face - a flat or curved surface Edge - line where 2 faces meet

Vertex - point where 3 or more edges meet

CUBE

Volume = s^3 Surface area = $6s^2$

where s is the length of one side

CUBOID (RECTANGULAR PRISM)

Volume = $\ell \times w \times h$

Surface area = 2lh + 2lw + 2wh where ℓ = length, w = width, h = height

PYRAMIDS

Volume of a general pyramid = $\frac{1}{3}$ Ah where A = base area and h = height

REGULAR TETRAHEDRON

Volume = $b^3/6\sqrt{2}$ Surface area = $\sqrt{3}b^2$

SQUARE PYRAMID

Volume = $\frac{1}{3}$ s²h Surface area = $s^2 + 2sh$

PRISMS

Volume of any prism = Ah Surface area of a closed prism = $2A + (h \times p)$ where A = base area, h = height, p = base perimeter

TRIANGULAR PRISM

Volume = A ℓ or ½ bhℓ Surface area = bh + 2ℓs + ℓb

b

Volume = $\frac{4}{3} \pi r^3$ Surface area = $4\pi r^2$

RIGHT CYLINDER

Volume = πr²h Surface area = $2\pi r (r + h)$

RIGHT CIRCULAR CONE

Volume = $^{1}/_{3} \pi r^{2} h$

Surface area = $\pi r (r + s)$

GEOMETRY QUICK GUIDE 5: 3D SHAPE FORMULAS

3D SHAPES

All 3d shapes can be described in terms of their faces, vertices and edges.

- Face a flat or curved surface
- Edge line where 2 faces meet
- Vertex point where 3 or more edges

CUBE

Volume = s^3 Surface area = $6s^2$

where s is the length of one side

CUBOID (RECTANGULAR PRISM)

Volume = $\ell \times w \times h$

Surface area = $2\ell h + 2\ell w + 2wh$ where ℓ = length, w = width, h = height

PYRAMIDS

Volume of a general pyramid = $^{1}/_{3}$ Ah where A = base area and h = height

REGULAR TETRAHEDRON

Volume = $b^3/6\sqrt{2}$ Surface area = $\sqrt{3}b^2$

SQUARE PYRAMID

Volume = $\frac{1}{3}$ s²h Surface area = s² + 2sh

PRISMS

Volume of any prism = Ah

Surface area of a closed prism = $2A + (h \times p)$

where A = base area, h = height, p = base perimeter

TRIANGULAR PRISM

Volume = A ℓ or ½ bhℓ

Surface area = $bh + 2\ell s + \ell b$

SPHERES

Volume = $\frac{4}{3} \pi r^3$

Surface area = $4 \pi r^2$

RIGHT CYLINDER

Volume = πr²h

Surface area = $2\pi r (r + h)$

RIGHT CIRCULAR CONE

Volume = $\frac{1}{3} \pi r^2 h$

Surface area = $\pi r (r + s)$

