

Project Title: *Mile Run*

Standard Focus: Data Analysis, Patterns, Algebra & **Time Range**: 3-4 Days

Functions Supplies: TI Graphin Technology

- Scatterplots

- Creating and Applying Regression Functions

- Interpolation & Extrapolation of Data

Benchmarks:

Interpreting Functions	F-IF	4. For a function that models a relation, the sen two quarties, interpret key features of graphs and tables in terms of the sea and ketch graphs showing key features given a verbal desemble.
Interpreting Functions	F-IF	6. Calculate and interpret the average of the of change function (presented symbolically or as a tate of change of the of change of the of change from a graph. ★
Building Functions	F-BF	1. Write a function that descriptionship between two quantities.★
Interpreting Categorical and Quantitative Data	S-ID	6a. Fit a function of data; use function of fitted to data to solve problems in the context of the tax of function or choose a function suggested by the context. Emphasize line, and a suggested by the context.
Interpreting Categorical and Quantitative Data	S-ID	for a so ter plot that suggests a linear association.

Procedures:

A.) Students will use Graphing Carcology to make scatterplots using data from the "Mile Run Chart". (Graphing Calculator Structures in structures included)

B.) Students philete the the parts of the Mile Run Project.

The Mile Run

In 1593, the English Parliament declared that 5,280 feet would equation. Ever since, a mile run has become a staple fitness test everywhere—from militaries to the high school gyms. Although most track every s, including all Olympic events, are measured in meters, the mile has stood the test of time terms so but after running record.

In this project you will investigate world record mile times over history difference between interpolation and extrapolation of data. A TI graphing calculation of data activity.

You will need to reference **The Mile Run Chart** which is a seconds for Mile Run from 1911 to 1999. As of 2012, the 1999 time of Hicham El Guerroup the valid record.

Part I. Use the records are 911 to 945

- 1. Using t=0 for 1900, enter the year into and t=0 time in seconds in L2. Make a scatterplot with the year on the x-axis and the seconds on the y-axis.
- 2. Use your calculator to find the join of the pest fit by using the linear regression function.

The	line	of best	fit	10	
\mathbf{I}	ше	or pest	111.	18	

3. Use the line of best fit to me predictions for the mile time in the years below. Compare the prediction of the best in the to the actual record in that year.

Year	Prediction om L. Best it	Actual Record	(Prediction) – (Actual Record)
1915			
1933			
1937			
1944			

The predictions in the chart are examples of **interpolation**. This is because the years that you were predicting were within the period of time when the data was collected.

4. What is the slope of the line of best fit?
5. What does the slope tell you about how the record for the mile r was changing during this period?
6. What is the y-intercept of the line of best fit?
7. What is its meaning in terms of the data?

8. Use the equation of the line of best fit to the chart below. Use the data in from the Mile Run chart to complete the actual time.

Year	Prediction from Line of Best Fit	(Prediction) – (Actual Record)
1962		
1980		
1985		

The predictions on the christ are xamples of **extrapolation**, because the years were outside the proof of time and the uata was collected.

9. Use the ne to the y ar someone will run a four-minute mile.

Part II. Use the records from 1954-1999

- 1. Using t=0 for 1900, in L3, enter the years from 1954-1999, and again enter the time **in** seconds into L4.
- 2. Use your calculator to find the equation of the line of 1 st fit using the linear regression function.

The line of best fit is:	
3. What is the slope of the 1954-1999 line of best fit?	

- 4. When was the record changing faster, during 1911 or 1954, 999? How do you know?
- 5. What is the y-intercept and what does it mearms of the data?
- 6. Use the line of best fit to make predictions. An ille time in the years below. Compare the prediction of the best fit is act at receive that year

Year	Prediction from Line Actual Record Best Fit	(Prediction) – (Actual Record)
1957		
1966		
1979		
1985		

7. Use the 1954-19 Justion to predict when a 3:30-mile will be run.

Part III. Use the records from 1911-1999

1. Use augment (L1, L3) STO-> L5 and augment (L2, L4) STO-> L6 to put all of the years together in L5 and all of times in L6. Make a scatterplot, and find together in L5 and together in L5 and together in L5 and together in L6. Make a scatterplot, and find together in L5 and tog

The line of best fit is:		
2. What are the slope and y-intercept? What do they mean in terms	data?	

3. List all three lines of best fit together on this tabl

Year Range	of Besu
1911-1945	
1954-1999	
1911-1999	

4. Which of the three lines show the record decay gethe fastest?

5. Which of the three lines show the ord decreasing the slowest?

6. You can use the TALE and ture on your calculator to complete the chart below.

Year	1 11 - 1945 Line of Best Dit	1954 – 1999 Line of Best Fit Prediction	1911 – 1999 Line of Best Fit Prediction	Actual Record
1913				
1933				
1945				
1957				
1980				

7. Considering the intervals (1911-1945, 1954-1999, or 1911-1999) was the equation that gave the best prediction an example of interpolation or extrapolation? What about the equation that gave the worst prediction?

I = interpolation and E = extrapolation A

Year	Best (I or E)	Worst (1 c.
1913		
1933		
1945		
1957		
1980		

Crazy Extra Lations

Use the 1911-1999 line to estimate for the note run record during the following years. (Remember t=0 is 1900). You make the note run record during the following years.

1. The year Columbus first	
2. The year Julius Caesar was assass. ted.	
3. The year the origin. <i>Plan</i> s was set.	
4. The year ivil War e ed.	
Tille year war e eu.	

EXTENSION reliability of predictions using interpolation and extrapolation? Why is ext. On son mes misleading? Support your views with examples from this exercise.

The Mile Run Chart

Time	Athlete	Country	Year	Locati
4:15.4	John Paul Jones	United States	1911	mbridge, Massachusetts
4:14.4	John Paul Jones	United States	1913	mbrid Vass chusetts
4:12.6	Norman Taber	United States	1915	ge, Massa setts
4:10.4	Paavo Nurmi	Finland	1923	m, S eden
4:09.2	Jules Ladoumegue	France	1931	Pa. nce
4:07.6	Jack Lovelock	New Zealand	23	Princeton, New Jersey
4:06.8	Glenn Cunningham	United States		Princ h, New Jersey
4:06.4	Sydney Wooderson	England	1937	I don, England
4:06.2	Gundar Hägg	Swede	342	oteborg, Sweden
4:06.2	Arne Andersson	Swe n	42	Stockholm, Sweden
4:04.6	Gundar Hägg	8	1942	Stockholm, Sweden
4:02.6	Arne Andersson	Sweden	1943	Stockholm, Sweden
4:01.6	Arne Andersson	weden		Malmo, Sweden
4:01.4	Gundar Hägg	n	1, 5	Malmo, Sweden
3:59.4	Roger Bannister	Tng.	1954	Oxford, England
3:58.0	John Landy	A tralia	1954	Turku, Finland
3:57.2	Derek Ibbots	nd	1957	London, England
3:54.5	Herb Elliott	Aus. na	1958	Dublin, Ireland
3:54.4	Peter Snell	v Zealand	1962	Wanganui, New Zealand
3:54.1	Pe	New caland	1964	Auckland, New Zealand
3:53.6	Mic Vo.	France	1965	Rennes, France
3:51.3	Jim l un	nited States	1966	Berkeley, California
3:51.1	Jim Ryı	United States	1967	Bakersfield, California
3:51.0	Filbert Bay	Tanzania	1975	Kingston, Jamaica
3:49.4	lker	New Zealand	1975	Goteborg, Sweden
3:49.0	pe	England	1979	Oslo, Norway
3:48.8	Steve O t	England	1980	Oslo, Norway
3:48.53	Se ¹ Coe	England	1981	Zurich, Switzerland
3:48.40	Steve Ovett	England	1981	Koblenz, West Germany
3:47.33	Sebastian Coe	England	1981	Brussels, Belgium
3:46.31	Steve Cram	England	1985	Oslo, Norway
3:44.39	Noureddine Morceli	Algeria	1993	Rieti, Italy
3:43.13	Hicham El Guerrouj	Morocco	1999	Rome, Italy

Linear Regression on a II-83 or II 84

Adapted from: (http://school.lardbucket.org/math/calculator/regress)

Entering Data

Suppose you want to calculate a regression with the data in the below:

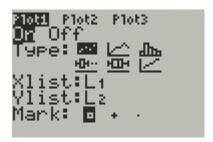
X	Y
1	
3	8
6	1

- 1. To enter your data into you tor, get to le list editor. To do that, press the **[STAT] button**, then pick the ion. (**Pre: 5 [ENTER]**.)
- 2. You should then see a table Across the top such that L1, L2, and L3. If not, see below. If there is any data under L1 or select so you have the list highlighted, press the [CLEAR] button, and the list highlighted arrow to clear the list.
- 3. When both lists are cleared, and the end data in L1 by moving your selection over the "_____
 __". Start entering your X-values the L1. Make sure you enter the data in order.
- 4. When you are do contering the X-van, hove to the L2 column and enter your Y-values. Make sure they are a like it does in the table above, giving you are the screen like it does in the table above, giving you are the screen like it does in the table above.

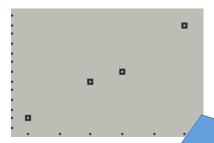
If your lists don't s. L1, L2, and L3 across the top, reset your stats list editor. To do this, press [STATS], select option 5, "SetUpEditor", and press [ENTER] twice.

Performing a Linear Regression

- 1. Press the **[STAT] button**. Use the right arrow to select "CALC". Scroll down to the type of regression you would like to use. You can use a linear sion (LinReg(ax+b)) Press **[ENTER]**.
- 2. Type "L1" by pressing [2ND] and the number 1. Then press compount , . Next, hit [2ND] and then the number 2 to enter "L2". Then press the button , ar screen should now show something like "LinReg(a+bx) L1,L2,".
- 3. Press [VARS], press the right arrow to select "Y VARS", and press [ER] to select "Function...". Choose the function you would like to pre your equation in a d press [ENTER]. (You will likely want to use "Y1".) Your screen should be something the the picture below.


4. You can now press [ENTER], and to tor will calc your regression. Where a = the slope of the line; b = the intercept of the total transfer are use for correlation, but will not be used in this assignment. The screen will now ow the ults of the regression.

```
LinRe9
9=ax+b
a=1.961538462
b=1.884615385
r²=.9856006063
r=.992774197
```


5. The equation for the egres on who were stored in Y1 for graphing and estimating.

Plotting the Data

1. To set up plots: Press [2ND] and then [Y=] to get to the "STAT PLCOS" screen. Select the first plot and press [ENTER]. You should make the selections as seen in the plotture below. (Note: for Parts II and III you will be using L3, L4, L5, L6 and will not a to make the appropriate changes.)

2. To set up the graph display of your data, hit **[ENTER]**. Your data should now be displayed. If your data should look like this:

Thank you for being my Mr 4 Fiend!

If you liked this

21st Century May Project

You might like others. k the logo]

• Math it Up. Boowdiggy. In this proje between into and extrapolation. A TI graphing calculator is required to a this activity.

You will need to reference **The Mile Run Chart** which is records for Mile Run from 1911 to 1999. As of 2012, the 1999 time of Hicham El Guerroul records for the world in the

Part I. Use the records from 1911 to 1

- 1. Using t=0 for 1900, enter the year into a and the me in seconds in L2. Make a scatterplot with the year on the x-axis and the me in seconds on the y-axis.
- 2. Use your calculator to find the equation of the linear regression function.

The line of best fit is: y(x) = -.431859x + .52.2

3. Use the line of best fit to for the mile time in the years below. Compare the prediction of the best fit in the years below.

Year	Prediction from Line of P + Fit	A al Record	(Prediction from Line of Best Fit) – (Actual Record)
1915	255.7.	252.6	3.129
1933	247.955	247	.955
1937	46.228	246.4	172
1944	243.205	<mark>241.6</mark>	1.605

The prediction the character are examples of **interpolation**. This is because the years that you were predicting were ithin the period of time when the data was collected.

- 4. What is the slope the line of best fit? -.431859
- 5. What does the slope tell you about how the record for the mile run was changing during this period?

It was decreasing at a rate of -.431859 seconds per year.

- 6. What is the y-intercept of the line of best fit? **262.207**
- 7. What is its meaning in terms of the data?

It is the predicted number of seconds for the record in 1900.

8. Use the equation of the line of best fit to complete the chart below. Use the data in from the Mile Run chart to complete the actual time.

Year	Prediction from Line of Best Fit	Actual Record	Line Fit) – (Actual scord)
1962	<mark>235.432</mark>	2.7	1.032
1980	<mark>227.658</mark>	228.8	-1.142
1985	225.499	5.31	-1.011

The predictions on this chart are examples of the period of time where data is conditional data is conditional.

9. Use the line to predict when the vr-minute mile would have been run.

1951

Part II. Use the records from 1954-1999.

- 1. Using t=0 for 1900, in L3, enter the years from 1954-1999, and again enter the time **in seconds** into L4. Make a scatterplot.
- 2. Use your calculator to find the equation of the line of best fit using the linear regression function.

The line of best fit is: y = -.336x + 255.393

- 3. What is the slope of the 1954-1999 line of best fit?
- 4. When was the record changing faster, during 1011-1945 1-17 9? How do you know?

1911-1945. In 1911-1945, it was changing at .432 r vear and seconds per year.

- 5. What is the y-intercept and what do s it means of the data?

 255.393. It is the time predicted for 1900 by requation.
- 6. Use the line of best fit to make precent the mile time in the years below. Compare the prediction of the best fit line to the tuand in that year

Year	Prediction from Line of Best Fit	a. cord	(Prediction from Line of Best Fit) – (Actual Record)
1957	236.241	37 <u>2</u>	<mark>-0.959</mark>
1966	233.	<mark>2</mark> J1.3	<mark>1.917</mark>
1979	228.84.	229.0	<mark>-0.151</mark>
1985	726.833	224.31	<mark>2.523</mark>

7. Use the tion to predict when a 3:30-mile will be run.

2035

Part III. Use the records from 1911-1999.

1. Use augment (L1, L3) STO L5 and augment (L2, L4) STO L6 to put all of the years together in L5 and all of times in L6. Make a scatterplot, and find the quation of the line of best fit.

The line of best fit is: y = -.413x + 261.249

- 2. What are the slope and y-intercept? What do they mean in terms of Slope is -.413, the number of seconds per year that the time decreased. y-intercept is predicted time for the mile run in 1900.
- 3. List all three lines of best fit together on this table:

Year Range	Line i Bes
1911-1945	$y = \sqrt{207}$
1954-1999	y =35
1911-1999	=413 x + 2 x

- 4. Which of the three lines shape recorded decrease g the fastest? Fastest 1911-1945
- 5. Which of the three lines show record accreasing the slowest? Slowest 1945-1999
- 6. You can use the ASK feature on your calculator to complete the chart below.

Year	1911 - 1945 Line of Best Fit P ction	ir of Be ¿ F. Prediction	1911 – 1999 Line of Best Fit Prediction	Actual Record
1913	56.50	2ŧ022	<mark>255.875</mark>	<mark>254.4</mark>
1933		<mark>244.299</mark>	<mark>247.607</mark>	<mark>247.6</mark>
1945	242.773	<mark>240.265</mark>	<mark>242.646</mark>	<mark>241.4</mark>
1957	237.591	236.231	<mark>237.685</mark>	237.2
1980	<mark>227.658</mark>	<mark>228.499</mark>	<mark>228.177</mark>	228.8

7. Considering the intervals (1911-1945, 1954-1999, or 1911-1999) was the equation that gave the best prediction an example of interpolation or extrapolation? What about the equation that gave the worst prediction?

I = interpolation and E = extrapolation

Year	Best (I or E)	Worst (I or E)
1913	1911-1999 (I)	1954-1999 (E)
1933	1911-1999 (I)	1954-1999 (E)
1945	1954-1999 (E)	1911-1945 (I)
1957	1911-1945 (E)	1954-1999 (I)
1980	1954-1999 (I)	1911-1945 (E)

Crazy Extrapolation

Use the 1911-1999 line to estimate the tire the fle run record during the following years. (Remember t=0 is 1900). You may need the following ome quick Googling.

- 1. The year Columbus first sailed to (1492) .753 seconds (7 min, 9 seconds)
- 2. The year Julius Caesar was assassing ed.

 The predicted time is 1064.88 sec. 15 min.
- 3. The year the original *Plane*, the n_r set. (3978)

 The predicted time is -596.965 seconds
- 4. The year the Civil ended. (18 /5.704 or 4 minues 35 seconds

EXTENSION: Describe e religion predictions using interpolation and extrapolation? Why is extrapolation son tires mis ading? Support your views with examples from this exercise.

In general, it erpolation is more liable than extrapolation. Interpolation is most accurate towards the middle of the data set are long to the data set (see 1945) Also, interpolation is more liable than extrapolation. Interpolation is most accurate towards the middle of the data set (see 1945) Also, interpolation is more liable than extrapolation. Interpolation is most accurate towards the middle of the data set (see 1945) Also, interpolation is more liable than extrapolation. Interpolation is most accurate towards the middle of the data set (see 1945) Also, interpolation is most accurate at the edges of the data set (see 1945) Also, interpolation is most accurate at the edges of the data set. It could not have taken over 17 hours to rule at the edges of the data set. It could not have taken over 17 hours to rule at the edges of the data set. It could not have taken over 17 hours to rule at the edges of the data set. It could not have taken over 17 hours to rule at the edges of the data set. It could not have taken over 17 hours to rule at the edges of the data set. It could not have taken over 17 hours to rule at the edges of the data set.