
Kiosk User Guide

© 2016 OPSWAT, Inc. All rights reserved. OPSWAT®, MetadefenderTM and the OPSWAT logo are trademarks of OPSWAT, Inc.All other trademarks,
trade names, service marks, service names, and images mentioned and/or used herein belong to their respective owners.

Table of Contents

1. Installing or Upgrading Metadefender Core 6

1.1. System Requirements 6
Hardware requirements 6
Software requirements 6
Browser requirements for the Metadefender Core Management Console 7
Additional installation of 3rd party framework/components 7
Additional installation of Windows services by Metadefender Core 8
Ports that must be available 8
Driver installation by Metadefender Core 9
Whitelisting requirements 9

1.2. Installing Metadefender Core 9
Installation packages 9
Optional components 10
Installing Metadefender Core Using the Command Line 10
Installing Metadefender Core Using the Install Wizard 14

1.3. Metadefender Core Licensing 16
License types 16
Trial license 17
Activating and Managing Metadefender licenses 17
Online/Offline Activation 17
Activating the Management Console 18
License Manager Command Line Interface 24

1.4. Upgrading Metadefender Core 27
Backing up your current configuration using the Management Console 27
Exporting your current configuration using the command line 28
Exporting your scan results history 29
Installing the upgrade 29
Restoring your previous configuration using the Management Console 29
Importing your previous configuration using the command line 30
Importing your scan results history 31
Upgrading from Metadefender Core 3.5 or earlier 31
Backing Up Your Current Configuration 31
Installing the Upgrade 31
Restoring Your Previous Configuration 31

2. Configuring Metadefender Core 32

Metadefender Core Management Console 32

Command line utility 32

omsConfig.ini 33

2.1. Global Scan Configuration 33

2.2. Engine Configuration 35
Applying Offline Updates 35
Configuring Scan Engines 36
Online Update Configuration 38

2.3. Sources Configuration 40
Metadefender Client Configuration 40
Metadefender Email Configuration 43
Metadefender Proxy Configuration 43

2.4. Workflow Profile Configuration 44
2.4.1. Creating a New Workflow Profile 44
2.4.2. Default Profiles 48
2.4.3. Archive Handling 50
2.4.4. File Type Detection And Filtration Overview 53

2.5. Metadefender Core Logs 56
Debug logs 56
Application Log 56
Email Event Log 57
Email History 57
File Log 58
Logging Configuration 59
Windows Event Log 62

2.6. Quarantine Management 63
Accessing the Quarantine tab in the Metadefender Core Management Console 63
Scheduling quarantine reports 64

2.7 Filter CLI 65
omsFilter - about 67
omsFilter - addtoblack 67
omsFilter - addtowhite 67
omsFilter - list 68

omsFilter - remove 69

2.8. Advanced Configuration Options 69
CORS Configuration 69
Enabling HTTPS 70
Engine Specific Configuration 76
Import/export configuration 79
Post Action Script 80
RAM Disk Configuration 83
REST Server Configuration 85
Whitelisting/Blacklisting 87

2.9. Non-Workflow Configuration (Deprecated) 88
Caching 88
ScanEx Configuration 89

3. Developer Guide 93

Building Custom Engines 93
What you need to do 93
Installation and configuration 93
Example 95
When uninstalling or upgrading Metadefender Core 95
C# Custom Engine Template 95
Custom Engine C Interface 103

COM Interface 116
Important Return Type 121
COM Connection Points 124
Deprecated COM interface 141
Methods 150
Sample Code 169

Command Line Utility 171
Exit code (for scan command) 171
Process a File Command 171

Java Sample 173
With the Eclipse IDE running: 173
Running on the Command Line: 173

REST API (v2) 174
API key-based authentication 174

Getting Started 174
Compatibility with Core v4 and Metadefender.com 174
Advanced Usages 175
Look Up Hash and Process (Scan / Sanitize) A File 188
Response Description 200

4. Release Notes 216

3.12.3 216
New features 216
Other changes 216

General and Known Issues 216
General 216
Known issues 216

Usable AVs (antivirus) 219

Current AVs 219

Synchronous/asynchronous scan 220

Valid file name 220

Legal 221

Copyright 221
DISCLAIMER OF WARRANTY 221
COPYRIGHT NOTICE 221

Export Classification EAR99 221

v3.12.3 6

1. Installing or Upgrading Metadefender Core

1.1. System Requirements

Hardware requirements

Package System
RAM

Free Hard Drive Space CPU

Metadefender Core 1 4 GB 16 GB + 1.5 GB / one million scan data 4 core

Metadefender Core 4 8 GB 32 GB + 1.5 GB / one million scan data 4 core

Metadefender Core 8 8 GB 32 GB + 1.5 GB / one million scan data 4 core

Metadefender Core
12

16 GB 32 GB + 1.5 GB / one million scan data 4 core

Metadefender Core
16

16 GB 32 GB + 1.5 GB / one million scan data 4 core

Metadefender Core
20

16 GB 32 GB + 1.5 GB / one million scan data 4 core

Metadefender 20+ Consult with OPSWAT Technical Support.

Software requirements

Operating System: Windows 7 / 8 / 8.1 / 10 / 2008 R2 / 2012 / 2012 R2

Bitness: 64-bit only

Windows Installer 4.5 or higher

Windows hotfix for Windows Server 2008 R2 or Windows 7

Beginning with version 3.11.2, Metadefender Core is only supported on Windows 64 bit
operating systems.

http://support.microsoft.com/kb/2731284

v3.12.3 7

Browser requirements for the Metadefender Core Management Console

Internet Explorer 10 or later

Safari 5.1 or later

Firefox 3.5 or later

Chrome

Additional installation of 3rd party framework/components

The following framework/component may be shared with other applications.
Uninstalling may result in unexpected behavior of other applications.

Name Details Optional

IIS express IIS express 7.5 (Metadefender Core
3.11.0 or older)

IIS express 8.0 (Metadefender Core
3.11.1 or newer)

REQUIRED

.NET framework 4 Client Profile

Extended

REQUIRED

http://www.iis.net/learn/extensions/introduction-to-iis-express/iis-75-express-readme#Installation
http://www.iis.net/learn/extensions/introduction-to-iis-express/iis-80-express-readme

v3.12.3 8

Name Details Optional

Microsoft Visual C++
redistributable

Microsoft Visual C++ 2005
Redistributable

Microsoft Visual C++ 2008
Redistributable

Microsoft Visual C++ 2008
Redistributable - x86

Microsoft Visual C++ 2008
Redistributable - x64

Microsoft Visual C++ 2010
Redistributable - x86

Microsoft Visual C++ 2012
Redistributable (x86)

Microsoft Visual C++ 2013
Redistributable (x86)

REQUIRED

VMware Virtual Disk
Development Kit

version 5.1.1.1042608 REQUIRED

Additional installation of Windows services by Metadefender Core

Name Service Name Optional

Metadefender Generic Mail Agent mdfExgEmailAgent by default

Metascan Metascan by default

Metascan Helper Metascan Helper by default

Metascan ICAP omsICAP by default

Metascan Quarantine omsQuarantine by default

Metascan REST omsRest by default

Ports that must be available

https://www.vmware.com/support/developer/vddk/

v3.12.3 9

Ports that must be available

component/service port

mail agent service, quarantine service 8001

Quarantine REST 8000

Metascan REST 8008

mongodb 27018

Driver installation by Metadefender Core

RAM drive (if you choose to install OPSWAT RAM drive)

Whitelisting requirements

Any process running out of the Metadefender Core install directory should be whitelisted.
It is best to exclude the folder from any real time protection

1.2. Installing Metadefender Core

Installation packages

Metadefender Core is available in five packages with different embedded anti-malware
engines.

Package Embedded Anti-Malware Engines

Metadefender Core 1 ClamAV

Metadefender Core 4 AhnLab, ESET, Avira, ClamAV

Metadefender Core 8 Everything in Metadefender Core 4

PLUS Total Defense, Quick Heal, Zillya!, Bitdefender

Metadefender Core 12 Everything in Metadefender Core 8

PLUS Ikarus, K7, nProtect, AVG

v3.12.3 10

Package Embedded Anti-Malware Engines

Metadefender Core 16 Everything in Metadefender Core 12

PLUS Kaspersky, F-Prot, Emsisoft, Virusblokada

Metadefender Core 20 Everything in Metadefender Core 16

PLUS McAfee, Sophos, NANOAV, Vir.IT eXplorer

In addition to the standard Metadefender Core installation, there are optional components that
can be installed, based on your requirements.

Optional components

RAM drive

Sample integration code, documentation, and other useful utilities are available under
Downloads at . RAM drive installation will appear in a separate pop-https://portal.opswat.com/
up window. Click to continue the installation of the RAM drive component. For more Install
information on installing the RAM drive, click .here

Installing Metadefender Core Using the Command Line

 Installing Metadefender Core from the command line requires Windows Installer 3.0 or Note:
higher.

https://portal.opswat.com/
https://portal.opswat.com/en/knowledge-base/articles/208211773

v3.12.3 11

Command line options

Important: Command line options for Metadefender Core 3.7 and later are different than the
command line options available for versions 3.6 or older. Older command line options will not
work with versions 3.7 or later.

The following command line options are available with Metadefender Core.
 Note: The Packages column indicates which Metadefender Core package(s) each command

line switch is available for: either 1, 4, 8, 12, 16, or ALL. All arguments are case sensitive.
“Repair Metascan” is currently not supported for Metadefender Core version 3.7.

Command Line Option Description Example Packages

/install Install Metadefender
Core

C:\Metadefender_Core.
exe /install

ALL

/uninstall Uninstall
Metadefender Core
and delete all files
installed by
Metadefender Core

C:\Metadefender_Core.
exe /uninstall

ALL

/log <log-file-name> Create installation log
file

C:\Metadefender_Core.
exe /log C:\omsinst.log

ALL

/silent Run Metadefender
Core installation
silently

C:\Metadefender_Core.
exe /silent

ALL

INSTALLLOCATION=<install-
path>

Sets the install
location for
Metadefender Core

c:\Metadefender_Core.
exe /i c:\Metascan.msi
INSTALLLOCATION="c:
\Metascan"

ALL

ADDLOCAL=<comma-
separated-feature-list>

Install selected
features only. Please
see table below for list
of features.

c:\Metadefender_Core.
exe ADDLOCAL="
RamdrvSupport,
EsetEng,CaEng"

ALL

SERVICESTOPPED=1 ALL

v3.12.3 12

Command Line Option Description Example Packages

Install Metadefender
Core with the
Metadefender Core
Windows service in a
stopped state.

This will install
Metadefender Core
with automatic engine
updates turned off.

Not officially
documented yet.

C:\Metadefender_Core.
exe
SERVICESTOPPED=1

REST=0 This will avoid IIS
Express, the
webserver and all
features that rely on
the webserver to
work.

This includes all
REST APIs, Web
Management
Console, Mail Agent,
& Metascan Client.

C:\Metadefender_Core.
exe REST=0

ALL

UPDATEOFF=0 This installs
Metadefender Core
with automatic engine
updates turned off.

Not officially
documented yet.

C:\Metadefender_Core.
exe UPDATEOFF=1

ALL

Entries in the Feature Name column are case-sensitive.Note:

Feature Name Description Package

RamdrvSupport RAM Drive ALL

v3.12.3 13

Feature Name Description Package

RestSvcE Metascan REST Server ALL

Docs Documentation ALL

MetascanClient Metascan Client ALL

ClamavEng ClamAV scan engine ALL

AhnlabEng Ahnlab scan engine 4, 8, 12, 16, 20

AviraEng Avira scan engine 4, 8, 12, 16, 20

EsetEng ESET scan engine 4, 8, 12, 16, 20

CaEng Total Defensescan engine 8, 12, 16, 20

ZillyaEng Zillya! scan engine 8, 12, 16, 20

QuickhealEng Quick Heal scan engine 8, 12, 16, 20

BitDefenderEng BitDefender scan engine 8, 12, 16, 20

IkarusEng Ikarus scan engine 12, 16, 20

IncaEng nProtect scan engine 12, 16, 20

K7Eng K7 scan engine 12, 16, 20

AVGEng AVG scan engine 12, 16, 20

VirusBlokAdaEng VirusBlokAda scan engine 16, 20

EmsisoftEng Emsisoft scan engine 16, 20

FriskEng F-Prot scan engine 16, 20

KasperskyEng Kaspersky scan engine 16, 20

v3.12.3 14

1.

2.

3.

4.

Feature Name Description Package

McAfeeEng McAfee scan engine 20

NanoEng NanoAV scan engine 20

SophosEng Sophos scan engine 20

TGSoftEng Vir.IT eXplorer scan eigne 20

Installing Metadefender Core Using the Install Wizard

To install Metadefender Core using the Install Wizard, follow the steps below: If you have Note:
a previously installed version of Metadefender Core already installed, you must uninstall it as
instructed in .Upgrading Metadefender Core

Locate the Metadefender Core Installation File. If this was not provided to you by
OPSWAT, it can be found by clicking and scrolling down to the Metadefender Core here
V3 section.

 This file is named Metadefender_Core___.exe where is the Metadefender Core Note:
package you are installing, is the version of Metadefender Core, and is the build number.

Double-click on the desired Metadefender Core installation file to launch the
Metadefender Core installer. If this does not work, right-click on the file and select . Open

The Welcome window is displayed. Click .Start

The setup Wizard is displayed. Click .Next

https://portal.opswat.com/en/product-categories/metascan

v3.12.3 15

4.

5.

6.

Accept the agreement and click .Next

Select the components you would like to add or remove from the installation. A drop-
down menu is available to select whether to install the component or make it unavailable.
After making your selections, click .Next

v3.12.3 16

6.

7.

8.

9.

Click . Install

Click to exit the Setup Wizard.Finish

Click . Close

1.3. Metadefender Core Licensing

License types

Metadefender Core has the following types of licenses:

 The main license, which must be activated in order to Metadefender Core (Required):
use the product and for scanning. Other licenses (below) are not activated until the main
license is activated.

 This license increases the maximum number of Metadefender Clients (Optional):
clients that can connect remotely to the server to perform scanning via REST APIs. With
the main license only, you can use up to 1 customer-licensed engine.

 This license the maximum number Customer-Licensed Engines :(Optional) increases
of pre-installed anti-malware engines not embedded in Metadefender Core that can be
used for scanning. With main license only the , you can use up to 1 customer licensed
engine.

 This license the maximum number of OPSWAT-Custom Engines :(Optional) increases
provided custom engines that can be used simultaneously. , With main license only the
you can use up to 1 custom engine.

v3.12.3 17

1.

2.

Trial license

All types of Metadefender Core licenses (Metadefender Core, Metadefender Clients, Customer-
are activated through the Metadefender Core Licensed Engines, Custom Engines)

Management Console or through the License Manager CLI.

Note: This section applies only to serial key-based licenses. If you have not received a serial
key from OPSWAT and have an older form of licensing, please contact support at OPSWAT
Portal

Metadefender Core 1, 4 and 8 packages come with a 15-day evaluation license. For
Metadefender Core 12, 16, and 20 trial licenses, please contact us at .OPSWAT Portal

Note: When the evaluation period starts, uninstalling and installing Metadefender Core does
not extend the evaluation license. Metadefender Core licenses are strongly bound to the
Volume ID, MAC address and NetBIOS name of the computer. Changing any of these
attributes will disable Metadefender Core, even if you have not yet activated Metadefender
Core with a license. If one of these values has changed, please contact support at OPSWAT

 to receive a new license. For information on purchasing Metadefender Core licenses, Portal
click . Contact Sales here

Activating and Managing Metadefender licenses

In order to use Metadefender Core, you must have a license. You can activate and manage all
types of your Metadefender Core licenses using any of the following methods:

 You can use the Licenses tab on the Management Console to Management Console:
activate your license or . You can also use it to check your license status.online offline

License Manager Command Line Interface : You can use the License Manager CLI to
apply, update, or activate a Metadefender Core license (or), or to check the online offline
license status of Metadefender Core or Remote Clients. For more on using this tool, see

.License Manager Command Line Interface

REST API for advanced user.

Online/Offline Activation

Metadefender Core licenses can be activated in two ways:

:Online activation Metadefender Core licenses can be activated online if the
Metadefender Core server is connected to the Internet.

:Offline activation If the Metadefender Core Server is not connected to the Internet,
Metadefender Core licenses can be activated offline through the OPSWAT Activation
Portal.

https://portal.opswat.com/
https://portal.opswat.com/
https://portal.opswat.com/
https://portal.opswat.com/
https://portal.opswat.com/
http://www.opswat.com/buy
https://opswat.atlassian.net/wiki/display/MDM/Online+License+Activation
https://opswat.atlassian.net/wiki/display/MDM/Offline+License+Activation

v3.12.3 18

1.

Activating the Management Console

Offline License Activation

The following are required for offline activation:

A Metadefender Core Server

A serial key that matches the Metadefender Core package installed on that
Metadefender Core Server. Metadefender Core licenses can only be used with the
package for which they were created (1, 4, 8, 12, 16, 20 and Custom). For example, a
serial key for Metadefender Core 4 will not work with Metadefender Core 8.

You can use the following methods for offline license activation:

The Metadefender Core Management Console included with the Metadefender Core
installation

The License Manager Command Line Interface (CLI)

Offline activation of licenses using the Metadefender Core Management Console

The Metadefender Core Management Console is installed by default and can be launched from
the Start menu or in any browser with network access to the Metadefender Core Server.

In the Metadefender Core Management Console, click the tab to check the Licenses
current license information.

v3.12.3 19

1.

2.

3.

Select the option and copy or take note of the Install Code, which is Activate Offline
needed to obtain the unlock keys.

To obtain the unlock keys, visit the Metadefender Core offline activation portal at
.https://portal.opswat.com/activation

https://portal.opswat.com/activation

v3.12.3 20

3.

4.

5.

6.

7.

Enter your company name and other contact information.

Enter your serial key and the Install Code from step 2.

Click , which displays a page with two unlock keys. Copy or take Request Unlock Key
note of both of these.

Go back to the Metadefender Core Management Console. Enter the license key and
unlock keys in the dialog box along with the company name.

v3.12.3 21

8.

1.

Click and confirm that the license expiration date has been updated and that it Activate
matches the Metadefender Core contract.

Offline activation of licenses using the License Manager Command Line Interface
(CLI)

See the "activateoffline" command in for more License Manager Command Line Interface
information.

Online License Activation

The Metadefender Core Server must be connected to the Internet for online activation.Note:

The following are required for online activation:

A Metadefender Core Server

A serial key that matches the Metadefender Core package installed on that
Metadefender Core Server. Metadefender Core licenses can only be used with the
package for which they were created (1, 4, 8, 12, 16, 20 and Custom). For example, a
serial key for Metadefender Core 4 will not work with Metadefender Core 8.

You can use the following methods for online license activation:

The Metadefender Core Management Console included with the Metadefender Core
installation

The License Manager Command Line Interface (CLI)

Online activation of licenses using the Metadefender Core Management Console

The Metadefender Core Management Console is installed by default and can be launched from
the Start menu. You can also access the Metadefender Core Management Console directly
from any machine with network access to the Metadefender Core Server at
http://<metadefender core server>:8008/management.

v3.12.3 22

1.

2.

3.

4.

1.

In the Metadefender Core Management Console, navigate to the tab to check Licenses
the current license information.

Enter the Metadefender Core serial key, company name, and contact email address for
the instance of Metadefender Core you wish to activate. For example,

Click to apply the license. Activate

Confirm that the license activation was successful and that the license expiration date
matches the expiration date on your Metadefender Core contract.

Online activation of licenses using the License Manager CLI

Open a command prompt by going to .Start > Run > CMD

v3.12.3 23

1.

2.

3.

4.

Change the working directory to the Metadefender Core install directory by entering cd
<Metadefender Core install dir> (e.g., cd “c:\Program Files (x86)\OPSWAT\Metadefender
Core 4”).

Verify that your installation of Metadefender Core is NOT already activated by entering
omsLicMgrCLI.exe checklicense [package] (e.g., omsLicMgrCLI.exe checklicense 4).

Activate the license by entering omsLicMgrCLI.exe activateonline <license key>
“<email>” “<company>” [package]

v3.12.3 24

4.

5. After Metadefender Core activation completes successfully, the updated license status is
displayed. Verify that the license status listed is “Activated” and that the expiration date
matches the expiration date on your Metadefender Core contract.

Note: If online activation is not successful, check to ensure the Metadefender Core Server’s
Internet connection is working. If online activation is still unsuccessful, follow the steps for

.offline activation

For more on using this tool, see .License Manager Command Line Interface

License Manager Command Line Interface

You can use the License Manager CLI to apply, update, or activate a Metadefender Core
license. You can also use it to check the license status of Metadefender Core or Remote
Clients. This tool (omsLicMgrCLI.exe) is installed in the Metadefender Core installation
directory.

To use this tool, open a command prompt by going to , and then enter start Start > Run > CMD
omsLicMgrCLI.exe

Command Arguments Description

help Display each available command and its parameters.

checklicense [package]* Retrieve license status. *Optional.

v3.12.3 25

Command Arguments Description

Will pick a default based on directory that it is running in.

installcode Retrieve install code which is required for generating unlock
keys in order to activate offline.

activateonline <serial
key>

<email>

<company>

[package]

Activate license with a serial key through the Internet. The
Metadefender Core Server where the license is being
activated must have an Internet connection.

activateoffline <serial
key>

<company>

<unlock
key>

<unlock
key2>

<package>

Activate license on a Metadefender Core Server without a
direct connection to the Internet. This command requires a
serial key and 2 unlock keys.

Obtain the two unlock keys following the steps in Offline
.License Activation

finishactivation <unlock
key>

<unlock
key2>

[package]

Finish activation if the license status is “Activation
Required”.

Argument values

Arguments Value Description

[package] 1

4

8

Optional parameter, if not specified, package of the
currently installed Metadefender Core service will be used.

1: Metadefender Core 1

4: Metadefender Core 4

v3.12.3 26

Arguments Value Description

12

16

20

Metadefender
Kiosk

8: Metadefender Core 8

12: Metadefender Core 12

16: Metadefender Core 16

20: Metadefender Core 20

Metadefender Kiosk

<serial
key>

Serial number
consisting of 6
blocks of 5
characters

The serial number is your proof of purchase. It is unique
and will look like this:

dO8uc-G1iC9-jOGeA-BqgEX-U71lD-0V1VX

Although the serial key and unlock key have the same
format, their properties are completely different. You must
not mix them up and should keep them separate.

<email> Email address An email address of the contact who is responsible for
Metadefender Core licenses.

e.g. myemail@yourcompany.com

<company> Name of
company who
owns the license

Used for the “company” property in Metadefender Core.

<unlock
key>

<unlock
key2>

Serial number
consisting of 6
blocks of 5
characters

Keys tied to a unique machine and serial key. These are
obtained from OPSWAT through phone, email, or the web
activation portal for offline activation.

Common license activation errors

The following are common errors encountered during activation and their potential causes.

Error Possible Causes Notes

INVALID
KEY

An unrecognized
serial key was
entered.

A serial key is specific to the type of Metadefender
Core package. For example, a serial key for
Metadefender Core 4 cannot be used for
Metadefender Core 8 or 12.

v3.12.3 27

1.

2.

invalid
unlock
keys

An unrecognized
unlock key was
entered.

Unlock keys are tied to a specific serial key and
machine where the Install Code was generated. Using
an unlock key on a different system, or with a different
serial key will result in this error.

No internet
connection

Metadefender Core is
unable to connect to
the Metadefender
Core license server.

Check your Internet connection or follow the steps for
offline activation.

Other In cases of other
errors, an error code
will be displayed
along with this
message.

Please contact OPSWAT support (support@opswat.
) with the error code.com

1.4. Upgrading Metadefender Core

To upgrade from one Metadefender Core version to another, you must uninstall the version you
currently have and install the newer version. Before doing this, you should back up your current
configuration so that you can restore the settings into your upgraded version. You can back up
these settings either by using your Metadefender Core Management Console, or by exporting
the settings using the command line.

Your Metadefender Core license is automatically retained.

Backing up your current configuration using the Management Console

The preferred method of backing up your settings is by using the Metadefender Core
Management Console. The following procedure downloads your current configuration settings
in a file to a location of your choosing on your local machine. The "Maximum File Size for Note:
files scanned through the web interface" setting (found on the Configuration > Scan
Configuration page of the Metadefender Core Management Console) is NOT backed up and
must be manually reconfigured, if necessary, after upgrading Metadefender Core.

.Access the Metadefender Core Management Console

v3.12.3 28

2.

3.

4.

5.

Click the tab. Backup/Restore

Optionally, you can select to create a Encrypt Backup with the following password
password for your download.

Click . DOWNLOAD BACKUP

Save the download to the location where you want to store the backup.

Exporting your current configuration using the command line

Export the Metadefender Core configuration.

omsConfig.exe export <directory> [<option>]

The following command exports the Metadefender Core Properties (e.g., max archive size or
temporary directory), database settings, REST server settings (e.g., API keys or REST port),
SYSLOG settings, and MongoDB settings into a zip file.

[<option>] is optional, it should be in the format /pass=password

v3.12.3 29

1.

2.

3.

1.

2.

3.

4.

1.

2.

3.

4.

1.

Exporting your scan results history

Optionally, you can export your scan results and then import them after you have installed the
upgrade.

Open the Windows command line as an administrator.

Navigate to <Metascan installation folder>\Mongo\64+ (e.g. C:\Program Files (x86)
\OPSWAT\Metascan 16\Mongo\64+).

Run the following command:

mongoimport.exe --host localhost --port 27018 --db metascan --
collection files --file C:\output_files.json

"C:\output_files.json" is created, containing all scan recoreds in Mongo DB.

Installing the upgrade

Uninstall Metadefender Core using your Windows Control Panel.

Reboot your system (required only if you had RAM Drive installed).

Double-click the Metadefender Core installer file for the version that you are upgrading
to.

Follow the prompts to install the upgrade.

Note: If you are upgrading and your previously-set management console password stops
working, perform the following steps:

Open the Windows Registry (regedit.exe).

Navigate to the Metadefender Core registry:
hiveHKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\OPSWAT\Metascan.

Double-click on the rest_stat_admin_apikey string item in the list and erase any value
data.

Restart the Metadefender Core services (Metascan and Metascan REST).

Restoring your previous configuration using the Management Console

After installing your upgrade, you can restore your previous configuration. The preferred
method of restoring your settings is by using the Metadefender Core Management Console.

v3.12.3 30

1.

2.

3.

4.

.Access the Metadefender Core Management Console

Click the tab. Backup/Restore

Click , scroll to the locations where you stored the backup, and select the Browse
backup.

Click . RESTORE FROM BACKUP

Importing your previous configuration using the command line

If you exported your configuration using the command line, you can import those settings into
your upgrade.

omsConfig.exe import <file path> [<option>]

v3.12.3 31

1.

2.

3.

4.

5.

omsConfig.exe is installed in the Metadefender Core Installation directory (e.g., c:\program files
(x86)\opswat\Metadefender Core 8).

Importing your scan results history

If you exported your scan results history as described above, you can import the history after
you have completed upgrading.

Download " ".Mongo import tool.zip

Extract the zipped file to a "Mongo import tool" folder.

Open the Windows command line as an administrator.

Navigate to the "Mongo import tool" folder.

Run the following command:

mongoimport.exe --host localhost --port 27018 --db metascan --
collection files --file C:\output_files.json

Upgrading from Metadefender Core 3.5 or earlier

Metadefender Core 3.5 and earlier versions used a different licensing mechanism that is not
supported in the current release of Metadefender Core. To obtain a new license key that will
work with the current version of Metadefender Core, please contact .support@opswat.com

Backing Up Your Current Configuration

Installing the Upgrade

Restoring Your Previous Configuration

https://opswat.atlassian.net/wiki/download/attachments/21988601/Mongo%20import%20tool.zip?version=1&modificationDate=1425622382766&api=v2

v3.12.3 32

1.

2.

3.

2. Configuring Metadefender Core

Metadefender Core Management Console

You can access the Metadefender Core Management Console through any browser that has
access to the Metadefender Core system. A link to the Management Console (named
"Metadefender Core Management Console") is added to the Start menu during installation.

The Management Console can also be accessed directly in any web browser by going to
http://<Metadefender Core Server>:8008/management. <Metadefender Core Server> is the
name or IP address of the system where Metadefender Core is installed.

Command line utility

Metadefender Core also provides a command line utility that lets you run Metadefender Core
operations, such as scanning a file or setting preferences/properties, etc.

Go to , and then click .Start > Run > cmd OK

Change the directory to the directory where Metadefender Core is installed.

v3.12.3 33

3. Run the config command with omsCmdLineUtil.exe to bring up a list of options to
configure.

In the sections below, the command line utility commands are provided for each configuration
setting.

omsConfig.ini

Additionaly, less commonly used options are set in the omsConfig.ini file located in the
installation directory of Metadefender Core. Consult with OPSWAT Support before changing
any settings other than proxy settings. You must restart the Metadefender Core service after
making any changes to this file.

2.1. Global Scan Configuration

The scan configuration settings define the behavior of Metadefender Core when it is scanning
files.

The following settings can be configured through the Scan Configuration page:

v3.12.3 34

Property Description Default
Value

CLI config

Detect Scan
Failures

Specifies the number of engines that
can fail to scan a file before the
overall result to be 'failed to scan'.
For example, if set to 1, then a single
engine failing will not result in the file
being labeled 'failed to scan' but if
two or more engines fail the overall
result will be 'failed to scan.'

0 dsf=<0-n-1>, where n is
the total number of
current AV engines.

Primary
Temp
Directory

Directory used to copy files for
scanning.

RAMDisk
(if
installed)
or the
system
temporary
directory

td=<directory|secondary
directory>

Secondary
Temp
Directory

Optional. Will be used only if the size
of an extracted archive exceeds the
space available in the primary
directory.

Number of
simultaneous
scans

The number of scans that can run at
the same time.

20 tp=<0-400>

Terminate
engine if
scan
exceeds

The amount of time that
Metadefender Core will wait for an
engine to complete scanning before
it terminates the engine process.

5 minutes te=<time in seconds>

Maximum
File Size for
files scanned
through the
web interface

The largest allowable size for files
scanned through the Metadefender
Core web interface.

v3.12.3 35

1.

2.

3.

Property Description Default
Value

CLI config

Do not
calculate
hashes for
files larger
than

The maximum size of files to
compute the hash. Computing
hashes for very large files can take a
long time and can significantly affect
Metadefender Core's performance.

100 MB tfi=<size>

2.2. Engine Configuration

Applying Offline Updates

If your Metadefender Core server is deployed in an offline environment without connectivity to
the Internet, you can deploy engine definition updates through the Update by File Upload
section of the Engines Configuration page.

.Access the Metadefender Core Management Console

To configure the Engines section and apply offline updates, click the tab Configuration
and then click .Engines

Scroll down to the Update by File Upload section.

v3.12.3 36

3.

1.

2.

You can download these update packages from the OPSWAT Portal or with the Automatic
Definition Update Download Utility. For more information on how to download these updates,
please visit the OPSWAT Portal, click , and then click Downloads Download Offline

. Definition Updates

Configuring Scan Engines

Using the Metadefender Core Management Console

.Access the Metadefender Core Management Console

To configure the Engines section and apply offline updates, click the tab Configuration
and then click .Engines

All bundled engines as well as custom and customer licensed engines that can be used in
Metadefender Core are listed on this page. Each engine can be activated or deactivated by
selecting the checkbox and then clicking Apply at the bottom of the page.

v3.12.3 37

If applicable, an engine’s heuristic scanning feature can be activated or deactivated as well.
These changes take effect after the Metadefender Core service has been restarted.

Any customer-licensed engine will not be enabled by default for Metadefender Core 4, 8, 12,
16, and 20 packages. You must enable customer-licensed engines before they can be used by
Metadefender Core to process scan requests.

Using the command line interface

If you would like to enable or disable engines from the command line interface, run the
following commands from the Metadefender Core installation directory.

Retrieving the list of available engines

omsCmdLineUtil.exe getinfo

Enabling an engine

omsCmdLineUtil.exe config in=<engine(s) to be included>
e.g., omsCmdLineUtil.exe config in="eset scan engine|avira scan
engine"

Disabling an engine

omsCmdLineUtil.exe config ex=<engine(s) to be excluded>
e.g., omsCmdLineUtil.exe config ex="eset scan engine|avira scan
engine"

If you are enabling or disabling multiple engines, separate the engine names with a ‘|’
character.

Supporting customer-licensed engines

omsCmdLineUtil.exe config sp={0|1}
e.g., omsCmdLineUtil.exe config sp=1

v3.12.3 38

1.

2.

3.

4.

This property determines whether Metadefender Core will attempt to use antivirus engines that
are installed on the system outside of Metadefender Core. These engines will often have
reduced performance compared to embedded engines and may also reduce overall
Metadefender Core performance. By default, customer licensed engines will be enabled in
Metadefender Core 1 and disabled in Metadefender Core 4, 8, 12, 16, and 20 packages.

Online Update Configuration

.Access the Metadefender Core Management Console

To configure the Online Updates section, click the Configuration tab and then click
Engines .

Scroll down to Online Updates.

Select your settings based on the following tables, and then click . Apply

v3.12.3 39

The following settings apply to Metadefender Core's automatic engine definition update
functionality:

Property Description Default
Value

CLI config

During
Updates

Specifies scanning behavior when an engine is in
the process of having its definitions updated.

Scans can configured to either be skipped or
paused during updates.

Skip
Scans

(Pause)
wu=<0|1>

(Skip)
su=<0|1>

Update
Timeout

Specifies how long Metadefender Core should wait
for an update to happen before timing out.

600
seconds

to=<time in
milliseconds>

Update
Interval

Specifies how often engines should be updated. 1440
minutes (1
day)

um=<time in
minutes>

Proxy settings can also be defined in the omsConfig.ini configuration file (located in the
Metadefender Core installation directory). Proxy settings defined in omsConfig.ini will only be
used if the proxy configuration is not set in the Metadefender Core Management Console.

Property Description Default
Value

omsConfig.ini
Property

Enable
Updates
Through
Proxy

Specifies whether the Metadefender Core
server will be retrieving engine updates
through a proxy server.

disabled enable_proxy

Server
Address

The proxy server to use. proxy_server

Port The proxy server port to use. proxy_port

Username If authentication is required, the username for
the proxy server.

 proxy_user

Password proxy_password

v3.12.3 40

1.

2.

Property Description Default
Value

omsConfig.ini
Property

If authentication is required, the password for
the proxy server.

2.3. Sources Configuration

Metadefender Client Configuration

The Configuration page specifies the settings for the Metadefender Client package that will be
available through the client download page, the location of which is listed at the bottom of the
Configuration page. After a client has been generated, the Metadefender Client download page
can be shared with anyone who should be able to use Metadefender Client to scan files with
this Metadefender Core server.

 Access the Metadefender Core Management Console .

Click the Sources tab and then c lick Metadefender Client .

Note: The Windows Metadefender Client is supported to run only on endpoints running
Windows 7 or later.

The following properties can be set for the Metadefender Client download package. These
properties can also be set by modifying the Metadefender Client INI file, which is located by
default at C:\Program Files (x86)\OPSWAT\Metadefender Core
<1|4|8|12|16|20>\MetascanClient\MetascanClientConf.ini.

v3.12.3 41

Property Description Default Value

Metadefender
Core

This is the address that Metadefender Client will use
to access the Metadefender Core server. This should
be an address (IP address or machine name) that will
be accessible from every machine where
Metadefender Client will be run.

<IP Address>:8008
/metascan_rest

API Key The API key that is defined on the local server. N/A

File Size
Limit

The maximum size of files to be scanned by
Metadefender Client. Files larger than this size will
not be scanned.

5 MB

Batch Size The number of files that can be processed
concurrently by Metadefender Client.

100

Thread Count The number of threads Metadefender Client will use
to scan files. This should only be increased if
Metadefender Client is expected to run on systems
with a high number of processor cores.

10

File Scan
Timeout

The number of seconds the Metadefender Client will
wait for the server to respond with scan results. After
timeout threshold is reach, Metadefender Client will
display a "operation time out" error.

300

User
Interface

This specifies whether Metadefender Client will allow
the end user to select what type of scan they want to
run. If Metadefender Client is set to run in automatic
mode, then it will run silently without any user
interaction.

Allow User
Selection

Scan Types Specifies which scan types will be available for the
user to choose from.

Fast: Scans all running processes.

Intermediate: Scans running processes and
loaded libraries.

Full: Scans entire system.

Fast

v3.12.3 42

Property Description Default Value

Custom: Scans the files and directories the
user selects.

Local Log
Directory

The directory where Metadefender Client will log all
scanning activity.

C:\MetascanClient.
log

After configuration changes have been made, you can generate a new Metadefender Client
downloadable package by clicking . Update Client Download

Metadefender client command line options

All of the options specified in the configuration file can also be set on the command line.
Options set on the command line override the same options set in the configuration file. The
following table specifies additional options that can be set on the command line. Default values
are in bold.

Variable Description

show_ui Determines whether the Metadefender Client User Interface will be
displayed.

Possible values:

0: Metadefender Client will run silently.

1: The Metadefender Client user interface will be displayed to the
user.

exit_on_clean Determines whether the Metadefender Client user interface will exit if all
files scanned are clean.

Possible values:

0: Metadefender Client will not immediately exit after a scan
where all files are clean.

1: Metadefender Client will immediately exit after a scan where all
files are clean.

exit_on_dirty Determines whether the Metadefender Client user interface will exit if
there are dirty files found during a scan.

Possible values:

v3.12.3 43

Variable Description

0: Metadefender Client will not immediately exit after a scan
where one or more dirty files are found.

1: Metadefender Client will immediately exit after a scan where
one or more dirty files are found.

auto_start Determines if the Metadefender client will start scanning immediately
once application launches.

Possible values:

0: Metadefender Client will not immediately start scanning.

1: Metadefender Client will immediately start scanning.

Note: show_ui=0 is ignored if auto_start is not set to 1.

auto_save_result Determines if the scan results should be saved automatically.

Possible values:

0: Metadefender Client will not save results automatically.

1: Metadefender Client will automatically save scan results at the
location where Metadefender Client is located.

key API key given by OPSWAT when OPSWAT hosted server is used.

Command line usage example

The following is an example command to start a fast scan automatically against a
Metadefender Core server with the IP address 10.0.0.1:

MetascanClient.exe server=10.0.0.1:8008/metascan_rest auto_start=1 allowed_scan_levels=1

Metadefender Email Configuration

For Metadefender Email configuration, refer to the Metadefender Email User Guide.

Metadefender Proxy Configuration

For Metadefender Proxy configuration, refer to the Metadefender Proxy User Guide.

v3.12.3 44

1.

2.

3.

4.

2.4. Workflow Profile Configuration

Metadefender Core allows the definition of as many different workflow profiles as are needed to
meet security requirements. Defining multiple workflows allows for files from different sources
or users to be processed with the appropriate security policies.

The workflows defined in the Management Console can be used with the process REST API.

Several profiles are included by default in every Metadefender Core installation. The Default
profile is used to process requests that are not mapped to any other profiles. The Guest profile
is intended to be used to process files by guests that do not have a defined account within an
organization.

Core allows the definition of as many different workflow profiles as are needed to meet security
requirements. Defining multiple workflows allows for files from different sources or users to be
processed with the appropriate security policies. The workflows defined in the Management
Console can be used with the process logic of the file REST API.

2.4.1. Creating a New Workflow Profile

 Access the Metadefender Core Management Console .

Click the Configuration tab and then click Workflows .

Click . CREATE NEW PROFILE

v3.12.3 45

4.

5.

6.

Enter a name and description of the new workflow profile, and specify which user agents
should use this profile. (Type "|" between the agents.) These values can be changed for

Click .all profiles except for the Default profile. CONTINUE

If you enable archive handling, Metadefender Core extracts archives and scans the
individual files within the archive. For more information about the archive handling
options, refer to . After completing your selections, click 2.4.3. Archive Handling

 CONTINUE .

v3.12.3 46

6.

7.

8.

The Profile File Type and Filtration screen is displayed. Select how you want file type
mismatches to be scanned and file type filters to be applied. For additional information,
refer to .2.4.4. File Type Detection And Filtration Overview

After selecting the the file types and filtration, click . Continue

The Scan page is displayed, which allows you to enable or disable scanning by the active
Metadefender Core engines or specify files that will be skipped. By default, large video
files are excluded from scanning for efficiency purposes. Select an option and click

v3.12.3 47

8.

9.

10.

. Continue

The Sanitization Rules page is displayed, allowing you to select if and how long files that
have been sanitized by Metadefender Core workflows are available through the REST
API. If sanitization is enabled, Metadefender Core automatically deletes the sanitized
version of files after the specified time. This configuration determines how files are
handled after processing is complete.
Both allowed and blocked files can be configured to sanitize specific types of files and
convert them to other formats. This can remove any threats embedded within the original
file. If configured, the original file can be deleted after the sanitization.
Select your options and click . APPLY

v3.12.3 48

10.

11.

Select whether to sanitize allowed and blocked files and then click . Continue

The File Handling screen is displayed, allowing you to select how files are handled after
data sanitization is complete. File handling is configured separately for allowed and
blocked files.
You can configure blocked files to be removed, either by quarantining or deleting the
blocked file. You can configure both blocked and allowed files to be copied to a specified
directory path.
Make your selections and click . FINISH

2.4.2. Default Profiles

Several profiles are included by default in every Metadefender Core installation:

Profile Name Description

Default Used to process requests that are not mapped to any other profiles

v3.12.3 49

Profile Name Description

Block EXE Blocks executable files

Client Used in the new Metadefender Client

Convert Docs Only allows documents and converts all documents to safe formats

Guest Used to process files by guests that do not have a defined account within an
organization

High Security Recommended for usage in high security environments

Kiosk Used to process files with the Metadefender Kiosk

Mail Agent Used by the Metadefender Mail Agent

No EXE
/Archives

Blocks all archives and executables

Only Docs Profile for users that only need to bring in office documents

Proxy Used by Metadefender Proxy

Web Scan Used to process requests made through the Web Scan page

v3.12.3 50

2.4.3. Archive Handling

The Archive Handling configuration determines how archives are handled within Metadefender
Core. If archive handling is enabled, Metadefender Core extracts archives and scans the
individual files within the archive.

Most common archive formats are supported, including Zip, PKLite, 7z, Jar, Jarc, rar,
rar5, tar, taz, ISO, Gzip, CAB, ARC, ARJ, LZH, RPM, DEB, LZMA, WIM, SFX, XZ.
Metadefender Core can also extract self-extracting archives created by both 7zip and
WinRAR.

MS Office file (from 2007) is treated as an archive file when scanning.

The following settings apply if archive handling is enabled:

Property Description Default
Value

CLI config Additional info

Enable
Archive
Handling

Enables Metadefender Core’s
archive library handling.

Enabled le=<0|1>

Max
Recursion
Level

The maximum depth that
Metadefender Core will
continue to extract archives for
scanning. After this depth is
reached, Metadefender Core

5 rl=<levels> Maximum
value:
2147483646

v3.12.3 51

Property Description Default
Value

CLI config Additional info

does not extract further
archives but scans those
archives as entire files. If the
setting is 0, archives are not
extracted.

Number of
Files

The maximum number of files
that can be in an archive that
Metadefender Core is
extracting. If the number of files
in an archive exceeds this
value, Metadefender Core
returns the result as a potential
threat.

50 an=<number> Maximum
value:
2147483646

Total Size The maximum total size of files
that can be in an archive that
Metadefender Core is
extracting. If the total size of
files in an archive exceeds this
value, Metadefender Core
returns the result as a potential
threat.

2 GB as=<size in
MB>

Maximum
value:

Half the
current
available free
space of the
Metadefender
Core
temporary
directory.

If two
temporary
directories
are set from
different
drives, the
highest
available
space will be
used.

Simultaneous Disabled ec=<0|1>

v3.12.3 52

Property Description Default
Value

CLI config Additional info

Specifies if multiple archive
files undergo extraction
concurrently. This may improve
performance on a multi-core
CPU, but means that the ram-
drive size should be increased
(since more unpacked archives
may reside on it at the same
time).

Self-
Extracting

Specifies whether self-
extracting archives should be
extracted and treated as
archives.

Disabled sx=<0|1>

Scan Original
Un-extracted
File

In addition to scanning files
inside of an archive after
extraction, un-extracted
archives are sent directly to
engines for scanning.

If “extract_archive” for an Note:
engine is enabled, this
potentially exposes
performance overhead
because extraction happens
twice, once by Metadefender
Core and once by the engine.

Disabled soa=<0|1>

Note: Microsoft Office Documents (e.g., DOCX files) are detected as archive files. OPSWAT
recommends that you enable These files the option to scan the original un-extracted archive.
are then scanned without being extracted.

v3.12.3 53

2.4.4. File Type Detection And Filtration Overview

File type detection

The file type analysis configuration allows the administrator to specify whether file type analysis
should be performed, and how Metadefender Core should handle file type mismatches (where
the detected type of the file differs from its extension).

Common uses of file type detection include:

Monitoring for discrepancies between a file extension and a detected file type.

Altering the workflow of files based on certain file types (e.g., blocking files of a certain
file type from entering a file system).

You can configure this setting in the Workflow tab via the link on the left-side menu.File Type

Metadefender file type detection is driven by an OPSWAT proprietary algorithm that combines
the logic as well as logic. Right now, there are 5837 file types that can be "Magic Number" TrID
detected and compared to the file extension; a complete listing can be found at the .TrID site

http://en.wikipedia.org/wiki/File_format#Magic_number
http://mark0.net/soft-trid-deflist.html
http://mark0.net/soft-trid-deflist.html

v3.12.3 54

File type detection/analysis is not as accurate as other file metadata analysis. There will be
cases where the Metadefender file identification engine will not be able to correctly analyze the
file type. In these cases, you can submit a ticket with the file to OPSWAT Support for more
investigation. However, we cannot guarantee that we will be able to fix the underlying issue and
we cannot provide an expected turnaround time to provide an answer. Please do not open an
express ticket for false file type detection.

Note that while file type detection functionality is based on the logic above, file scanning
functionality is not limited to these file types.

File type detection is also referred to as 'file type analysis', 'file type mismatch', and 'file
mismatch analysis'.

Filtration

The Filtration configuration allows a Metadefender Core administrator to specify that certain file
types should be blocked, or that only certain file types should be allowed.

If File Type Detection is turned on, filtering will happen based on the type returned. However,
only the following types will be checked for mismatches: D, P, A, E, G. (Documents, PDFs,
Archives, Executable & Images)

If File Type Detection information is not available, filtering is only based on the file extension.

File Type (Mismatch and Filtration)

The file type mismatch and filtration depends on Metascan file type detection API (or REST
API).

Overwrite group mismatch

Specifies file types that should be added to file type groups for file type matching
purposes.

Available file type groups:

“E” – Executable (EXE, DLL, …)
“D” – Document (MS Office Word document, MS Office Excel sheet)
“A” – Archive (Zip, Rar, Tar, …)
“G” – Graphical format (Jpeg, GIF, TIFF, BMP, …)
“F” – Folder
“Y” – Logical drive
“I” – Disk image
“T” – Text
“P” – PDF format
“M” – Audio or video format
“Z” – Mail messages (MSG, …)

v3.12.3 55

“O” – Other (anything that is not recognized as one of the above)
Note: An ISO is treated as an archive file type (type “A”) and
not as a disk image (type “I”).

Format for a overwriteGroupMismatch value is:

X:EXT1\EXT2\EXT3|Y:EXT

Example

E:OCX\SCR => Files with the extensions OCX and SCR will be added to the
group “E” (Executables). When a file with one of these extensions is detected as
an executable, it will not be reported as a mismatch.

Overwrite mismatch

Specifies file types where a file type mismatch should be ignored.

The format for a overwriteMismatch value is:

EXT_A:EXT_A1\EXT_A2\EXT_A3|EXT_B:EXT_B1

* means that this file type will never be reported as a mismatch.

Example:

DOCX:DOC\ZIP|XXX:* => Files with the extension DOCX will not be reported as
a file type mismatch if MD4M detects that this is a DOC or ZIP file. Files with the
extension XXX will never be reported as a file type mismatch.

Block file type filtration

Files that are blocked are indicatied. Through workflows these blocked files can then be moved,
copied, deleted, etc..

Block file type mismatch

After File Type Analysis completes, if it is determined that the file's extension does not match
the true file type, Metadefender blocks this file.

Verify mismatch for groups

Specifies which files will be checked for a mismatch according to the group they belong
to.

Format for a verifyMismatchForGroups value is:

X|Y|Z

Default Value is *, which means check for a mismatch for all groups

v3.12.3 56

Example:

E|D|A => Check for mismatches only for files that were detected as executables
(“E”), documents (“D”) or archives (“A”).

2.5. Metadefender Core Logs

Metadefender Core stores the results of file scans for a period of time determined by its Log
 settings.Retention

Debug logs

On each log page, you can generate debug information if needed for troubleshooting purposes.
To generate the debug log packages, click , and then click one of the links to either Download
export a quick or verbose debug log.

Application Log

This section of the Metadefender Core logs contains internal Metadefender Core DB event
logging.

To access the Application Log from the Logs tab, click . Application Log

v3.12.3 57

Email Event Log

The Email Event Log contains email event logs. Information includes the severity of the event,
the time the event was logged, and a description of the event.

To access the Email Event Log from the Logs tab, click . Email Event Log

Email History

The Email Scan History page allows you to view the history of processed emails.

v3.12.3 58

1.

2.

To access the Email Scan History from the Logs tab, click . Email History

Description of fields

Field name Description

SENDER The sender of the email.

RECIPIENT The recipient(s) of the email.

SUBJECT The subject of the email.

DATE/TIME The date and time when email was processed.

RESULT The result of processing the email.

File Log

To access Metadefender Core's file scan history, do the following:

.Access the Metadefender Core Management Console

Click the Logs tab and then the tab.File Log

v3.12.3 59

You can filter file results to display a specific time period. To view detailed scan results, select a
file name from the list.

The following values display for each file in the file scan history:

Field Name Description

File Name The filename specified at the time of the scan request. This is determined by
the following for the different Metadefender Core interfaces:

REST: The value specified in the 'filename' header in the scan request.

COM: The name of the file from where it is scanned on the
Metadefender Core system.

ICAP: The value of the 'filename' header in the ICAP request. If this is
not specified, then this will be the portion of the URL after the final
forward slash (/).

Reason Provides detailed information why the file is blocked by Metadefender Core.
For a complete list of possible block reasons, refer to Callback for Processing

.a File (COM)

Workflow
Applied

Indicates which workflow profile is used for the specific file. Click the workflow
name to go to the workflow profile detail page and view the profile's
configurations.

Source The client IP address where the process initiated from.

Start Time The timestamp of when the scan started.

Logging Configuration

You can configure all events in the Event Log section to be sent to a Syslog server.

To access the Configuration section from the Logs tab, click Configuration .

v3.12.3 60

The following settings apply to Metadefender Core's Syslog logging functionality:

Property Description Default
Value

Enable syslog
messages

Indicates whether the following settings will be used to send
messages to a Syslog server.

Off

IP Address The IP address of the Syslog server.

Port The port that the Syslog server is listening on. 514

Facility Level The facility level can be configured for an additional level of
filtering of messages on the Syslog server.

User-
Level

Example of Metadefender Core event and dirty result log in syslog:

2014-06-19 15:05:15 User.Notice 10.0.3.101 Metascan: Changed property [thread_pool_size] =
[20]

v3.12.3 61

2014-06-19 15:05:15 User.Notice 10.0.3.101 Metascan: Changed property
[enable_cache_scan] = [1]

Note: Only infected files scanned through Metadefender Core's REST API result in syslog
messages. Files scanned through any other interface do not produce syslog messages. Files
scanned using Metadefender Core's workflows are not logged to syslog.

Log Retention

Logging can use a significant amount of disk space while the server is running. By default,
Metadefender Core retains 30 days of logging for the File Log, Application Log, and
Quarantine. You can change this default value in the Metadefender Core Management
Console.

Log Type Default Minimum Maximum

File Logs 30 DAYS 0 days (removes all records when check is
performed)

10675199
days

Application Logs 30 DAYS 0 days (removes all records when check is
performed)

10675199
days

Quarantine 30 DAYS 0 days (removes all records when check is
performed)

10675199
days

Changing the number of days Metadefender Core stores log files

You can change the number of days Metadefender Core stores the log files for File Logs,
Application Logs, and Quarantine by going to in the Metadefender Core Logs > Configuration
Management Console.

v3.12.3 62

To make changes to this page, move the slider to . After making changes to the default On
number of days for any of the logs, click . Apply

Windows Event Log

The Windows Event Log contains system application event logging of all Metadefender Core-
related components.

To access the Windows Event Log from the Logs tab, click . Windows Event Log

v3.12.3 63

1.

2.

2.6. Quarantine Management

Email messages or files that have been quarantined by Metadefender Core are listed in the
Quarantine tab. From this tab, an administrator can choose to delete, download, or release files
and emails that have been quarantined. An administrator can also schedule and send
quarantine reports.

Quarantine reports contain emails which have been quarantined by Metadefender Core.
Quarantine reports include a summary of quarantined email information (subject, quarantine
reason, and sending time). They also contain a link to detailed scan results in the Metadefender
Core Management Console. Administrators can choose further action for the quarantined email
(such as delete, release email, and download.).

Quarantine reports are the only way to be notified about quarantined emails, other than viewing
the Quarantine tab. If activated, quarantined reports are sent daily by default.

Accessing the Quarantine tab in the Metadefender Core Management Console

 Access the Metadefender Core Management Console .

Click the Quarantine tab .

v3.12.3 64

1.

2.

3.

4.

a.

b.

c.

Note: Port 8000 must be open on the Metadefender Core server for the Quarantine history to
be displayed correctly.

Scheduling quarantine reports

To set up and schedule quarantine reports, do the following:

From the Metadefender Core Management Console, click the .Quarantine tab

Click . Configure Quarantine Reports

To update SMTP settings, click . Update

Enter the following SMTP server information in the SMTP Settings section:

Host: The SMTP server's IP address or hostname.

Port: The SMTP server's connection port.

v3.12.3 65

4.

c.

d.

5.

6.

7.

8.

Enable SSL: If the SMTP server enables SSL, select this checkbox to allow
Metadefender Core to send the quarantine report email via SSL.

Username/Password: The username and password for the SMTP server.

Click . Save

Move the Scheduled Quarantine Reports On/Off slide to . On

Enter which files to include, the quarantine schedule, and email information in the
section. Schedule Quarantine Reports

Note: Separate multiple email addresses in the field with a comma.To

Click . Save

2.7 Filter CLI

Title Description Syntax

omsFilter - remove remove specific file from the lists remove <sha256>

v3.12.3 66

Title Description Syntax

omsFilter - list retrieve whitelist and blacklist list <type>

omsFilter -
addtowhite

add the file to the whitelist addtowhite <path> <type>

omsFilter -
addtoblack

add the file to the blacklist addtoblack <path> <type>
<threat>

omsFilter - about Shows the info of the current
version

about

omsFilterCLI.exe

C:\Program Files (x86)\OPSWAT\Metadefender Core 4>omsFilterCLI.exe

 Metascan(R) Filter Command Line Utility 3.12.3.28579
 (C) OPSWAT, Inc. 2002-2016

 Command Description

 addtoblack <path> <type> <threat> add the file to the
blacklist
 addtowhite <path> <type> add the file to the
whitelist
 remove <sha256> remove specific file
from the lists
 list <type> retrieve whitelist and
blacklist
 about shows the info of the
current version

 Arguments Description

 <type> 0: all, 1: archive
library, 2: engines
 <threat> Name of threat for
reference
 <path> Absolute file path

v3.12.3 67

omsFilter - about

Syntax about

Description Shows the info of the current version

about

C:\Program Files (x86)\OPSWAT\Metadefender Core 4>omsFilterCLI.
exe about

 Metascan(R) Filter Command Line Utility 3.12.2.28579
 (C) OPSWAT, Inc. 2002-2016

omsFilter - addtoblack

Syntax addtoblack <path> <type> <threat>

Description add the file to the blacklist

addtoblack

C:\Program Files (x86)\OPSWAT\Metadefender Core 4>omsFilterCLI.
exe addtoblack C:\Files\200\10.txt 0 sampleThreatName
File 'C:\Files\200\10.txt' successfully added to blacklist
Restarting Metascan is required for changes to take effect

omsFilter - addtowhite

Syntax addtowhite <path> <type>

Description add the file to the whitelist

addtowhite

C:\Program Files (x86)\OPSWAT\Metadefender Core 4>omsFilterCLI.
exe addtowhite C:\Files\200\10001.txt 0

v3.12.3 68

File 'C:\Files\200\10001.txt' successfully added to whitelist
Restarting Metascan is required for changes to take effect

omsFilter - list

Syntax list <type>

Description retrieve whitelist and blacklist

list

C:\Program Files (x86)\OPSWAT\Metadefender Core 4>omsFilterCLI.
exe list 0

<list><black_list><object><sha256_hash>1C403526E3A858775C88D113DF4
6ECEA85269964<
/sha256_hash><filter_type>0</filter_type><threat_name>Archbomb.ZIP
trojan</threa
t_name><
/object><object><sha256_hash>753690994A18CF58ED0FE3749D16448B76304
7B8</s
ha256_hash><filter_type>0</filter_type><threat_name>Archbomb.ZIP
trojan</threat_
name><
/object><object><sha256_hash>75F2667CCACCE7C7947C186DCA5029FFEE720
C01</sha
256_hash><filter_type>0</filter_type><threat_name>Archbomb.ZIP
trojan</threat_na
me><
/object><object><sha256_hash>541DF8E3BD1A55BCF3DC9839A0A1BBB7E7737
EB7</sha25
6_hash><filter_type>0</filter_type><threat_name>Archbomb.ZIP
trojan</threat_name
><
/object><object><sha256_hash>12CF28C37E9BC65D67F30ED24154D1DE4503D
7BD</sha256_
hash><filter_type>0</filter_type><threat_name>Archbomb.ZIP trojan<
/threat_name><
/object><object><sha256_hash>54E65A7B23E3E5C3771C041BFA3198E877015
925</sha256_ha
sh><filter_type>0</filter_type><threat_name>Archbomb.ZIP trojan<
/threat_name></o
bject><object><sha256_hash>C2AAB6A66924B29828C52E27AF9E8A8038E54EE
0</sha256_hash
><filter_type>0</filter_type><threat_name>yoda</threat_name><
/object></black_lis

v3.12.3 69

t><white_list></white_list></list>

omsFilter - remove

Syntax remove <sha256>

Description remove specific file from the lists

Version supported
Supported in Core version 3.12.3+

removefromblack

C:\Program Files (x86)\OPSWAT\Metadefender Core 4>omsFilterCLI.
exe remove
D7B0FD22C8741846EC35E43B224DED709A9A5E558BA6536F9CAC0BA5BB608658

File with hash of
'D7B0FD22C8741846EC35E43B224DED709A9A5E558BA6536F9CAC0BA5BB608658'
successfully removed
Restarting Metascan is required for changes to take effect

2.8. Advanced Configuration Options

CORS Configuration

You can harden the Metadefender Core's cross-origin resource sharing (CORS) configuration
to only allow access from a restricted list of systems.

The following edits can be made in C:\Program Files (x86)\OPSWAT\Metadefender Core
X\REST\Web\web.config.

To restrict access to the local system, the line

<add name="Access-Control-Allow-Origin" value="*"/>

can be changed to

v3.12.3 70

1.

2.

3.

4.

<add name="Access-Control-Allow-Origin" value="http://localhost"/>

Then add a new rule to <system.webServer><rewrite><outboundRules>

<rule name="Allow CORS on specify ip/subnet" >
 <match serverVariable="RESPONSE_Access-Control-Allow-Origin"
pattern=".+" />
 <conditions>
 <add input="{REMOTE_ADDR}" pattern="^(192.168.200.*|192.
168.201.102)$" />
 </conditions>
 <action type="Rewrite" value="*" />
</rule>

Enabling HTTPS

By default, communication with the RESTful web server is not encrypted. By setting up an
HTTPS server, the server can enforce secure connections between client and server on an
SSL channel. Steps to configure IIS Express to host an HTTPS server are outlined in the
sections below.

Requirements

To enable HTTPS, you must install a trusted certificate issued by a certificate authority
OR a self-signed certificate used for development testing. The procedures detailed
below cover how to install self-signed server certificate.

To install a CA (Certificate Authority) signed server certificate, go to Microsoft's TechNet
 website. If you enable HTTPS and are using a self-signed Install a Server Certificate

certificate, you MUST install the self-signed certificate.

Overview

The following high-level steps are covered on this page.

Obtain a certificate (we will use self-signed certificate in this documentation).

Install the certificate.

Configure IIS with HTTPs.

Restart Metadefender REST service.

https://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/a2f35fcd-d3b6-4f39-ba93-041a86f7e17f.mspx?mfr=true

v3.12.3 71

1.

2.

3.

4.

5.

6.

1.

2.

3.

Generating a self-signed certificate

Using Certificates MMC Using certutil

Click the Windows Start menu and enter “MMC.exe” in the
Search box.

In the MMC window, click on File > Add/Remove Snap-In...
.

In the Available snap-ins list, select and then Certificates
click . Add

Select Computer Account.

Click .Next > Finish

Run certutil -store MY

Copy the Cert Hash. Edit the hash so that it does not have spaces (e.g.,
ef8a0fc5620b621a54fb367f1e7ee45e1ba6d006).

Create a new GUID at (e.g., https://www.guidgenerator.com/online-guid-generator.aspx
{CDA52389-5954-44C2-8CF0-38062D1572F8}).

https://www.guidgenerator.com/online-guid-generator.aspx

v3.12.3 72

6.

7.

8.

9.

Using Certificates MMC Using certutil

Click to load the certificates snap-in. OK

Expand the Certificates (Local Computer) menu and browse
to . The example below uses Personal > Certificates
‘metascan_rest’ certificate. Your certificate may have any
name.

Double-click the certificate name you want to use for the
Metadefender Core REST Server.

Click the tab and select . Details Thumbprint

v3.12.3 73

9.

10.

1.

2.

Using Certificates MMC Using certutil

Copy the value into a text editor for later use.

Note: The spaces in the thumbprint should be removed for
the command to execute properly.

Install Certificate

Open a command prompt.

Run the following command:

v3.12.3 74

2.

3.

1.

2.

3.

4.

5.

6.

7.

netsh http add sslcert ipport=0.0.0.0:443 appid={214124cd-
d05b-4309-9af9-9caa44b2b74a} certhash=<certificate thumbprint
retrieved from previous step>

Confirm that the SSL Certificate is successfully added, as indicated by the example
below.

Enabling HTTPS on IIS Express

The following procedure enables HTTPS on IIS Express. To set up quarantine and mail agent,
see the sections that follow.

Open the <Metadefender Core installation directory>\REST\Config folder (e.g., C:
\Program Files (x86)\OPSWAT\Metadefender Core X\REST\Config).

Open the applicationhost.config file in a text editor.

Go to the <sites> tag and add the HTTPS binding to the metascan_rest website as
shown in the example below. This port can not be in use by any other applications.

Optionally, to keep REST HTTPS only, remove the <binding protocol="http"
bindingInformation=":8008:" /> line from applicationhost.config.

Save and close the ‘applicationhost.config’ file.

Navigate to the Quarantine folder (by default, this is C:\Program Files (x86)
\OPSWAT\Metadefender Core X\Metascan Quarantine).

Open Metadefender.Quarantine.Service.exe.config and change the following section:

v3.12.3 75

7.

8.

9.

Original New

<setting name="RestBaseUrl" s
erializeAs="String">
 <value>http://localhost:
8000</value>
</setting>
<setting name="QuarantineBase
Url" serializeAs="String">
 <value>http://localhost:
8000</value>
</setting>
<setting name="QuarantineProt
ocol" serializeAs="String">
 <value>REST</value>
</setting>
<setting name="MetascanUrl" s
erializeAs="String">
 <value>http://localhost:
8008/metascan_rest/</value>
</setting>
<setting name="WebBaseUrl" se
rializeAs="String">
 <value>http://localhost:
8008/management/#</value>
</setting>

<setting name="RestBaseUrl
" serializeAs="String">
 <value>https://localho
st</value>
</setting>
<setting name="QuarantineB
aseUrl" serializeAs="Strin
g">
 <value>https://localho
st</value>
</setting>
<setting name="QuarantineP
rotocol" serializeAs="Stri
ng">
 <value>REST</value>
</setting>
<setting name="MetascanUrl
" serializeAs="String">
 <value>https://localho
st/metascan_rest/</value>
</setting>
<setting name="WebBaseUrl"
 serializeAs="String">
 <value>https://localho
st/management/#</value>
</setting>

Restart the Metadefender Core Quarantine Service.

Test that the site works by going to . The following webpage should be https://localhost
displayed:

https://localhost/

v3.12.3 76

9.

10. Click . Continue to this website

Engine Specific Configuration

Configuration specific to each built-in engine should be done via the configuration file:
omsConfig.ini. This file is located in the directory where Metadefender Core is installed. The
following table shows which configurations are available for each engine.

Important: The Metadefender Core service must be restarted to apply any changes.

v3.12.3 77

Heuristic scan / extract archive

Some engines allow you to scan files using heuristics, which can detect viruses that are not yet
in the engine’s virus definition database. Enabling heuristic scanning for engines increases
detection of potential new viruses, but also increases the false positive rate.

Note: Enabling heuristic scanning can also increase the engine's scan time.

Engine [CATEGORY] Configuration [ATTRIBUTE] Value

Ahnlab [ahnlab] Heuristic scan [heuristic_scan] 1: Enable

0: Disable

No entry: default level
 Archive library [extract_archive]

AVG [avg] Heuristic scan [heuristic_scan]

 Archive library [extract_archive]

Avira [avira] Heuristic scan [heuristic_scan]

 Archive library [extract_archive]

Bitdefender [bitdefender] Archive library [extract_archive]

Clam AV [clamav] Heuristic scan [heuristic_scan]

v3.12.3 78

Engine [CATEGORY] Configuration [ATTRIBUTE] Value

 Archive library [extract_archive]

Emsisoft [emsisoft] Heuristic scan [heuristic_scan]

 Archive library [extract_archive]

ESET [eset] Heuristic scan [heuristic_scan]

 Archive library [extract_archive]

F-Prot [f-prot] Heuristic scan [heuristic_scan]

 Archive library [extract_archive]

Ikarus [ikarus] Archive library [extract_archive]

K7 [k7] Heuristic scan [heuristic_scan]

 Archive library [extract_archive]

Kaspersky [kaspersky] Heuristic scan [heuristic_scan]

 Archive library [extract_archive]

McAfee [mcafee] Heuristic scan [heuristic_scan]

 Archive library [extract_archive]

NANOAV [nanoav] Heuristic scan [heuristic_scan]

 Archive library [extract_archive]

nProtect [nprotect] Heuristic scan [heuristic_scan]

Quick Heal [quickheal] Heuristic scan [heuristic_scan]

 Archive library [extract_archive]

v3.12.3 79

Engine [CATEGORY] Configuration [ATTRIBUTE] Value

Sophos [sophos] Heuristic scan [heuristic_scan]

 Archive library [extract_archive]

Vir.IT eXplorer [vir.itexplorer] Archive library [extract_archive]

Total Defense [totaldefense] Heuristic scan [heuristic_scan]

 Archive library [extract_archive]

Zillya! [zillya!] Heuristic scan [heuristic_scan]

 Archive library [extract_archive]

Import/export configuration

You can import and export your Metadefender Core configuration using the omsConfig.exe
command line utility. This can be useful for preserving configurations during an upgrade or
when deploying multiple Metadefender Core installations with the same configuration.

Help

Syntax: help

This function prints the available command line options.

Import

Syntax: import <full file path> [<option>]

This command imports configurations from a file. All settings will take effect after a restart of the
Metadefender Core services.

Export

Syntax: export <directory> [<option>]

This command exports current configurations to a file.

v3.12.3 80

Options

The following argument can be used with the import and export commands.

Option Description

/pass Password to encrypted & extract configuration.

Post Action Script

Using Post Action Script is not recommended. If you plan to use post action script,
please contact OPSWAT Technical Support to see if there are different ways of
achieving the same goal. For example, if you want to copy files after scan, use the
Workflow - copy to directory feature instead.

Running scripts on clean/infected files

Creating a post action script provides the capability to handle simple or advanced application
logic. Once a file is scanned by engines, the script will be executed on a file based on scan
results.

XML format for post action script

<post_action>
 <scripts>
 <if type="[scan result]">[script]</if>
 …
 <if type="[scan result]">[script]</if>
 </scripts>
 <user_vars>
 <user_var name="[user variable]">[user variable string]</u
ser_var>
 …
 <user_var name="[user variable]">[user variable string]</u
ser_var>
 </user_vars>
</post_action>

v3.12.3 81

Item Description Example

[script] Batch script supported by cmd.exe. For multiline
scripts,use “&&”. (“&&” for xml)

DEL c:\eicar.com

[scan
result]

Refer to asynchronous scan API in Software
Developer Guide

for clean files,

0

[user
variable]

Variables that you define data_folder

[user
variable
string]

Value for user variables C:\
data_folder_for_archiving

Pre-defined variables

Variables Description Note

%%%file_path%%% Absolute path to the file to
be scanned.

This variable is supported only on
local COM scans.

%%%
threat_name%%%

Name of threats found by
engines.

Applies only to infected(“1”) scan
result.

%%%
scan_finished%%%

The time when scan is
finished.

Applying post action script

Property
Name

post_action

Description XML-formatted scripts applied per scan result with support of pre-defined
variables and user-defined variables.

CLI omsCmdLineUtil.exe config pa=<xml file path>

http://eicar.com

v3.12.3 82

Property
Name

post_action

Management
Console

On the Metadefender Core Management Console, use only the script in the
text box, instead of the XML format for Post Action Script described in the
above section.

Remark Any character that has special meaning to XML (e.g., &, <, >) must be
escaped.

Example of post action script XML

Note: In the following examples, any variable surrounded with %%% that is not already defined
in pre-defined variables, need to either be defined in your post action XML or replaced with the
actual values you intend to use.

Moving clean file and infected files to different folder

<post_action>
 <scripts>
 <if type="0">move %%%file_path%%% c:
\archive_data\clean</if>
 <if type="1">move %%%file_path%%% c:
\archive_data\infected</if>
 </scripts>
</post_action>

Uploading infected file to ftp server

v3.12.3 83

1.

2.

Uploading infected file to ftp server

<post_action>
 <scripts>
 <if type="1">
echo OPEN %%%server%%%> ftp.scr&&
echo %%%username%%%>> ftp.scr&&
echo %%%password%%%>> ftp.scr&&
echo cd test_post_action>> ftp.scr&&
echo put %%%file_path%%%>> ftp.scr&&
echo CLOSE>> ftp.scr&&
echo quit>> ftp.scr &&
ftp -s:ftp.scr
 </if>
 </scripts>
 <user_vars>
 <user_var name="server">127.0.0.1</user_var>
 <user_var name="username">ftp_user</user_var>
 <user_var name="password">1234abcd</user_var>
 </user_vars>
</post_action>

RAM Disk Configuration

Overview

You can configure the RAM Disk (or RAM Drive) from the Windows device property dialog box.

The RAM Disk turns a chunk of your system’s RAM into a disk drive. The RAM Disk is more
secure than a fixed disk because the contents of the disk will be wiped clean on a system
reboot. It provides speed optimization because the AV scanners being used do not have to
fetch the data from a physical disk. The file is already stored in RAM.

Below are two use cases:

Temporary directory for extracting archive files before scanning

Set the temp_dir property of Metadefender Core to RAM Disk

As a temp directory for your application

You could use the RAM Disk if your application accepts files which are uploaded
by your customers and you want to perform some temporary actions on that
content before scanning.

v3.12.3 84

1.

2.

3.

RAM Disk as Temporary Directory

When you use the RAM Disk as a temporary directory, Metadefender Core uses this directory
for the following purposes:

Extracting archive files (when “internal_archive_lib” is set to “1” (true))

Writing data to a file in this directory if using any of the Metadefender Core Buffer
(stream) APIs

 If the buffer is bigger than the available RAM Disk space, scan APIs will return Note:
E_FAIL.

If the RAM Disk is used as the primary temp directory, the maximum extracted archive
file size will be half the size of the RAM Disk for a single archive. If an archive exceeds
that size, an error will be returned unless a secondary temp file is configured. If a
secondary temp file is configured, then the archive will use it to extract the archive. The
size of the secondary temp files is always half the available space on the drive.

Device Property

In order to change the RAM Disk properties, open the Device Manager using the following
steps:

Go to and enter devmgmt.msc, and then press .Start > Run Return

Select the category.Ram Drive

Right-click on OPSWAT Secure RAM Disk and select .Properties

v3.12.3 85

1.

2.

REST Server Configuration

Enabling IIS Logging

By default, Internet Information Services (IIS) logging is disabled in the Metadefender Core
REST server. In order to enable IIS logging, please follow these steps:

Go to the the REST\Config folder inside Metadefender Core's installation directory and
open the applicationhost.config file. For example: C:\Program Files(x86)
\OPSWAT\Metadefender Core X\REST\Config\applicationhost.config.

v3.12.3 86

2.

1.

2.

1.

2.

3.

Uncomment these 2 properties in the applicationhost.config file.

<! -- <add name="HttpLoggingModule" image="%IIS_BIN%\loghttp.
dll" /> -->
<! -- <add name="HttpLoggingModule" lockItem="true" /> -->

Restart the Metadefender Core REST server using the following steps:

Using the Windows Control Panel:

Go to and click . (In Windows 10, open the Start > Administrative Tools Services
Control Panel and click > and then double-System and Security Administrative Tools
click .) Services

In the Services panel, right-click on Metascan REST Service and click . Start

Using the command line:

Open a command prompt.

To stop the service, execute the ‘net stop omsrest’ command.

To restart the service, execute the ‘net start omsrest’ command.

Load Balancing With Multiple Instance

When multiple instances of Metadefender Core are serving multiple clients with higher load
than one Metadefender Core can handle, clients should make progress (file\<data_id>) on a
specific server. Setting this value results in initial file upload response to provide rest_ip
information so that the client can make follow up requests to this specific server. You can
configure this in the Metascan registry key (HKEY_LOCAL_MACHINE\SOFTWARE
\OPSWAT\Metascan on x86,
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\OPSWAT\Metascan on x64).

String value Value Description

rest_ip integer <IP address or URL> that client uses

v3.12.3 87

Storing File on the REST server

The server can be configured so that any data requested for scanning can be stored. This
should be configured on the Metascan registry key (HKEY_LOCAL_MACHINE\SOFTWARE
\OPSWAT\Metascan on x86,
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\OPSWAT\Metascan on x64). You
must restart the Metadefender Core REST service after this key has been updated for the
change to take effect.

String value Value Description

rest_filedb_type NONE or
mongoDB

Set to mongoDB to enable storing files, the default is NONE.
This key does not exist by default and must be created on
the Metadefender Core system.

rest_store_file 0 or 1 Set to 1 to enable storing files, the default is 0.

Enabling storing file on the server side will consume disk spaces rapidly depending on
the load. You must plan for enough disk spaces depending on the load. You can
monitor disk space usage on management console dashboard.

Whitelisting/Blacklisting

You can specify a whitelist and/or blacklist for Metadefender Core to use in scanning via the
omsFilterCLI.exe tool. The default path of this tool is C:\Program Files (x86)
\OPSWAT\Metadefender Core 1/4/8/12/16\omsFilterCLI.exe.

Whitelist: Files that will not be scanned and will automatically be marked as clean.

Blacklist: Files that will not be scanned and will automatically be marked as a threat.

Command Description

addtoblack <path> <type> <threat> Add the file to the blacklist

addtowhite <path> <type> Add the file to the whitelist

list <type> Retrieve whitelist and blacklist

about Shows the info of the current version

v3.12.3 88

Argument Description

<type> 0: all, 1: archive library, 2: engines

<threat> Name of threat for reference

<path> Absolute file path

2.9. Non-Workflow Configuration (Deprecated)

Caching and ScanEx configurations are no longer recommended by OPSWAT, but may be
used under certain circumstances. Please contact OPSWAT customer support (https://www.

) before using one of these methods.opswat.com/support#support-levels

There is no caching needed in the workflow API, because each process request is treated as
new. There are a lot data processing in the workflow (e.g., file analyze, data sanitization, etc.).
The workflow covers all ScanEx functions as well.

Caching

The caching configuration determines the size and behavior of the Metadefender Core scan
result cache. The cache allows Metadefender Core to return results from a previous file scan
with Metadefender Core if those scan results were cached and have not yet expired. Caching
can only be configured through omsCmdLineUtil.exe.

The following settings apply if caching is enabled:

Property Description Default
Value

CLI
config

Enable
Caching

This enables Metadefender Core's scan result caching. Disabled cs=<0|1>

Reset
cache on
engine
update

Specifies whether the cache should be reset (and all
cached results discarded) whenever there has been an
engine definition update.

Disabled rc=<0|1>

Cache
Expiration

72 hours

https://www.opswat.com/support#support-levels
https://www.opswat.com/support#support-levels

v3.12.3 89

1.

2.

3.

Property Description Default
Value

CLI
config

Specifies how long (in hours) cached results remain
available after a scan. After this time the cached
results will be deleted.

kc=<time
in
seconds>

Maximum
Cache Size

The maximum size of the cache in RAM. This is only
the amount of space required to store the cached scan
results, not the files themselves.

100 MB ms=<size
in MB>

To manually reset the cache, do the following.

Stop the Metadefender Core service (net stop metascan).

Delete the cache database (<installation directory>\Data\omsCK_KN.db3).

Restart the Metadefender Core service (net start metascan).

ScanEx Configuration

This configuration is used when calling the Metadefender Core APIs that do not use the
Metadefender Core workflows, and only scan files. This includes files scanned through
Metadefender Core's ICAP interface, files scanned with Metascan Client, files scanned through
the Java API, and the sample code provided on the OPSWAT Portal.

Archive handling

The archive handling configuration options determine how archives are handled.

If archive handling is enabled, Metadefender Core will extract archives and scan the individual
files within the archive.

v3.12.3 90

Most common archive formats are supported, including 7z, XZ, BZIP2, GZIP, TAR, ZIP, WIM,
ARJ, CAB, CHM, CPIO, CramFS, DEB, DMG, FAT, HFS, ISO, LZH, LZMA, MBR, MSI, NSIS,
NTFS, RAR, RPM, SquashFS, UDF, VHD, WIM, XAR and Z. Metadefender Core can also
extract self-extracting archives created by both 7zip and WinRAR.

The following settings apply if archive handling is enabled:

Property Description Default
Value

CLI config Additional
info

Enable
Archive

This enables Metadefender
Core's archive library handling.

Enabled le=<0|1>

Max
Recursion
Level

The maximum depth that
Metadefender Core will
continue to extract archives for
scanning. Once this depth is
reached, Metadefender Core
will not extract further archives
but will scan those archives as
entire files. If this is set to 0,
archives will not be extracted.

5 rl=<levels> Maximum
value:
2147483646

Number of
Files

The maximum number of files
that can be in an archive that
Metadefender Core is
extracting. If the number of files
in an archive exceeds this
value, Metadefender Core will
return the result as a potential
threat.

50 an=<number> Maximum
value:
2147483646

Total Size The maximum total size of files
that can be in an archive that
Metadefender Core is
extracting. If the total size of
files in an archive exceeds this
value, Metadefender Core will
return the result as a potential
threat.

2 GB as=<size in
MB>

Maximum
value:

Half the
current
available free
space of the

v3.12.3 91

Property Description Default
Value

CLI config Additional
info

Metadefender
Core
temporary
directory.

If two
temporary
directories
are set from
different
drives, the
highest
available
space will be
used.

Simultaneous Specifies if multiple archive files
undergo extraction
concurrently. This may improve
performance on a multi-core
CPU, but means that the RAM-
drive size should be increased
(since more unpacked archives
may reside on it at the same
time).

Disabled ec=<0|1>

Self-
Extracting

Specifies if self-extracting
archives should be extracted
and treated as archives

Disabled sx=<0|1>

Scan Original
Un-extracted
File

In addition to scanning files
inside of an archive after
extraction, un-extracted
archives are sent directly to
engines for scanning.

Note: If “extract_archive” for an
engine is enabled, this
potentially exposes

Disabled soa=<0|1>

v3.12.3 92

Property Description Default
Value

CLI config Additional
info

performance overhead since
extraction happens twice, once
by Metadefender Core and
once by the engine.

Note: DOCX and DOCM files can be detected as archive files. OPSWAT recommends that the
option to scan the original un-extracted archive is enabled so that these files are properly
scanned.

Post processing configuration

The Post Processing configuration allows an administrator to specify a script that should be
executed for all allowed and/or blocked files. By clicking on ‘Run custom command line script’,
a message can be put in place for both infected and clean files.

An administrator can also choose to delete or quarantine infected files.

v3.12.3 93

1.

2.

3.

4.

5.

6.

3. Developer Guide

OPSWAT is committed to making the Metadefender Core API backward compatible to any
older version of Metadefender Core. With the growing capabilities and features of
Metadefender Core, it is necessary to add new APIs, new COM Connection Points, and new
return types. When you upgrade your integration to Metadefender Core to a newer version,
please keep the following factors in mind:

C/C++ application: By the design of COM, all Connection Points are required to be
implemented in your application. Please check Metascan.idl for newly added Connection
Points.

Building Custom Engines

You can develop your own custom engine integration. We provide documentation on how to do
this as well as sample code in C & C#.

What you need to do

Install Metadefender Core 3.8.0 or newer.

Download the custom engine template package . This download includes the here
following templates:
• Template for C custom engine (vc10)
• Template for C# custom engine (vc10)

Obtain Metadefender Core custom engine handler (omsCEHandler.exe). This file is
included in the template package's bin folder.

Implement the custom engine interface.

Build the custom engine library (DLL).

Deploy the custom engine library (DLL) with the Metadefender Core custom engine
handler (omsCEHandler.exe).

Installation and configuration

This section covers the configuration of Metadefender Core in order to load and use your
custom engine. The following properties must be defined and configured in the omsConfig.ini,
located in the Metadefender Core installation directory.

https://portal.opswat.com/en/content/metadefender-core-sample-code

v3.12.3 94

Section or attribute Value Description

[custom_engine_***] Replace *** with a unique
identifier for your engine. (e.g.,
[custom_engine_myav] or
[custom_engine_mycompany])

A unique section name to group
the settings for your custom
engine. This section must be
unique and begin with
“custom_engine”. If you do not
name the section appropriately,
Metadefender Core will not detect
your custom engine.

custom_engine_dir Absolute path to the directory.
Do not end this path with a
trailing separator.

e.g., c:\my Custom Engine AV

The directory where your custom
engine binaries reside. At a
minimum, this includes
omsCEHandler.exe and the C
interface DLL.

custom_unique_id 4-10 characters starting with
“ce” prefix

e.g., ce01

This is used for communication
between Metadefender Core and
the omsCEHandler processes. If
you have multiple custom engines,
this must be unique for each
engine.

custom_dll_name Custom engine DLL name

e.g., sampleCustomEng.DLL

The sample custom engine project
generates “sampleCustomEng.
DLL” by default, but you can
modify as you wish.

custom_engine_type Numerical value

0 – Indicates the engine is a
scan engine

support_multithread Numerical Value.

0 – No

1 – Yes

You must set this attribute to 0 if
your custom engine is not thread-
safe. If you are not sure, set to 0.

v3.12.3 95

Example

The following is an example of the properties that need to be configured for the omsConfig.ini
file.

custom_engine_myav
custom_engine_dir= c:\my Custom Engine AV
custom_dll_name=sampleCustomEng.dll
custom_engine_type=0
support_multithread=0
custom_unique_id=ce01

When uninstalling or upgrading Metadefender Core

Any configuration pertaining to the custom engines will not be preserved if you uninstall and
reinstall Metadefender Core. You must backup and then restore the following changes after
your installation or upgrade is complete:

omsConfig.ini (changes made pertaining to the custom engines)

Any custom engine directories located under the Metadefender Core installation folder

C# Custom Engine Template

Title/API Function

NReloadDatabase This method provides a way for Metadefender Core to explicitly reload
the definition database of the engine, especially for a malware engine.
During this call, any requests to scan should return ‘Not Scanned.’ If
there is no specific step required for reloading the database, it should
still return "0" to indicate that the engine is ready.

NGetDefinitionInfo This method is used to retrieve additional attributes about the definition
files in use by the custom engine.

NGetDefinitionTime This is used to retrieve the timestamp of the definition files currently in
use by the custom engine. Memory is allocated by Metadefender Core.

NPerformUpdate This is called to initiate an update of the custom engine. This call should
be a synchronous call and wait until the update completes.

v3.12.3 96

1.

Title/API Function

NScan This is the main function of the custom engine. The scan result returned
from this function call is used by Metadefender Core's scan-related API.

NGetProductName This method provides the name of the custom engine. Metadefender
Core uses this for display purposes.

NDeinitCE This is called when Metadefender Core is shut down. Any resources
acquired by your engine will be released and any unsaved data will be
stored.

NInitCE This is the first method called. It allows you to initialize your engine.
Metadefender Core will recognize your engine only if this method
returns successfully (returns "0").

Additional steps for VB/C# custom engine

Place C wrapper DLL (Dynamic Link Library) with the custom engine DLLs.

If you compile the VB sample solution or C# solution, you get 2 DLLs, one for the cwrapper
provided by OPSWAT and the other for your custom engine.

NDeinitCE

API NDeinitCE

Function This is called when Metadefender Core is shut down. Any resources acquired by
your engine will be released and any unsaved data will be stored.

Function prototype

int NDeinitCE
(
)

Arguments

No arguments are required for this function.

v3.12.3 97

NGetDefinitionInfo

API NGetDefinitionInfo

Function This method is used to retrieve additional attributes about the definition files in
use by the custom engine.

Function prototype

int NGetDefinitionTime
(
 ref string reserved,
 ref string defVer,
 ref string defSig,
 ref string engVer,
)

Arguments

Argument Description

defVer Definition version you would like to report. Metadefender Core does not use this
information for any logic. It is used only for display purposes.

defSig Definition signature count you would like to report. Metadefender Core does not
use this information for any logic. It is used only for display purposes.

engVer Engine version you would like to report. Metadefender does not use this
information for any logic. It is used only for display purposes.

reserved Reserved for future use.

Return value

Value Description

0 Information successfully retrieved.

v3.12.3 98

Value Description

1 Information unavailable.

NGetDefinitionTime

API NGetDefinitionTime

Function This is used to retrieve the timestamp of the definition files currently in use by the
custom engine. Memory is allocated by Metadefender Core.

Function prototype

int NGetDefinitionTime
(
 ref int defYear,
 ref int defMon,
 ref int defDay,
 ref int defHour,
 ref int defMin,
)

Arguments

Argument Description

defYear Year portion of definition time.

defMon Month portion of definition time.

defDay Day portion of definition time.

defHour Hour portion of definition time.

defMin Minute portion of definition time.

v3.12.3 99

Return value

Value Description

0 Information successfully retrieved.

1 Information unavailable.

NGetProductName

API NGetProductName

Function This method provides the name of the custom engine. Metadefender Core uses
this for display purposes.

Function prototype

int GetProductName
(
ref string productName
)

Arguments

Argument Description

productName The name of the custom engine.

Return value

Value Description

0 To indicate that the product name is successfully returned.

Other value Not supported. Reserved for future usage.

v3.12.3 100

NInitCE

API NInitCE

Function This is the first method called. It allows you to initialize your engine.
Metadefender Core will recognize your engine only if this method returns
successfully (returns "0").

Function prototype

public int NInitCE
(
)

Arguments

No argument.

Return value

Value Description

0 To indicate that the engine initialized correctly.

1 To indicate initialization failed and the engine should not be used.

NPerformUpdate

API NPerformUpdate

Function This is called to initiate an update of the custom engine. This call should be a
synchronous call and wait until the update completes.

Function prototype

int PerformUpdate
(

v3.12.3 101

)

Return value

Value Description

0 Update completed successfully.

1 Failed to start or finish updating.

2 Engine is already up to date.

3 Failed to update due to network problem.

4 Engine is already updating.

5 Failed downloading update.

6 Failed reloading database.

NReloadDatabase

API NReloadDatabase

Function This method provides a way for Metadefender Core to explicitly reload the
definition database of the engine, especially for a malware engine. During this
call, any requests to scan should return ‘Not Scanned.’ If there is no specific step
required for reloading the database, it should still return "0" to indicate that the
engine is ready.

Function prototype

int ReloadDatabase
(
ref string srcDir,
)

Arguments

v3.12.3 102

Arguments

Argument Description

srcDir If specified, path to the folder where new definition files are placed.

Return value

Value Description

0 Database is successfully reloaded or nothing needs to be done to reload database.

1 Fail to reload database (same result as fail to init).

NScan

API NScan

Function This is the main function of the custom engine. The scan result returned from this
function call is used by Metadefender Core's scan-related API.

Function prototype

int NScan
(
 int reserved,
 string filepath,
 ref int scanResult,
 ref string threatName,
)

Arguments

Argument Description

reserved Reserved for future.

filepath Path to the file needed to scan.

v3.12.3 103

Argument Description

scanResult Scan result to be returned.

0: clean

2: suspicious

1: found threat

3: failed to scan

10: not scanned (during update)

threatName Threat name to be returned.

Return value

Value Description

0 Scan completed successfully.

1 Failed to start or finish scanning.

Custom Engine C Interface

Interface

API Function

FreeString This is called to free allocated memory for wchar **. Metadefender Core
calls this after Metadefender Core is finished with the values allocated
by your functionality.

GetDefinitionInfo This method is used to retrieve additional attributes about the definition
files in use by the custom engine.

GetDefinitionTime This is used to retrieve the timestamp of the definition files currently in
use by the custom engine. Memory is allocated by Metadefender Core.

GetEngineProperty

http://sf-small-conf.us.opswat.com:8090/display/MDC/GetEngineProperty

v3.12.3 104

API Function

This method is used to get engine properties such as extract archive,
heuristic.

GetExpirationDate This method is used to retrieve the expiration date of engine.

GetProductName This method provides the name of the custom engine. Metadefender
Core uses this for display purposes.

InitCE This is the first method called. It allows you to initialize your engine.
Metadefender Core recognizes your engine only if this method returns
successfully (returns 0).

PerformUpdate This is called in order to initiate an update of the custom engine. The call
is synchronous and waits until the update completes.

ReloadConfig This is used to reload any or all specific engine configurations. If there is
no specific engine configuration that needs to be reloaded, this function
returns "0" without any re-initialization of engines.

ReloadDatabase This method provides a way for Metadefender Core to explicitly reload
the definition database of the engine, especially for a malware engine.
During this call, any requests to scan return "Not Scanned." If there is no
specific step required for reloading the database, it still returns "0" to
indicate that the engine is ready.

Scan File This is the main function of the custom engine. The scan result returned
from this function call is used by Metadefender Core’s scan-related API.

SetEngineProperty This method is used to set engine properties such as extract archive
and heuristic.

http://sf-small-conf.us.opswat.com:8090/display/MDC/SetEngineProperty

v3.12.3 105

DeinitCE

API DeinitCE

Function This is called when Metadefender Core is shut down. Any resources acquired by
your engine are released and any unsaved data is stored.

Function prototype

int DeinitCE ()

Arguments

No arguments are required for this function.

Return value

Value Description

0 Indicates that the engine deinitialized correctly.

1 Indicates that deinitialization has failed.

FreeString

API FreeString

Function This is called to free allocated memory for wchar **. Metadefender Core calls this
after Metadefender Core is finished with the values allocated by your
functionality.

Function prototype

void FreeString
(
 wchar ** stringToFree

v3.12.3 106

)

Arguments

Argument Description Other

stringToFree Double pointer to
wchar

Must be deallocated in the same way that memory is
allocated.

GetDefinitionInfo

API GetDefinitionInfo

Function This method is used to retrieve additional attributes about the definition files in
use by the custom engine.

Function prototype

int GetDefinitionTime
(
 wchar_t** reserved,
 wchar_t** defVer,
 wchar_t** defSig,
 wchar_t** engVer,
 void** reserved2
)

Arguments

Argument Description Other

defVer Definition version you would like to report. Metadefender
Core does not use this information for any logic. It is used
only for display purposes.

Implementer
must allocate the
memory required.

defSig Definition signature count you would like to report.
does not information for any Metadefender Core use this

logic. It is used only for display purposes.

Implementer
must allocate the
memory required.

v3.12.3 107

Argument Description Other

engVer Engine version you would like to report. Metadefender Core
does not information for any logic. It is used only for use this
display purposes.

Implementer
must allocate the
memory required.

reserved,

reserved2

Reserved for future use.

Important: defVer, defSig, engVer are double pointers to wchar_t or NULL. They must be
allocated by the custom engine in a way that can be deallocated by the FreeString function
unless NULL pointer is passed.

Return value

Value Description

0 Information successfully retrieved.

1 Information unavailable.

GetDefinitionTime

API GetDefinitionTime

Function This is used to retrieve the timestamp of the definition files currently in use by the
custom engine. Memory is allocated by Metadefender Core.

Function prototype

int GetDefinitionTime
(
 int * defYear,
 int * defMon,
 int * defDay,
 int * defHour,
 int * defMin,
 void** reserved
)

v3.12.3 108

Arguments

Argument Description

defYear Year portion of definition time

defMon Month portion of definition time

defDay Day portion of definition time

defHour Hour portion of definition time

defMin Minute portion of definition time

Return value

Value Description

0 Information successfully retrieved.

1 Information unavailable.

GetExpirationDate

API GetExpirationDate

Function This method is used to retrieve the expiration date of engine.

Function prototype

int GetExpirationDate
(
 int *licYear,
 int *licMon,
 int *licDay,
 void** reserved
)

v3.12.3 109

Arguments

Argument Description

licYear Year portion of license time.

licMon Month portion of license time.

licDay Day portion of license time.

reserved Reserved for future use.

Return value

Value Description

0 Information successfully retrieved.

1 Information unavailable.

GetProductName

API GetProductName

Function This method provides the name of the custom engine. Metadefender Core uses
this for display purposes.

Function prototype

int GetProductName
(
 wchar_t ** productName
 void ** reserved
)

v3.12.3 110

Arguments

Argument Description Other

productName The name of the custom
engine

Implementer must allocate the memory
required.

reserved Reserved for future use

Return value

Value Description

0 To indicate that product name is successfully returned.

Other value Not supported. Reserved for future use.

InitCE

API InitCE

Function This is the first method called. It allows you to initialize your engine.
Metadefender Core recognizes your engine only if this method returns
successfully (returns 0).

Function prototype

int InitCE
(
 void **reserved
)

v3.12.3 111

Arguments

Argument Description

reserved Reserved for future usage

Return value

Value Description

0 To indicate that the engine initialized correctly.

1 To indicate initialization failed and the engine should not be used.

PerformUpdate

API PerformUpdate

Function This is called in order to initiate an update of the custom engine. The call is
synchronous and waits until the update completes.

Function prototype

int PerformUpdate
(
 void ** reserved
)

Arguments

Argument Description

reserved Reserved for future use.

Return value

v3.12.3 112

Return value

Value Description

0 Update completed successfully.

1 Failed to start or finish updating.

2 Engine is already up to date.

3 Failed to update due to network problem.

4 Engine is already updating.

5 Failed downloading update.

6 Failed reloading database.

ReloadConfig

API ReloadConfig

Function This is used to reload any or all specific engine configurations. If there is no
specific engine configuration that needs to be reloaded, this function returns "0"
without any re-initialization of engines.

Function prototype

int ReloadConfig
(
 const wchar_t * reservedI,
 void** reservedIO
)

v3.12.3 113

Arguments

Argument Description

reservedI, OreservedI Reserved for future use

Return value

Value Description

0 Successfully reloaded configuration.

1 Failed to reload configuration.

ReloadDatabase

API ReloadDatabase

Function This method provides a way for Metadefender Core to explicitly reload the
definition database of the engine, especially for a malware engine. During this
call, any requests to scan return "Not Scanned." If there is no specific step
required for reloading the database, it still returns "0" to indicate that the engine is
ready.

Function prototype

int ReloadDatabase
(
 const wchar_t * srcDir,
 void ** reserved
)

v3.12.3 114

Arguments

Argument Description

srcDir If specified, path to the folder where new definition files are placed.

reserved Reserved for future use.

Important: If srcDir is used, the folder and its contents must be consumed and deleted by
engine.

Return value

Value Description

0 Database is successfully reloaded or nothing needs to be done to reload the
database.

1 Failed to reload database (same result as fail to init).

Scan File

API Scan

Function This is the main function of the custom engine. The scan result returned from this
function call is used by Metadefender Core’s scan-related API.

Function prototype

int Scan
(
 int dataType,
 const void * data,
 int * scanResult,
 wchar_t ** threatName,
 void ** reserved
)

v3.12.3 115

Arguments

Argument Description

dataType 0: if data is a file path string (wide characters)

Other dataType values are not supported with 3.2.5

data When dataType indicates a file path, you must cast to a const wchar_t pointer.

e.g.,

wstring filePathToScan = (const wchar_t *)data;

scanResult Scan result to be returned:

0: clean

1: found threat

2: suspicious

3: failed to scan

10: not scanned (during update)

threatName Threat name to be returned.

reserved Reserved for future.

Important: threatName is a double pointer to wchar_t. It must be allocated by the custom
engine in a way that can be deallocated by the FreeString function.

Return value

Value Description

0 Scan completed successfully.

1 Failed to start or finish scanning.

v3.12.3 116

COM Interface

The Metadefender Core COM server externalizes COM (Microsoft’s Component Object Model)
interfaces. The interfaces are all based on the IDispatch automation interface making
integration possible from many scripting languages.

When the Metadefender Core Server starts (this happens when you log in or upon the first
invocation of the server from a client), it starts updating all the supported antivirus engines on
the system. The server repeats the update process at configurable intervals.

Before any method is called, a client instance must be initialized by calling Init or InitEx
(deprecated). For APIs via callbacks, please refer to .COM Connection Points

Title Note Method Description

Stop
ongoing
scan (COM)

 StopScan This method purges all scan
requests and ongoing scans.
Method returns only when all
requests are purged.

Sanitize a
file (COM)

 ConvertFileType This method converts the
specified input file into a different
format.

Analyze file
type III
(COM)

 AnalyzeEx This method is an extensible file
type analysis API that allows the
user to set various analyze file
type options that can be
configured for each file type
analysis request. It can be used
as a wrapper of the other file
type analysis APIs. It also
supports specifying custom
ticket ID and session ID to
associate file type analysis and
scan.

Analyze file
type II
(COM)

 AnalyzeFileTypeEx2 This method analyzes a file (or
buffer) and attempts to guess its
type, detects files of which the

v3.12.3 117

Title Note Method Description

file extensions may have been
altered, and recursively analyzes
contents of archive files.

Get an
engine info
(COM)

 GetUpdateStatusEx This method returns information
about the virus definition files of
the requested product.

Set a
property
value (COM)

 SetProperty Modify one of Metadefender
Core's internal properties.

Get a
property
value (COM)

 GetProperty Reads one of the internal
properties.

Update an
anti-
malware
engine
(COM)

 UpdateEngine This method is called to initiate
an update of a specific anti-
malware engine on the local
machine.

Update anti-
malware
engines
(COM)

 UpdateAntiViruses This method is called to initiate
an update of all anti-malware
engines at the same time on the
local machine. It is
recommended to perform
updates via automatic periodic
update, which is performed at
predetermined intervals as
configured in “Update Interval”
property.

Scan a file
(COM)

 ScanEx This method is an extensible
scan API which allows the
setting of various scan options
that can be configured for each
scan request.

v3.12.3 118

Title Note Method Description

Process a
file (COM)

 Process This method processes a file
through a workflow based on the
specified user agent.

Initialize
(COM)

 Init This method is called to initialize
the connection to the
Metadefender Core service. This
method needs to be called
before any other method can be
called.

Callback for
Processing
a File (COM)

Connection
Points

OnProcess This callback is fired after each
Process method when a pre-
defined event is found.

Callback
For Archive
File Info
(COM)

Connection
Points

OnFileInArchiveInfoAvailable This callback method is invoked
when Metadefender Core's
archive library is enabled and a
file from within an archive is
analyzed (not a scan result).
This callback can be used to
obtain more discrete information
of a file contained within an
archive.

Callback
For Scan
Started
Report
(COM)

Connection
Points

ScanStartReport This callback method is invoked
when each engine begins the
scan. It is used when a scan
request begins. This callback is
fired on if “report_on_scan_start”
is set to “1” (true).

Callback
For Update
Completion
(COM)

Connection
Points

MyOnUpdateComplete This callback method is invoked
when an update completes. It is
fired to all Metadefender Core
client objects that are registered
to this connection point.
However, if there is already an

v3.12.3 119

Title Note Method Description

update request that has not
completed, only the
Metadefender Core client that
requested the update will get a
callback with the update result of
“updateAlreadyRequested(2)”.

Callback
For Update
Progress
Report
(COM)

Connection
Points

MyOnUpdateProgressReport This callback method is invoked
when an update for each engine
completes. It is fired to the
Metadefender Core client object
that initiates the update.

Callback
For
Additional
Scan
Progress
Report
(COM)

Connection
Points

MyScanProgressReport This callback method is invoked
when each engine completes
the scan. The callback can be
used for a scan progress report
when more than one engine is
used. If an engine is not used for
any reason such as encrypted
archive or scan request on a
known file inside the folder, no
progress report will be fired for
the specific file.

Callback
For Scan
Progress
Report
(COM)

Connection
Points

MyScanProgressReport This method is called to initialize
the connection to the
Metadefender Core service. This
method needs to be called
before any other method can be
called.

Callback for
Scan
Completion
(COM)

Connection
Points

MyOnScanComplete This connection point is fired
whenever a scan is completed.
This event is not global, but is
specific to the client that makes
this scan request. In other
words, when scanning is

v3.12.3 120

Title Note Method Description

requested by a client, other
client objects will not get a
callback when the scanning is
completed.

Unsubscribe
from global
events
(deprecated)

deprecated UnsubscribeGlobalEvents This method is called to
unsubscribe to specific or all
events. If you subscribe to a
specific type of event, you must
unsubscribe to that type of
event. For example, if you
subscribe to scan event type
and update event type, you must
unsubscribe to both scan event
type and update event type.
Calling to unsubscribe to events
to which you are not subscribed
has no effect.

Subscribe to
global
events
(deprecated)

deprecated SubscribeGlobalEvents If you want to receive global
callbacks such as
OnLogAvailable, you must
subscribe to global events with
an appropriate event type
through this call. If you subscribe
to a specific type of event, you
must unsubscribe to that type of
event. For example, if you
subscribe to a scan event type
and update event type, you must
both unsubscribe to the scan
event type and update the event
type.

Analyze file
type
(deprecated)

deprecated AnalyzeFileType This method analyzes the
contents of a file and attempts to
guess its type.

v3.12.3 121

Title Note Method Description

Get updated
virus
definition
files
(deprecated)

deprecated GetUpdateStatus This method returns information
about the virus definition files of
the requested product.

Put in scan-
and-clean
queue
(deprecated)

deprecated PutToScanAndCleanQueue This method places a file to the
scan-and-clean queue. In other
words, the scan request will be
processed asynchronously.

Put in scan
queue
(deprecated)

deprecated PutToScanQueue This method is called to place a
file to the scan-queue. In other
words, the scan request will be
processed asynchronously.

Scan and
clean file
(deprecated)

deprecated ScanAndClean This method is called to scan
and clean a file. This is done in a
synchronous (blocking) fashion -
the method returns only after the
scan is complete.

Scan file
(deprecated)

deprecated Scan This method is called to scan a
file or a memory buffer. This is
done in a synchronous
(blocking) fashion - the method
returns only after the scan is
complete.

Initialize
object
(deprecated)

deprecated InitEx This method can still be used for
the purpose of initializing an
instance of a Metadefender Core
object. However, with more
flexible and extensive DB
controller, the ability to have its
own log writer per instance is
disabled.

Important Return Type

v3.12.3 122

Important Return Type

Scan outcome Return Type

Return
value

Description Note

0 No threat
found

No threat detection or the file is empty.

1 Infected
/Known

Threat is found.

2 Suspicious Classified as possible threat but not identified as specific threat.

3 Failed To
Scan

Scanning is not fully performed (For example, invalid file or no read
permission). If no engine is included and scan is enabled, this will be
the final result.

4 Cleaned Threat is found and file is cleaned (repaired or deleted).

5 Unknown Unknown scan result.

6 Quarantined File is quarantined.

7 Skipped
Clean

Scan is skipped because this file type is in whitelist.

8 Skipped
Dirty

Scan is skipped because this file type is in blacklist.

9 Exceeded
Archive
Depth

Threat is not found, but there are more archive levels that were not
extracted. This is affected by the Metadefender Core property,
‘internal_archive_recursive_level’.

10 Not
Scanned

Scan is skipped by the engine, either due to update or other engine
specific reason. If scan is disabled, this is the final result.

11 Aborted All ongoing scans are purged by StopScan API call.

v3.12.3 123

Return
value

Description Note

12 Encrypted File/buffer is not scanned because the file type is detected as
encrypted (password-protected). If the Internal Archive Library is ON,

return type is going to be returned through encrypted not
Metadefender Core scan progress callbacks because the engines do
not perform any scan operations. If the Internal Archive Library is
OFF, Metadefender Core passes the files to the engines encrypted
directly, bypassing the detection.

13 Exceeded
Archive
Size

The extracted archive is larger than set in the maximum file size for
archive. (For more details, refer to “archive_lib_max_size” properties
in the topic.)Config

14 Exceeded
Archive File
Number

There are more files in the archive than set in the maximum number
of files extracted. (For more details, refer to
“archive_lib_max_num_files” properties in the Config
topic.)

15 Password
Protected
Document

Only workflow has this result.

Others

Return Type Values API/Connection points
which use this return type

ThreatList A threat list found on the scanned object,
otherwise null (Threat name should NOT be
used in a way that affects the application
logic. For example, a threat name can be an
empty string)

Scan

ScanEx

ScanAndClean

PutToScanQueue

PutToScanAndCleanQueue

FileTypeShort “E” – Executable (EXE, DLL, …)

http://sf-small-conf.us.opswat.com:8090/display/MDC/Config+CLI+command
http://sf-small-conf.us.opswat.com:8090/display/MDC/Config+CLI+command

v3.12.3 124

Return Type Values API/Connection points
which use this return type

“D” – Document (MS Office word document,
MS Office excel sheet)

“A” – Archive (Zip, Rar, Tar, …)

“G” – Graphical format (Jpeg, GIF, TIFF,
BMP, …)

“F” – Folder

“Y” – Logical drive

“I” – Disk image

“T” – Text

“P” – PDF format

“M” – audio or video format

“Z” – mail messages (MSG, …)

“O” – Other (anything that is not recognized
as one of the above)

Note: An ISO is treated as an archive file
type (type “A”) and not as a disk image (type
“I”).

COM Connection Points

The Metadefender Core server provides callback methods by allowing client objects to register
connection points. In order to use Metadefender Core API in C/C++ development, all
connection points must be implemented. For other languages such as C# or , only ASP.net
desired methods can be implemented.

v3.12.3 125

Callback For Additional Scan Progress Report (COM)

Method MyScanProgressReport

Description This callback method is invoked when each engine completes the scan. The
callback can be used for a scan progress report when more than one engine is
used. If an engine is not used for any reason such as encrypted archive or
scan request on a known file inside the folder, no progress report will be fired
for the specific file.

Note Connection Points

Function prototype

void MyScanProgressReport
(
 VARIANT ticket,
 VARIANT result,
 VARIANT threatList,
 VARIANT productName,
 VARIANT scanStartTime
 VARIANT scanEndTime
 VARIANT filePath
)

Arguments

Argument Description Data
Type

ticket The ticket which is generated when this scan has been
requested.

UINT32

result A UINT32 value that specifies the scan outcome. UINT32

threatList An array of strings(String []). Each string element in the array is
the name of the virus which has been detected.

Array
of
strings

v3.12.3 126

Argument Description Data
Type

productName The description of the product. string

scanStartTime The time when the scan is started. date

scanEndTime The time when the scan is finished. date

filePath The path to the file which is scanned. string

Callback For Archive File Info (COM)

Method OnFileInArchiveInfoAvailable

Description This callback method is invoked when Metadefender Core's archive library is
enabled and a file from within an archive is analyzed (not a scan result). This
callback can be used to obtain more discrete information of a file contained
within an archive.

Note Connection Points

Function prototype

void OnFileInArchiveInfoAvailable
(
 VARIANT SessionID,
 VARIANT Ticket,
 VARIANT FileName,
 VARIANT MD5,
 VARIANT SHA1,
 VARIANT SHA256,
 VARIANT FileSize,
 VARIANT FileTypeDesc,
 VARIANT Reserved
)

v3.12.3 127

Arguments

Argument Description Data
Type

SessionID Reserved for future use.

Ticket The ticket that is generated when this scan has been requested. UINT
32

FileName The name of the file contained in the archive with the file path of
the root archive preceding it.

string

MD5 MD5 signature of the file. string

SHA1 SHA1 signature of the file. string

SHA256 SHA256 signature of the file. string

FileSize Reserved for future use.

FileTypeDesc Reserved for future use.

Reserved Reserved for future use.

Callback for Processing a File (COM)

Method OnProcess

Description This callback is fired after each Process method when a pre-defined event is
found.

Note Connection Points

v3.12.3 128

Function prototype

void OnProcess
(
 [out] VARIANT *OutDetail,
 [out, retval] VARIANT *OutArgsArray
)

Arguments

Argument Description Data Type

OutDetail The details from this event. The JSON schema depends
on the callback type. See ‘‘callback types’’ for more
details.

string

OutArgsArray 0: CallBackType: Since OnProcess is a general callback
that is fired for different events, this specifies the event
type. See the callback types for details of the type.

1: Ticket: The ticket returned from the Process API. For
example 974989300.

2: The final result of processing the specified file through a
workflow

1 = The file was allowed. JSON equivalent is "Allowed"

2 = The file was blocked. JSON equivalent is "Blocked"

3 = The file is currently being processed. JSON equivalent
is "Processing"

Safearray of
variants with
the following
order

0: UINT32

1: string

2: UINT32

Callback types

Callback
Type

Description Example JSON

2 This callback method is
invoked whenever each
engine completes the scan.

Example

v3.12.3 129

Callback
Type

Description Example JSON

This callback can be used
for a progress report of
scanning when more than
one engine is used. If
engines are not used for any
reason such as encrypted
archive or scan request on a
known file, no progress
report is fired.

{
 "type": "ScanProgressReport",
 "ticket": 974989300,
 "scan_result": "1",
 "threat_list": [
 "eicar",
 "eicar"
],
 "product_name": "Clamwin Scan Engine",
 "scan_start_time": "6/5/2014 2:32 PM",
 "scan_end_time": "6/5/2014 2:32 PM",
 "scan_time_(ms)": "1",
 "file_path": "C:\\some\\file.txt",
 "process_result": "Processing"
}

4 This connection point is fired
whenever a scan is
completed. This event is not
global but specific to the
client that makes this scan
request. In other words,
when scanning is requested
by a client, other client
objects will not get a callback
when the scanning is
completed.

Example

{
 "type": "OnScanComplete",
 "ticket": 974989300,
 "scan_result": "1",
 "threat_list": [
 "eicar",
 "eicar"
],
 "scan_start_time": "6/5/2014 2:32 PM",
 "scan_end_time": "6/5/2014 2:32 PM",
 "scan_time_(ms)": "2",
 "file_path": "C:\\some\\file.txt",
 "process_result": "Processing"
}

7 This callback method is
invoked when Process'
archive handling is enabled
and an archive was
successfully extracted.

Example

v3.12.3 130

Callback
Type

Description Example JSON

This callback can be used to
determine if a processed file
is an archive.

{
 "type": "ArchiveFileInfo",
 "ticket": 783676241,
 "file_path": "2files_dirty.zip",
 "process_result": "Processing"
}

8 This is fired after a file has
been fully processed through
each stage of a workflow.

FTC Details
If FTC is enabled
and copy/move is
disabled, the
converted file
appears next to the
original file.

If FTC and copy
/move are enabled,
the converted file
location will be
reported in
"post_processing.
copy
/move_destination"

Collisions are
handled by
incrementing the
file name:
file_name.txt ,
file_name_1.txt ,
file_name_2.txt , ..

Example

{
 "type": "ProcessComplete",
 "ticket": "974989300",
 "process_result": "Allowed",
 "file_path": "C:\\some\\file.txt",
 "user_agent": "metascan_rest",
 "profile": "Default",
 "file_type_skipped_scan": false,
 "blocked_reason": ""
}

If Post Processing is ran:

Example

{
 "type": "ProcessComplete",
 "ticket": "974989300",
 "process_result": "Allowed",
 "file_path": "C:\\some\\toConvert.docx",
 "user_agent": "metascan_rest",
 "profile": "Default",
 "file_type_skipped_scan": false,
 "blocked_reason": "",
 "post_processing": {
 "actions_ran": "Converted | Quarantined | Moved",
 "actions_failed": "Convert Failed | Quarantine Failed",
 "converted_to": "pdf",

v3.12.3 131

Callback
Type

Description Example JSON

Possible
Blocked
Reasons

Failed to
start the
processing
job: "Process
Failed"

Mismatch
detected:
"Mismatch"

File type
disallowed:
"Filtered"

Scan Result:
"Known |
("Dirty" or
"Infected") |
Suspicious |
Failed |
Cleaned |
Unknown |
("Skipped
Dirty" or
"Skipped
Infected") |
Not Scanned
| Aborted |
Password
Protected
Document"

Archive:
"Encrypted
Archive |
Missing File
During

 "copy_destination": "C:\\toConvert.pdf"
 }
}

v3.12.3 132

Callback
Type

Description Example JSON

Extraction |
Insufficient
Space For
Archive
Extraction |
Exceeded
Archive Size
| Exceeded
Archive File
Number |
Archive
Extraction
Error |
Exceeded
Archive
Depth |
Archive
Error"

Post Action:
"Sanitization
Failed"
(Copy or
Quarantine
failure will
not cause
blocked
result)

Possible
Process
Results

"Allowed":
the file is
allowed

v3.12.3 133

Callback
Type

Description Example JSON

"Blocked":
the file is
blocked

"Processing":
the file is
currently
being
processed

Possible
Action Ran
Results

Sanitized

Copied

Moved

Quarantined

Deleted

Ran Script

*Copied and Moved
will never exist
together
*Quarantined and
Deleted will never
exist together
*(Copied/Moved)
and (Quarantined
/Deleted) will never
exist together

9
Example

v3.12.3 134

Callback
Type

Description Example JSON

This callback is fired for
AnalyzeFileType. It will be
fired for a single file as well
as for individual files within
an archive.

For a single file it
will be a fully
qualified path, such
as: "C:\\level1\\file.
txt"

For a file inside an
archive it will be
prefixed with \\,
such as:
"\\level1\\file.txt"

{
 "type": "FileTypeAnalyze",
 "ticket": "974989300",
 "file_path": "C:\\some\\toConvert.docx",
 "file_size": 5134
 "file_type_category" : "E",
 "file_type_description" : "Win64 Executable (generic)",
 "file_type_extension" : "EXE/DLL",
 "md5": "20A2DFB5EC69BCEA66203CF0907791FD",
 "sha1": "6D5052FC0ED06C0D975F19D79AFEB5454F3926D3",
 "sha256": "4A7C7077F929041D2D2A1899A8D28751B097A4DA41EFAAE022C0DE9F18282FE4",
 "process_result": "Processing"
}

Callback for Scan Completion (COM)

Method MyOnScanComplete

Description This connection point is fired whenever a scan is completed. This event is not
global, but is specific to the client that makes this scan request. In other words,
when scanning is requested by a client, other client objects will not get a
callback when the scanning is completed.

Note Connection Points

Function prototype

void MyOnScanComplete
(
 VARIANT ticket,

v3.12.3 135

 VARIANT * result,
 VARIANT * threatList,
 VARIANT * scanStartTime
 VARIANT * scanEndTime
)

Arguments

Argument Description Data
Type

ticket The ticket that is generated when this scan has been requested. UINT32

result A UINT32 value that specifies the scan outcome. UINT32

threatList An array of strings (String []). Each string element in the array is
the name of the virus which has been detected.

Array
of
strings

scanStartTime The time when the scan is started. Date

scanEndTime The time when the scan is finished. Date

Callback For Scan Progress Report (COM)

Method MyScanProgressReport

Description This method is called to initialize the connection to the Metadefender Core
service. This method needs to be called before any other method can be
called.

Note Connection Points

Function prototype

void MyScanProgressReport
(
 VARIANT ticket,
 VARIANT result,

v3.12.3 136

 VARIANT threatList,
 VARIANT productName,
 VARIANT productNum,
 VARIANT totalNumberOfProducts,
 VARIANT scanStartTime
 VARIANT scanEndTime
)

Arguments

Argument Description Data
Type

ticket The ticket that is generated when this scan has been
requested.

UINT32

result A UINT32 value that specifies the scan outcome. UINT32

threatList An array of strings(String []). Each string element in the
array is the name of the virus which has been
detected.

Array
of
strings

productName The description of the product. string

productNumber The order of scan completion among the usable AVs. UINT32

totalNumberOfProducts The number of products scan is requested for this
ticket.

UINT32

scanStartTime The time when the scan is started. date

scanEndTime The time when the scan is finished. date

v3.12.3 137

Callback For Scan Started Report (COM)

Method ScanStartReport

Description This callback method is invoked when each engine begins the scan. It is used
when a scan request begins. This callback is fired on if “report_on_scan_start”
is set to “1” (true).

Note Connection Points

Function prototype

void ScanStartReport
(
 VARIANT ticket,
 VARIANT productName,
 VARIANT filePath
)

Arguments

Argument Description Data
Type

ticket The ticket which is generated when this scan has been
requested.

UINT32

productName The description of the product. string

filePath The path to the file which is scanned. string

v3.12.3 138

Callback For Update Completion (COM)

Method MyOnUpdateComplete

Description This callback method is invoked when an update completes. It is fired to all
Metadefender Core client objects that are registered to this connection point.
However, if there is already an update request that has not completed, only
the Metadefender Core client that requested the update will get a callback with
the update result of “updateAlreadyRequested(2)”.

Note Connection Points

Function prototype

void MyOnUpdateComplete
(
 VARIANT updateResult,
 VARIANT updateReport
)

Arguments

Argument Description Data
Type

updateResult A UINT32 value which contains the update result:

0: updateFinished

1: updateFailed

2: updateAlreadyRequested

3: updateUnknown

UINT32

updateReport XML-formatted string consisting of engine names and engine
update results. Engine update result is one of the following:

updateOk

updateUpToDate

string

v3.12.3 139

Argument Description Data
Type

updateFailed

updateUnknown

updateNetworkProblem

updateTimeOut

updateNotImplemented

updateNotSupported

updateAlreadyInProgress*

* updateAlreadyInProgress - If any update on the antivirus product is already running, no
additional updates will be queued. This means that the update that has previously been started
will return the UpdateResult through the connection point after completion.

Callback For Update Progress Report (COM)

Method MyOnUpdateProgressReport

Description This callback method is invoked when an update for each engine completes. It
is fired to the Metadefender Core client object that initiates the update.

Note Connection Points

Function prototype

void MyOnUpdateProgressReport
(
 VARIANT productName,
 VARIANT updateState,
 VARIANT updateReport,
 VARIANT productNum,
 VARIANT totalNumberOfProducts,
 VARIANT startTime,
 VARIANT elapsedMiliSec,
 VARIANT reserved
)

Arguments

v3.12.3 140

Arguments

Argument Description Data
Type

productName The description of the product.

updateState The progress in percentage for update with the specified
engine (0 indicates update started while 100 indicates
update complete).

updateReport XML-formatted string consisting of engine names and
engine update results. Engine update result is one of the
following:

updateOk

updateUpToDate

updateFailed

updateUnknown

updateNetworkProblem

updateTimeOut

updateNotImplemented

updateNotSupported

updateAlreadyInProgress*

* updateAlreadyInProgress - If any update on the
antivirus product is already running, no additional
updates will be queued. This means that the update that
has previously been started will return the UpdateResult
through the connection point after completion.

string

productNum The order of update among the current AVs.

totalNumberOfProducts The number of products scanned is requested for this
ticket.

startTime Time when update for the engine is initiated.

elapsedMiliSec Time elapsed for update complete in milliseconds.

v3.12.3 141

Argument Description Data
Type

reserved Reserved

Deprecated COM interface

The following methods are no longer recommended by OPSWAT, but may be used under
certain circumstances. Please contact OPSWAT customer support (https://www.opswat.com

) before using one of these methods./support#support-levels

Analyze file type (deprecated)

Method AnalyzeFileType

Description This method analyzes the contents of a file and attempts to guess its type.

Note deprecated

Function prototype

HRESULT AnalyzeFileType
(
 [in] VARIANT FileNameOrBuffer,
 [out] VARIANT * FileTypeLong,
 [out, retval] VARIANT * FilteTypeShort
)

Arguments

Argument Description Data
Type

FileNameOrBuffer If FileNameOrBuffer is of type string then it is treated as a file
name to be analyzed. Otherwise, if it is a byte array (Byte []) it
is treated as a memory buffer that should be analyzed.

File
name:
string

https://www.opswat.com/support#support-levels
https://www.opswat.com/support#support-levels

v3.12.3 142

Argument Description Data
Type

Buffer:
byte
array

FileTypeLong If the pointer that is passed to the method is not null, then the
VARIANT will be filled with a string describing the file type in
detail.

string

FileTypeShort A series of letters that summarize the file type. string

The string returned in FileTypeLong is a series of types that match the file. If the file matches
more than one type (sometimes it’s impossible to tell the difference), the returned string will
contain all the possible file types separated by ‘,’.

The string returned in FileTypeShort is a string comprised of letters that give the rough
classification of the file.

Get updated virus definition files (deprecated)

Method GetUpdateStatus

Description This method returns information about the virus definition files of the requested
product.

Note deprecated

Function prototype

HRESULT GetUpdateStatus
(
 [in] VARIANT ProductNamePart,
 [out] VARIANT * ProductDescription,
 [out] VARIANT * VirusDefinitionDate,
 [out] VARIANT * VirusDefinitionVersion
)

Arguments

v3.12.3 143

Arguments

Argument Description Data
Type

ProductNamePart A part of the product name of the desired package.
Definition file information of the product containing this
value is returned.

string

ProductDescription The description of the product that matched
ProductNamePart.

string

VirusDefinitionDate The dates of virus definition files for the product. "0" is
returned if the data file time is unavailable, for example
when the product does not support the data file time.

Date

VirusDefinitionVersion The virus definition file version of the product. string

Initialize object (deprecated)

Method InitEx

Description This method can still be used for the purpose of initializing an instance of a
Metadefender Core object. However, with more flexible and extensive DB
controller, the ability to have its own log writer per instance is disabled.

Note deprecated

Function prototype

HRESULT InitEx
(
 [in] VARIANT * argsArray,
 [in] VARIANT argXML,
 [out, retval] VARIANT *UsableAntiViruses
)

v3.12.3 144

Arguments

Argument Description Data Type

argsArray empty

argXML This parameter is reserved for later use. Pass null as its
value.

empty

UsableAntiViruses The list of AVs will be used for this instance of
Metadefender Core client.

Array of
strings

Put in scan-and-clean queue (deprecated)

Method PutToScanAndCleanQueue

Description This method places a file to the scan-and-clean queue. In other words, the
scan request will be processed asynchronously.

Note deprecated

Note: This is a deprecated method and we suggest using ScanEx instead.

Function prototype

HRESULT PutToScanAndCleanQueue
(
 [in] VARIANT FileNameOrBuffer,
 [out, retval] VARIANT* Ticket
)

Arguments

Argument Description Data
Type

FileNameOrBuffer

v3.12.3 145

Argument Description Data
Type

If FileNameOrBuffer is of type string then it is treated as a file
or directory name to be scanned. Otherwise, if it is a byte
array (Byte []), it is treated as a memory buffer that should be
scanned.

File
name:
string

Buffer:
byte
array

Ticket A ticket for this scan job. This ticket is passed to the callback
methods registered via the Callback for Scan Completion

 connection point.(COM)

UINT32

Note: To get the result of this call, you must implement the Callback for Scan Completion
 connection point.(COM)

Put in scan queue (deprecated)

Method PutToScanQueue

Description This method is called to place a file to the scan-queue. In other words, the
scan request will be processed asynchronously.

Note deprecated

Note: This is a deprecated method and we suggest using ScanEx instead.

Function prototype

HRESULT PutToScanQueue
(
 [in] VARIANT FileNameOrBuffer,
 [out, retval] VARIANT* Ticket
)

v3.12.3 146

Arguments

Argument Description Data Type

FileNameOrBuffer If FileNameOrBuffer is of type string then it is treated as a
file / directory name to be scanned. Otherwise, if it is a
byte array (Byte []) it is treated as a memory buffer that
should be scanned.

File name:
string

Buffer:
byte array

Ticket A ticket for this scan job. This ticket will be passed to the
callback methods registered via the Callback for Scan

 connection point.Completion (COM)

UINT32

Note: To get the result of this call, you must implement the Callback for Scan Completion
 connection point.(COM)

Scan and clean file (deprecated)

Method ScanAndClean

Description This method is called to scan and clean a file. This is done in a synchronous
(blocking) fashion - the method returns only after the scan is complete.

Note deprecated

Note: This is a deprecated method and we suggest using ScanEx instead.

Function prototype

HRESULT ScanAndClean
(
 [in] VARIANT FileName,
 [out] VARIANT* ThreatList,
 [out, retval] VARIANT* ScanOutcome
)

v3.12.3 147

Arguments

Argument Description Data Type

FileName If FileNameOrBuffer is of type string then it is treated as a
file / directory name to scan. Otherwise, if it is a byte array
(Byte []) it is treated as a memory buffer that should be
scanned.

File name:
string

Buffer: byte
array

ThreatList A threat list found on the scanned object, otherwise null. Array of
strings

ScanOutCome The scan result. UINT32

Scan file (deprecated)

Method Scan

Description This method is called to scan a file or a memory buffer. This is done in a
synchronous (blocking) fashion - the method returns only after the scan is
complete.

Note deprecated

Note: This is a deprecated method and we suggest using ScanEx instead.

Function prototype

HRESULT Scan
(
[in] VARIANT FileNameOrBuffer,
[out] VARIANT* ThreatList,
[out, retval] VARIANT* ScanOutcome
)

v3.12.3 148

Arguments

Argument Description Data Type

FileNameOrBuffer If FileNameOrBuffer is of type string, then it is treated as
a file or directory name to scan. Otherwise, if it is a byte
array (Byte []), it is treated as a memory buffer that should
be scanned.

File name:
string

Buffer:
byte array

ThreatList A threat list found on the scanned object, otherwise null. array of
strings

ScanOutCome The scan result. UINT32

Subscribe to global events (deprecated)

Method SubscribeGlobalEvents

Description If you want to receive global callbacks such as OnLogAvailable, you must
subscribe to global events with an appropriate event type through this call. If
you subscribe to a specific type of event, you must unsubscribe to that type of
event. For example, if you subscribe to a scan event type and update event
type, you must both unsubscribe to the scan event type and update the event
type.

Note deprecated

Function prototype

HRESULT SubscribeGlobalEvents
(
 [in] VARIANT EventType
 [out, retval] VARIANT * Reserved
)

v3.12.3 149

Arguments

Argument Description Data Type

EventType Determines the type of events to subscribe.

0: All events

1: Update events

2: Log events

3: Scan events

UINT32

Reserved Reserved

Unsubscribe from global events (deprecated)

Method UnsubscribeGlobalEvents

Description This method is called to unsubscribe to specific or all events. If you subscribe
to a specific type of event, you must unsubscribe to that type of event. For
example, if you subscribe to scan event type and update event type, you must
unsubscribe to both scan event type and update event type. Calling to
unsubscribe to events to which you are not subscribed has no effect.

Note deprecated

Function prototype

HRESULT UnsubscribeGlobalEvents
(
 [in] VARIANT EventType
 [out, retval] VARIANT * Reserved
)

v3.12.3 150

Arguments

Argument Description Data Type

Reserved Reserved

Methods

This section lists all the methods available via Metadefender Core COM object. Before you can
call any of the methods listed here, you need to create Metadefender Core COM object called
‘Metascanner’. When you install Metadefender Core, Metascanner is registered on the system
as part of the type library .MetascanLib

Metascanner Program ID: Metascan.Metascanner.1

Analyze file type I (COM)

Method AnalyzeFileTypeEx

Description This method analyzes a file (or buffer) and attempts to guess its type, detects
files of which the file extensions may have been altered, and recursively
analyzes contents of archive files.

Function prototype

HRESULT AnalyzeFileTypeEx
(
 [in] VARIANT FileName,
 [out] VARIANT * SuggestedExtension,
 [out] VARIANT * FileTypeLong,
 [out, retval] VARIANT * FileTypeShort
)

v3.12.3 151

Arguments

Argument Description Data
Type

FileName If FileNameOrBuffer is of type string then it is treated as a
file name to be analyzed. Otherwise, if it is a byte array it is
treated as a memory buffer that should be analyzed

String
(file)

OR

Byte
array
(buffer)

FileTypeLong If the pointer that is passed to the method is not null then
the VARIANT will be filled with a string describing the file
type in detail.

string

SuggestedExtension If the pointer that is passed to the method is not null then
the VARIANT will be filled with the suggested extension
type of the file.

string

FileTypeShort A series of letters that summarize the file type. More
details are described in UOther Important Return Types.

string

The string returned in SuggestedExtension is the three letter extension of the filename. The
AnalyzeFiletypeEx detection is based on the FileTypeLong returned from the AnalyzeFileType.
The SuggestedExtension returns the actual extension of the file, even if it has been altered
before scanning the file. If the file comprises of more than one extension, such as executable
plus archive, the function returns only the first extension type detected.

Analyze file type II (COM)

Method AnalyzeFileTypeEx2

Description This method analyzes a file (or buffer) and attempts to guess its type, detects
files of which the file extensions may have been altered, and recursively
analyzes contents of archive files.

v3.12.3 152

Function prototype

HRESULT AnalyzeFileTypeEx2
{
 [in] VARIANT FileNameOrBuffer,
 [out] VARIANT * InArgsArray,
 [out, retval] VARIANT * OutArgsArray
}

Arguments

Argument Description Data Type

FileNameOrBuffer If FileNameOrBuffer is of type string then it is
treated as a file name to be analyzed. Otherwise, if
it is a byte array, it is treated as a memory buffer
that should be analyzed.

String (file)

OR

Byte array
(buffer)

InArgsArray A list of input arguments in the following order:

[] Detect file extension mismatches. Result can be 0
read from OutArgsArray. Set this to one of the
following:

a. True - detect mismatches if the input file’s
extension doesn’t match any of our suggested
extensions

b. False - do not detect mismatches

[] If mismatch detection and recursive analysis is 1
enabled, stop analyzing upon a mismatch and return
immediately with results up until the file that
contained the mismatch. Set this to one of the
following:

a. True – stop analyzing on the first mismatch

b. False – analyze all the files within an archive

Variant Array

[0] Boolean

[1] Boolean

[2] Boolean

v3.12.3 153

Argument Description Data Type

[] Analyze the full contents of archive files along 2
with the archive file itself. Set this to one of the
following:

a. True – recursively analyze archive files

b. False – only analyze the input file

OutArgsArray A list of output arguments in the following order:

[] If detection of file extension mismatch is enabled, 0
this flag will indicate whether a mismatch was
detected. This will be set to one of the following:

a. 0 – no mismatch is detected

b. 1 – a file extension mismatch was found while
analyzing the input file or the contents of the archive

c. 2 –unknown because of no detection of file type
and / or the input was a buffer

[] Array containing the analyzed file(s) and file type 1
information – consisting of the file name, file
description, a short type, suggested extension, and
extension mismatch flag

Variant Array

[0] UINT32
(mismatch flag)

[1] Variant Array
(files)

Variant Array
(files)

[0][0] String (file
name)

[0][1] Variant
Array (file info)

[0][2] UINT32
(mismatch flag)

Variant Array
(file info)

[0][0] Long type

[0][1] Short type

[0][2] Suggested
Extension

v3.12.3 154

Comparison with AnalyzeFileTypeEx()

In addition to returning similar results as AnalyzeFileTypeEx, this method analyzes a file and
the contents if it is an archive file. It also gives one or more suggestions for the file type
information (description, category, and suggested extension) when available. Additionally, it can
raise a flag if the extension of a file does not match any suggested extensions. The caller can
specify to abort further analysis on the first mismatch. There are three levels of VARIANT
arrays, the last two levels consisting of 2-dimensional SafeArrays.

Upon analysis with AnalyzeFileTypeEx(), if specific details of the file type could be not
retrieved, the ‘FileTypeShort’ result will be set to the letter ‘O’, throwing it into the “others”
category. In contrast, AnalyzeFileTypeEx2() will return an empty array, indicating that details
could not be retrieved for the file

Analyze file type III (COM)

Method AnalyzeEx

Description This method is an extensible file type analysis API that allows the user to set
various analyze file type options that can be configured for each file type
analysis request. It can be used as a wrapper of the other file type analysis
APIs. It also supports specifying custom ticket ID and session ID to associate
file type analysis and scan.

Function prototype

HRESULT AnalyzeEx
{
 [in] VARIANT ContentsToScan,
 [in] VARIANT * InArgsArray,
 [out, retval] VARIANT * OutArgsArray
}

Arguments

Argument Description Data Type

ContentsToScan File name:
string

v3.12.3 155

Argument Description Data Type

This argument may hold one of two types, a file path to be
scanned or a memory buffer to be scanned based on the
data type of this parameter and input argument (

) valueInArgsArray

A file path: if the type of this parameter is a string

Memory buffer: if the type of this parameter is a byte
array(byte[])

Buffer:
byte array

InArgsArray A list of input arguments in the following order.

0. File Type Library choice

0: Use default

1: Magic File Type

2: TriD (Not supported for now)

1. Custom ticket #

(maximum 9 digits from 1-999999999) or (0 for not using
custom ticket #)

2. Session ID

a. To associate multiple file scan as a group (e.g., multiple
requests for single folder)

Array of
variants
with the
following
order:

1: UINT32

1: UINT32

2: String

OutArgsArray A list of outputs with the following order:

0: Ticket number (if custom ticket # is specific in
InargsArray, same ticket number is returned).

1: Suggested File Type Extension

2: File Type Long

3: File Type Short

Array of
variants
with the
following
order:

0: UINT32

1: String

2: String

3: String

v3.12.3 156

Check license (COM)

Method Checklicense - COM

Description This method checks if the license installed on the machine is valid and when it
expires. Metadefender Core processes, scans, and updates requests only if
LicenseType is one of the“valid” types below.

Function prototype

HRESULT CheckLicense
{
 [out] VARIANT * LicenseType,
 [out] VARIANT * ExpiredDate,
 [out, retval] VARIANT * IsValid
}

Arguments

Argument Description Data Type

LicenseType The type of license:

0: Expired (invalid)

1: Activated (valid)

2: Trial (valid)

3: Activate Required (invalid)

4: Activated but expires in 30 days (valid)

UINT32

ExpiredDate The date when the license is expired in the following format:

MM/DD/YYYY (MM: month, DD: day, YYYY: year)

string

IsValid True: if the license is valid

False: if the license is invalid

bool

v3.12.3 157

Get an engine info (COM)

Method GetUpdateStatusEx

Description This method returns information about the virus definition files of the requested
product.

Function prototype

HRESULT GetUpdateStatusEx
{
 [in] VARIANT ProductNamePart,
 [out] VARIANT * ProductDescription,
 [out] VARIANT * VirusDefinitionDate,
 [out] VARIANT * VirusDefinitionVersion,
 [out] VARIANT * VirusDefinitionSignature,
 [out] VARIANT * ProductEngineVersion
}

Arguments

Argument Description Data
Type

ProductNamePart A part of the product name of the desired package.
Definition file information of the product containing this
value will be returned.

string

ProductDescription The description of the product that matched
ProductNamePart.

string

VirusDefinitionDate The dates of virus definition files for the product. 0 will
be returned if the data file time is unavailable, for
example when the product does not support the data
file time.

date

VirusDefinitionVersion The virus definition file version of the product. string

v3.12.3 158

Argument Description Data
Type

VirusDefinitionSignature The virus definition file signature of the product. string

ProductEngineVersion The product (engine) version. string

Get a property value (COM)

Method GetProperty

Description Reads one of the internal properties.

Function prototype

HRESULT GetProperty
(
 [in] VARIANT PropertyName,
 [out, retval] VARIANT* PropertyValue
)

Arguments

Argument Description Data
Type

PropertyName The name of the requested property. For valid names, please refer
to the Metadefender Core Configuration Guide.

string

PropertyValue The value of the property string

v3.12.3 159

Initialize (COM)

Method Init

Description This method is called to initialize the connection to the Metadefender Core
service. This method needs to be called before any other method can be
called.

Function prototype

HRESULT Init
(
 [out, retval] VARIANT *UsableAntiMalwares
)

Arguments

Argument Description Data Type

UsableAntiMalwares The list of anti-malware engine names available to
be used with this instance of Metadefender Core

array of
strings
(VT_BSTR)

Process a file (COM)

Method Process

Description This method processes a file through a workflow based on the specified user
agent.

Function p rototype

HRESULT Process
(
 [in] VARIANT ContentsToBeProcessed,
 [in] VARIANT ContentsType,

v3.12.3 160

 [in] VARIANT UserAgent,
 [in] VARIANT InArgsArray,
 [out] VARIANT *OutDetail,
 [out, retval] VARIANT *OutArgsArray
)

Arguments

Argument Description Data Type

ContentsToBeProcessed Full path to the file to be processed string

ContentsType 0: holds a file path (Currently this is ignored since
only 0 is supported)

UINT32

UserAgent A string to identify the user. Used for mapping to
a specific workflow.

string

InArgsArray 0: Sync Flag - Reserved for future use.

1: Custom Ticket - Currently, only the integer
range value is supported.

2: Password for Archives

3: Additional Logging Parameter - This is passed
to the user description argument in ScanEx if
scanning is enabled on the workflow. Reserved
for future use.

4. File Display Path - The full path of the file from
the source machine to display to the user after
processing.

5. Disable Logging - Disallows Metadefender
Core to log any file type analysis and scan
results.

6. Caching Option

0: disable to cache for the scan request

1: enable to cache for the scan request

2: disregard the existing cache

3: use the global setting

Safearray
of variants
with the
following
order

0: boolean

1: string

2: string

3: string

4: string

5. boolean

6. uint32

7. string

v3.12.3 161

Argument Description Data Type

7. Customized data sanitization location

OutDetail JSON result details string

Example JSON

{ "Ticket": "974989300" }

In case of error [e.g. "Server is too busy. Try
again later." | "Invalid License" | "Daily scan limit
reached" | "Failed to continue. unknown error" |
"Invalid file path"] :

{ "Error": "Invalid License" }

In case of too many simultaneous scans:

{ "Error": " Exceeded maximum thread count" }

string

OutArgsArray 0: Custom Ticket - to be used to associate
callback results

Safearray
of variants
with the
following
order

0: string

 When the Metadefender Core server is too busy, the HRESULT value returned will be Note:
E_OUTOFMEMORY

Creating workflow profiles

Many configurations are supported via workflow profiles. To access the Workflow tab on the
Metadefender Core Management Console, go here: http://localhost:8008/management/workflow
.

Sanitize a file (COM)

Method ConvertFileType

Description This method converts the specified input file into a different format.

Function prototype

http://localhost:8008/management/workflow

v3.12.3 162

Function prototype

HRESULT ConvertFileType
{
 [in] VARIANT ContentsToConvert,
 [in] VARIANT ConvertTo,
 [in] VARIANT TargetFolderPath,
 [in] VARIANT * ReservedInArgsArray,
 [out] VARIANT * ReservedOutArgsArray,
 [out, retval] VARIANT * ConvertedFilePath
}

Arguments

Argument Description Data
Type

ContentsToConvert UNC of the input file to convert. String

ConvertTo Identifier for targeted conversion.

Usually file extension (e.g., pdf, docx…)

String

TargetFolderPath UNC of the destination folder path. The converted file will
be created in that folder.

String

ReservedInArgsArray Reserved

ReservedOutArgsArray Reserved

ConvertedFilePath Path to the converted file if conversion was successful. String

Scan a file (COM)

Method ScanEx

Description This method is an extensible scan API which allows the setting of various scan
options that can be configured for each scan request.

v3.12.3 163

1.

2.

3.

Function prototype

HRESULT ScanEx
(
 [in] VARIANT ContentsToScan,
 [in] VARIANT* InArgsArray,
 [out, retval] VARIANT* OutArgsArray
)

Arguments

Argument Description Data
Type

ContentsToScan This argument may hold one of four types: a file path to be
scanned, a file signature to be scanned, a boot sector to be
scanned, or a memory buffer to be scanned, based on the
data type of this parameter and input argument () InArgsArray
value

File path: if the type of this parameter is a string and
the fifth argument of is set to 0 or the size InArgsArray
of is 3InArgsArray

File signature: if the type of this parameter is a string
and the fifth argument of is set to 1InArgsArray

Boot sector scan: if the type of this parameter is a
string and the fifth argument of is set to 2InArgsArray

Memory buffer: if the type of this parameter is a byte
array(byte[])

Virtual Machine image folder path

File
name:
string

Buffer:
byte
array

InArgsArray A list of input arguments in following order:

(boolean) Sync flag (true: synchronous scan , false or
invalid value: asynchronous scan)

(boolean) Clean flag (true: Action on dirty file, false:
keep)

Array of
variants

v3.12.3 164

3.

4.

5.

6.

7.

8.

Argument Description Data
Type

(UINT32) Custom ticket #

- maximum 9 digits from 1-999999999 or 0 for not using
custom ticket #

(UINT32) Analyze before scan

0: disable analyze file before scan

1: enable analyze file before scan

2: use global setting (“analyze_before_scan”)

(UINT32) Contents Type

0: ContentToScan argument holds file path or memory
buffer

1: ContentToScan argument holds SHA1-based
signature.

2: ContentToScan argument holds driver letter for a
boot sector scan

4: ContenToScan argument holds Virtual Machine
image folder path (Virtual machine disk must contain a
Windows based filesystem)

(UINT32) Clean Action Type

0: take no action

1: quarantine (ignore global setting, “clean_action”)

2: delete (ignore global setting, “clean action”)

3: follow global setting

(UINT32) Caching option

0: disable to cache for this scan request

1: enable to cache for this scan request

2:rescan (disregard existing cache and update with new
scan result)

3: use global setting(“enable_cache_scan”)

(String) Password for encrypted archive.

v3.12.3 165

8.

9.

10.

11.

12.

1.

2.

3.

Argument Description Data
Type

- Use empty string to when no password is required.
(“enable_cache_scan”)

(String) User agent

- This is used to associate scan history with the source
of scan request. Empty string is allowed.

(String) User description

- This will be logged along with scan request for the
caller’s purpose. Empty string is allowed.

- Pass the following JSON formatted string to control
the file name and file path to be logged:

{"file_info.original_file_path":"<original file path not
including file name", "file_info.display_name":"<original
file name>"}

(UINT32) Configure logging

0: disable logging this particular scan request

1: enable logging this particular scan request

2: use global setting (omsConfig.ini)

(UINT32) Archive File Handling

0: do not extract archive file for this particular request

1: extract archive file for this particular scan request

2: use global setting (“internal_archive_lib_enable”)

OutArgsArray A list of outputs with the following order:

(UINT32) Ticket number (if custom ticket # is specific in
InargsArray, same ticket number is returned

(UINT32) Scan result as described in ScanOutCome
Return Type

(Array of strings) List of threats
(String) Scan detail per engine

v3.12.3 166

3.

4.

Argument Description Data
Type

<scan_details>
 <objects>
 <object name="[object name]">
 <engine_result>
 <engine_name>[engine
name]</name>
 <scan_result>[scan
outcome for the engine]</scan_result>
 </engine_result>
 </object>
 </objects>
</scan_details>

[object_name]: file name or signature depends on type
of scan requested

[scan outcome for the engine]: Scan result per engine
as described in ScanOutCome Return Type

(String) File type information

this is returned only if analyze_before_scan is enabled
orthe third argument of is set to 1InArgsArray

<file_type>
 <objects size="">
 <object>
 <sha1></sha1>
 <type_infos size="">
 <type_info>
 <long></long>
 <short></short>
 <extension></exte
nsion>
 </type_info>
 </type_infos>
 </object>
 </objects>
</file_type>

v3.12.3 167

Set a property value (COM)

Method SetProperty

Description Modify one of Metadefender Core's internal properties.

Function prototype

HRESULT SetProperty
{
 [in] VARIANT PropertyName,
 [in] VARIANT PropertyValue
}

Arguments

Argument Description Data Type

PropertyName The name of the requested property. string

PropertyValue New value of the property string

Stop ongoing scan (COM)

Method StopScan

Description This method purges all scan requests and ongoing scans. Method returns only
when all requests are purged.

Function prototype

HRESULT StopScan
{
 [in] VARIANT Reserved
}

v3.12.3 168

Arguments

Argument Description Data Type

Reserved Reserved

Update an anti-malware engine (COM)

Method UpdateEngine

Description This method is called to initiate an update of a specific anti-malware engine on
the local machine.

Function prototype

HRESULT UpdateEngine
(
 [in] VARIANT EngineName,
 [in] VARIANT ReservedArg
)

Arguments

Argument Description Data
Type

EngineName The name of the anti-malware product that needs to be updated
(case in-sensitive).

string

ReservedArg Reserved. Any type of Variant is allowed except NULL pointer.

Note: The result of this call is provided via the OnUpdateComplete connection point.

v3.12.3 169

1.

2.

3.

a.

b.

c.

d.

4.

5.

Update anti-malware engines (COM)

Method UpdateAntiViruses

Description This method is called to initiate an update of all anti-malware engines at the
same time on the local machine. It is recommended to perform updates via
automatic periodic update, which is performed at predetermined intervals as
configured in “Update Interval” property.

Function prototype

HRESULT UpdateAntiViruses
(
)

Note: The result of this call is provided via the OnUpdateCompleteconnection point.

Sample Code

You can download for COM interface from . Metadefender Core Sample Code OPSWAT portal
This document describes how to set up and use the sample code you have downloaded.

ASP Sample

Install IIS.

Install Web Development support for Visual Studio.

Enable web sharing on the sample dir.

Go to sample dir.

Right-click on . Properties

Click Web Sharing > . Share this folder

Give all permissions to folder (including). Execute for scripts

Enable advanced file sharing options – Open an explorer window -> Tools -> Folder
Options -> View -> uncheck “Use simple file sharing”.

https://portal.opswat.com/en/content/metadefender-core-sample-code
https://portal.opswat.com

v3.12.3 170

5.

6.

7.

8.

9.

10.

11.

1.

2.

3.

4.

5.

6.

a.

b.

c.

d.

e.

f.

Ensure the following ASP accounts have permissions on the project folder:
• ASP.Net machine account
• Internet guest account (IUSR)
• Launch IIS Process account (IWAM)

To change the permissions, right-click the folder and select Properties > . Security

Add the accounts. For each account, add read and execute permissions.

Open Internet Explorer, and change security settings to custom. Reset them to Medium
low, and change the “Download unsigned ActiveX controls” and “Initialize and script
ActiveX controls not marked as safe” options to “prompt”.

Open the project. You may get the following message "The specified Web server is not
running ASP.NET version 1.1 ..." If so. follow the steps in: http://support.microsoft.com/kb

./817267/en-us

In the IIS, ensure access is allowed to the sample folder by setting the folder's "Directory
Security".

Assign "Launch and Activation" permission on the Metascan to the account running ASP.
Net in DCOM Configuration (DCOMCNFG).

PHP Sample Code for IIS 7

Install IIS 7 by adding a role to the server.

Add CGI/Fast CGI as an IIS feature (from cmd.exe):
dism /online /enable-feature /featurename:IIS-CGI

Download the latest PHP 5 from .http://www.php.net/downloads.php

Install PHP as IIS FastCGI to “C:\PHP” (be sure to select script executable option to
associate *.php with PHP).

Edit C:\PHP\php.ini.
short_open_tag = On
cgi.force_redirect = 0

Configure IIS on the system.

Go to Start > Control Panel > Administrative Tools > Internet Information
Services (IIS) Manager .

Choose Sites > Default Web Site .

Double-click on in the right pane. Handler Mappings

Double-click on PHP_via_FastCGIModule .

Click .Request Restrictions

http://support.microsoft.com/kb/817267/en-us
http://support.microsoft.com/kb/817267/en-us
http://www.php.net/downloads.php

v3.12.3 171

6.

f.

g.

h.

i.

j.

7.

8.

9.

10.

11.

12.

Select the tab. Verbs

Select radial button , enter “GET,POST,HEAD”. One of the following verbs

Select the tab. Access

Select the radio button. Script

Click all the way out and accept changes. OK

Place scan.php, userInput.html and uploads folder into C:\Inetpub\wwwroot folder.

Allow necessary security permission to both the files and the folder (for testing please
allow to everyone).

Configure Metadefender Core COM settings to allow IIS_USRS and IUSR to launch,
access, and configure Metadefender Core (local permissions only).

Restart Metadefender Core service.

Go to .http://localhost/userInput.html

Upload the file to be scanned. HTML calls PHP script and prints the scan results on the
web page.

Command Line Utility

Metadefender Core provides a command line utility (omsCmdLineUtil.exe) that enables a user
to run Metadefender Core operations such as scanning files, getting or setting preferences
/properties, etc.

For more information, run "help" command from the directory in which the command line utility
is located.

Exit code (for scan command)

Metadefender Core provides a process exit code for each scan to the command console. After
you scan a file from CLI, you can enter “echo %errorlevel%” from the command prompt to get
the scan result code. For detailed scan result return value information, refer to .COM Interface

Note: If omsCmdLineUtil.exe is unable to establish a connection to the Metadefender Core
service, it returns the message "Failed to initialize Metadefender Core".

Process a File Command

syntax process <file path> <user_agent>

http://localhost/userInput.html

v3.12.3 172

This function allows a user to process a file on the command line with a specific user agent
using all available AV products on the machine. This effectively allows the user to choose
which workflow to use when processing their file.

COM API

Calls Metascan COM Process asynchronously.

Process parameters

input parameters

<file path> user entered file path

<user_agent> the User Agent corresponding to desired Workflow

Example

c:\Program Files (x86)\OPSWAT\Metascan 4>omsCmdLineUtil.exe
process C:\TestFiles\eicar.com default

Ticket:[2772276979]

Process Details

File: [C:\TestFiles\eicar.com]
 MD5: [44D88612FEA8A8F36DE82E1278ABB02F]
 SHA1: [3395856CE81F2B7382DEE72602F798B642F14140]
 SHA256: [
275A021BBFB6489E54D471899F7DB9D1663FC695EC2FE2A2C4538AABF651FD0F]
 File Size: [68 bytes]
 File Type Category: [T]
 File Type: [unknown]
 File Type Description: [ASCII text, with no line terminators]

[Dirty] Avira scan engine [1 ms] | Eicar-Test-Signature
[Dirty] ESET scan engine [2 ms] | Eicar test file
[Dirty] Ahnlab scan engine [3 ms] | EICAR_Test_File
[Dirty] ClamAV scan engine [14 ms] | Eicar-Test-Signature

Scan Completion

v3.12.3 173

1.

2.

3.

1.

 [Dirty]
 Ticket: [2772276979]
 File path: C:\TestFiles\eicar.com
 Found threats:
 EICAR_Test_File
 Scan time: 14 ms [01/25/2016 16:01:44:835]

Process Completion

 Ticket: [2772276979]
 User agent: default
 Profile: Default
 Result: [Blocked]
 Blocked reason: [Dirty]
 File processed: C:\TestFiles\eicar.com

Limitations

Does not support processing a folder.

Java Sample

Below are the steps to use for the Java sample with Eclipse IDE running or by running on the
command line. Java sample is not installed with Metadefender Core. You must download this
separately from the OPSWAT portal. Go to https://portal.opswat.com/en/content/metadefender-

, and click .core-sample-code Download

With the Eclipse IDE running:

Create a new Java project from existing source code. (Choose the Java sample code
folder you have downloaded).

Add Metasscan_java_interface.jar to the build path of the project. By default,
Metascan_java_interface.jar file is installed in the directory where Metadefender Core is
installed under the JNI folder.

Set java argument of Native library path to “omsJInterfaceImple.dll”

Example: (in -Djava.library.path=C:/Program Files (x86)/OPSWAT/Metadefender Core 8/JNI
vm arguments of “Run Configuration”)

Running on the Command Line:

Go to bin directory.

https://portal.opswat.com/en/content/metadefender-core-sample-code
https://portal.opswat.com/en/content/metadefender-core-sample-code

v3.12.3 174

2. Run the following command:
Java.exe -cp .;<absolute path to Metascan_java_interface.jar file> -Djava.library.
path=<absolute path to omsJInterfaceImpl.dll> com.opswat.metascan.Sample

REST API (v2)

Beginning with Metascan 3.8.1, OPSWAT supports only using the JSON-based (v2) REST API
and XML-based (v1) REST API is deprecated.

API key-based authentication

Metadefender Core allows you to limit access to the REST API only to users that have a
defined API key. If no such API keys are defined then the 'apikey' parameter should be
excluded from the REST API calls. If one or more API keys are defined, the 'apikey' parameter
is required. To define API keys configure them in the management console.

Getting Started

Look Up Hash and Process (Scan / Sanitize) A File

Compatibility with Core v4 and Metadefender.com

We have designed REST API in a way that most common functions on Core v3, Core v4, and
Metadefender.com public/private API share same structures and mechanism.

v3.12.3 175

1.

a.

b.

c.

2.

a.

b.

c.

1.

a.

2.

a.

If you are moving from Metadefender.com to Core or vise versa, the change you need to make
on your application should be minimal unless there is specific function that is only available to
either one. If you notice any incompatible API, please contact OPSWAT support for consulting.

Advanced Usages

Load handling

Maximum Number of Simultaneous Workflow Clients Through REST

Overview

Configuring many systems to perform a full system scan using MClient.

Queuing Mechanism

We will have 2 queues in REST.

Pending: Pending scans

Scan not yet submitted to the COM service.

Maximum 20,000 files here before server returns 500 too busy.

Files go pass through here first, then if the ongoing scan queue has space they are
moved there.

Ongoing: Scan in progress

Scan already submitted to the COM service.

Maximum 1000 files here.

If this queue is full the files stay in pending scan queue.

Disk Check

We have 2 types of disk checks based on how much free space is left.

If < 3.5 GB free disk space:

With every file upload we will do a disk space check.

If > 3.5 GB free disk space:

v3.12.3 176

2.

a.

1.

2.

3.

We used the cached value from our already periodic check.

The reason we need to checks is because there is a known issue about Mongo not being able
to start if there is enough free space on the disk. (3379MB)

Mongo Error

2016-09-06T16:12:15.514-0700 [initandlisten] ERROR: Insufficient
free space for journal files
2016-09-06T16:12:15.514-0700 [initandlisten] Please make at least
3379MB available in C:\Program Files (x86)\OPSWAT\Metadefender
Core 4\Mongo\data\journal or use --smallfiles

Recommend REST integration in multiple client environment

REST users should only submit ~20 files at a time and wait until processing is complete
before uploading more.

/file/inqueue reports how many files are in the queues (adding both pending on ongoing)

If client gets 503 server too busy they should wait a bit and try again.

Number of pending jobs

Description Number of pending jobs

URL Path /file/inqueue

Method GET

Summary

Returns the number of pending jobs on the server

Request URL

http://localhost:8008/metascan_rest/file/inqueue

http://localhost:8008/metascan_rest/file/inqueue

v3.12.3 177

HTTP header parameters

apikey API key assigned by user OPTIONAL

Method: GET

URL path /file/inqueue REQUIRED

Response Code

200 OK Request is successful

400 Bad request Not supported HTTP method or invalid http
request .

401 Invalid API key / Exceeded
usage

Either missing API key or invalid api is passed.

500 Internal server error Server temporary unavailable. Try again later.

Response
Example of when request is successful :

{
 "in_queue" : "0"
}

Descriptions of response:

in_queue Number of jobs inqueue.

v3.12.3 178

Multiple Hashes Lookup

Description Retrieve scan report by multiple hashes.

URL Path /hash

Method POST

Summary

Get a list of available hashes for an API key.

Dues to business stuff, we need to remove scan result of Kaspersky in response json
(MCL-3016) (Only applicable for Metascan Online)

HTTP header parameters

apikey API key assigned by user OPTIONAL

include_scan_details include scan details

Value: 0, 1

OPTIONAL

Default: 0

"scan_details" exists in response when = 0|1|2 in response and header "scan_result"
=1"include_scan_details"

Method: POST

URL path /hash REQUIRED

Body content {"hash":["hash_value_1","hash_value_2","hash_value_3",..]}

v3.12.3 179

Response Codes

200 OK Found or Not Found

400 Bad request Not supported HTTP method or invalid http
request .

401 Invalid API key Either missing API key or invalid api is
passed.

403 Signature lookup limit reached, try
again later

User exceeds limit

503 Internal server error Server temporary unavailable. Try again
later.

Response

Example of when input body is empty :

{
 "err" : "hashes in body content is null or empty"
}

Example of when input body is wrong format :

{
 "err" : "Could not parse body content."
}

Example of maximum hashes input.

{
 "err" : "Exceeded maximum allowed. Allow maximum 1000 hashes"
}

v3.12.3 180

Example of when request is successful :

[
 {
 "hash" : md5_1,
 "scan_result" : 0,
 "data_id" : data_id_1
 },
 {
 "hash" : md5_2,
 "scan_result" : 1,
 "data_id" : data_id_2
 },
 {
 "hash" : "abc",
 "scan_result" : 5,
 "data_id" : null
 }
]

Example of when request is successful and "include_scan_details"=1:

[
 {
 "hash" : md5_1,
 "scan_result" : 0,
 "scan_details":{
 "Agnitum":{
 "scan_result_i":0,
 "threat_found":"",
 "def_time":"2014-08-07T07:00:00Z",
 "scan_time":78.0
 }...{}},
 "data_id" : data_id_1
 },
 {
 "hash" : md5_2,
 "scan_result" : 1,
 "scan_details":{
 "Agnitum":{
 "scan_result_i":0,
 "threat_found":"",
 "def_time":"2014-08-07T07:00:00Z",
 "scan_time":78.0
 }...{}},

v3.12.3 181

 "data_id" : data_id_2
 },
 {
 "hash" : "abc",
 "scan_result" : 5,
 "data_id" : null
 }
]

Example of when the number of lookup hashes i s more than remaning lookup
number:

e.g: user can only scan 2 hashes but posts 3 hashes.

[
 {
 "hash" : md5_1,
 "scan_result" : 0,
 "data_id" : data_id_1
 },
 {
 "hash" : md5_2,
 "scan_result" : 1,
 "data_id" : data_id_2
 },
 {
 "hash" : md5_3,
 "scan_result" : 403,
 "data_id" : null
 }
]

Descriptions of response:

scan_result the newest final scan result of hash

5: unknown scan result - may be hash does not exist in mongo

data_id the newest data_id of hash

scan_details Array of scan results for engines

For more details of response, refer to .Response Description

Statistics

v3.12.3 182

Statistics

Check Server health

Description Server health

URL Path /stat/serverhealth

Method GET

Summary

Retrieve server health including free disk space, RAM and CPU usage, disk queue length.
These are average values based on sampling.

Request URL

http://localhost:8008/metascan_rest/stat/serverhealth

Use Cases (used by)

Management Console (to retrieve server statistics of memory, CPU usage, and average disk
queue length to monitor server health).

HTTP header parameters

Header Description Required

apikey API key assigned by OPSWAT or admin REQUIRED

Method: GET

/stat
/serverhealth

Returns all entries in server health recorded.

/stat
/serverhealth/
{N}

n is hours. It will return entry between(inclusive) HH-n:00 and HH:00.

For example: call /stat/serverhealth/1 at 13:13, server will return entry
between 12:00 and 13:00.

http://localhost:8008/metascan_rest/stat/serverhealth

v3.12.3 183

Response Codes

Code Status Description Notes

200 OK successful response

400 Bad request Not supported HTTP method or invalid http
request.

401 Permission Denied for
statistic

Either missing API key or invalid API is passed.

500 Internal server error Server temporary unavailable. Try again later.

Response

Example of successful scan request:

[
 {
 "usage_check_localtime": "2016-02-03T12:00:00-08:00",
 "avg_ram_usage": 84.92316500345866,
 "avg_cpu_usage": 13.39331203699112,
 "avg_disk_q_len": 0.2144404633436352,
 "avg_disk_free_space": 25.00000000000000
 },
 {
 "usage_check_localtime": "2016-02-03T13:00:00-08:00",
 "avg_ram_usage": 82.8503189086914,
 "avg_cpu_usage": 2.4295437335968018,
 "avg_disk_q_len": 0.0027925085742026567,
 "avg_disk_free_space": 25.0000000000000000
 }
]

Descriptions of response:

Response Description

usage_check_localtime The local time when the information is queried.

v3.12.3 184

Response Description

avg_ram_usage Average of RAM usage of Metadefender Core server as a
percentage of total RAM.

avg_cpu_usage Average of CPU usage of Metadefender Core server as a
percentage of total CPU.

avg_disk_q_len Tracks the number of requests that are queued and waiting for a
disk during the sample interval, as well as requests in service.

avg_disk_free_space Average free disk space on Metadefender Core server as a
percentage of total space.

Get enginedef stat

Description Get enginedef stat

URL Path /stat/enginedef

Method GET

Summary

Gets definition time of all current anti-malware engines. This is recommended API to check
engine definition rather than using because it returns cached definition info Get engines stat
and relatively cheap API.

Request URL

http://localhost:8008/metascan_rest/stat/engines

Response Codes

200 OK

400 Bad request Not supported HTTP method or invalid http request.

500 Internal server error Server temporary unavailable. Try again later.

http://localhost:8008/metascan_rest/stat/enginedef

v3.12.3 185

Response

Notice that engine name will be shortened to single word.

Example of successful scan request:

{
 "Lavasoft" : "2014-11-24T00:00:00",
 "TotalDefense" : "2013-02-12T00:00:00",
 "ESET" : "2014-11-25T00:00:00",
 "AVG" : "2013-08-12T00:00:00",
 "Avira" : "2014-10-01T00:00:00"
}

Get engines stat

Description Get engines stat

URL Path /stat/engines

Method GET

Summary

Returns engine information for all usable anti-malware engines. This is relatively expensive API
call on the server side. If you want to retreive definition info, use .Get enginedef stat

Request URL

http://localhost:8008/metascan_rest/stat/engines

HTTP header parameters

apikey API key assigned by OPSWAT or admin REQUIRED

Request Error

400 Bad request Not supported HTTP method or invalid HTTP request.

500 Internal server error Server temporary unavailable. Try again later.

http://localhost:8008/metascan_rest/stat/engines

v3.12.3 186

Response

Example of successful scan request:

[{
 "eng_name" : "ClamWin scan engine",
 "eng_ver" : "0.97.8",
 "def_time" : "11/10/2013 12:00:00 AM",
 "eng_type" : "Bundled engine",
 "active" : true
},
{
 "eng_name" : "ESET NOD32 Antivirus",
 "eng_ver" : "4.2.71.2",
 "def_time" : "11/11/2013 12:00:00 AM",
 "eng_type" : "Customer licensed engine",
 "active" : false
},
{
 "eng_name" : "ESET scan engine",
 "eng_ver" : "1412 (20131023)",
 "def_time" : "6/1/2012 12:00:00 AM",
 "eng_type" : "Bundled engine",
 "active" : true
},
{
 "eng_name" : "Norman scan engine",
 "eng_ver" : "7.2.6",
 "def_time" : "10/13/2013 12:00:00 AM",
 "eng_type" : "Bundled engine",
 "active" : true
},
{
 "eng_name" : "Total Defense scan engine",
 "eng_ver" : "37.0.1.55",
 "def_time" : "11/8/2013 12:00:00 AM",
 "eng_type" : "Bundled engine",
 "active" : true
}]

Descriptions of response:

def_time The last time updated of engine.

active True: engine is used to scan file.

Summary of scan

v3.12.3 187

Summary of scan

Description Retrieve scan history

URL Path /stat/scanhistory/{n_hour}

Method GET

Summary

Retrieve history of scanning in last n hours.

HTTP header parameters

apikey API key assigned by OPSWAT or admin REQUIRED

Response Codes

200 OK successful response

400 Bad request Not supported HTTP method or invalid http request

401 Permission Denied for
statistic

Either missing API key or invalid api is passed

500 Internal server error Server temporary unavailable. Try again later.

Response

Example of successful scan request:

[{
 "total_scanned_files" : 101,
 "total_infected" : 0,
 "avg_scan_time" : 19.712871287128714,
 "localtime" : "2013-11-11T11:00:00+07:00"
 },
 {
 "total_scanned_files" : 3,
 "total_infected" : 0,

v3.12.3 188

1.

2.

3.

4.

5.

 "avg_scan_time" : 113.66666666666667,
 "localtime" : "2013-11-11T10:00:00+07:00"
 },
 {
 "total_scanned_files" : 5,
 "total_infected" : 0,
 "avg_scan_time" :25.455566656565212,
 "localtime" : "2013-11-11T09:00:00+07:00"
}]

Descriptions of response:

avg_scan_time Average scanning time

total_infected all logs with scan_result_i of 1, 2, 4, 6, 8

Look Up Hash and Process (Scan / Sanitize) A File

Recommended Flow Of API usage

Calculate hash value of a file.

Hash Lookup to see if known instead of sending whole file to server for scan.

If unknown, callInitiate Process File

Retrieve process result Retrieve process result by data_id

if file is sanitized, .Download Sanitized File

User Provided Info

Certain data processing requires of accurate metadata for better process results. Refer to
 for more information.Initiate Process File

Download Sanitized File

Description Download a file which was converted by the /file workflow API

URL Path /file/converted/{data_id}

Method GET

v3.12.3 189

Summary

Downloading file scanned from database using data_id

HTTP header parameters

apikey Only required if REST API keys have been defined OPTIONAL

Method: GET

URL path /file/converted/{data_id} REQUIRED

data_id Returned by Initiate Scan/Process a File REQUIRED

Example: http://localhost:8008/metascan_rest/file/converted
/012e1a8945c041d181e79ab8d711555d

Request Codes

200 OK

400 Bad request Not supported HTTP method or invalid http request (e.g., empty
body).

401 Invalid API key Either missing API key or invalid api is passed.

401 Exceeded usage

500 Internal server
error

Server temporary unavailable. Try again later.

Response

Example of when request is not successful :

{
 err: "DataID not found in the database"
}

https://opswat.atlassian.net/wiki/pages/viewpage.action?pageId=3377091
http://localhost:8008/metascan_rest/process/converted/012e1a8945c041d181e79ab8d711555d?apikey=webscan
http://localhost:8008/metascan_rest/process/converted/012e1a8945c041d181e79ab8d711555d?apikey=webscan

v3.12.3 190

Example of when request is successful :

It will return the content of that file if using rest client tool.
If using browser, a pop up save file will appear with the file
name is the display_name in database. (This API sets the filename
using the Content-Disposition)

Hash Lookup

Description Retrieving previous scan reports using hash value

URL Path /hash/{hash value}

Method GET

Metadefender provides multipe ways of looking up previously processed results using hashes
or known data_id. If data_id is unknown, hash value (md5, sha1, or sha256) can be used to
look up known scan results. While single hash lookup provides full scan results related to hash
if found, will return condensed results with links (data_ids) to full scan Multiple Hashes Lookup
result.

HTTP header parameters

apikey If API key is configured by the administrator OPTIONAL

Method: GET

URL path /hash/{hash value} REQUIRED

hash value: any of the followings.

SHA1

MD5

SHA256

v3.12.3 191

Response Codes

code status description note

200 OK either result is found or not found.

400 Bad request Not supported HTTP method or invalid http request

401 Invalid API key Either missing API key or invalid api is passed

404 Not found The scan result for the given data_id was not found.

503 Internal server error Server temporary unavailable. Try again later.

Response

Only when server returns 200 OK, proper response is returned.

Example of when result is not found :

When scan results are not found, a 200 response status code appears.

Status: 200

{
 "BED12FDA073BB386B54700138FB47EEA": "Not Found"
}

Response

When result is not found (example) :

Status: 200 (Should be 404)

{
 "4f84e3b096d54908963d037b5457bf27": "Not Found"
}

When result is found :

v3.12.3 192

When result is found :

It will return process result. Refer to .Response Description

Initiate Process File

Description Initiate scan request

URL Path /file

Method POST

Summary

There are two ways of initiate processing file. One is to upload file and the other is passing the
file path (local to the server).

There are several important parameters should be passed along the request so that
administrators can track such histories on the server side without relying on additional
application logic on client sides.

HTTP header parameters

Parameter Value Required Description Notes

apikey API key
configured by
administrator.

OPTIONAL

filename Name of files
to preserve
extension
during scan
and meta
data.

RECOMMENDED filename should be
encoded with
URLencode and
should not contains
characters "<" and ">"

Otherwise, it will be
removed from
filename.

v3.12.3 193

Parameter Value Required Description Notes

This will be
sanitized and
all invalid
file_name
characters will
be removed.

If file type
mismatch is
enabled,
needs filename
to know
original file
extension. If
not providing
this header, it
will cause
mismatch.

filepath Path of files
that are
accessible to
Core server

OPTIONAL filepath should
be
URLEncoded.

filepath should
be accessible
to core server.

When this
head is set, no
content need
to be put in
HTTP request
body. Core
server will try
to process
/scan using
filepath directly

user_agent OPTIONAL

v3.12.3 194

Parameter Value Required Description Notes

A string to
identify the
client
application

Administrator
configures to map
user agents to
specific workflow.

archivepwd password of
encrypted file

OPTIONAL If submitted file is
password protected
archive.

original_file_path File path of
file scanned
on local to
the Metascan

OPTIONAL original_file_path
should not contains
characters "<" and
">".

Otherwise, it will be
removed from
original_file_path.

This will
be
sanitized
and all
invalid
path and
file name
characters
will be
removed.

source IP,
hostname, or
other client
ID

RECOMMENDED Helps identify where
the file is originated
from. This should be
end-user information
to trace where the file
came from.

X-File-Size Total size of
the original
file (before
splitted to
chunks)

OPTIONAL Used for chunk
uploading.

Both MO and
REST have
already had
these headers
before. It still
be used now.

X-File-ID ID number is
retrieved
after
uploading the
1st chunk

OPTIONAL

v3.12.3 195

Parameter Value Required Description Notes

Should
expose, a big
file can be
uploaded as
many parts.

Case
insensitive.

This is data_id
returned from
1st request
and following
request will
return same
data_id. Any
further upload
more than x-
file-size will
result in error
(not affecting
the scan).
Checking
progress until
all file contents
is uploaded will
return "not
found"

Limitation: returned
data_id can be

 after last changed
chunk uploaded, see
this case: database
already had scan
result for file A,
customer uses chunk
upload and posts this
file again, for the first
chunk we return

v3.12.3 196

Parameter Value Required Description Notes

data_id_1 (since don't
know that file already
exist in DB with only
first chunk), when all
chunks are uploaded,
we calculated hash
and found the result
in DB, then we return
old data_id (different
with data_id_1)
without scanning.

Method: POST

HTTP body Contents of the file for scan REQUIRED

Response Codes

Code Status Description Notes

200 OK File is uploaded to the server for initiation.

400 Bad Request Invalid request format or server is not configured
correctly for Metascan.

401 Invalid API key Either missing API key or invalid API is passed.

403 scan limit reached, try again
later

403 exceeded number of allowed
clients

exceeded number of
simultaneous clients

403 Invalid License

v3.12.3 197

Code Status Description Notes

500 Not enough disk space Not enough free space in the temp directory to
upload the file.

500 License expired

500 Internal error

503 Failed to request scan. Try
again later.

503 Server is too busy. Try again
later.

Response

Example of successful scan request:

{
 "data_id":"4f84e3b096d54908963d037b5457bf27"
 "rest_ip": "scan01.metascan-online.com/v2"
}

Example of failed to upload:

{
 "err": "Failed to upload - <error message>"
}

Descriptions of response:

Response Description

data_id Data ID used for retrieving scan results. Since there are potentially multiple
scans for same files when any engine has different definition time or when there
is an additional engine, this is identifier for per scan other than per file.

v3.12.3 198

Response Description

rest_ip Requests for the scan progress using 'data_id' should be made to this address
instead of the original address. Once a scan is finished, future requests for this
'data_id' can be made to the original address.

Retrieve process result by data_id

Description Query process result

URL Path /file/{data_id}

Method GET

Summary

Query a previously submitted file's scanning result. Scan can be initiated the API below. Calling
this API is required to retrieve scan results since the initiate API does not return results.

Initiate Process File

You can retrieve scan results using the Data ID. The scan is done asynchronously and each
scan request is tracked by the ID. You need to use two separate API calls to initiate a file scan
and retrieve the scan results. This request needs to be made multiple times until the scan is
complete. You can trace the scan completion using the “scan_results.progress_percentage”
value from the response.

Use the following URL to initiate the scan request: http://localhost:8008/metascan_rest/file

Use the following URL to retrieve scan results: http://localhost:8008/metascan_rest/file/
{data_id*}

HTTP header parameters

apikey Only required if REST API keys have been defined OPTIONAL

https://api.metascan-online.com/v1/file
https://api.metascan-online.com/v1/file/%7bdata_id*%7d
https://api.metascan-online.com/v1/file/%7bdata_id*%7d

v3.12.3 199

Method: GET

URL path /file/{data_id} REQUIRED

data_id Returned from Initiate Process File REQUIRED

Response Codes

200 OK Found the scan result for given data_id

400 Bad request Not supported HTTP method or invalid HTTP request.

401 Invalid API key Missing apikey header or invalid key passed

404 Not Found Unable to find a scan result for the given data_id. This is an error.

500 Internal Error Server temporary unavailable. Try again later.

Response

Example of when result is not found :

Status: 200 (Should be 404)

{
 "4f84e3b096d54908963d037b5457bf27": "Not Found"
}

When result is found :

It will return process result. Refer to .Response Description

v3.12.3 200

1.

2.

3.

4.

Response Description

Top levels of Process Result

data_id Metadefender provides asynchronous API calls (stateless) and data_id is
used for identifying a specific process job. It is obtained from initial data (e.
g., file) upload and can be used any time as long as scan history is
preserved on the server side. It is generated randomly from the server and
guaranteed to be unique so it can be used without worrying about having
duplicate data_id. Not applicable for hash look up.

scan_results scan result from each engines along with other metadata for scanning job.

file_info static file information and analyzed file type based on contents

process_info overall process status and information including applied workflow and
action results such as sanitization.

extracted_files list of files inside of an archive file. If file is not an archive file or not
extracted, this block will not be present.

Minimum Required Parsing Process Results (process_info)

This only applies if you are using workflow-based process.

There should always process_info field for process JSON message.

Clients should use to know whether the process process_info.progress_percentage
has been finished or still in progress.

Clients should use to check whether the file processed is process_info.result allowed
or blocked.

When file is allowed, is empty string If file is blocked, process_info.blocked_reason .
clients should use the field to retrieve detailed block reasons

Clients should use to retrieve which profile is used when processing.process.profile

v3.12.3 201

1.

2.

3.

4.

Clients should use to know if the input file's detected process_info. file_type_skipped_scan
type is configured to skip scanning

If post processing is configured and applied, there will be field in process.post_processing
JSON result. Clients should always check whether this field exists or not to find out if
post_processing has been applied or not.

If exists, clients could use process_info.post_processing process.post_processing.
to check what actions have been applied and these actions are separated by action_ran

"|". See details in [Description of Response]

If exists, clients could use process_info.post_processing process.post_processing.
to check which post_processing failed.action_failed

If "Move" is in "action_ran", clients should check process.post_processing.
to retrieve information of the target file type. And clients should call /fileconverted_to

/converted/{data_id} to retrieve link to download converted files

if "Copied" or "Moved" is in "action_ran", clients should check process.post_processing.
 for the target directory infocopy_or_move_destination

v3.12.3 202

Response Details For process_info

process_info

Process node Only applied if user scanned with
user_agent

progress_percentage Percentage of
processing completed

Scale of 0-100

user_agent A string which identifies
the user. This is used
for mapping to a specific
workflow.

profile The profile name. This
is what the user_agent
mapped to.

result The final result of
processing the file

Possible values:

Possible Process Results (COM)

"Not processed": default value set in
REST before the file is processed by
Core

blocked_reason The reason for a file
being blocked

Possible list values:

Failed to request a process:
"Process Failed"

Possible Blocked Reasons
(COM)

"null": default value set in REST
before the file is processed by Core

file_type_skipped_scan Indicates if the input
file's detected type was
configured to skip
scanning

JSON Boolean type

v3.12.3 203

post_processing Post processing node Exists only if post processing was
configured

actions_ran List of post processing
actions ran

Delimited by " | "

Possible list values: "Sanitized |
Copied | Moved | Quarantined |
Deleted | Ran Script"

*Copied and Moved will never exist
together
*Quarantined and Deleted will never
exist together
*(Copied/Moved) and (Quarantined
/Deleted) will never exist together

actions_failed List of post processing
actions that failed

Delimited by " | "

Possible list values: "Sanitization
Failed | Copy Failed | Move Failed |
Quarantine Failed | Delete Failed |
Ran Script Failed"

*Copy Failed and Move Failed will
never exist together
*Quarantine Failed and Delete Failed
will never exist together
*(Copy/Move Failed) and (Quarantine
/Delete Failed) will never exist
together

converted_to Extension the file was
converted to

If the string contains a file type, the
converted file can be downloaded

copy_move_destination Destination to where the
file was copied/moved

converted_destination Location where the
converted file exists

https://opswat.atlassian.net/wiki/display/MLD/Download+Converted+Version+of+File

v3.12.3 204

Response Details For scan_results and others

file_id Populated only when files are configured to be stored. Not
applicable for hash look up. This is unique per file so if same file is
scanned twice, file_id would be identifical.

scan_result Global scan results, meta data, and scan reports from all engines.

file_info File metadata, hash value, analyzed file types

scan_details Array of scan results for engines

scan_result_i See table below for descriptions

threat_found Name of threat if detected by engine. Non ASCII characters
removed.

def_time Definition time of engine at the time of scan

scan_time Elapsed scan time in mili-seconds per engine

rescan_available This value will be set to true

if engine definition has changed.

any engine is missing scan results such as "failed to scan",
"not scanned"

scan_all_result_i See table below for descriptions

total_time Elapsed scan time in milli-seconds from when scan is initiated with
the first engine until the last engine has completed.

total_avs Number of engines used for scanning

progress_percentage Indicator if scan is in progress

in_queue How many files are in queue before this scan request: 0 means it is
being scanned or finished scanning.

v3.12.3 205

upload_timestamp First time file is uploaded to the server (even if file is rescanned this
value will be preserved)

file_type_category High level categorization of file type see reference for descriptions

Additional Information For An Archive File

Note: Only applied when scanning an archive file

original_file Basic information and reference to the of data_id
the original file (actual archive file, not the extracted
contents)

Object
Structure

"original_f
ile": {
 "data_i
d": "96c7ce
8170224bd29
c427ec913e3
d00b",
 "scan_r
esult_i":
1,
 "progre
ss_percenta
ge": 100,
 "detect
ed_by": 1
}

extracted_files Basic information about the included files in the
archive can be found in the files_in_archive
property.

Files_in_archive only contains maximum
50000 results.

Entries with a non-zero scan_result_i always
appear first.

More information about individual entries can
be queried with the data_id

Object
Structure

"extracted_
files": {
 "data_i
d": "e511f1
6da3cc422ea
a4127ed88ee
9446",

v3.12.3 206

The under extracted_files is the reference data_id
to the engines or consolidated result for summary
the archive.

 "scan_r
esult_i":
0,
 "progre
ss_percenta
ge": 100,
 "detect
ed_by": 0,
 "files_
in_archive"
: [{
 "d
isplay_name
": "\\U6367
872802.exe"
,
 "da
ta_id": "c4
21c7cfc5c34
733ad037116
cfe2b6f3",
 "sc
an_result_i
": 0,
 "pr
ogress_perc
entage":
100,
 "fi
le_size":
-1,
 "fi
le_type": "
",
 "de
tected_by":
0
 }
]
}

parent_data_id When the scan result for a file within an archive is
queried, this refer to the containing archive file.

v3.12.3 207

Available Scan Results (scan_result_i, scan_all_result_i)

value short
description

long description

0 No Threats
Found

No threat detection or the file is empty

1 Infected
/Known

Threat is found

2 Suspicious Classified as possible threat but not identified as specific threat.

3 Failed To
Scan

Scanning is not fully performed (For example, invalid file or no read
permission). If no engine is included and scan is enabled, this will be
the final result.

4 Cleaned /
Deleted

Threat is found and file is cleaned (repaired or deleted): repair is not
supported yet

5 Unknown Unknown signature. NOTE: this is only used in multiple hash lookup.
For single hash lookup, scan_result_* are not returned as response.
see for more details.Retrieve scan report by hash (duplicate)

6 Quarantined File is quarantined

7 Skipped
Clean

Scan is skipped because this file type is in white-list*

8 Skipped
Infected

Scan is skipped because this file type is in black-list*

9 Exceeded
Archive
Depth

Threat is not found but there are more archive levels which were not
extracted.

10 Scan is skipped by the engine either due to update or other engine
specific reason. If scan is disabled, this will be the final result.

v3.12.3 208

value short
description

long description

Not
Scanned /
No scan
results

11 Aborted All ongoing scans are purged

12 Encrypted File/buffer is not scanned because the file type is detected as
encrypted (password-protected). If the Internal Archive Library is ON
encrypted return type is not going to be returned through Metascan
scan progress callbacks since the engines do not perform any scan
operations. If the Internal Archive Library is OFF Metascan will pass
the encrypted files to the engines directly, bypassing the detection.

13 Exceeded
Archive
Size

The extracted archive is too large to scan

14 Exceeded
Archive File
Number

There are more files in the archive than configured on the server

15 Password
Protected
Document

Document that is protected by a password [e.g. Office documents or
PDFs that require a password to view its contents]

16 Exceeded
Archive
Timeout

The archive process reached the given timeout value. This result is
supported from Core version 4.4.0.

Scan is not carried out
If scanning is disabled or skipped, a scan_results object will be generated with the
following values.

v3.12.3 209

3.11.2 and newer:
scan_results.scan_all_result_i = 10
scan_results.scan_all_result_a = "Not Scanned"

3.11.0 & 3.11.1:
scan_results.scan_all_result_i = -1
scan_results.scan_all_result_a = ""

older than 3.11.0:
scan_results.scan_all_result_i = 1000
scan_results.scan_all_result_a = "No Scan Result"

Scan partially completed
Accumulated result at the time scan result was queried.

This is same as other Metascan interface such as COM interface and Java interface.

Available File Type Categories (file_type_category)

Mark Note

"E" Executable (EXE, DLL, …)

"D" Document (MS Office word document, MS Office excel sheet)

"A" Archive (Zip, Rar, Tar, …)

"G" Graphical format (Jpeg, GIF, TIFF, BM P, …)

"T" Text

"P" PDF format

"M" audio or video format

"Z" mail messages (MSG, …)

v3.12.3 210

Mark Note

"I" Disk image

"O" Other (anything that is not recognize d as one of the above)

Response Example

Status: 200

{
 "extracted_files": {
 "data_id": "b3a0949e833840128a346fdd7ec42477",
 "scan_result_i": 0,
 "detected_by": 8,
 "files_in_archive": [
 {
 "display_name": "\\\\eicar.com",
 "data_id": "372d93b94be04ed89da2a7d938b72452",
 "file_type": "-",
 "scan_result_i": 1,
 "detected_by": 4,
 "progress_percentage": 100,
 "file_size": 68
 },
 {
 "display_name": "\\\\Printout.pdf",
 "data_id": "6acba97776694ac89b8e3c573439bfbe",
 "file_type": "PDF/AI",
 "scan_result_i": 0,
 "detected_by": 0,
 "progress_percentage": 100,
 "file_size": 246121
 }
]
 },
 "file_id": "",
 "scan_results": {
 "scan_details": {
 "Ahnlab": {
 "threat_found": "EICAR_Test_File",
 "scan_result_i": 1,
 "def_time": "2016-08-03T00:00:00Z",
 "scan_time": 1
 },
 "Avira": {

v3.12.3 211

 "threat_found": "",
 "scan_result_i": 0,
 "def_time": "2016-08-03T00:00:00Z",
 "scan_time": 15
 },
 "ClamAV": {
 "threat_found": "Heuristics.PDF.ObfuscatedNameObject",
 "scan_result_i": 1,
 "def_time": "2015-07-03T00:00:00Z",
 "scan_time": 31
 },
 "ESET": {
 "threat_found": "",
 "scan_result_i": 0,
 "def_time": "2016-08-03T00:00:00Z",
 "scan_time": 1
 }
 },
 "rescan_available": false,
 "data_id": "c0983103f31f4e74889cc7188f6c0cdd",
 "scan_all_result_i": 1,
 "start_time": "2016-08-03T17:08:52.949Z",
 "total_time": 31,
 "total_avs": 4,
 "progress_percentage": 100,
 "in_queue": 0,
 "scan_all_result_a": "Infected"
 },
 "file_info": {
 "file_size": 2073,
 "upload_timestamp": "2016-08-03T17:08:52.949Z",
 "md5": "4D6B72DDC54514F82DDCDDA2E9923AAF",
 "sha1": "7B7B5487948E4EDC1AF62539ABF0DD72B456D03E",
 "sha256": "1A90EA551EE596F357794DFF314F042D84A9AFC3D56ED2C995A
4908395CBABBC",
 "file_type_category": "P",
 "file_type_description": "Adobe Portable Document Format",
 "file_type_extension": "pdf/ai",
 "display_name": "1470244133_dirty_315.pdf",
 "original_file_path": ""
 },
 "process_info": {
 "post_processing": {
 "actions_ran": "Sanitized",
 "actions_failed": "",
 "converted_to": "pdf",
 "copy_move_destination": "",
 "converted_destination": "toConvert_[sanitized].pdf"
 },
 "progress_percentage": 100,
 "user_agent": "cactus",

v3.12.3 212

 "profile": "default",
 "result": "Blocked",
 "blocked_reason": "Dirty",
 "file_type_skipped_scan": false
 },
 "data_id": "c0983103f31f4e74889cc7188f6c0cdd",
 "rescan_count": 0,
 "source": "10.0.50.37",
 "scanned_on": "10.0.50.52"
}

Available File Type Categories (file_type_category)

Mark Note

"E" Executable (EXE, DLL, …)

"D" Document (MS Office word document, MS Office excel sheet)

"A" Archive (Zip, Rar, Tar, …)

"G" Graphical format (Jpeg, GIF, TIFF, BM P, …)

"T" Text

"P" PDF format

"M" audio or video format

"Z" mail messages (MSG, …)

"I" Disk image

"O" Other (anything that is not recognize d as one of the above)

v3.12.3 213

Available Scan Results (scan_result_i, scan_all_result_i)

value short
description

long description

0 No Threats
Found

No threat detection or the file is empty

1 Infected
/Known

Threat is found

2 Suspicious Classified as possible threat but not identified as specific threat.

3 Failed To
Scan

Scanning is not fully performed (For example, invalid file or no read
permission). If no engine is included and scan is enabled, this will be
the final result.

4 Cleaned /
Deleted

Threat is found and file is cleaned (repaired or deleted): repair is not
supported yet

5 Unknown Unknown signature. NOTE: this is only used in multiple hash lookup.
For single hash lookup, scan_result_* are not returned as response.
see for more details.Retrieve scan report by hash (duplicate)

6 Quarantined File is quarantined

7 Skipped
Clean

Scan is skipped because this file type is in white-list*

8 Skipped
Infected

Scan is skipped because this file type is in black-list*

9 Exceeded
Archive
Depth

Threat is not found but there are more archive levels which were not
extracted.

10 Scan is skipped by the engine either due to update or other engine
specific reason. If scan is disabled, this will be the final result.

v3.12.3 214

value short
description

long description

Not
Scanned /
No scan
results

11 Aborted All ongoing scans are purged

12 Encrypted File/buffer is not scanned because the file type is detected as
encrypted (password-protected). If the Internal Archive Library is ON
encrypted return type is not going to be returned through Metascan
scan progress callbacks since the engines do not perform any scan
operations. If the Internal Archive Library is OFF Metascan will pass
the encrypted files to the engines directly, bypassing the detection.

13 Exceeded
Archive
Size

The extracted archive is too large to scan

14 Exceeded
Archive File
Number

There are more files in the archive than configured on the server

15 Password
Protected
Document

Document that is protected by a password [e.g. Office documents or
PDFs that require a password to view its contents]

16 Exceeded
Archive
Timeout

The archive process reached the given timeout value. This result is
supported from Core version 4.4.0.

Scan is not carried out
If scanning is disabled or skipped, a scan_results object will be generated with the
following values.

v3.12.3 215

3.11.2 and newer:
scan_results.scan_all_result_i = 10
scan_results.scan_all_result_a = "Not Scanned"

3.11.0 & 3.11.1:
scan_results.scan_all_result_i = -1
scan_results.scan_all_result_a = ""

older than 3.11.0:
scan_results.scan_all_result_i = 1000
scan_results.scan_all_result_a = "No Scan Result"

Scan partially completed
Accumulated result at the time scan result was queried.

This is same as other Metascan interface such as COM interface and Java interface.

v3.12.3 216

4. Release Notes

3.12.3

New features

Metadefender Core administrators can now configure which type of scan results will be
labeled 'blocked', and which will be 'allowed'

The Metadefender Mail Agent now supports Office365 and Google Apps email servers

The Metadefender Mail Agent now supports installation on Microsoft Exchange servers

Other changes

The Avira scan engine has been updated

Display of scan results in the Management Console has been improved, including the
source of the scan and the workflow applied

The threat name is now included on the 'block' page when using the ICAP interface

The number of files in the scan pending queue is now limited to 20,000. The /file API will
now return 503 (Service unavailable) if the maximum of 20,000 files has been reached.

A minimum of 3.5 GB of free disk space is now required when files are submitted for
scanning. If the machine has less than 3.5GB free the /file API will return 503.

Product documentation has been updated to a new format

General and Known Issues

General

Metadefender Core 1, 4, and 8 come with a trial license good for 15 days after fresh
installation (reinstalling does not reset trial).

Metadefender Core 12, 16, and 20 do not come with a trial license. To obtain a trial
license, please contact OPSWAT sales (sales@opswat.com).

Metadefender Core should be restarted whenever a new license has been applied.

Metadefender Core was previously called Metascan.

Metadefender Core categorizes files as 'blocked' or 'allowed' based on the process
results. Please refer to for details.Callback for Processing a File (COM)

Known issues

http://opswat.com/
https://opswat.atlassian.net/wiki/pages/viewpage.action?pageId=18383800

v3.12.3 217

Known issues

Metadefender Core embedded engines should not be installed on a system which has
an alternate product provided by the same vendor, for example, installation of the
Norman Scan Engine with Norman Security Suite. This configuration is not supported by
Metadefender Core.

Metadefender Core license allows up to 10 Remote Desktop (RDP) sessions to a server
running Metadefender Core . Please contact if you need more than OPSWAT support
ten connections via RDP.

Scanning boot sector is only supported by the Total Defense/Quick Heal scan engine.
Other engines will fail to scan for boot sector scan request.

REST Web Service installation may fail to install if UAC (User Access Control) is
enabled. Turn off UAC and run the installation with Administrator privileges.

If logging all scan history is enabled, the Metadefender Core Management console
dashboard may cause high load on mongoDB.

ICAP server does not block traffic if server is overloaded by default.

Metadefender Core does not support installation to directory paths that include non-
ASCII characters.

Metadefender Core must have archive handling enabled in order to correctly scan GZIP
content through the ICAP interface.

When Metadefender Core is configured to use a local instance of MongoDB (the default
configuration) the
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\OPSWAT\Metascan\db_instance
(or HKEY_LOCAL_MACHINE\SOFTWARE\OPSWAT\Metascan\db_instance for 32 bit
systems) key must be set to 'localhost' or '127.0.0.1'. The local system cannot be
referred to by IP address.

Metadefender Core does not support installation on systems where the TEMP
environment variable contains more than one path.

In Metadefender Core 20 packages, the Sophos engine must have its definitions
updated before scans can successfully complete.

Archives scanned through the COM interface do not have their scan results logged.

The setting "Maximum File Size for files scanned through the web interface" found on
the Configuration->Scan Configuration page in the Metadefender Core Management
Console cannot currently be imported or exported through the Backup/Restore feature.

Disabling the 'support_custom_engine' property will disable all engines in Metadefender
Core.

https://www.opswat.com/support#support-levels

v3.12.3 218

Threats found within archives will not be removed even if Metadefender Core is
configured to delete or quarantine files that contain threats.

Stopping the Metadefender Core service may not stop all engine handlers
(omsAMEHandler.exe and omsCEHandler.exe processes) if there are engine updates in
progress. Engine handlers will terminate after the update has completed or they can be
terminated manually.

The following are applicable only if the Metadefender Mail functionality is being used:

Metadefender Email agent will be installed as part of Metadefender Core. Before
installing Metadefender Core, please uninstall mail agent before installing Metadefender
Core.

A separate SMTP server is required for notification.

Exchange (malware agent configuration) may block release from quarantine.

Email sanitization to HTML may be blocked and attachment may be replaced with text
"This attachment was removed because it contains data that could pose a security risk."

An attachment that has been sanitized may be larger than the original attachment. As a
result, it may be necessary to increase the maximum attachment size setting on your
mail server

v3.12.3 219

Usable AVs (antivirus)

Usable AVs are the anti-malware engines that Metadefender Core uses to process scan
requests. All embedded engines are usable anti-malware engines. For anti-malware
applications that are installed by you, please check the list of products that Metascan supports.

This list can be retrieved from:

Init API

Any command line utility (omsCmdUtil.exe) command

Metadefender Core Management Console Configuration Page

Current AVs

Current AVs are anti-malware engines that Metadefender Core automatically uses for scans
and updates. This list is affected by licenses and properties such as included antiviruses,
excluded antiviruses, and supported pre-installed antiviruses.

For example, if you installed Metadefender Core 8 and you have McAfee VirusScan installed
on your machine, but you exclude the ESET scanning engine and disable customer-licensed
products, your usable AVs and current AVs will be designated as below:

Usable AVs (Usable AMs) Current AVs

Avira scan engine

ESET scan engine

ClamAV scan engine

AhnLab scan engine

ThreatTrack scan engine

Bitdefender scan engine

Total Defense scan engine

Quick Heal scan engine

McAfee VirusScan

Avira scan engine

ClamAV scan engine

AhnLabscan engine

ThreatTrack scan engine

Bitdefender scan engine

Total Defense scan engine

Quick Heal scan engine

v3.12.3 220

Synchronous/asynchronous scan

Metadefender Core can be delegated to queue scan requests and return the results of queued
scans via callbacks with extensive scan details. Even if your application is single threaded, you
can process many scan requests without blocking. In other words, as soon as you have data to
be scanned and you call the asynchronous scan API of Metadefender Core (for example,
PutToScanQueue), you can continue to request scans without waiting for the results of the
scan.

On the other hand, a synchronous scan is more suitable if your application creates scan
requests in many threads. Refer to the ScanEx section on how to retrieve scan details when
scanning synchronously.

Valid file name

A valid file name as a parameter for any API related to scanning files should meet the following
requirements:

Absolute path to file, folder, and drive (e.g., c:, C:\Windows, C:\boot.ini)

File path should be limited to the local machine (e.g., “\\remote_machine\testfile.txt”
would be recognized as an invalid path)

v3.12.3 221

Legal

Copyright

DISCLAIMER OF WARRANTY

OPSWAT Inc. makes no representation or warranties, either express or implied by or with
respect to anything in this document, and shall not be liable for any implied warranties of
merchantability or fitness for a particular purpose or for any indirect special or consequential
damages.

COPYRIGHT NOTICE

OPSWAT, OESIS, Metascan, Metadefender, AppRemover and the OPSWAT logo are
trademarks and registered trademarks of OPSWAT, Inc. All other trademarks, trade names and
images mentioned and/or used herein belong to their respective owners.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in
any form or by any means (photocopying, recording or otherwise) without prior written consent
of OPSWAT Inc. No patent liability is assumed with respect to the use of the information
contained herein. While every precaution has been taken in the preparation of this publication,
OPSWAT Inc. assumes no responsibility for errors or omissions. This publication and features
described herein are subject to change without notice.

Export Classification EAR99

EAR99 (Export Administration Regulation 99) is an export classification category regulated by
the U.S. Department of Commerce that covers most commercial items exported out of the U.S.

OPSWAT’s software is designated as EAR99, and there are no export restrictions other than
embargoed countries and persons.

	1. Installing or Upgrading Metadefender Core
	1.1. System Requirements
	Hardware requirements
	Software requirements
	Browser requirements for the Metadefender Core Management Console
	Additional installation of 3rd party framework/components
	Additional installation of Windows services by Metadefender Core
	Ports that must be available
	Driver installation by Metadefender Core
	Whitelisting requirements

	1.2. Installing Metadefender Core
	Installation packages
	Optional components
	RAM drive

	Installing Metadefender Core Using the Command Line
	Command line options

	Installing Metadefender Core Using the Install Wizard

	1.3. Metadefender Core Licensing
	License types
	Trial license
	Activating and Managing Metadefender licenses
	Online/Offline Activation
	Activating the Management Console
	Offline License Activation
	Offline activation of licenses using the Metadefender Core Management Console
	Offline activation of licenses using the License Manager Command Line Interface (CLI)

	Online License Activation
	Online activation of licenses using the Metadefender Core Management Console
	Online activation of licenses using the License Manager CLI

	License Manager Command Line Interface
	Argument values
	Common license activation errors

	1.4. Upgrading Metadefender Core
	Backing up your current configuration using the Management Console
	Exporting your current configuration using the command line
	Exporting your scan results history
	Installing the upgrade
	Restoring your previous configuration using the Management Console
	Importing your previous configuration using the command line
	Importing your scan results history
	Upgrading from Metadefender Core 3.5 or earlier
	Backing Up Your Current Configuration
	Installing the Upgrade
	Restoring Your Previous Configuration

	2. Configuring Metadefender Core
	Metadefender Core Management Console
	Command line utility
	omsConfig.ini
	2.1. Global Scan Configuration
	2.2. Engine Configuration
	Applying Offline Updates
	Configuring Scan Engines
	Using the Metadefender Core Management Console
	Using the command line interface
	Retrieving the list of available engines
	Enabling an engine
	Disabling an engine
	Supporting customer-licensed engines

	Online Update Configuration

	2.3. Sources Configuration
	Metadefender Client Configuration
	Metadefender client command line options
	Command line usage example

	Metadefender Email Configuration
	Metadefender Proxy Configuration

	2.4. Workflow Profile Configuration
	2.4.1. Creating a New Workflow Profile
	2.4.2. Default Profiles
	2.4.3. Archive Handling
	2.4.4. File Type Detection And Filtration Overview
	File type detection
	Filtration
	File Type (Mismatch and Filtration)
	Overwrite group mismatch
	Overwrite mismatch
	Block file type filtration
	Block file type mismatch
	Verify mismatch for groups

	2.5. Metadefender Core Logs
	Debug logs
	Application Log
	Email Event Log
	Email History
	Description of fields

	File Log
	Logging Configuration
	Log Retention
	Changing the number of days Metadefender Core stores log files

	Windows Event Log

	2.6. Quarantine Management
	Accessing the Quarantine tab in the Metadefender Core Management Console
	Scheduling quarantine reports

	2.7 Filter CLI
	omsFilter - about
	omsFilter - addtoblack
	omsFilter - addtowhite
	omsFilter - list
	omsFilter - remove

	2.8. Advanced Configuration Options
	CORS Configuration
	Enabling HTTPS
	Requirements
	Overview
	Generating a self-signed certificate
	Install Certificate
	Enabling HTTPS on IIS Express

	Engine Specific Configuration
	Heuristic scan / extract archive

	Import/export configuration
	Help
	Import
	Export
	Options

	Post Action Script
	Running scripts on clean/infected files
	XML format for post action script
	Pre-defined variables
	Applying post action script
	Example of post action script XML
	Moving clean file and infected files to different folder
	Uploading infected file to ftp server

	RAM Disk Configuration
	Overview
	RAM Disk as Temporary Directory
	Device Property

	REST Server Configuration
	Enabling IIS Logging
	Load Balancing With Multiple Instance
	Storing File on the REST server

	Whitelisting/Blacklisting

	2.9. Non-Workflow Configuration (Deprecated)
	Caching
	ScanEx Configuration
	Archive handling
	Post processing configuration

	3. Developer Guide
	Building Custom Engines
	What you need to do
	Installation and configuration
	Example
	When uninstalling or upgrading Metadefender Core
	C# Custom Engine Template
	Additional steps for VB/C# custom engine
	NDeinitCE
	Function prototype
	Arguments

	NGetDefinitionInfo
	Function prototype
	Arguments
	Return value

	NGetDefinitionTime
	Function prototype
	Arguments
	Return value

	NGetProductName
	Function prototype
	Arguments
	Return value

	NInitCE
	Function prototype
	Arguments
	Return value

	NPerformUpdate
	Function prototype
	Return value

	NReloadDatabase
	Function prototype
	Arguments
	Return value

	NScan
	Function prototype
	Arguments
	Return value

	Custom Engine C Interface
	Interface
	DeinitCE
	Function prototype
	Arguments
	Return value

	FreeString
	Function prototype
	Arguments

	GetDefinitionInfo
	Function prototype
	Arguments
	Return value

	GetDefinitionTime
	Function prototype
	Arguments
	Return value

	GetExpirationDate
	Function prototype
	Arguments
	Return value

	GetProductName
	Function prototype
	Arguments
	Return value

	InitCE
	Function prototype
	Arguments
	Return value

	PerformUpdate
	Function prototype
	Arguments
	Return value

	ReloadConfig
	Function prototype
	Arguments
	Return value

	ReloadDatabase
	Function prototype
	Arguments
	Return value

	Scan File
	Function prototype
	Arguments
	Return value

	COM Interface
	Important Return Type
	Scan outcome Return Type
	Others

	COM Connection Points
	Callback For Additional Scan Progress Report (COM)
	Function prototype
	Arguments

	Callback For Archive File Info (COM)
	Function prototype
	Arguments

	Callback for Processing a File (COM)
	Function prototype
	Arguments
	Callback types

	Callback for Scan Completion (COM)
	Function prototype
	Arguments

	Callback For Scan Progress Report (COM)
	Function prototype
	Arguments

	Callback For Scan Started Report (COM)
	Function prototype
	Arguments

	Callback For Update Completion (COM)
	Function prototype
	Arguments

	Callback For Update Progress Report (COM)
	Function prototype
	Arguments

	Deprecated COM interface
	Analyze file type (deprecated)
	Function prototype
	Arguments

	Get updated virus definition files (deprecated)
	Function prototype
	Arguments

	Initialize object (deprecated)
	Function prototype
	Arguments

	Put in scan-and-clean queue (deprecated)
	Function prototype
	Arguments

	Put in scan queue (deprecated)
	Function prototype
	Arguments

	Scan and clean file (deprecated)
	Function prototype
	Arguments

	Scan file (deprecated)
	Function prototype
	Arguments

	Subscribe to global events (deprecated)
	Function prototype
	Arguments

	Unsubscribe from global events (deprecated)
	Function prototype
	Arguments

	Methods
	Analyze file type I (COM)
	Function prototype
	Arguments

	Analyze file type II (COM)
	Function prototype
	Arguments
	Comparison with AnalyzeFileTypeEx()

	Analyze file type III (COM)
	Function prototype
	Arguments

	Check license (COM)
	Function prototype
	Arguments

	Get an engine info (COM)
	Function prototype
	Arguments

	Get a property value (COM)
	Function prototype
	Arguments

	Initialize (COM)
	Function prototype
	Arguments

	Process a file (COM)
	Function p rototype
	Arguments
	Creating workflow profiles

	Sanitize a file (COM)
	Function prototype
	Arguments

	Scan a file (COM)
	Function prototype
	Arguments

	Set a property value (COM)
	Function prototype
	Arguments

	Stop ongoing scan (COM)
	Function prototype
	Arguments

	Update an anti-malware engine (COM)
	Function prototype
	Arguments

	Update anti-malware engines (COM)
	Function prototype

	Sample Code
	ASP Sample
	PHP Sample Code for IIS 7

	Command Line Utility
	Exit code (for scan command)
	Process a File Command
	COM API
	Process parameters
	Example
	Limitations

	Java Sample
	With the Eclipse IDE running:
	Running on the Command Line:

	REST API (v2)
	API key-based authentication
	Getting Started
	Compatibility with Core v4 and Metadefender.com
	Advanced Usages
	Load handling
	Maximum Number of Simultaneous Workflow Clients Through REST
	Overview
	Configuring many systems to perform a full system scan using MClient.
	Queuing Mechanism
	Disk Check

	Recommend REST integration in multiple client environment
	Number of pending jobs
	Summary
	Request URL
	HTTP header parameters
	Method: GET
	Response Code
	Response
	Example of when request is successful :
	Descriptions of response:

	Multiple Hashes Lookup
	Summary
	HTTP header parameters
	Method: POST
	Response Codes
	Response
	Example of when input body is empty :
	Example of when input body is wrong format :
	Example of maximum hashes input.
	Example of when request is successful :
	Example of when request is successful and "include_scan_details"=1:
	Example of when the number of lookup hashes i s more than remaning lookup number:
	Descriptions of response:

	Statistics
	Check Server health
	Summary
	Request URL
	Use Cases (used by)
	HTTP header parameters
	Method: GET
	Response Codes
	Response

	Get enginedef stat
	Summary
	Request URL
	Response Codes
	Response

	Get engines stat
	Summary
	Request URL
	HTTP header parameters
	Request Error
	Response

	Summary of scan
	Summary
	HTTP header parameters
	Response Codes
	Response

	Look Up Hash and Process (Scan / Sanitize) A File
	Recommended Flow Of API usage
	User Provided Info
	Download Sanitized File
	Summary
	HTTP header parameters
	Method: GET
	Request Codes
	Response
	Example of when request is not successful :
	Example of when request is successful :

	Hash Lookup
	HTTP header parameters
	Method: GET
	Response Codes
	Response
	Example of when result is not found :

	Response
	When result is not found (example) :
	When result is found :

	Initiate Process File
	Summary
	Method: POST
	Response Codes
	Response
	Descriptions of response:

	Retrieve process result by data_id
	HTTP header parameters
	Method: GET
	Response Codes
	Response
	Example of when result is not found :
	When result is found :
	

	Response Description
	Top levels of Process Result
	Minimum Required Parsing Process Results (process_info)
	There should always process_info field for process JSON message.

	Response Details For process_info
	Response Details For scan_results and others
	

	Additional Information For An Archive File
	Available Scan Results (scan_result_i, scan_all_result_i)
	Available File Type Categories (file_type_category)
	Response Example
	Available File Type Categories (file_type_category)
	Available Scan Results (scan_result_i, scan_all_result_i)

	4. Release Notes
	3.12.3
	New features
	Other changes

	General and Known Issues
	General
	Known issues

	Usable AVs (antivirus)
	Current AVs
	Synchronous/asynchronous scan
	Valid file name

	Legal
	Copyright
	DISCLAIMER OF WARRANTY
	COPYRIGHT NOTICE

	Export Classification EAR99

