GEOMETRY QUICK GUIDE 5: 3D SHAPE FORMULAS

3D SHAPES

All 3d shapes can be described in terms of their faces, vertices and edges.
Face - a flat or curved surface
Edge - line where 2 faces meet
Vertex - point where 3 or more edges meet

PYRAMIDS

Volume of a general pyramid $=1 / 3 \mathrm{Ah}$ where $A=$ base area and $h=$ height

PRISMS
Volume of any prism = Ah
Surface area of a closed prism $=2 \mathrm{~A}+(\mathrm{h} \times \mathrm{p})$ where $A=$ base area, $h=$ height, $p=$ base perimeter

CUBOID (RECTANGULAR PRISM)
Volume $=\ell \times w \times h$
Surface area $=2 \ell h+2 \ell w+2 w h$
where $\ell=$ length, $w=$ width, $h=$ height

SQUARE PYRAMID

Volume $=1 / 3 \mathrm{~s}^{2} \mathrm{~h}$
Surface area $=s^{2}+2 s h$

TRIANGULAR PRISM
Volume $=\mathrm{Al}$ or $1 / 2$ bhl
Surface area $=b h+2 l s+\ell b$

SPHERES

Volume $=4 / 3 n r^{3}$
Surface area $=4 \pi r^{2}$

RIGHT CYLINDER

Volume $=\pi r^{2} h$
Surface area $=2 \pi r(r+h)$

RIGHT CIRCULAR CONE
Volume $=1 / 3 \pi r^{2} h$
Surface area $=\pi r(r+s)$

GEOMETRY QUICK GUIDE 5: 3D SHAPE FORMULAS

3D SHAPES

All 3d shapes can be described in terms of their faces, vertices and edges.

- Face - a flat or curved surface
- Edge - line where 2 faces meet
- Vertex - point where 3 or more edges
edge

PYRAMIDS

Volume of a general pyramid $=1 / 3 \mathrm{Ah}$ where $A=$ base area and $h=$ height

CUBE

Volume $=s^{3}$
Surface area $=6 s^{2}$
where s is the length of one side

REGULAR TETRAHEDRON

Volume $=b^{3} / 6 \mathrm{~V} 2$
Surface area $=\sqrt{ } 3 b^{2}$

CUBOID (RECTANGULAR PRISM)
Volume $=\ell \times w \times h$
Surface area $=2 \ell h+2 \ell w+2 w h$ where $\ell=$ length, $w=$ width, $h=$ height

SQUARE PYRAMID
Volume $=1 / 3 s^{2} h$
Surface area $=s^{2}+2 s h$

PRISMS

Volume of any prism = Ah
Surface area of a closed prism $=2 A+(h \times p)$ where $A=$ base area, $h=$ height, $p=$ base perimeter

TRIANGULAR PRISM

Volume $=A l$ or $1 / 2$ bhl
Surface area $=b h+2 l s+l b$

SPHERES Volume $=4 / 3 \pi r^{3}$ Surface area $=4 \pi r^{2}$	RIGHT CYLINDER Volume $=\pi r^{2} h$ Surface area $=2 \pi r(r+h)$	RIGHT CIRCULAR CONE Volume $=1 / 3 \pi r^{2} h$ Surface area $=\pi r(r+s)$

