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Preface 

Numerical methods have great and increasing importance in the scientific and engineering 
computations. This is because most of the mathematical formulas developed from the real 
life cases of study cannot be solved by the analytical methods due to many factors such as 
nature, geometry, composition and internal and external affecting forces. 

The nature of a problem could lead to a total change in the computational discipline. For 
example, the problem of a laminar flow of a fluid inside a pipe can be solve with direct 
analytical equations because of the predictable nature of the fluid particles at low speeds. 
But when the flow exceeds a specific speed, and with the influence of the physical 
properties of the fluid and the geometrical limits of the pipe, the motion of the particles 
becomes chaotic and flow is then known as turbulent. In this case, another set of equations 
shall govern the problem which needs to be solved numerically. 

Since the mathematical formulas are derived depending on assumptions based on 
geometries governed by simple equations, such as straight lines, triangles, circles and 
ellipses, the intricate geometric elements of a structure or boundaries of a thermodynamic 
or a hydraulic system need to be modeled with equations that have parallel level of 
complication and require the application of numerical methods in solution. 

The composition of the matter is highly important in creating an accurate mathematical 
model. For example, the materials that have homogeneous mechanical properties in the all 
directions are known as isotropic materials. This property makes them extremely easy to 
be modeled since one equation is valid to solve a vast range of problems. Meanwhile, some 
other materials have totally different mechanical properties, or even nature, at each 
direction, like fibrous and composite materials. In such a case, numerical analysis becomes 
more likely to be the only solution technique. 

In science and engineering, all physical, chemical and biological systems are affected in 
some way by variety of internal and external factors such as gravitational forces, fluid 
pressure, transferred or generated heat and electrical charge and environmental changes. 
Each of those effects has to be represented within the mathematical model of the studied 
phenomenon or solved problem. The more factors influence the case, the more complicated 
model it requires and, hence, more need to numerical analysis techniques rises. 

All those and more other reasons made the courses of numerical analysis methods essential 
parts of the curricula of the most science and engineering schools in both undergraduate 
and graduate levels. 

Although most basic numerical methods were developed before the invention of the digital 
computers, they are frequently described as “computer methods.” This is due to the 
repetitive nature of the numerical methods which makes them extremely tedious and time-
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consuming for hand calculations while a simple computer program can perform millions 
of mathematical operations in few seconds. 

MATLAB is one of the most well-known computing environments in science and 
engineering. Beside its simple and intuitive user interface, it contains a huge number of 
mathematical and numerical functions in numerous fields of applications. It has a powerful 
interpreter to executed commands directly and its programming language is remarkably 
simple. That’s why it is one of the easiest computer languages to learn and apply. 

In this book, I have introduced the programming steps of the most basic numerical methods 
in a simplified way by using MATLAB functions and statements, and I believe this will 
help the students who study the numerical methods and need to learn how they are coded. 
I have kept the codes of this book as simple and basic as possible to avoid the distraction 
of the reader from the main concept by secondary or redundant statements. 

Finally, I hope Programming Numerical Methods in MATLAB will be a helpful resource 
for the all readers who are interested in the topic. 

 

Murad Elarbi 

Denver, Colorado 

January 5, 2018  
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Chapter 1 

Introduction 

Numerical methods 

The numerical methods, or numerical analysis, are simplified procedures to get 
approximate numerical solutions to equations and problems in algebra, calculus and other 
fields of mathematics. These procedures should be organized in definite and general steps 
that are applicable to the problem which they are formulated to solve. These steps are 
known as algorithms and can be programmed by using a computer language. 
 

Programming languages used in numerical methods 

Numerical calculation of science and engineering problems was one of the first 
applications of computers in the 1950’s. The early high-level computer language used for 
the purpose was FORTRAN. Development of other powerful languages like Pascal, C++, 
Java and Python in addition to advanced computation environments such as MATLAB and 
Mathematica increased the efficiency of codes and techniques of numerical methods in 
parallel with the advantages of each language. 
 

The goal of the book 

Programming Numerical Methods in MATLAB aims at teaching how to program the 
numerical methods with a step-by-step approach in transforming their algorithms to the 
most basic lines of code that can run on the computer efficiently and output the solution at 
the required degree of accuracy. Thus, the reader can comprehend the fundamental 
numerical procedures that are required to develop more advanced codes for study and 
research. 
 

Why MATLAB programming language 

In this book, MATLAB is used in programming the numerical methods because it has many 
advantages: 
1- It has very simple syntax. Statements and functions can be written in very simple formats 
in comparison with other languages. 
2- All functions are built-in by default, so no external libraries or header files are needed 
to be included at the beginning of each program. 
3- Vectors and matrices can be created and manipulated by means of its pre-defined 
operators and functions. 
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4- Plotting function are included by default, so neither external plotting modules are 
needed to be imported nor data have to be exported to another plotting application. 
5- It includes the whole known numerical methods as built-in functions. 
6- It is available in most colleges since it is installed in the computer labs of most science 
and engineering departments in the world. 
7- It is taught in many colleges of science and engineering and applied as computational 
tool in solving the problems of many courses. 
 

What this book focuses at 

This book focuses mainly on the programming steps of the basic numerical methods that 
are studied in a first course on numerical method. Thus, it is designed to be an additional 
practical resource for the students who study numerical analysis. 
The most of the codes in this book are written in the basic MATLAB programming 
statements and functions which does not require a thorough experience in MATLAB to 
understand. Furthermore, the students who study courses of science or engineering that 
require numerical programming in other languages could find this book useful in coding 
for their assignments and project. 
 

What is needed to read this book 

In order to get the best outcome of the topics and the codes of Programming Numerical 

Methods in MATLAB, it is recommended to have 
1-  a good background in algebra and calculus, in addition to the basic knowledge about 
computers since they are the pre-requisite of any Numerical Analysis course, 
2- some basic knowledge about MATLAB in order to be able to run the codes of each 
section, 
3- MATLAB installed on the computer that will be used in working the examples and the 
exercises. Otherwise, Octave can be installed and used without any noticeable difference 
in programming tools required in this book. It can be downloaded for free from 
https://www.gnu.org/software/octave/ 

 

Source code files 

A companion zip folder that includes the MATLAB m-files of the programs of this book 
should be downloaded with it at purchase from https://www.MechTutor.com. 
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Chapter 2 

Roots of High-Degree Equations 
 
High-degree equations can be polynomials or equations containing radicals and/or 
transcendental (trigonometric and logarithmic) functions. The simplest example of high-
degree equations is the quadratic equation: 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 
Its roots can easily be obtained by the equation: 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

But in case of equations of higher degrees (power) or when terms of transcendental 
functions exist, numerical methods become the only way to obtain their roots. 
 

Simple Iterations Method 

The simple iterations is the simplest method used in finding roots of high-degree equation. 
In this method, the equations is rearranged to have the variable on the left side or the 
equation. An initial value of the variable, known as initial guess, substituted in the right 
side and a new value for the variable calculated. In the second iteration (repeat) the new 
value substituted on the right side. This cycle will continue until the old value and resulting 
new value of the variable become theoretically equal. Thus, this value will be one of the 
roots of the equations. Other root can be found with the same manner just by changing the 
initial guess. 
  
Now, let’s write solution steps as an algorithm: 
1- Rearrange the equation so that the variable is put on the left side 
2- Assume (guess) an initial value of the variable to start the first iteration 
3- Substitute the value of the variable in the right side of the equation and calculate an 
new value for the variable 
4- If the new value of the variable is not equal to the previous value, consider the new one 
as the value of the variable. 
5- Repeat steps 3 and 4 until the new value is equal to the old value of the variable. Then 
output the value of the variable and stop. 
6- In case the new value does not approach the old value (the difference increases at each 
iteration) stop calculation and try another initial value or another rearrangement of the 
given equation. 
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Example 2-1 

Find the roots of the following equation: 
2𝑥2 − 5𝑥 + 3 = 0 

(Analytical solutions: x = 1.5 and x = 1) 
Solution 
The first step in algorithm should be performed manually. So, the equation can be 
rearranged in the forms: 

𝑥 =
2𝑥2 + 3

5
 

or 

𝑥 = √
5𝑥 − 3

2
 

Through this first example, we will see how develop a program of the numerical method 
form the scratch depending on the algorithm listed above. Because the method is based on 
repeated trials, the main part of the code will be a loop (a for-loop or a while-loop) to make 
the required repetitions. Let’s start with a for-loop.  
x = 0;    % initial guess value (step 2) 
for iteration = 1:100   % start a for-loop 
  xnew = (2*x^2+3)/5; % the new value of x (step 3) 
  if xnew ~= x  % if the new x not equal x (step 4) 

x = xnew;  % x takes value of the new x (step 4) 
  else    % in case x equals to new x (step 5) 

break   % end the loop (step 5) 
  end 
end 
disp(x)   % display (output) x (step 5)  
 
The output in the command window will be displayed as 

                                                                   
 1.00000 
>> 
This is a good result since 1.0 is one of the roots according to the analytical solution. Let’s 
see in how many iterations the solution was approached by printing the value of x inside 
the loop at the corresponding value of iteration as following 
x = 0; 
for iteration = 1:100 
   xnew = (2*x^2 + 3)/5; 
   fprintf('iteration = %d\tx = %f\n',iteration,x) 
   if xnew ~= x 
       x = xnew; 
   else 
       break 
   end 
end 
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The output resulting from the fprintf function will be 
 
iteration = 1   x = 0.000000 
iteration = 2   x = 0.600000 
iteration = 3   x = 0.744000 
 :  : 
iteration = 58  x = 0.999999 
iteration = 59  x = 0.999999 
iteration = 60  x = 1.000000 
 :  : 
iteration = 98  x = 1.000000 
iteration = 99  x = 1.000000 
iteration = 100 x = 1.000000 
 
Why the program did not stop at the iteration 60, where it approached the solution, and 
continued to 100? The answer can simply be discovered by printing the value of xnew in 
the same fprintf function and setting the displayed decimal digits of x and xnew: to 15: 
 
fprintf('iteration=%d\tx=%.15f\txnew=%.15f\n',iteration,x,xnew) 

 
The values at the last iteration are displayed as 
 
iteration=100   x=0.999999999939488     xnew=0.999999999951591 
 

The result shows that the equality has never occurred even at the last iteration because of 
the difference after the 10th decimal digit. 
Since the solution of any numerical method is obtained by using the computer, the values 
are directly affected by the precision of the data types of the variables. This means that the 
exact equality between two real (or double precision) variables is extremely difficult if not 
impossible.  
 The usual practice in numerical methods is to specify the degree of accuracy that is 
required in the solution. For example, an accuracy up to the second decimal digit can be 
acceptable for economical calculations when the values are in Dollars, or if major 
measurements are made in meters in a carpentry workshop, the accuracy of 3 decimal digits 
gives exact results since one millimeter is the smallest measurable minor unit. 
According to this concept, the condition should be modified in a way that can consider the 
required degree of the accuracy for the problem. In many references, it is called the 
tolerance and it represents the acceptable absolute maximum difference between values 
of the variable of the equation resulted from the two successive iterations, in other words, 
the difference between the old and new values. Therefore, all what we have to do is to 
suggest a value for the tolerance and modify the condition as following 
 
if abs(x - xnew) >= 0.000001 %compared to the tolerance 
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With the degree of accuracy of 0.000001 (or 1.0E-6), the last line of the output becomes 
 
iteration=50    x=0.999995760196990     xnew=0.999996608164782 

 
So, the run ended at the 50th iteration when the condition is satisfied. It is recommended to 
display the results at a same or a close number of decimal digits to the tolerance. Thus, the 
precision specifier can be set to %.5f in the fprintf function and the last two lines of the 
output will be 
 
iteration=49    x=0.99999       xnew=1.00000 
iteration=50    x=1.00000       xnew=1.00000 

 
Finally, instead of cluttering the command window by the output of each iteration, it is 
preferred to displays the final new value and the corresponding number of iterations at the 
end of the program. Thus, this is the final simplest code 
x = 0; 
for iteration = 1:100 
    xnew = (2*x^2 + 3)/5; 
    if abs(x - xnew) >= 0.000001 
        x = xnew; 
    else 
        break 
    end 
end 
fprintf('iteration=%d\tx=%.5f\n',iteration,xnew) 
 

 
Convergence and Divergence 
The solution obtained for the quadratic equation in the example showed that the values of 
x and xnew were getting closer at each iteration and at the iteration number 50 both values 
were considered equal when the required condition of accuracy was satisfied. This behavior 
is called the convergence of values to a specific solution. The Figure 2-1 shows the 
convergence of the solution of example. 
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Figure 2-1. The differences between values of x trials (the vertical distance) at 
each iteration. 

 
On the contrary, the divergence occurs when the difference between the values of the 
variable gets larger at each iteration until the final value of iterations loop is reached. 
Divergence can be resulted from the type of the equation, the initial guess and/or method 
of rearrangement. Figure 2-2 shows the behavior of the variables in case of divergence. 
The equation is: xcos(x) – 1 = 0  
 

 
Figure 2-2. The irregular differences between x trial values. 

 
In order to get the second root of the quadratic equation of example, the second 
rearrangement of the equation should be used. 
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Newton-Raphson Method 

The Newton-Raphson method has the same procedure of the simple iteration with a main 
difference in the step one. Instead of simple rearrangement of the given equation, a new 
equation should be formulated by using the given equation and its first derivative with 
respect to its variable. The formula to be put in the code is as following: 

𝑥𝑛𝑒𝑤 = 𝑥 −
𝑓(𝑥)

𝑓′(𝑥)
 

 
Example 2-2 

Find the roots of the following equation: 
2𝑥2 − 5𝑥 + 3 = 0 

Solution 
Let’s write the equation as a function then find its first derivative: 

𝑓(𝑥) = 2𝑥2 − 5𝑥 + 3 
So, 

𝑓′(𝑥) = 4𝑥 − 5 
Now, the formula of the method becomes 

𝑥𝑛𝑒𝑤 = 𝑥 −
2𝑥2 − 5𝑥 + 3

4𝑥 − 5
 

By plugging this formula in the same code of simple iterations method we get  
 
x = 0;     
for iteration = 1:100    
   xnew = x-(2*x^2-5*x+3)/(4*x-5);  
   if abs(x – xnew) >= 0.000001  
      x = xnew; 
   else   
      break        
   end 
end 
fprintf('iteration=%d\tx=%.5f\n',iteration,xnew) 
 
the output will be: 
 
iteration=7     x=1.00000 
>> 

Amazing! The root have been approached at seven iterations only. This demonstrates the 
efficiency of the Newton’s method since it could converge about 7 times faster than the 
simple iterations method. 
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Another advantage is that only one formulation of the given equation can be used in 
computing the other root(s). For the equation given in the example, the second root can be 
simply obtained by setting the initial guess value to 2 (x = 2;) and the output will be 
 
iteration=6     x=1.50000 
>> 

  
 

Bisection Method 

This method is based on the fact that a root of an equation is point where its curve crosses 
the x-axis. For example, the graph of the equation 𝑦 = 2𝑥2 − 5𝑥 + 3 is 

 
Figure 2-3. The curve of the equation 𝑦 = 2𝑥2 − 5𝑥 + 3 

 
The curve crosses the x-axis at 1 and 1.5 (i.e. when y = 0) which are the roots of the 
equation. Also, it can be noticed that the values of y for points located to one side of a root 
have opposite sign to those at the other side. Accordingly, we can simply imagine that the 
bisection method as a search for these points along the x-axis where sign of y(x) changes. 
Practically, it searches for the points that are embraced between two values of different 
signs. Then interval between the values is halved and the half having two values of different 
sign is selected for the next halving and so on, as shown in Figure 2-4. By halving the 
intervals at each time the requested point (root) can be found and by changing starting 
search points the other roots can be determined in the same way.  
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Figure 2-4. Bisecting the interval [x1 x2] at xh 

 
The algorithm: 
1- Input the initial interval of x where the root is expected 
2- Calculate corresponding values of y1 and y2 
3- Check for the sign difference between y-values 
4- If y-values have the same sign, stop 
5- Calculate the value of xh at the middle of the interval 
6- Check for the sign difference between the y-values of the first half interval 
7- In case of opposite signs, let the new value of x2 equal to xh 
8- In case of similar signs, let the new value of x1 equal to xh 
9- If the values of y1 and y2 approaches zero, print the x-value and stop 
10- Else repeat steps 5 to 10 
 
Example 2-3 
Find the roots of the following equation: 

2𝑥2 − 5𝑥 + 3 = 0 
Solution 
Let’s write the equation as a function 

𝑦 = 2𝑥2 − 5𝑥 + 3 
Let’s “translate” the algorithm to a computer code to solve the equation:  
 
x1= 0;   % first value of interval 
x2= 1.3;  % end value of interval 
y1 = 2*x1^2-5*x1+3; 
y2 = 2*x2^2-5*x2+3; 
if y1*y2 > 0  % test of entered interval 
  disp('No roots exist within given interval') 
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  return   % terminates the program 
end 
for i = 1:100   % assume 100 bisections are enough 
  xh = (x1+x2)/2;  % calculation the half value 
  y1 = 2*x1^2-5*x1+3; % calculation of y1 
  yh = 2*xh^2-5*xh+3; % calculation of yh  
  if y1*yh < 0  % check for the sign change in first half 
    x2 = xh;   % let x2 be the midpoint value  
  else    % in case sign change in the second half 
    x1 = xh;    % let x1 be the midpoint value 
  end 
  if abs(y1) < 1.0e-6 % condition of approach to solution 
    disp('Root:') 
    disp(x1) 
    disp('Number of bisections:') 
    disp(i) 
    break  % terminate the for-loop 
  end 
end % end of for-loop 
 
The run of the program displays: 
Root: 
 1.00000 
Number of bisections: 
 22 
 
Changing the initial interval to x1 = 1.1; x2 = 2; gives the second root: 
Root: 
 1.5000 
Number of bisections: 
 21 
 
This could be the simplest working program of bisection method. Of course, some 
additional modifications can be added for better response for special input data. For 
example, if the user defines of the of the initial values (x1 and x2) as 1.0 which is one of 
the roots, the program will terminated after showing the message “No roots exist within 

given interval.” So, another condition should check whether y1*y2 is equal to zero and if it 
is, another check should be made to find which one of initial values is a root of the equation.  
Although the code works, it contains a programming burden. The full equation is used four 
times to calculate y1, y2 and yh. In MATLAB, there are two ways to define a one-line 
function so that it can be used in the program in a similar way to that in the mathematical 
writing: 
1- inline function like the example: 
>> y = inline('x*sin(x)','x') 

2- anonymous function like 
>> y = @(x)x*sin(x) 
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Despite the fact that the inline functions are still valid, they are replaced by the anonymous 
functions because of their flexibility especially in passing functions as parameters to other 
functions. 
Another modification can be the use of input statement in defining initial values. It enables 
the user to input the values at the run-time and, consequently, the code will remain 
unchanged. 
The following code contains the inline and input statements. 
 
% Definition of an anonymous function y(x) 
y = @(x)2*x^2-5*x+3; 
% Reading x1 and x2 during the run 
x1 = input('Enter x1: ');  % input x1 in the command window 
x2 = input('Enter x2: ');  % input x2 in the command window 
if y(x1)*y(x2) > 0   % the functions called here 
  disp('No roots exist within given interval') 
  return 
end 
for i = 1:100 
  xh = (x1+x2)/2; 
  if y(x1)*y(xh) < 0  % the functions called here 
    x2 = xh; 
  else 
    x1 = xh;  
  end 
  if abs(y(x1)) < 1.0e-6  % the function called here 
    disp('Root:') 
    disp(x1) 
    disp('Number of bisections:') 
    disp(i) 
    break 
  end 
end 
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Chapter 5 

Numerical Integration 

The main idea of limited integration is to computed the area under a curve of a function 

between two limits, a and b, by means of analytical integration rules. 

 

 

Figure 5-1. The area under the curve of f(x) over the domain [a b]. 

 

The numerical integration, which is also called quadrature,  is to compute the area under 

the curve of a given function by dividing the area to strips or regions that the area of each 

of them can be calculated by using simple mathematical rules then all areas are summed to 

get the total area under the curve from a to b. 

The numerical integration is performed in one (or more) of the following cases: 

a) The function does not have an explicit integral 

b) A curve of empirical data is to be integrated  

c) The integration is a part of a compound numerical method 

The accuracy of the numerical integration method highly depends on the number of 

divisions that cover the area under the curve precisely. The method is more efficient when 

it yields more accurate result with lesser divisions. 

 

Trapezoidal Rule 

The trapezoidal rule is the most basic numerical integration method. As shown in the figure 

5-2, the area under the curve is divided to vertical trapezoids having equal width, h, and 

the upper points coincide with the curve. 
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Figure 5-2. Dividing the area under the curve along the domain [a b] to trapezoids 

of equal width. 

 

The area of the first section is  

𝐴 = ℎ[𝑓(𝑥0) + 𝑓(𝑥1)]/2 

The integral will be equal to the sum of the trapezoidal areas: 

𝐼 =
ℎ

2
[𝑓(𝑥0) + 𝑓(𝑥1)] +

ℎ

2
[𝑓(𝑥1) + 𝑓(𝑥2)] + ⋯+

ℎ

2
[𝑓(𝑥𝑛−2) + 𝑓(𝑥𝑛−1)]

+
ℎ

2
[𝑓(𝑥𝑛−1) + 𝑓(𝑥𝑛)] 

So, 

𝐼 = ℎ {
1

2
[𝑓(𝑥0) + 𝑓(𝑥𝑛)] + 𝑓(𝑥1) + 𝑓(𝑥2) + ⋯+ 𝑓(𝑥𝑛−2) + 𝑓(𝑥𝑛−1)} 

or 

𝐼 = ℎ {
1

2
[𝑓(𝑥𝑎) + 𝑓(𝑥𝑏)] + 𝑓(𝑥1) + 𝑓(𝑥2) + ⋯+ 𝑓(𝑥𝑛−2) + 𝑓(𝑥𝑛−1)} 

Which can be programmed with in a single for-loop. Since the step size, h, is constant, the 

notation of xi can be implemented in the code as  x1 → a+h, x2 → a+2h and so on. 

 

Example 5-1 

Find the value of the integral  

∫𝑥 sin 𝑥 𝑑𝑥

𝜋
2

0

 

 

answer: The analytical integration value is 1.0. 
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Solution  

The code can be made in the following steps: 

Step 1: Define the function, the limits of the integration and the number of divisions. 

f = @(x)x*sin(x); 
a = 0; 
b = pi/2; 
n = 5; 

Note that the value of  is predefined in MATLAB. 

Step 2: Calculate the value of step size and initialize summation variable. 

h = (b-a)/n 
S = 0.5*(f(a)+f(b)); 
Step 3: construct a for-loop from i=1 to n-1 and add values of f(a + ih) to summation 

variable inside the loop. After the end of the for-loop multiply the value of summation by 

h to get the value of the integral. 

for i = 1:n-1 
  S = S + f(a + i*h); 
end 
Intg = h * S; 
Finally, by adding display statements, the code becomes as following: 

f = @(x)x*sin(x); 
a = 0; 
b = pi/2; 
n = 5; 
h = (b-a)/n 
S = 0.5*(f(a)+f(b)); 
for i = 1:n-1 
  S = S + f(a + i*h); 
end 
Intg = h * S; 
disp('The value of integral:') 
disp(Intg) 
 

The output: 

The value of integral: 
 1.0082654 
To reduce the error, let’s increase the number of divisions to 10. The result becomes 

The value of integral: 
 1.0020587 
In case of n = 100: 

The value of integral: 
 1.0000205 
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So, using the trapezoidal rule, a 100 divisions are needed to get a solution accurate to the 

fourth decimal digit in this problem. 

Simpson’s Rules 

Simpson’s rules use weighing factors to calculate the integrals to improve the accuracy 

with lesser number of divisions. Unlike the trapezoidal rule which considers two points, xi 

and xi+1, to calculate a trapezoid’s area, Simpson’s rules use more than two points, i.e. 

multiple strips, in each turn. The values of f(x) at the multiple points are adjusted by 

weighing factors to minimize the error. 

 

Simpson’s 1/3 rule: 

This method calculates the area of two strips at a time, thus, three values of x are taken into 

account at each turn. To cover the whole domain exactly, the number of strips, n, should 

even, as shown in Figure 5-3.  

 

 
 

Figure 5-3. Dividing the area under the curve along the domain [a b] to even 

number of vertical sections of equal width. 

 

The formula of Simpson’s 1/3 rule for the first two strips is: 

𝐴 =
1

3
ℎ[𝑓(𝑥0) + 4𝑓(𝑥1) + 𝑓(𝑥2)] 

Thus, the sum of all strip pairs will be 

𝐼 =
1

3
ℎ[𝑓(𝑥0) + 4𝑓(𝑥1) + 𝑓(𝑥2)] +

1

3
ℎ[𝑓(𝑥2) + 4𝑓(𝑥3) + 𝑓(𝑥4)] + ⋯

+
1

3
ℎ[𝑓(𝑥𝑛−4) + 4𝑓(𝑥𝑛−3) + 𝑓(𝑥𝑛−2)]

+
1

3
ℎ[𝑓(𝑥𝑛−2) + 4𝑓(𝑥𝑛−1) + 𝑓(𝑥𝑛)] 
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To simplify programming, the formula can be rewritten as 

𝐼 =
1

3
ℎ{[𝑓(𝑥0) + 𝑓(𝑥𝑛)] + 4[𝑓(𝑥1) + 𝑓(𝑥3) + ⋯+ 𝑓(𝑥𝑛−3) + 𝑓(𝑥𝑛−1)]

+ 2[𝑓(𝑥2) + 𝑓(𝑥4) + ⋯+ 𝑓(𝑥𝑛−4) + 𝑓(𝑥𝑛−2)]} 

Finally, putting the terms of similar multipliers in summation form yields 

𝐼 =
1

3
ℎ {[𝑓(𝑎) + 𝑓(𝑏)] + ∑ 4𝑓(𝑥𝑖)

𝑛−1

𝑖=1,3,5

+ ∑ 2𝑓(𝑥𝑖)

𝑛−2

𝑖=2,4,6

} 

With keeping in mind that n must be an even number for correct calculation procedure. 

 

The programming procedure is very similar to that of the trapezoidal rule with one 

additional loop for the second summation. So, the first for-loop will be from 1 to n-1 with 

increment 2 

S = f(a)+f(b); 
for i = 1:2:n-1 
  S1 = S1 + f(a + i*h); 
end 
and the second for-loop will be from 2 to n-2 with increment 2 

for i = 2:2:n-2 
  S = S + 2*f(a + i*h); 
end 
 

Example 5-2 

Find the value of the integral of Example 5-1 by using Simpson’s 1/3 rule. 

Solution  

The program: 

f = @(x)x*sin(x); 
a = 0; 
b = pi/2; 
n = 6; 
h = (b-a)/n; 
S = f(a)+f(b); 
for i = 1:2:n-1 
  S = S + 4*f(a + i*h); 
end 
for i = 2:2:n-2 
  S = S + 2*f(a + i*h); 
end 
Intg = h/3 * S; 
disp('The value of integral:') 
disp(Intg) 
 

The output: 

The value of integral: 
 0.9999206 
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If n = 10: 

The value of integral: 
 0.9999898 

 

This value is more accurate than that of the trapezoidal rule to more decimal places at the 

same number of divisions. 

 

At n = 34, 

The value of integral: 
 0.9999999 

 

Simpson’s 3/8 rule: 

It is very similar to Simpson’s 1/3 rule except that three strips are taken into account and, 

consequently, four points will be included at each time. The formula for the first three strips 

is 

𝐴 =
3

8
ℎ[𝑓(𝑥0) + 3𝑓(𝑥1) + 3𝑓(𝑥2) + 𝑓(𝑥3)] 

Thus, the sum of all strip pairs will be 

𝐼 =
3

8
ℎ[𝑓(𝑥0) + 3𝑓(𝑥1) + 3𝑓(𝑥2) + 𝑓(𝑥3)] +

3

8
ℎ[𝑓(𝑥3) + 3𝑓(𝑥4) + 3𝑓(𝑥5) + 𝑓(𝑥6)]

+ ⋯+
3

8
ℎ[𝑓(𝑥𝑛−3) + 3𝑓(𝑥𝑛−2) + 3𝑓(𝑥𝑛−1) + 𝑓(𝑥𝑛)] 

Thus, 

𝐼 =
3

8
ℎ {[𝑓(𝑎) + 𝑓(𝑏)] + ∑ 3[𝑓(𝑥𝑖) + 𝑓(𝑥𝑖+1)]

𝑛−2

𝑖=1,4,7

+ ∑ 2𝑓(𝑥𝑖)

𝑛−3

𝑖=3,6,9

} 

The number of strips, n, must be a multiple of 3 and summation for-loop increment should 

be 3. The algorithm can be applied to the previous code by minor changes. 

 

Example 5-3 

Find the value of the integral of Example 5-1 by using Simpson’s 3/8 rule. 

Solution  

The program: 

f = @(x)x*sin(x); 
a = 0; 
b = pi/2; 
n = 6; %n must be divisible by 3 
h = (b-a)/n; 
S = f(a)+f(b); 
for i = 1:3:n-2 
  S = S + 3*(f(a + i*h) + f(a + (i+1)*h)); 
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end 
for i = 3:3:n-3 
  S = S + 2*f(a + i*h); 
end 
Intg = 3*h/8 * S; 
disp('The value of integral:') 
disp(Intg) 
 

The output: 

The value of integral: 
 0.9998189 
 

At n = 12: 

The value of integral: 
 0.9999889 

 

At n = 33: 

The value of integral: 
 0.9999998 
 

The results show that, for this problem, Simpson’s 1/3 rule is slightly more accurate than 

3/8 rule for equal or close numbers of divisions. 

 

Double Integration 

The double integration can be performed by using for-loops for the outer and inner integrals 

of the function from the lower to upper limits of each integral.  

For Simpson’s rules the following modifications should be done: 

1- The loops should go through the extended form of the Simpson’s integral. For example, 

for the 1/3 rule the utilized form in the algorithm is 

𝐼 =
1

3
ℎ[𝑓0 + 4𝑓1 + 2𝑓2 + 4𝑓3 + 2𝑓4 +⋯+ 2𝑓𝑛−4 + 4𝑓𝑛−3 + 2𝑓𝑛−2 + 4𝑓𝑛−1 + 𝑓𝑛] 

and for the 3/8 rule it will be 

𝐼 =
3

8
ℎ[𝑓0 + 3𝑓1 + 3𝑓2 + 2𝑓3 + 3𝑓4 +⋯+ 3𝑓𝑛−4 + 2𝑓𝑛−3 + 3𝑓𝑛−2 + 3𝑓𝑛−1 + 𝑓𝑛] 

where 𝑓 = 𝑓(𝑥, 𝑦). When double integration is performed, the factor for each term of the 

first integration should multiplied by the factor of the term in the second integration. 

2- Number of divisions for each integration can be different but both should satisfy 

Simpson’s rules condition. For 1/3 rule, they should be even numbers and for 3/8 rule they 

should be multiple of 3. Accordingly, each integration can have different step size. 

3- The final summation should by multiplied by the common factor of each integration. 

For Simpson’s 1/3 rule it equals to 
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ℎ𝑥
3

ℎ𝑦
3
=
ℎ𝑥ℎ𝑦
9

 

and for 3/8 rule it is equal to 

3ℎ𝑥
8

3ℎ𝑦
8
=
9ℎ𝑥ℎ𝑦

 

Example 5-4 

Find the value of the integral I by using Simpson’s 1/3 double integration. 

𝐼 = ∫ ∫ (𝑥2𝑦 + 𝑥𝑦2)𝑑𝑥𝑑𝑦
2

1

1

−1

 

(The analytical solution is 1.0) 

Solution 

Step 1: Definition of the function, limits of the integration and step sizes. 

f = @(x,y) x^2*y+x*y^2; % the given function 
ax = 1;     % lower limit of x 
bx = 2;     % upper limit of x 
ay = -1;    % lower limit of y 
by = 1;     % upper limit of y 
nx = 20;    % number of divisions in x domain 
ny = 40;    % number of divisions in y domain 
hx = (bx-ax) / nx; % x step size 
hy = (by-ay) / ny; % y step size 

 

Step 2: Initializing summation variable and construction of summation loops: the outer for 

dy and the inner for dx according to the given equation. 

for i = 1 : ny+1    % loop of the outer integral 
  if i==1 || i==ny+1  
     p = 1;           % factor of the first and last terms 
  elseif mod(i,2) == 0  
      p = 4;         % factor for terms multiplied by 4 
  else 
      p = 2;         % factor for terms multiplied by 2 
  end 
  for j = 1 : nx+1   % loop of the inner integral 
    if j==1 || j==nx+1 
      q = 1;           % factor of the first and last terms 
    elseif mod(j,2) == 0 
      q = 4;           % factor for terms multiplied by 4 
    else 
      q = 2;           % factor for terms multiplied by 2 
    end 
    S = S + p*q * f(ax + (j-1)*hx, ay + (i-1)*hy); 
  end   % end of the j-loop of the inner integral 
end % end of the i-loop of the outer integral 
 

Step 3: Multiplication of summation value by the common factor and displaying the result. 

Integral = hx*hy/9 * S; 
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disp('The value of the integral:') 
disp(Integral) 
 

 

The output: 

The value of the integral: 
 1.00000000000000 
 

Here, the long format display is used just to show the level of accuracy of the method at 20 

and 40 divisions for each domain. 
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