GEOMETRY QUICK GUIDE 5: 3D SHAPE FORMULAS

3D SHAPES
All 3D shapes can be described in terms of their faces, vertices and edges.
- **Face**: a flat or curved surface
- **Edge**: line where 2 faces meet
- **Vertex**: point where 3 or more edges meet

![Cube Diagram]

CUBE
- **Volume**: \(s^3 \)
- **Surface area**: \(6s^2 \)
 where \(s \) is the length of one side

![Cuboid Diagram]

CUBOID (RECTANGULAR PRISM)
- **Volume**: \(\ell \times w \times h \)
- **Surface area**: \(2\ell h + 2\ell w + 2wh \)
 where \(\ell = \text{length}, w = \text{width}, h = \text{height} \)

PYRAMIDS
Volume of a general pyramid = \(\frac{1}{3} Ah \)
where \(A = \text{base area} \) and \(h = \text{height} \)

![Pyramid Diagram]

REGULAR TETRAHEDRON
- **Volume**: \(\frac{b^3}{6\sqrt{2}} \)
- **Surface area**: \(\sqrt{3}b^2 \)

![Square Pyramid Diagram]

SQUARE PYRAMID
- **Volume**: \(\frac{1}{3} s^2h \)
- **Surface area**: \(s^2 + 2sh \)

PRISMS
Volume of any prism = \(Ah \)
Surface area of a closed prism = \(2A + (h \times p) \)
 where \(A = \text{base area}, h = \text{height}, p = \text{base perimeter} \)

![Triangular Prism Diagram]

TRIANGULAR PRISM
- **Volume**: \(A \ell \) or \(\frac{1}{2} bhl \)
- **Surface area**: \(bh + 2b \ell + \ell b \)

SPHERES
- **Volume**: \(\frac{4}{3} \pi r^3 \)
- **Surface area**: \(4\pi r^2 \)

![Sphere Diagram]

RIGHT CYLINDER
- **Volume**: \(\pi r^2h \)
- **Surface area**: \(2\pi (r + h) \)

![Right Cylinder Diagram]

RIGHT CIRCULAR CONE
- **Volume**: \(\frac{1}{3} \pi r^2h \)
- **Surface area**: \(\pi r (r + s) \)

![Right Circular Cone Diagram]
3D SHAPES
All 3d shapes can be described in terms of their faces, vertices and edges.
- **Face** - a flat or curved surface
- **Edge** - line where 2 faces meet
- **Vertex** - point where 3 or more edges meet

<table>
<thead>
<tr>
<th>Face</th>
<th>Edge</th>
<th>Vertex</th>
</tr>
</thead>
<tbody>
<tr>
<td>a flat or curved surface</td>
<td>line where 2 faces meet</td>
<td>point where 3 or more edges meet</td>
</tr>
</tbody>
</table>

CUBE
- **Volume** = s^3
- **Surface area** = $6s^2$
 where s is the length of one side

CUBOID (RECTANGULAR PRISM)
- **Volume** = $\ell \times w \times h$
- **Surface area** = $2\ell h + 2\ell w + 2wh$
 where ℓ = length, w = width, h = height

PYRAMIDS
- **Volume of a general pyramid** = $\frac{1}{3} Ah$
 where A = base area and h = height

REGULAR TETRAHEDRON
- **Volume** = $\frac{b^3}{6\sqrt{2}}$
- **Surface area** = $\sqrt{3}b^2$

SQUARE PYRAMID
- **Volume** = $\frac{1}{3} s^2h$
- **Surface area** = $s^2 + 2sh$

PRISMS
- **Volume of any prism** = Ah
- **Surface area of a closed prism** = $2A + (h \times p)$
 where A = base area, h = height, p = base perimeter

TRIANGULAR PRISM
- **Volume** = $A \ell$ or $\frac{1}{2} bh \ell$
- **Surface area** = $bh + 2\ell s + \ell b$

SPHERES
- **Volume** = $\frac{4}{3} \pi r^3$
- **Surface area** = $4\pi r^2$

RIGHT CYLINDER
- **Volume** = πr^2h
- **Surface area** = $2\pi r (r + h)$

RIGHT CIRCULAR CONE
- **Volume** = $\frac{1}{3} \pi r^2h$
- **Surface area** = $\pi r (r + s)$