learning
about
machine
learning
It’s a very exciting time for technology. In just the past 5 years we’ve surrounded ourselves with connected mobile devices, moved our businesses to the cloud, and watched as every aspect of the content industry has been radically disrupted. Now, just as we’re starting to accept all these changes, another big shift is getting underway. Software is starting to become intelligent and autonomous.
Research into deep learning, statistical modeling, and neural networks has been advancing in the halls of academia for decades but suddenly there’s a Cambrian explosion of solutions impacting every sector. These tools finally have enough computation and enough data to really perform – and a large amount of talent and capital is pouring into the fast-moving sector.
Now, software is shifting from being programmatic – it does only what we tell it – to being proactive: it makes decisions autonomously, based on continuously-updated models of the world. Machine intelligence delivers classification of unstructured data – it can read the news and identify us in camera streams. It can graph relationships between objects, data, and people and then make context-aware recommendations. And it can run sophisticated models that show us the probable outcomes of decisions.
Machine intelligence is being democratized, moving into SaaS platforms and cloud services, mobile applications and connected devices. Microsoft Office 365 uses deep learning to support collaboration workflows. Hospitals and financial planners can address Watson through an API. Mattel has announced a connected Barbie doll that learns how to converse with children.
What we see is that wherever there is data, there are computational resources moving to evaluate it. And increasingly, wherever there is data and computation, there are machine intelligences arriving to grapple with the complexity, bring structure to the streams, and act accordingly in the blink of an eye.
This is a story about a new wave of disruption and the great opportunities it brings. It is also a story about speed: the pace of change, the flows of information, and the unique ability of machine intelligence to process huge volumes of information at gigahertz rates. But mostly, it is a story about how we as people are starting to make tools that mimic our own ability to understand and make decisions about the world, and how this shift is helping enterprises work better.
Georges Nahon CEO,
Orange Silicon Valley
- Software is undergoing a fundamental shift from doing only what we tell it, to using context and probability for autonomous decision-making.
- Machine intelligence is the solution to Big Data.
- IT infrastructure is shifting to address real-time stream computing.
- The commercializing of machine intelligence is stirring up a new wave of digital transformation.
- Businesses are now experimenting with machine intelligence across their value chains, to enable high-resolution sensing, model complex systems, and engineer enterprise-scale learning at machine speeds.
Predictive modeling moves businesses squarely into the rapidly-unfolding present with a sharper eye to the future.