a2 United States Patent
Illowsky et al.

US009436525B2

US 9,436,525 B2
Sep. 6, 2016

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM METHOD AND MODEL FOR
SOCIAL SYNCHRONIZATION
INTEROPERABILITY AMONG
INTERMITTENTLY CONNECTED
INTEROPERATING DEVICES

(75) Inventors: Daniel Illowsky, Cupertino, CA (US);
Bruce Bernstein, Sunnyvale, CA (US);
Richard Mirabella, Palo Alto, CA
(US); Wolfgang Pieb, Cupertino, CA
(US); Raymond Sidney, Stateline, NV
(US); Richard Tiberi, Big Sur, CA
(US); Michael Wenocur, Palo Alto, CA
(US)
(73) Assignee: Covia Labs, Inc., Mountain View, CA
(US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 5 days.
(21) Appl. No.: 13/175,409
(22) Filed: Jul. 1, 2011
(65) Prior Publication Data
US 2012/0137282 Al May 31, 2012
Related U.S. Application Data
(62) Division of application No. 11/149,068, filed on Jun.
8, 2005, now abandoned.
(60) Provisional application No. 60/577,971, filed on Jun.
8, 2004.
(51) Imt. ClL
GO6F 9/54 (2006.01)
GO6F 1/32 (2006.01)
(Continued)
(52) US. CL
CPC GO6F 9/541 (2013.01); GO6F 1/3203

(2013.01); GOGF 8/10 (2013.01); GO6F 8/20

(2013.01); GO6F 8/24 (2013.01); GOGF 8/41
(2013.01); GO6F 8/61 (2013.01); GOGF 8/63
(2013.01); GO6F 8/68 (2013.01); GO6F 8/71
(2013.01); GO6F 9/4843 (2013.01); GO6F
9/5011 (2013.01); GO6F 9/5027 (2013.01);

(Continued)
(58) Field of Classification Search
CPC ..ot GOG6F 8/63; HO4L 67/10
USPC ottt 709/221

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,956,489 A * 9/1999 San Andres et al. 709/221
6,549,932 B1* 4/2003 McNally et al. 709/202
(Continued)

Primary Examiner — Luat Phung
Assistant Examiner — Saad A Waqas
(74) Attorney, Agent, or Firm — Robert Moll

(57) ABSTRACT

System, device, method, and computer program and com-
puter program products for providing communicating
between devices having similar or dissimilar characteristics
and facilitating seamless interoperability between them.
Computer program software and methods of and systems
and devices for sharing of content, applications, resources
and control across similar and dissimilar permanently or
intermittently connected electronic devices. Devices, sys-
tems, appliances, and the like communicating and/or inter-
operating within the framework provided. A social synchro-
nization interoperability method, such as a Dart Social
Synchronization method provides an efficient and easy to
administrate method for synchronizing specific sets of data
and/or operations across any number of devices and proto-
cols without the need for every device to contact a master
device, or for any device to act as a master. Social synchro-
nization of devices and content provides an advantageous
alternative to mastered synchronization techniques.

23 Claims, 32 Drawing Sheets

Synchronization and Serialization of a Dart running across a recruited team of cooperating devices

Qriginating DartDevice 400-1

Rendition 701a of Dart 700

[event 800]

Shared DartDevice 400-2

Rendition 701b of Dart 700

Connection Manager 420
List of Events to Sync 430

Dart Connection Manager 420
o
DartEngine 600

4611

DartEngine 600
ue

Originating DartDevics 400-N

Rendition 701d of Dart 700
Connection Manager 420
List of Events to Sync 430
DartEngine 600
EventQueus 660

4612

Shared DartDevice 400-3

Rendition 701 of Dart 700

Connection Manager 420
List of Events to Sync 430

DariEngine 600
ventQueue 66

US 9,436,525 B2

Page 2
(51) Int. CL (2013.01); GOGF 8/30 (2013.01); GOGE 9/443
GOG6F 9/44 (2006.01) (2013.01); GO6F 2209/5015 (2013.01); GO6F
GOG6F 9/45 (2006.01) 2221/2113 (2013.01); GO6F 2221/2149
GOG6F 9/445 (2006.01) (2013.01); HO4L 67/104 (2013.01); Y028
GOGF 9/48 (2006.01) 6071267 (2013.01); YO2B 60/142 (2013.01);
GO6F 9/50 (2006.01) YO02B 60/144 (2013.01); YO2B 60/167
GO6F 11/20 (2006.01) (2013.01); YO2B 60/183 (2013.01); Y02B
GOG6F 21/44 (2013.01) 60/46 (2013.01)
GOGF 21/62 (2013.01)
HO4N 21/41 (2011.01) (56) References Cited
HO4L 29/06 (2006.01)
HO4L 29/08 (2006.01) U.S. PATENT DOCUMENTS
(52) US.CL i
CPC ... GOG6F9/5044 (2013.01); GOGF 9/5072 pe81.239 BlL J2004 Munmoe el al. oo o
(2013.01): GOGF 9/54 (2013.01); GOGF 9/542 7124211 B2* 10/2006 Dickson et al. 710/22
(2013.01); GO6F 11/2082 (2013.01); GO6F 7,137,126 B1* 11/2006 Coffman et al. 719/328
21/445 (2013.01); GOGF 21/6218 (2013.01); 2003/0016799 Al* 1/2003 Stern et al. 379/120

HO4L 65/1083 (2013.01); HO4L 65/80 2003/0114163 Al* 62003 Bickle etal. 455/450
(2013.01); HO4L 67/10 (2013.01); HO4L 2004/0117804 A1* 6/2004 Scahill et al. 719/320
67/1068 (2013.01); HO4L 67/1072 (2013.01); Spuains0asTa AL 1072004 venkataraman ... 382939
HO4L 67/14 (2013.01); HO4L 67/16 (2013.01); 2006/0112150 Al1* 5/2006 Bf(})gv&lfrftetaal707/201
HO4L 69/08 (2013.01); HO4L 69/24 (2013.01);

HO04L 69/328 (2013.01); HO4N 21/4126 * cited by examiner

US 9,436,525 B2

Sheet 1 of 32

Sep. 6, 2016

U.S. Patent

l "OId

suoljejdepe N sadinbal Jayjebio) ylom 0} saoinap N Buijen

US 9,436,525 B2

Sheet 2 of 32

Sep. 6, 2016

U.S. Patent

¢ 'Old

suone.nbliuod 189 JusJalIp
9G salinbal pue suonejdepe 9¢ salinba. Jay)abol Aposuip yiom 0} saoiAs(1ybig bumen

e ”W..Q\a
I
.llvl.lllll-lllT

- Lo

R
. F._m.f&_\

N

US 9,436,525 B2

Sheet 3 of 32

Sep. 6, 2016

U.S. Patent

€Ol
014 o i (e) o
suoijesiunwiwo) orEL N ofeldiaise \ il
s B 707 ~ c0l
f 009 2 s|ge L1ed ey HOMSWEILHED
subumeg €0g i 10}
. SHed Jajdwo) N
- . .) uoneslddy
ofel e [40}% 002 00}
. \ SpomAey sjoojyeq .
0]0) 7 L0¢ a2Inogueq
90IA8aieq alnjeubig
00¢€ 04
Jewso4ueq w.iojie|dueq

US 9,436,525 B2

Sheet 4 of 32

Sep. 6, 2016

U.S. Patent

- 0€0¢

MS/MH

301Na(] |

aAleN
020¢ —

—

WH —

010€

|v
auIbug

91qeNod

100€ >

¥ "Old -
alemp.ieH
SO pappaqug jeuonndQ
SS900Y slempiel{ piepuels | 0¢€0¢
Buse | Jesurq | uonesiunNwwon $924N0SaYy ® | [MS/MH
2| suoneoidd 901AaQ
BuueAe [eomap| O/ ‘soyder |3 %\,;m_z V| | onnen
wisiuoneal)) oapipoipny | . _—
Buiuonipuey | Buisied TNX [pusig » e50dx3 W30 |+ 1
Buninioay o)dAiD SUOIIOUN 9SUB|
e ddy % INYQ Aunoag NdO 48Ul0 0L0¢
ouibu3
10SS890.14 18S uononisu| Ue(9|qeN0d
¢ uopeolddy peq | z uopeolddy peq | uopjeo)ddy peq -
100¢

000¢ 921A9Q Je(|edidA] Aiejdwaxg

US 9,436,525 B2

Sheet 5 of 32

Sep. 6, 2016

U.S. Patent

S "Old

JUsWINIO8Y

‘uonesdde
Buneniul pies sy} JO JUSHUI BY} JOBYE O} SSINSP JO WIES) PIES

8y} sso10e pawloyad 0) sie Jey) suopesado ay} 8jeulpJood 1o o
Kues 0y Aiessaoau s| JUS)uod pue elep ‘apoo Jaasieuym Buibueyoxs
pue 2po3 Bugnaaxa Aq uoieoldde Buijeuiblo s} JO Jusil sy} joaye
0} SS820E 821n0Sal pue suojelado palinbal ay) wuopad uoneddde

Buigeniul ay) Jo spasu auyy 0} Buipiodde $32IA3P JO Wes) au)

‘uopeo||dde m.& 108ye
0} $92IN0S3] J|9Y} PUE SAVIASP B|GEYIEDI PIES Sy} JO 9SN SxEW O}
MOY BUIULISBP 0} J8p.o Ul Wiy} }98dsu| puB 8jnoaxa pue SadInep
a|qeyoeal pies ay} JO |je WOy Jusjuod pue Eyep ‘sainpasold uinjas
2y] 1091102 201A3p Suneniul 8y} uo apod uojeoldde ay) sAeH

Buowe pue Wy PAANGUISIP MOU JUSJUOD pue BJep ‘9pod 8y} 9neH '/

3

‘S80IASp JO Wea) 8)9|dwod
e Buiwioy AjaA1190)9 'payoeai usaq aAey jualu| s,uoneoldde

"sj00030.d
UDIEIUNLULLOD PIES 3} JAAO 301A9p Buneniul ay} 0} Jusjuod
1o ‘ejep ‘sainpadsoid uinjal $ainpasoid uondsadsul ay) aaeH g

[euIBlIO aU} 1094E O} PaJISP J0 PAPasU $SOIN0S3I PUB SAVIASP
palISap J[B [un SSJIASP 3|qeyoes) Jay)o o) papasu se uoneoldde

3

ay) pusxa 0} Aipssanau se sadinap Buijemur se Buijoe mou
S82IASP 3|qByoeal 3y} uo G 0} | sdays Buisn Alessaoeu se AjpAisinos.
Jsypey pealds 0} sediARp B|deyDeal 8} UO JUSPISa) JUBJU0D
pue elep ‘apod uonedidde auy yum Jayiabo) saiaap ajgeyoeal
pue Buneniul ay) ssoioe pealds mou JUSJUCD PUe Blep 'apod SAeH ‘9

‘uonediidde pies auj Buioae 10} BAIABP BU) 0} S|UE|IBAR SSOY)
10 ‘801A8p BY} JO sa|iqeded pue sedinosal JO sjes pale[eLsiul
Jo/pue songeded pue se2inosal papasu Ajijuap! 0} 82IA3p yoes
UO SUONONASUI JIY) 9)noaxe sanpacosd uonoadsul su) saeH 'z

A

" dajs Jo suoneuLLB}ap 8y} 0} Bulpioooe
papesu Se S80IASP B|4BYOESS PlES By} JO YOBS 0} JUsjuod Pue Ejep
‘apoo pealds adinap Buieniul syl uo apod uonesidde ay) aAeH G

"${000}010 SUBHEIIUNLULIOD JO J3qInU
Aue 18A0 S80IASP 8GRy JO Jaquinu Aue 0} sdinep Buijeiiul ue
WOJJ ULIO} D]qEINDSXS UOWILIOS B Ul Saunpaoosd uonsadsu) puas |

3

US 9,436,525 B2

Sheet 6 of 32

Sep. 6, 2016

U.S. Patent

00201

201A8(]
yeq
pajnIoay

9 "Old
(T Wwseapls ppy €600
(= uspls 0}09 ¢e00l

uspys 0109 Le00l —)
pPaZIUCIYoUAS pazijelias sjuans abueyd apis €001

(= 1obiey uo yeq paydene uny 12001
106.1e) Uo unJ 0} Ueq PazIwWolsnd puss 0Z001

**uonn|osal pauajeld ‘sdIN Aw sa18y ‘S9A 71001)

(— ¢Moysapls siy} uni noA ued 11001
sainpaoold Buipuas Ag sadlnsp sjelawnu3 0100}

00004

MOoyS aplIS paleys
10} JusW)INIOSY 4o adwex3

00lL0}

90IA(]
yed

lojinioay

US 9,436,525 B2

Sheet 7 of 32

Sep. 6, 2016

U.S. Patent

0020¢

jund
ued yolym

aolneQg
veqg

pa)inIoay

L"Ol4

pajuld
bumeb aunoid Ui synsas bujuuny
(=1 10b1e} uo Leq paydene uny 12002

¢—3ob1e} uo uni o} 93 peppaqua Yym Leq puss 07002
Heq wojsnd Wloj 0} wsjuoiesal) asn
**uolnjosas pausjeid s,ai8y ‘svA Z1007 =)
(1 ¢oplIs siyjuud nod ued 11002

sainpadoid Buipuss Aq Sa01nep 8jeawnul 01,002

0000¢

MOYSapIS WoJj Juiid ues yojym
901A9P JO Just}InIoay 8|dwex3

00L0¢C

aoIneQ
yed

Joinioey

US 9,436,525 B2

Sheet 8 of 32

Sep. 6, 2016

U.S. Patent

(zy uonipuas Butuuni)
J9)Uld payniosy

8 'Ol

SJUSA3
POZIU0IYOUAS
3 PzZleuss

(1Y UoTipua)
Buiuun.) psjund aq o} sainjoid
SUIBJUOD 921A8(] SbeI0)S

payoeNY YIOMBN u&_aomi

ETR)
C ed D wea oy N
3po) XS

Heq ainjdidiuid

(¢ uonipual Buiuuni) peq aamdidiutd Hujuuni suoyd @9

S90IAS(] JojULI4 pue 86210]G PaYDBNY MOMIN Pa)inoal Yiim sUOUd 8D uo Heq ainjoldiuld

US 9,436,525 B2

Sheet 9 of 32

Sep. 6, 2016

U.S. Patent

099 m:m:OEmSm_
009 auibuzpeq

.

-
\

_ 0CH 2uAS 0} SUBAT JO 18I
0cy ‘_mmmcm_\/_ uondv/uu0)

\

00/ He@jo 910/ uonipusy

/

€-001 921n8Queq paleys

-l

-1y [00B O] ———_|

6 "Old

é

008 1usA3

Y

(099 ANaNOIUBAT)
009 aulbuzyeq
> J
1 D
[ocpouks oy suang joisi |
0zt 1ebeuely uolIBUU0Y
00/ Heq jo p10/ uonipusy
\ y,

N-00¥ so1neaueq Buneulbuo

.

~

099 ananpjusrg
009 sulbugueq

J/

P

/

[0cy oufs oy sjuenz joisn |
0z Jebeuepy uondsuuo)

N

00/ HeQ 40 q10/ uohipusy

_/

Z2-00% @d1negreq paleys

g)
(099 snanPlusai
009 sutbuzueq
l-19% (IEEEEEEREIN)
008 IeAT] | || 02 JoBeuely uojosuuo)
00, HeQ o ej0/ uonipusy
/ y,

L-00t ®o1neqneq Buneuibuo

seaInap bunesadood Jo Wea) pajinioal e ssoloe Buiuuni Jeq e Jo UOeZ|[elIaS PUB UOeZIUOIYIUAS

00.
yeq

US 9,436,525 B2

Sheet 10 of 32

Sep. 6, 2016

U.S. Patent

01 "OIA

uolnedijdde yoea Joj JJom Jo Jiun auo AluQ

auibua ayj pod
0] 92IASP YIBD 10} YJOM JO Jun auo AjuQ

wuoge|d
ddy auibug
ueg
auibug
HeQ

90I1A8p o|buls Se Joe Sa2IASp JO
dnoub pajosuuod B se)ewW Juswiiniosy

US 9,436,525 B2

Sheet 11 of 32

Sep. 6, 2016

U.S. Patent

bl "Old

poylaw $S330.d

poylsw dnjeg

sowz|o)
PIIYo 0} SIajuI0d

owzib juaied
0} Jajuiod

gl
owzio

i)
uoipuay

Ll
uolIipuayIa)sey

A
ylomawel{ueq

US 9,436,525 B2

Sheet 12 of 32

Sep. 6, 2016

U.S. Patent

Zl "9Old

002
pe(

¢06

\

€0¢
Johejdlaisen

A
0cc
pequslsep
b
20z
JoyuI
A

0c¢
salelq/sioelqo

N

+
10¢

J9|ldwon
00¢

s|00] ueq

/

106

006

G0l
salielql

€0l
$92IN0SSY

¢0l
yiomaweljue(q

oLl
suolsua)xg

LOL
3po, uoneoyddy

001
92In0SYE(

221A9(] Wawdojaas uoneolddy

US 9,436,525 B2

Sheet 13 of 32

Sep. 6, 2016

U.S. Patent

td O E

uoI99s sued

Jeuio4ueq

N-601Z 1-G0LZ
Jed ped
N-v01Z 1-v01Z
a|qe L uolpuaY a|qe L uoljipuSy
€01z
apoDUIRI
2042
elequiepy
1012
a|qe | SUoIPUSY
€0€
sued

US 9,436,525 B2

Sheet 14 of 32

Sep. 6, 2016

U.S. Patent

ZJa)sweled

|LJsjsweled

0Js)eweled

JosyOPUd

JoSHOME}S

sbeys

adA]usjuoo

plued

vl '©Old

abew| apon

s|qe Med abew eleq

9ZIS He(

jeurioqueq
9ZIS YJElS
000¥
Led ainpasoidueq
d-vie l-¥LE
P03y 9|qeed PIOO9Y 9|qeled
v0€
3|qe ued

plLe
p1093Y 9jqe | Hed

US 9,436,525 B2

Sheet 15 of 32

Sep. 6, 2016

U.S. Patent

9008
owzlo)

PIIY2 yaes
10} AIBAISIND)

|IB3‘S8A

g1 'Old
G008
8008 ¢ Jobajed Juana siy) 10} Buissadoid
uinsy
pasu uaJp|iyd ay} Jo Aue og
i
| Y008 1.
wﬁ JuaAs Jo Buissaooid owszig) oq %
JUSAS PauIN}al 8SN ‘SBA
(™
1008 N €008
Juana Buissaooid ¢ BuIssa0.d uonealdde ueq
|eJauab wio4 10} pauJn}al JUsAg
N / 0108
.. BuISSa2014 JuaAg SNOUOIYSUA
GiiGa . d ueAd YIUAS
S0IABP BUO (000G sie2) 2008
apisu| buissao0.d Jusag uoRoun} unIng

H 1008
aWnUNYLEQ Buissasoldqjuargauibug |jen ; HEIS

US 9,436,525 B2

Sheet 16 of 32

Sep. 6, 2016

U.S. Patent

9005
i SIUsAg
Ile Je payooT

£00G
Jajuiod |InN
Yum uonediidde o} uinjey

(8UlY
peay je JusA3 0} Jajulod
| ym uoneoidde o) uinjoy

000G uonouny
unng buissasoidiuargaulbug swnunyueq 91 'Ol4
G00S 1.

|l 0} peay je JusAg snol |

¥005
£ 9)e1S BuIyoe|\dlelSauIfug
UB Ul peay Je JusAg

6008
aje)s o) buipioooe

€005
¢,81e1s BuIssaaoiduolealddy
Ul peay Je JusAg
2005

¢{PESY JE JUSAT
§s9201d 0} awWI |

Buissa00id

peay Je Juag ssedold | |
JUSAT SNOUOIYIUASY m

ON

US 9,436,525 B2

Sheet 17 of 32

Sep. 6, 2016

U.S. Patent

€18
yeq

cl8
JUSUOY

118
91npado.id

Ll 'Old

S8JIASp pawWea)} usamjaq swnunyueq

018
9|4

¢08

sigjoweled

108 adA|

008
JUSAT

N-00F
82In3Q
Heqd
099
ananp Jusag
008
SjusAg
pazijeuss 5
pazIuoIyouAg ¢y
. 4
099
anenp) ueA3
¢-00¥
92IA™(]
HeQ /

L-1G¥
) . 099
< ” ahanp) JusA3
008 1-00%
SJuang pazielias a%IAa(]
PSZIUCIYOUAS Heqg

oSy

00
Jeg

US 9,436,525 B2

Sheet 18 of 32

Sep. 6, 2016

U.S. Patent

81 'Ol

N

aInjald 9
N % J

03I 6 ?m_os gmeao_m G |+ veay

| amador | amadg k| ampde e,

4 Ld

?ocm%__m 7 g T%c_ euquIny :\q x%c_ payull-1adAH L

oooor

Ayo.elaiH owzio) s|dwex]
Buiyse | Jeaui
Buisn a21Aep auo uo uoleltado swnunyueq

US 9,436,525 B2

Sheet 19 of 32

Sep. 6, 2016

U.S. Patent

6l Old "P9)08ULI0ISIP SEM) jium pabueyo

aney Aew yoiym ajels Buiuuni Jusung ayy yim 9 SINIYsI-al g uo uolipual Jeq ay) H<-g<-y 9 deig
‘|looojoud Juaiayip e 18r0 Agissod ‘uiebe) yim uoieaIuNWILIOD SYsIge}se-al SUORBIIUNWWOY S.g G dalS
U0ISSas J50; 8y} Buisold Aq JusAs uoRoBULON)SOT BU) 0} puodsal jou pip g 1o pue iy se Buoj se ‘sjuane
Buisn umop Jnys Jou pip O asnedaq 9 10} ¥00| 0} SeNURUOI WB)SAS SUONBIUNWWOD S.9 ‘) g<-Y ¢ dais
Ue(BuneuibLo ay) 40 Jusjul 8Y} 0} [BIIUSSSS SEM) 8SNLIa(
UMOP $3S0J0 PUB JN0 SaLUI} JO ¥Oorq SAWOJ 1 [jun uoielado Jiayy puadsns g 1o pue \f p
10 UOISSSS }S0| AU} SO PUB 1) JO }SE) BU} OP 0} ‘(q ‘8IASP JBYJOUR JINIDB) g U0 puB Y ‘(Q<-g<-Y 9
10 ‘7 JO SYSB)} JAA0 9YE)} g 10 pUB V/ q
10 ‘[BUBSSa JOU S|) 88NLI3) U)IM SJUSAS paziuolyduAks o) Buikn JoN e
‘o|dwexa Joj ‘Ued Aay) }saq Se 9 JO $S0| 10} Sajesuadwiod g pue Y $soloe Buiuuni mou Leqg eyl ‘9 ge<-y ¢ daig
'paWes) payinioal ay) Jo ped)i 2oUlS [|am Se i 0} $806 Ajjed)ewoine Yaiym ‘g uo 8pod LOREdIUNWILLO0D
Aq pajesaualb s Juang adAy uonosuuo)iso 1so| Si 9 0} uoRosuUo) ‘9 g<-y iz daig
'SJUAS pazijelas BuiziuoiyouAs 4o 1as e Buueys Aq wes) e se y uo peq buieuibuo sy jo ped
Alreuibuo Leq Jo suoRIpUSI uns $821A8P 881U} |IB -2 SUNJOAI g UBL) g SHnIoal Y uo Ueq ‘D<-ge-v (| dajg

A1BN028Y 10417 |9A8T uohedlddy | ¥VQ

US 9,436,525 B2

Sheet 20 of 32

Sep. 6, 2016

U.S. Patent

\

L Buisn uonouny wiopad

(3poodo-qns) g9 |

apo?
SNJe)s e uinjal pue sisjuiod
UOIJeUNSap pue 82Inos

/

ﬂ

N

(189 h

sigjowe.ed
se ap0ado-wao pue Jsyuiod
uoneunsap ‘Jajuiod 82inos

Ui uonaun} N30 TvH __mo\

4 : N
089

ap0oado-wiao
uiing Buluiejuod piom

0¢Z 'OId

L 9p03 1Iq ¢¢ IXau Ydlo
J
) 1 L[(epoado uogonssujupng)ese
(apoado-wao) /9 BuisSe0014 UORONLSU|URNg
\ JelS) auibugpeq

4)

(epoodo-gns) £/9
apo?

SNJe)s e uinjal pue sisjuiod

UoIeussp pue 82.nos

Buisn uonounj wioped
N o Y

209 A

o|qe}
SSaJppe 0} Xapul se apoado
-qns Buisn uonouny o) dwnp

*

[119,)

apoado-gns
uging Buiuieiuod piom

9P0J)ig Z€ 1Xeu Yoo
N J/

i

049
HEIS

/

US 9,436,525 B2

Sheet 21 of 32

Sep. 6, 2016

U.S. Patent

L2 "Old

i

()so|dwesyos)od

{
:(()sejdwesyas||on)uinial
1 (SANODIS IAII 04 ITdWVS==uoRounyqns) Ji
(A1 SOINOY.LDITF VT138VHIN==QIWa0) JI
‘ . ¥
0€9€. ke e . . {(vomonyans Jui ’pIUIRO JUNWIOIEY U

0L9€

015€

Q0BLDUT J3SN

8D W30 oldwies
{SANOD3S A4 HO4 INdINYS ‘O SOINCHLOTFTT v1T3avHIWINGO

609 Meq Kl

G0G¢

1sonbay |aued _obq,ou

009€
suoyd ©SIqoi

14dvQd |oukd |01Ju0)) 1031331a Ouldlnan

008€
10)08}9(OULNSN

008t

auoyd a|Iqo Aq pajjo13uod pue punoj 10)993e(ounneN Arejdwaxg

US 9,436,525 B2

Sheet 22 of 32

Sep. 6, 2016

U.S. Patent

¢ 'Olid
§S999Y SUOIJRIIUNWIWOY 059 SS320Y 9|ijoid
suonouny ’
€69 214199ds a2I1A9(] 169)
$$900y abeloig vH SS900Vy SIEMP.EH
o "/
% ~ O
099
SN9ND) JUGAT 019 ¢l9 119
€19 suonoun; | Buisseooid Buissaooid
Buisse0014 JUsAg 8|qeuod Sl uolonJsui
N\ / y
009
auibug peq \
00S
Jafe|d veq

US 9,436,525 B2

Sheet 23 of 32

Sep. 6, 2016

U.S. Patent

600%
auoq

8007 1

(Muun suibuzueq jle) %

900t
anjep unay

, Gooy
Buissaoold Jefe|d wiopsd

L00¥ 7007
abessay 10113 Indino anje/ uinjey
4
€¢ 'Old €00t
(Jsse0014 auibuzueq g9
000¥ b 3
Juiun ‘ssasold ‘Nuj suibugueq -
200y 4\ ﬁ 100¥
o_oo|_ Ule|\ ._m\Am_n_tmﬁ_ (Jnup-suiBugueq g9 ;4 h ueis

US 9,436,525 B2

Sheet 24 of 32

Sep. 6, 2016

U.S. Patent

9009
auog

A

rﬁ G009
wﬁ Juiod Aju3 ()$S900.4 UoIpusy 183

£009
2Inpa20id SI0}9NJJSUOD UNY

7009
aneA Jajuiogsiy) buels

€009 0009
HOMPEoY PECT (ursuBuzueq
¥Z 'Old
buipeoimu 2009 1 [1000
aubuzueq un1 0} UORIPUSY 8SO0YY P ﬁ peis

US 9,436,525 B2

Sheet 25 of 32

Sep. 6, 2016

U.S. Patent

GZ 9Old 4 1241)
Jsyuiod Asowsw
aneu a)e|najen
5 "> L I piOM G2 Heu
POO SNIE)S JOLIS Y)IM UInsy ; (DI SIS0 s
G¢ 01 €1 s)q pY
uoneurnsap JoelX
099 —= U leulsop eI
3P0 SNEIS Y)IM LINSY oo - 3 <
i 9z SiIq uononisul mmm
[(opoodolgsy) oy ‘play fojllog Moulaw
8pod ap0ado Joesx3 SAljeu 81ended
SNjes e UInjas pue siauiod N / %M;mﬁmwpxmﬂh
UOIJBUNSSP pUB 89IN0S Yoie) M P - L
L Buisn uonounj uiopad) ON c_mcmorehoom “Mmzxm
A] / \
{PIBA 8p024Q %
899 ¢s9
3/qe) SOA UORONASU JGZE IXaU Yoja4
$sa1ppe 0} xapul se apoodo [* Fmo
Buisn uorouny o) dwnp 119 e
Buissanoid uononiisuj subugueq HElS

US 9,436,525 B2

Sheet 26 of 32

Sep. 6, 2016

U.S. Patent

69
8p02 SNJe}s pue ‘allip PuB peay 1o} Spiom Jo Jaquiny ‘uadQ Joj pisjiq uiniay
—
69
/69 olleu pue uoneao| Aq abelc)s <
5621015 0} 92IN8p $S999E 0} suonoun) 8|l TvH IleD
$5999€ 10} AIOWS 869
9l TvH

PeJed0|IETYH 33

>

94ans

€69 B 8pISUl SpuUNoq

TvH “Kiowayy ‘ajsgng Ol [ENHIn LU

969 ﬁ 69
IsjaWeled pjoji4 wody asn-Ul Se ylew pue
Ojufa|i 0 Jejulod 199 ﬁ '0jU|3]i4 B|qe|IeA. 0} JBjUI0d J89)
, 169
uonelsdQ 8s0|7) 10 ‘UonIsod
Ued0 Ve 940 ‘BN ‘peay ‘usdp U8do 9z OId
¢l9

Buissaooid 9)14
suibugueq

US 9,436,525 B2

Sheet 27 of 32

Sep. 6, 2016

U.S. Patent

GG
uiing waQ vH

GL1G
ndu TvH

124K
abewijen TvH

€h1G
Jld TvH

412
UsaI0g TYH

LIS
swll vH

011G
punog TvH

1G9
$5990Y aJempleH

\

001G

/

WwajsAg Alowsp TvH

\

j

0005
Buiwen aji4
Wa)sAS 8ll4 TvH

0015

weysAs o)l TvH
\ J

N

£99
$920Y 968I0)g

\

099

suonouny
o1vads aoineQg

vH
42 "Old

waQ
AN NS
uonIsinboyeIps
olpny ‘08pIA
¥oeqAe|deipsi
“yonsAol ‘asnow
sindu|
“ubiay ‘Yipm
SIEETN
*uonn|osal

SIg)uLId

299
$S900Y 9|1joid

\

\

US 9,436,525 B2

Sheet 28 of 32

Sep. 6, 2016

U.S. Patent

8204
paloadsiasn
L¢0S
Kisibayy vels €105
p_ SJUOAT
- €706 ojuls|i 0} Jejuiod
sUEg 108
5205 - 18qUINU/AWEN
adA | usjuonAgpaieys
2207 110G
1208 UoIjEI07
PR 0c05 0408
uonesn siajaweied 9|14 uado TVH
600G
8¢ 'Ol Xogpues waysAg aji4 TyH

US 9,436,525 B2

Sheet 29 of 32

Sep. 6, 2016

U.S. Patent

62 Old
bS5l 85| Jled-Aayf ajeAld/ 91jand 291AaQ
SUONEDIUNWILLOY LS} PIn 82iA8Q
651
e
0} IsI [oAeT] : -
ﬁ Z/} 9INpadoid Buiuuny | \ /
€6l 251)
.| sbej ssa00y WwoY aindagleq || Jojelsuac) Joquiny wopuey
0L} XJU0D 2unpaooid j1a1ayjes) Adonu3
J/
[29} Weq buiuuny $8INPav0Id ol
. SoANIWLg d1ydesboidiin
191 Sbe}j 55390y fndeg ’
T
091 ¥X8ju0Q Weq / aulbugpeq uondAioug
00F @diradueq
Aunsagueq

US 9,436,525 B2

Sheet 30 of 32

Sep. 6, 2016

U.S. Patent

0¢€ Ol

g ybnosy) passed

81| 84} 10} pI anbiun ales ay) pey Aay) asnesaq $)si| sy} duks o} papasu Asy) Jeuys mauy Ay} ‘Buioufs s10jeq 9 yiM PBIEOILNWILICD J9ASU pey v yBnoy) usag :ajoN

S}s)| 413y} Ul [9yorY ‘'B2999 BJ\ BABY MOU 3 pUB g 'y S90IA3(]

"UONEZIU0IYIUAS B|puByY O} Jeq sy} ul paIpoqus ale S3|nJ Jaaajeym Buisn sisij ay) sablal pue ‘aoiAep pajosuuos ay) 0} JuaLL)niaa) Buisn uognoaxs sy speaids
YOIUM A MBQI9|PUBH)SITIOBIUOD PAIEIO0SSE SU} SHEJS ‘SiSl| QUAS Jiay} Ul yQINIESZ | SWes ay) aney Aay) $8as ‘7 10 \y Jay)ie 0} $)08LU0D g 30IA8(:¢ dalg

£0099 ‘Nl SeY |INS g 80IA3(] ‘SISI| SISy} Ul [aYOBY ‘83098 ‘N SABY MOU 1) pUB Y S3DIAS(]

‘uoneziuoiyouks sjpuey o} Leq U}) palpoquIs ale sajn Janajeym Buisn 1) pue v Jo sjsi| ay) sabiaw pue 7 o) Juawyniva) Buisn uognoaxs
S)I spealds YoIym 7 pegIe|pUBH)SITIORIUOY PBIBIOOSSE BY) SES ‘SISt OUAS Jau) Ul YQINIESZ L aUes aU) aAey Aay) $88s ‘Y 8IASp 0) S108ULI0D 1) 80IA(] '€ daS

ZPINNESZLYPINIESZL L
3817 QINJs|pueHHEA/PINIOSIGO duAS|el0S

APINNESZLIVPINNESZL)
1sI1 @insejpueHyeq/pIMoalqo sukgleloog

XPINNgezIVPINNEEZL)
1811 QInisipuEHIRQ/PINI2RIqO 2uks|eIo0s

ZPINNESZ ==Z HEQIOIPUBHISITIOBIUOD

APINNIGEZ) == A HeQIs|pueHISIToE0] .

XPINNGSLZL ==X HeQJa|pueHisiToeiuoy

B0oag ‘loNeg 2

eooag laeg 7z

e08g ‘lojeg A

[0yorY 'SIBUL0) e Wl ‘plouly | Wep ‘piouty l Nep ‘pouty }
vpInlgszZL ==)sITioejuo) sueq YPINNG8ZL ==JsiTIoeju0) sueq VPIMIASTZL ==1SI7}9BJU0Y sueq
0 891ASQHR(BUOUd [[8) S,ueq g 921A0qHeq Yad S,ued V 9iAeHeq Od dojde1 s,ueq

'SMOJ[0} SB Y0O| MOU SBOIABP 8} ‘2 U0 JSI| 8} O} PEPPE S [8Y0EY 'I9U)OUE BUO LICI PIJOSULICOSID SIIASP |8 Wi :Z dais

g|dwex3 }s17 }9BJUO) UoleZIUOIYIUAS jeI20S

"$80IA8P JAUJ0 B} UC 7 Lieq pue A Heq se pajeubisap mou ¥ Weq Buneutbiio ay} Jo suoipus.
PUB ‘Y UO PaIs)ue SSWEU OM] SU) UIBJUOD MOU [[B ') 80IAS(0} SWES| g S0IAaQ UaU) ‘g 80IAe(O} SWES] ‘Y 80IASP UO 1SI| J0BILOO € Sajeald ueq ;| dajg

US 9,436,525 B2

Sheet 31 of 32

Sep. 6, 2016

U.S. Patent

ZPIn "ypIn “ypin ‘opin :sbej4 7 [are
Zpin :sBejy 6 [9r87
)81 Aunosgaaineq

'Sbej{ X [9A3]

A
PIN ‘gPn ‘P ‘Zpin sBel4 9 [ore1]
ZPIn 'ypIn ‘yjpin ‘Opin :sbej4 / ae]
:sBe|4 g [pAe]
‘vpin :sBej4 6 (8197
1517 AjLN28g301A3(]

Zpin 3aina Qe MoN AN

vpin ad1aequeq plo AW

1 19A97 Je Wed) 0 uoissiuiad Buiyeb Ja)je mau pue pjo

Zpin :sbej4 g [ore]
1517 Alnoagaoine(g

Zpin d21A9queq maN Al

“SDE[{ X [oAeT

A
PN ‘gPIN 'ypin :sBe}4 g [onsT
"IN ‘Mpin ‘9pin :sbei / jare
:sbej4 g jore]
'ypin :sbe|4 6 [ore
1817 AlIn2agaiAa(Q

vpIn adiaequeq pio AN

Bunuea] a10j0q mau pue p|0

JiedAay ajeAld/a1and 821A8(
PIN 8918

(stted pin weqpin 108/qo)
517 2UAS|eroos

sueq
10 pue seo1AegUEQ AJIUSPI PIN0D SPIN

sbey

$S9008 J0 155 € 0} Spuodsaiiod yoiym

|an8) A)LiNdas YOBa 10} paleald spin
sisi7 fiun3agadtnag

(spin)
1SI7 paxoAey

salnjeaq AJLnoage1d0g

adlnequeq

oy AN08S|RI00S

US 9,436,525 B2

Sheet 32 of 32

Sep. 6, 2016

U.S. Patent

paxeys 17
desy ++2 0T

10100000 01100000
ssaippe yooig §s2Ippe 30019
)14 yse|d l mmmn_ >._OE®_>_ jeey
000£S000X0-00005000%0 aBuey :
00012000%0-00002000%0 8buey
000+0000X0-00000000X0 Sbuey 00700000 00T00000
Ued | Jajuiod [enuip Heg $S9Ippe 3009 SSaIppe 320/g
9|14 ysel4 0 abeq flowayy [eay
10000 10000
9]y Heq Buuuny abelojs ysel4 18JU10d [BNHIA
goeds
ssaippe
¥00[q UI PIOM GZE JOIOSHO SSAIPPE 0| [EMMIA YDIYM
1000000000000000 TOT000000 10000

as|

Iad Ten3iITAa 10
Yoe3s/elRp (0
ad£| sejuiod

10
qsw

ped yeq e uranjea pjo ayy Buipsasadns 10100000 SSRIPPE Y20|q YIM aJ1 Yse|d ul AjuaLnd i anjea ejep 8y

LO0OSX0 1e PJoM JIgzZe 8y} SI soeds sSalppe S|, Jaquinu Jajuiod [enpia Ui SSaIppy
} 19SH0 %20|q ‘GXQ %00]q ‘SPIOM JIGZE M9 JO 8ZIS ¥00Q UM |, J8juiod [ENLIA 10} BNjeA Jajuiod beqd 1q Z€
z¢ Bi4 ajdwex3 Jsuiod |enuiA LUeq

US 9,436,525 B2

1
SYSTEM METHOD AND MODEL FOR
SOCIAL SYNCHRONIZATION
INTEROPERABILITY AMONG
INTERMITTENTLY CONNECTED
INTEROPERATING DEVICES

RELATED APPLICATIONS

This application is a divisional of U.S. patent application
Ser. No. 11/149,068, filed Jun. 8, 2005, now abandoned
which claims the benefit of priority under 35 U.S.C. 119(e)
to U.S. Provisional Patent Application Ser. No. 60/577,971
filed 8 Jun. 2004 entitled Architecture, Apparatus And
Methods Thereof For An Efficient, Low Cost, Seamless
Device Interoperability Software Platform and naming
inventor Daniel Illowsky; both of which applications are
hereby incorporated by reference in their entirety.

The following co-pending U.S. Utility patent applications
and PCT International Patent Applications are also related
applications and each is incorporated herein by reference in
its entirety:

U.S. patent application Ser. No. 11/176,647 filed 8 Jun. 2005
and entitled Method And System For Device Recruitment
Interoperability And Assembling Unified Interoperating
Device Constellation;

U.S. patent application Ser. No. 11/149,076 filed 8 Jun. 2005
and entitled Method System and Data Structure For
Content Renditioning Adaptation And Interoperability
Segmentation Model;

U.S. patent application Ser. No. 11/149,074 filed 8 Jun. 2005
and entitled Method and System for Specifying Device
Interoperability Source Specifying Renditions Data and
Code for Interoperable Device Team;

U.S. patent application Ser. No. 11/149,465 filed 8 Jun. 2005
and entitled Device Interoperability Framework and
Method For Building Interoperability Applications For
Interoperable Team of Devices;

U.S. patent application Ser. No. 11/149,456 filed 8 Jun. 2005
and entitled Device Interoperability Tool Set and Method
For Processing Interoperability Application Specifica-
tions into Interoperable Application Packages;

U.S. patent application Ser. No. 11/148,981 filed 8 Jun. 2005
and entitled Device Interoperability Format Rule Set and
Method for Assembling Interoperability Application
Package;

U.S. patent application Ser. No. 11/148,980 filed 8 Jun. 2005
and entitled Device Interoperability Runtime Establishing
Event Serialization and Synchronization Amongst a Plu-
rality of Separate Processing Units and Method for Coor-
dinating Control Data and Operations;

U.S. patent application Ser. No. 11/149,086 filed 8 Jun. 2005
and entitled Method and System For Linear Tasking
Among a Plurality of Processing Units;

U.S. patent application Ser. No. 11/149,454 filed 8 Jun. 2005
and entitled Method and System For Vertical Layering
Between Levels in A Processing Unit Facilitating Direct
Event-Structures And Event-Queues Level-to-Level
Communication Without Translation;

U.S. patent application Ser. No. 11/149,455 filed 8 Jun. 2005
and entitled System And Method For Application Driven
Power Management Among Intermittently Coupled
Interoperable Electronic Devices, now U.S. Pat. No.
7,409,569, issued Aug. 5, 2008;

U.S. patent application Ser. No. 11/149,077 filed 8 Jun. 2005
and entitled System And Method For Interoperability

20

25

30

35

40

45

50

55

60

65

2

Application Driven Error Management and Recovery
Among Intermittently Coupled Interoperable Electronic
Devices;

U.S. patent application Ser. No. 11/148,977 filed 8 Jun. 2005
and entitled Device and Method For Interoperability
Instruction Set;

U.S. patent application Ser. No. 11/149,457 filed 8 Jun. 2005
and entitled Method and System For Customized Pro-
grammatic Dynamic Creation of Interoperability Content,

U.S. patent application Ser. No. 11/149,084 filed 8 Jun. 2005
and entitled Method and System for Interoperable Content
Player Device Engine;

U.S. patent application Ser. No. 11/149,087 filed 8 Jun. 2005
and entitled Method and System for Interoperable Device
Enabling Hardware Abstraction Layer Modification and
Engine Porting;

U.S. patent application Ser. No. 11/149,078 filed 8 Jun. 2005
and entitled System Method and Model For Maintaining
Device Integrity And Security Among Intermittently Con-
nected Interoperating Devices;

U.S. patent application Ser. No. 11/149,068 filed 8 Jun. 2005
and entitled System Method and Model For Social Syn-
chronization Interoperability Among Intermittently Con-
nected Interoperating Devices;

U.S. patent application Ser. No. 11/149,075 filed 8 Jun. 2005
and entitled System Method and Model For Social Secu-
rity Interoperability Among Intermittently Connected
Interoperating Devices;

U.S. patent application Ser. No. 11/148,961 filed 8 Jun. 2005
and entitled System Device and Method for Configuring
and Operating Interoperable Device having Player and
Engine now U.S. Pat. No. 7,454,542, issued Nov. 18,
2008;

U.S. patent application Ser. No. 11/149,066 filed 8 Jun. 2005
and entitled Method and System For Specifying Gener-
ating and Forming Intelligent Teams of Interoperable
Devices;

U.S. patent application Ser. No. 11/148,978 filed 8 Jun. 2005
and entitled Method and System For Configuring and
Using Virtual Pointers to Access One or More Indepen-
dent Address Spaces;

PCT International Patent Application No. PCT/US2005/
020362 filed 8 Jun. 2005 and entitled Architecture Appa-
ratus And Method For Seamless Universal Device
Interoperability Platform; and

PCT International Patent Application No. PCT/US2005/
020367 filed 8 Jun. 2005 and entitled Architecture Appa-
ratus And Method For Device Team Recruitment and
Content Renditioning for Universal Device Interoperabil-
ity Platform.

FIELD OF INVENTION

The present invention generally relates to systems,
devices, methods, and computer program software products
for providing communicating between devices having simi-
lar or dissimilar characteristics and facilitating seamless
interoperability between the devices; and more particularly,
to software and methods of and systems and devices for
sharing of content, applications, resources and control across
similar and dissimilar permanently or intermittently con-
nected electronic devices.

BACKGROUND

In an era when there has been a vast expansion in the
number and type of electronic devices, particularly portable

US 9,436,525 B2

3

and wireless devices, as well as an expansion in the types of
application programs and device types, there has been a
corresponding need for data and code to be shared directly
between these diverse heterogeneous different device types
in order to carry out the intent of applications which can only
be accomplished by employing the electronic and program-
matic resources of a plurality of devices. A need has also
arisen and continues to grow for a device user to be able to
communicate with other devices that may or may not be set
up in advance for the type of communication or data transfer
or sharing that the user desires. For example, a user may
have or wish to create a picture collection on a digital
camera and then to be able to transfer that collection of
pictures directly to a personal data assistant (PDA) type
device, television, or projector for viewing, or to a storage
device for storage or to a printer. The user may also or
alternatively wish to transfer code which implements a
sequenced slide show encapsulating the pictures, titles,
index of slides, and the like to another device, such as to a
device that has a larger screen resolution or better graphics
capability than the device on which the slide images reside.
The user may also want to be able to select and print some
subset of pictures in the slide show on an available printer.
There are many other examples of such code, data and
content sharing.

Conventional Interoperability Issues, Problems, and Limi-
tations

The sharing of data and code along with the sharing of
associated device computing resources, and device control
between similar (homogeneous) and dissimilar (heteroge-
neous) devices or device types is known in the art as “device
interoperability,” or simply as “interoperability”. Some of
the necessary and optional enhancement issues involved in
providing this interoperability include the issues of: (i)
content adaptation; (ii) content format; (iii) device drivers;
(iv) device to device communication; (v) individual device
resources and capabilities; (vi) application programs resi-
dent on the devices; (vii) loading application programs on
the devices; (viii) costs associated with providing device
resources to support interoperability; (ix) power or energy
management of interoperable devices; and (x) robustness of
code executing in an interoperability environment where
connections between devices may be intermittent and unre-
liable. Furthermore, (xi) the scope of the development,
deployment and testing efforts necessary to enable interop-
erability; (xii) the reliability problems inherent in having
independently developed and or distributed interoperability
components even where detailed interoperability standards
exist; and (xiii) the difficulty of end users having to have a
high level of technical knowledge and spend appreciable
amounts of time and efforts administering interoperability;
(xiv) the security of interoperability devices, data and con-
tent; (xv) the size, performance, power management and
cost tradeoffs that can be made with respect to interoper-
ability infrastructure, raises additional issues. These issues
are addressed in additional detail below.

With respect to content adaptation, there is a need for
intelligent scaling or adaptation of the content in terms of
such parameters (application and data type dependent) as
picture size, user interface, controls and special effects,
content format, features, and the like that needs to be taken
care of when transferring data, application programs (appli-
cations), or control from one device type to another. These
are collectively referred to as “adaptation.” The better the
sophistication of the adaptation when sharing content, appli-
cations, and control, the larger the set of interoperable
devices; and the more advanced the features on each device,

20

25

30

35

40

45

50

55

60

65

4

the more efficient the transfer of data, information, and/or
other capabilities can be, and the easier the devices and code
data and content are to use to carry out applications.

A second interoperability issue arises from the undesir-
able requirement that the user may generally need to specify
or at least consider the content format. If the user desiring
interoperability with another device is not familiar with the
content format and/or how the other devices will deal with
the content format even if it can be communicated to the
other device, this factor alone may preclude interoperability.

A third interoperability issue arises from the undesirable
requirement that the user may generally need to specify,
consider, or carry out the loading of one or more special
purpose drivers, code, data or content on one or more
devices before interoperability can be carried out.

A fourth interoperability issue arises from the undesirable
requirement that the user specify, consider, or select the
physical communications mechanisms and protocols to be
employed in a communication between the user’s device and
one or more other devices, each of which may have or
require a communication mechanism, protocol, interface, or
the like.

A fifth interoperability issue arises from the undesirable
requirement that the user may need to consider or chose
which devices will have the capabilities and memory, pro-
cessor and other features necessary to interoperate with his
or her device or with the data or applications required.

A sixth interoperability issue arises from the undesirable
requirement that the user may need to specify, consider,
and/or load the applications that must reside on some or all
of the involved and potentially interoperable devices.

A seventh interoperability issue arises from complete or
partial application failure due to missing, outdated, or
incompatible version of code, data or content on one or more
devices.

An eighth interoperability issue arises from the undesir-
able requirement that devices need to have all the code to
carry out applications that will be needed resident at the time
of manufacture or at some time prior to the need for them
arising, or be explicitly loaded on some or all, of the devices
by the user.

A ninth interoperability issue arises from the monetary
cost associated with providing the amount of processor or
CPU resource, memory resources, electronic gates or logic,
or other physical infrastructure necessary to implement the
communications and other protocols and applications on
devices intended to interoperate.

A tenth interoperability issue arises from the desirability
of providing effective power or energy management meth-
odologies to extend battery life or reduce the size of the
batteries needed for portable or mobile devices that are
intended to interoperate. Although not specifically required
for short term interoperability, such power management is
highly desirable so that interoperating with other devices
will not create such a battery power drain on such devices
that users would rarely use the capabilities or be hesitant to
permit another user to access their device.

An eleventh interoperability issue arises from the need for
a degree of robustness of applications which need to con-
tinue to operate in an environment where connections
between devices are often intermittent or transient and
unreliable. For example, code to carry out an application on
a first device that is interoperating with and in communica-
tion with a second device should not itself freeze, hang, or
otherwise cause a major problem or result in the device itself
freezing, hanging, or causing a major problem when the
second device moves out of range or otherwise fails to reply

US 9,436,525 B2

5

to a communication from the first device. Furthermore, it is
desirable for all the code, data and content necessary to carry
out an interoperability application to be automatically
restored and updated if such a second device becomes
reliably available again.

A twelfth interoperability issue arises from the unreliabil-
ity of applications where devices are produced by indepen-
dent manufacturers, based on interoperability standards
which are inherently weak in their ability to predict realistic
and future device needs and capabilities, and in the ability of
programmers or circuit designers to completely and cor-
rectly understand, implement and have such implementa-
tions correctly deployed. A thirteenth interoperability issue
arises from the slow speed of executing code which cannot
rely on optimizations necessary for graphics, video, sound,
etc.

A fourteenth interoperability issues arises from the lack of
availability of interoperable code, data and content to carry
out applications and devices which might be employed for
interoperability due to all the issues listed above which
discourages both users and providers.

These fourteen interoperability issues are merely exem-
plary of the types of issues that do or may arise and are not
intended to be a complete list or to identify issues that arise
in all situations. For example, interoperability between two
identical devices that are intended to interoperate with each
other at the time of manufacture may not present any or all
of the issues described here, but this type of homogeneous
device interoperability does not represent the more common
situation that device users are faced with today, and modest
attempts to address heterogeneous device interoperability
issues have been incomplete, not very insightful, and clearly
not successful.

Conventional Static and Procedural Solution Attempts

Conventional attempts at providing interoperability solu-
tions have generally fallen into two categories, namely (i)
static interoperability solutions (“static™), or (ii) procedural
interoperability solutions (“procedural”). Conventional
static solutions require each device to support the same
specific communications protocols, and send specific rigidly
specified data structures with fixed field layout. In static
approaches, the semantics, code, and display capabilities
must be existent on all devices before interoperability can be
established between those devices. Each content type, appli-
cation, or device capability must be known, implemented
and installed at the time of manufacture of all devices
involved; or alternately, the user must install application
programs, protocols, and/or drivers as required prior to
initiating the desired interoperability of devices, software
data or content. As the user may not be a trained information
technology professional, or may not know or have a copy of
the driver, application, operating system component, proto-
col, or the like, it may be impossible to provide the desired
interoperability within the time available. Furthermore,
often it is necessary with static solutions to implement a
specific set of static solutions.

For example, the sharing of a set of pictures with slide-
show capabilities between a digital camera and a television
or display device (TV) might require a common static
protocol, such as for example, a Bluetooth wireless capa-
bility for sending the slide image data and slide order or
sequence information to a TV. It would also require a static
content format for the slides and slide order information to
be recognized on the TV as something it knows how to deal
with. And at least one static slide show program that can
render and control a slide show with the specific content
format must exist on both the TV and the digital camera. The

20

25

30

35

40

45

50

55

60

65

6

user may or may not have to separately initiate transfer of
the images or pictures and slide order information, find and
associate the information on the TV, and run the correct slide
show application on the TV. Depending on the sophistication
of the static slideshow programs on both sides, the controls
on the digital camera may or may not be useable to control
the slide show on the TV which was initiated on the camera.
Where such camera based control is not possible some other
mechanism for control may necessarily be provided. Static
approaches can result is highly optimized solutions to well
understood specific applications known at the time of manu-
facture of all the device types which can interoperate. Static
approaches however have major limitations, including the
requirement for most all capability to be known and custom
implemented at the time of manufacture, limited ability to
upgrade or fix errors after manufacture; and a conventional
requirement that each static program implementation must
be correctly and completely ported to run on the different
devices and exist on all devices prior to interoperation. Often
this is accomplished by the loading and updating of specific
drivers for specific applications, communications mediums
and the desired set of devices where interoperability is
required.

Even when static solutions are available, reliability is
compromised due to the inevitability of different versions of
standards and applications. Hence when two devices wish to
share data or procedures, failure can occur when the devices
adhere to different versions of the standard, or the programs
adhere to different versions of the standard, or different
versions of the applications reside on the devices. Additional
reliability problems arise from inadvertent errors or short-
cuts made in the independent implementations of the set of
standards used to interoperate. Such standards implementa-
tions may interact in unpredictable ways when any two
implementations attempt to work together. In general it is
often impractical or impossible to test all the permutations of
all the standard implementations across all sets of devices,
especially as all target devices which with an initiating
device must interoperate with did not exist at the time of
manufacturing of the initiating device.

One of the more significant limitations to static
approaches is that the amount of work to make a number of
N devices or applications interoperable grows very quickly
as N for the number of devices and/or applications gets
larger. Manufacturers currently are flailing at creating hun-
dreds of static standards for content types, application pro-
grams (“programs”), communications protocols, and the like
to try to make even limited size sets of devices interoperable
over an ever increasing large set of devices and applications.
This also conventionally requires that every device have the
memory, screen size, controls and processor and battery
power to support every static solution for every desired
interoperability option across all desired interoperable
devices. Otherwise true device and application interoper-
ability is not achieved. To better illustrate this conventional
problem and limitation, consider that currently, adaptation
requires a software engineering development project for
each type of device (N devices) that has to share with each
other type of device (N-1 devices). From a development
point of view this is an NxN or N* order problem because
in a universe of N device types that all wish to interoperate
with each other, there are Nx(N-1) adaptations to consider,
develop, implement and test.

Moreover, as the number of devices increases and the
required adaptations rise toward N2, the expense and diffi-
culty of attaining a high-quality product tends to increase at
an even faster rate due to the increased overall complexity.

US 9,436,525 B2

7

This is because the difficulty of attaining high-reliability and
quality software and hardware solutions increases as overall
complexity increases. This isn’t purely a “size of source
code” issue, but is due to just the kind of factors prevalent
when trying to get devices from different manufacturers to
work together, including unpredictability of behavior, unpre-
dictability of events, unknown future capabilities, and so on.

For example, as the number of devices increases from 5
to 6, interoperability adaptation requirements increase
according to the relationship Nx(N-1) from 20 to 30. And
as this increases the overall complexity of the project has
grown even faster.

This N-squared order problem wherein getting N devices
to work together requires substantially N? adaptations is
illustrated in FIG. 1. It will be appreciated that conventional
inter-device cooperation using a static approach may be
relatively simple for a user to use but requires a high degree
of development, administration and deployment effort and
continual updating to maintain compatibility and interoper-
ability between old devices, applications, and data types,
and new devices, applications, and data types.

With reference to FIG. 2, there is shown the interactions
for inter-device cooperation or limited interoperability for
just eight device types using a brute force approach requir-
ing fifty-six adaptations and additional fifty-six test proce-
dures.

Separate from the N? problem of the brute force method,
most static approaches also involve combining a number of
standard or standards efforts. The Microsoft originated
UPnP (Universal Plug and Play) approach has perhaps the
largest following and scope of the static approaches. UPnP
is a static non-procedural approach to solving some of the
problems associated with device interoperability by incor-
porating a set of static (non-procedural based) standards, and
attempting to enumerate all the different classes of devices
and services, each with a different XML or data structure
based description. However, even the UPnP approach suffers
significant limitations, some of which are briefly described
below.

First, UPnP is heavyweight in that it requires large col-
lections of modules and code, power, and memory to run.
This makes it unsuitable for thin low cost battery powered
devices that may have a very modest processor, little random
access memory, a small battery capacity.

Second, UPnP offers little content or feature optimization
capability. UPnP generally assumes one size application,
content, or user interface will work well on all involved
devices. This may have been a reasonable assumption a
decade ago for Microsoft Windows based desktop personal
computers (PCs), but is now a poor assumption and basis for
operation in a world filled with devices that must interop-
erate that are as different as a pager, a digital camera, and a
personal computer, not to mention the likely set of hybrid
and diverse electronic devices to arise in the next few
decades.

Third, UPnP offers only a limited set of user interfaces
that do not meet the needs of the large set of diverse devices
now available.

Fourth, UPnP requires programs and drivers that are
needed to perform the requested task to reside on all devices
before they can be used.

Fifth, while the intent of UPnP is at least to partially avoid
the N-Squared (N?) problem, the reality is that using UPnP
as a basis for the interoperability would still require a
massive N-Squared (N*) development/deployment/testing
effort, as described above, to bring out new applications
which require programs, code, data and content to be ported,

20

25

30

35

40

45

50

55

60

65

8

distributed and tested for all interoperating devices if the all
the permutations of independent implementations of com-
plex standards is to result in reliable interoperability.

Sixth, UPnP programs, devices, content and standards
must all be synchronized so that the same or at least
compatible versions and updates are deployed simultane-
ously

Seventh, as device and content capabilities evolve, exist-
ing UPnP programs, data and content based devices tend to
fail to support the new device.

Eighth, the costs of maintaining compatibility of existing
device, standards including UPnP, and applications versions
increases the overall project complexity ever more rapidly.

Ninth, as the project complexity increases, due to the
problems inherent in the complexity and diversity of UPnP
as a standards-static-based approach, ease-of-use and reli-
ability degrade.

Tenth, UPnP would still not address the requirements
imposed by the frequent need to have one or many data
structures sent between devices, especially where this data
or these data structures are expressed in a human readable
text format that require considerably more transmission
bandwidth and time than binary representations. Further-
more, many of the data structures to be sent between devices
are expressed in XML, a human readable text format, rather
than in a binary or less generalized format, where using
XML format requires significantly more CPU operations,
memory, and/or software program code size to perform the
CPU intensive parsing operations required for XML.

Finally relative to a few of the limitations imposed by
conventional static approaches to device and application
interoperability, static standards often limit the number of
protocols, content types and application types to reduce the
overall complexity and size of standards based implemen-
tations. An example is that UPnP only allows TCP/IP as a
base communication protocol. This effectively eliminates
the efficient use of other important existent communications
protocols such as Bluetooth, USB, MOST, and IR and all
other non-TCP/IP protocols.

Conventional Procedural Solution Attempts

An alternative to the static standards approach relies on
creating a procedural standard. Procedural standards tech-
niques implemented in hardware or emulated in software are
ubiquitous. There exist a large number of hardware micro-
processors, each with an instruction set and interfaces opti-
mized to different classes of problems, and there are numer-
ous higher level software emulated instruction sets and
environments existent, that are optimized around specific
task sets. These include for example, Java (an approach
generally optimized for portability and ease of program-
ming), PostScript (an approach generally optimized to rep-
resent printed pages and printer control functions), and
Storymail Stories (generally optimized for efficiently repre-
senting a very broad range of rich multimedia messages).
Java and PostScript are well known in the computer arts.
Aspects of Storymail Stories and related systems and meth-
ods are described, for example, in United States Patent
Application Publication No. 20030009694 A1 published 9
Jan. 2003 entitled Hardware Architecture, Operating System
And Network Transport Neutral System, Method And Com-
puter Program Product For Secure Communications And
Messaging; and naming Michael I Wenocur, Robert W.
Baldwin, and Daniel H. Illowsky as inventors; in United
States Patent Application Publication No. 20020165912 A1
published 7 Nov. 2002 and entitled Secure Certificate And
System And Method For Issuing And Using Same, and

US 9,436,525 B2

9

naming Michael I, Wenocur, Robert W. Baldwin, and Daniel
H. Tllowsky as inventors; and in other patent applications.

Procedural interoperability approaches, typically involve
establishing or otherwise having or providing a common
runtime environment on all devices that are to interoperate,
so that programs, procedures, data and content can be sent
between devices in addition to static data structures and
static applications. Currently one leading interoperability
procedural solution is the Java platform along with the JINI
extensions to it. As an example of a Java-based procedural
approach, a slideshow written in Java could encapsulate or
reference the pictures and slide ordering or sequence data,
interrogate the other device, adapt the content to the other
device, and send the information and a Java slideshow
program to the TV. The Java slideshow program could be
run on the camera after manufacture and enable interoper-
ability with a Java enabled TV even if the slide show
program did not pre-exist on the TV.

While Java has been widely deployed and has some
limited success in providing correspondingly limited
interoperability, it has serious deficiencies that have pre-
vented its broad use, especially for small mobile devices
where cost, power efficiency, processor efficiency, memory
efficiency for storing program code, data, and temporary
buffers are very important issues. Also, the Java Virtual
Machine (VM) approach to binary compatibility of appli-
cations running on different devices is in conflict with the
very reason the devices exist. Java and other conventional
procedural interoperability approaches have sever limita-
tions. Five exemplary limitations are described below.

First, the Java Virtual Machine approach makes or at least
attempts to make all devices look like the exact same virtual
computer to applications in order to allow the same binary
code (Java binary code) to run on all devices. In order to
maintain binary compatibility, it is necessary to avoid
attempts to access device capabilities that were not pre-
defined as part of the Virtual Machine definition and imple-
mentation. Thus binary compatibility is lost across multiple
devices if native functions are needed to access capabilities
of any device that are not part of the common Virtual
Machine definition. Since most non-PC device hardware and
software are most often specialized or optimized for a
particular purpose, form factor, price point, user interface or
functionality, it is often the case that their basic unique
native functions or capabilities must be accessed for the
applications most often targeted for the device. For most
portable or special purpose devices, the very reason for their
existence is because there is a need for uniquely different
capabilities and functions. This runs counter to the Java
Virtual Machine approach of hiding the differences between
devices to make them all look the same to the application.

Secondly, Java is a general purpose language optimized
for ease of programming at the expense of efficient execu-
tion and efficient memory use. Therefore, it will not be the
most efficient or effective solution for many thin devices
with modest processing capability and little available
memory or where cost is important.

Thirdly, multimedia content response times cannot be
assured using a Java procedural approach. Most Java pro-
grams are heavily reliant on the frequent allocation and
de-allocation of varying size memory structures causing
memory fragmentation. This memory fragmentation often
leads to periods when the processor within the device must
stop rendering the content while it performs garbage col-
lection within the memory. Users will often experience a
breakup in smoothness of audio and video rendering when
this occurs.

20

25

30

35

40

45

50

55

60

65

10

Fourthly, Java presents significant speed and size issues.
Java and its associated technologies and libraries necessary
for interoperability are relatively heavyweight and require a
relatively large number of CPU cycles for execution and
relatively large amounts of memory for storage. Interoper-
ability programs written in Java that include user interfaces,
multimedia rendering, device enumeration, robust cross
platform device interoperability, dynamic adaptation of code
and data to send to different types require a large amount of
code to be written and exchanged because all of these
functions must be built up using libraries, or special purpose
Java code sequences, as none of these operations are native
to the Java instruction set or environment. The result is that
Java programs for interoperability are large and slow, lim-
iting their use on devices where limited processor power,
battery life or cost are important issues. Where the devices
do not have sufficient resources a Java based interoperability
solution is not possible.

Fifthly, Java at beast provides a limited and incomplete
base implementation for interoperability. This makes it
necessary for a large number of libraries to be existent on all
devices to interoperate, or have a high speed always-on
connection to servers which contain the necessary program
code. Performance for operations not included in the base
instruction set of Java must be provided in the Java language
itself, greatly limiting the runtime performance verses that of
native code that might otherwise be used to implement these
operations. Missing interoperability base operations include
native support for: (i) multimedia animation playback; (ii)
adaptation of programs, data, content, user interface or
controls to, target other devices; (iii) computer generation of
custom programs so that devices that originate content can
automatically and easily marry that content with interoper-
ability programs; (iv) device, service and resource discovery
over a wide variety of protocols; (v) synchronization and/or
serialization of processes running in different devices; (vi)
device power management; (vii) application and synchroni-
zation recovery when devices intermittently lose and regain
their connections.

Often when a Java VM specification proves to be deficient
for a class of devices or applications, a new Java VM
specification arises to address the now known native support
needs of this new class of devices; however, Java programs
written for one VM are not generally binary compatible or
interoperable with devices which conform to different VM
specifications. Java VM specifications exist for various
devices classes, including the J2ME, MIDP 1.0, MIDP 2.0,
and CDC, but this proliferation of ever more non-interop-
erable Java VM specifications and implementations contin-
ues to cause a form of fragmentation of the types and forms
of programs and devices that achieve even a small degree of
interoperability through the use of Java VMs.

Xerox Palo Alto Research Complex (PARC) has
announced a variation on the Java plus Jini interoperability
technologies which they call “Obje”. Obje is explicitly
based on Java, or as an alternative, an unspecified and
unrealized similar virtual machine based technology. While
Obje points to some ways of providing procedural method-
ologies needed to effectively team devices and eliminate the
requirements for all devices to have the programs ported or
resident on all machines, it is expected that Obje implemen-
tations will have similar capabilities and limitations as the
Java plus Jini approach as they offer no details to indicate
any divergence from the Java VM model for the procedural
base to be used

PostScript, another procedural approach, has been around
for a considerable time and provides a printed page descrip-

US 9,436,525 B2

11

tion language which has been very effective at establishing
a high degree of interoperability between PostScript docu-
ments and PostScript printers. PostScript documents are
programs which when executed on a PostScript software
engine inside a printer, control the hardware printer engine
and recreate the image of printed pages while taking advan-
tage of the highest resolution possible on the printer that it
finds itself on. PostScript is largely limited to the interop-
erability of documents and printers. Some of the reasons for
this limitation include the fact that PostScript documents are
expressed in human readable text. This expands the size of
documents and programs greatly over binary programs. The
text requires parsing operation when the programs are run,
requiring more processor cycles and scratch memory then
would be necessary if the programs were expressed in
binary. Furthermore, PostScript does not provide any sig-
nificant native support for: (i) Multimedia video/audio/
animation playback; (ii) adaptation of application, data,
content, user interface or controls to target other devices;
(iii) device, service and resource discovery; (iv) synchroni-
zation and serialization of programs running in multiple
devices; (v) device power management; (vi) finding and
using other devices; (vii) maintaining robust connections
between devices; or (viii) efficient access to various storage
mediums, including the common flash memory now com-
mon on devices.

Storymail Stories provide a variable length procedural
instruction set designed for encapsulating multimedia mes-
sages. Aspects of Storymail Stories and related systems and
methods are described, for example, in United States Patent
Application Publication No. 20030009694 A1 published 9
Jan. 2003 entitled Hardware Architecture, Operating System
And Network Transport Neutral System, Method And Com-
puter Program Product For Secure Communications And
Messaging; and naming Michael I Wenocur, Robert W.
Baldwin, and Daniel H. [llowsky as inventors; in United
States Patent Application Publication No. 20020165912 Al
published 7 Nov. 2002 and entitled Secure Certificate And
System And Method For Issuing And Using Same, and
naming Michael I, Wenocur, Robert W. Baldwin, and Daniel
H. Tllowsky as inventors; and in other patent applications.

The Storymail invention including the Storymail Story
structure and associated technologies were invented by
Daniel Illowsky the same inventor as in this patent. This
Storymail instruction set allows trans-coded multimedia
content to be represented in a universal procedural format
called, “Stories” which provided significant advantages over
multi-media content representations known theretofore.
However, the Storymail technologies did not fully address
device-to-device interoperability issues and should one
attempt to apply the Storymail technology to achieve device-
to-device interoperability, several problems and limitations
will quickly become apparent. First, the Storymail instruc-
tion set is optimized for small engine size requiring the use
of'a lot of scratch memory. Second, the Storymail instruction
set is burdened with the implementation of a specialized
threading model while running content. Third, Storymail
Stories require trans-coding of even basic content types,
such as JPEG or Bitmap images. Fourth, Storymail Story
technology does not provide native support for device,
service, or resource discovery. Fifth, Storymail Story tech-
nology has no native base support for synchronization of
programs running in multiple devices. Therefore, even
though Storymail technology and the universal procedural
media format provided significant advancements over the
conventional arts of the day, it does not satisfactorily solve

20

25

30

35

40

45

50

55

60

65

12

the device-to-device interoperability issues that are now
apparent in the electronic and computer arts.

It will therefore be apparent that neither static nor current
procedural approaches provide satisfactory device-to-device
interoperability particularly for heterogeneous devices and a
priori unknown applications. The problem is further com-
pounded when the current client-server and peer-to-peer
inter-device interoperability models are considered.
Conventional Client-Server and Peer-to-Peer Models

In the current state of the art, interoperating programs
running on multiple devices generally use either a Client-
Server model or a Peer-to-Peer model.

In a client-server environment model, one device (i.e., the
server) provides the services and another device (i.e., the
client) makes use of the services. This allows multiple client
devices to take advantage of a single more capable server
device to store and process data, while the lighter weight
client device just needs to be powerful enough to make
requests and display the results. A limitation of client-server
approach is that generally the server must be registered on
a network and accessible at all times to the clients with a
relatively high speed connection.

In the peer-to-peer environment model, any interoperating
device is generally assumed to have all the facilities neces-
sary to carry out the application. Also in the peer-to-peer
model, generally all devices that interoperate must have
knowledge of the programs or services to be employed
before establishing a connection so that they can agree on
appropriate coupling and protocols. Having to have the full
capabilities to carry out the application, and the need to have
the peered program protocol layers pre-existing on all inter-
operating devices are significant limitations to applying a
peer-to-peer model to device interoperability. In practice
peer-to-peer devices will often encounter different non-
perfect implementations or versions of software which will
fail to cooperate do to unpredictable iterations of the differ-
ing non-perfect implementations. To correct these problems,
often drivers or other software must be updated, distributed
and installed. While this can often correct interoperability
problems, the administration, implementation, distribution
and frustration associated with failures and the complexity,
sophistication and time needed to fix them remains a serious
problem of peer-to-peer based device interoperability.

In the world of personal computers the current most
popular though limited interoperability platform is the
Microsoft Windows™ operating system. Under Microsoft
Windows™, theoretically any application binary image can
run and be useful on any standard PC architecture device
running Microsoft Windows™ operating system, regardless
of whether the PC was manufactured by IBM, Toshiba,
Sharp, Dell or any other manufacturer. In practical terms,
however, even Microsoft Windows has limitations with
interoperability in real-world operating environments.

As computing devices and information appliances diverge
from the generic general purpose Personal Computer model
into more specific specialized devices such as mobile
phones, mobile music players, remote controls, networkable
media players and routers, and a mired of other devices,
there is a need for an application platform that allows the
quick and efficient development of applications that are not
only binary compatible across all (or at least most) devices,
but which can form ad-hoc teams of devices on-the-fly over
multiple protocols based on the resources of each device.
The applications need to be able to spread their execution
across all the devices in order to carry out applications that
no one device has all the software, hardware or other
resources needed to implement on its own.

US 9,436,525 B2

13

Currently in the state of the art, there is no effective
software platform for creating programs that can run and
spread themselves across multiple devices, particularly
when the devices to be spread to are of diverse types and
have heterogeneous device hardware, software, and operat-
ing system (if any) characteristics. Although there are many
standardized embedded operating systems, because of the
need for the applications to access the unique capabilities
and features of the device, including the arrangement of
displays and controls, there is little chance that a program
built for one device will be useful if run on another different
device, even if both devices use the same embedded oper-
ating system and processor. Thus, it is clear that there is a
great need in the art for an improved method and system for
providing reliable, easy-to-use device, application program,
data and content interoperability, while avoiding the short-
comings and drawbacks of the prior art apparatus and
methodologies heretofore known.

SUMMARY

The invention comprises a number of inventive systems,
devices, apparatus, computer programs and computer pro-
gram products, procedures and methodologies that together
make device and system interoperability simpler, more
reliable, more robust, more powerful, more cost effective
and more secure than in the heretofore current state of the
art. The technology employed is based on procedural
interoperability techniques. The invention differs in impor-
tant and profound ways from existent procedural interoper-
ability techniques. While the existent techniques attempt to
hide the differences between devices so that the same
executable binary image can run on all devices, the inven-
tion celebrates and provides access to all the assets of
devices to each other so that the application can form ad-hoc
groups of devices and effectively spread its execution across
the groups of devices much as if all devices in the group
were one device.

Most existent interoperability technologies are extensions
of'techniques developed over the years for powerful general
purpose computers in corporate or government networks
that are always connected on reliable high speed networks,
rarely reconfigured, have continuous access to ample power
and are configured and maintained by trained full-time
professionals. These techniques fall short when applied to
the interoperability of mobile, battery powered, intermit-
tently connected and cost constrained devices now becom-
ing available, and are used by individuals who are not
trained to and would rather not concern themselves with
configuring and maintaining the software and hardware
necessary for interoperability.

The invention necessarily involves a new software eco-
system of methodologies which work together to greatly
advance the simplicity, robustness, cost effectiveness, effi-
ciency and security of interoperability of mobile and other
special purpose devices now entering the market at an
increasing rate.

FIG. 3 shows exemplary components of an embodiment
of the inventive new procedural and software ecosystem
collectively referred to as the DartPlatform which itself is a
form of interoperability platform. The source, here Dart-
Source 100, contains all the code, data and content needed
to carry out the intent of the application. The DartSource is
processed by the DartTools 200 into an binary executable
application package which encapsulates all that is needed to
carry out the purpose of the interoperability application as
originally specified by the DartSource. The binary image of

20

25

30

35

40

45

50

55

60

65

14

the package conforms to the DartFormat 300. The encapsu-
lated applications are called Darts, which are to be executed
on one or more DartDevices 400. Any device which is
running a DartPlayer which is native code executable pro-
gram which contains the ported DartEngine 600, and has at
least one communications protocol 401 for communicating
with other DartDevices is itself a DartDevice capable of
running Darts which can extend their execution across to
other DartDevices to make use of their combined capabili-
ties and resources. FI1G. 4 shows an Exemplary DartDevice
3000. At the top there are shown three Dart applications
3001 running on the device 3000. The code of these Darts
was generated by the DartTools, (See FIG. 3 200), to
conform to an inventive DartlnstructionSet whose indi-
vidual operations are carried out in a secure manner by the
portable portion of the DartEngine 3010 and the device
specific portion of the DartEngine, the Hardware Abstrac-
tion Layer (HAL) 3020.

Note that the DartlnstructionSet operations carried out by
the DartEngine contain processor intensive operations
needed for interoperability such as cryptographic operations,
graphics and text processing. In addition there is built in
support in the engine for inventive interoperability method-
ologies to be described in more detail later on in this section.
The HAL contains a profile method accessed through the
PROFILE_INSTRUCTION instructions of the Dart to
determine the devices specific characteristics of the device
and its functionality. The HAL also provides methods for the
engine to access common Dart standard hardware functions
where they exist. Perhaps most profoundly inventive is the
portion of the HAL which can be used to expose all the
native applications, functionality and resources of a device
to Darts or portions of Darts running on the device which are
then available for use by Darts whose execution extends to
other devices.

Simplicity of interoperability, reliability and robustness is
achieved in part by encapsulating all the code, data and
content and the meta code, data and content needed for a
particular application purpose to spread itself intelligently
and efficiently across heterogeneous devices. Because all of
the application code, data and content running on the
interoperability devices originate from a single Dart package
there are none of the incompatibility or administration issues
associated with independently generated and distributed
components. Having the data and code packaged together
also eliminates common interoperability problems which
arise from versioning incompatibilities between the data
format and the application program chosen to manage the
data.

There are at least twenty one uniquely described separate
inventive systems, methods, computer programs and com-
puter program products, and/or means which contribute to
enhancements of robustness, power, efficiency and security
for the interoperability of devices over the existent interop-
erability technologies which are largely extensions of tech-
niques developed over the years for powerful general pur-
pose computer networks. These innovations are briefly
highlighted below and then described in more detail in
subsequent portions of the detailed description. There are
many more when each useful combination of separate
inventive system, method, computer program product, and/
or other means are combined. Many of the techniques used
share the socialization aspects employed by humans as they
form ad-hoc teams and work together to execute specific
tasks. The fast growing world of ever more special purpose
and mobile devices which need to form ad-hoc teams and are
only intermittently connected, often has more in common

US 9,436,525 B2

15

with human like collaboration than with the general purpose
computer networks from which conventional interoperabil-
ity techniques are borrowed.

Recruitment interoperability model. Recruitment is an
advantageous alternative to the existent client/server and
peer-to-peer device interoperability models. Recruitment is
used by a single software application package or Dart, to
forms teams of devices based on their capabilities and
content and then intelligently spread portions of itself to the
teams of devices which then work together to carry out the
intended purpose of the Dart application package.

Renditioning adaptation and interoperability segmenta-
tion model. Renditioning allows the segmenting of an
interoperability application into a plurality of tightly inte-
grated, yet separately executable programs. Individual Ren-
ditions are chosen during the recruitment process to be sent
to run on other devices to provide coordinated access to the
capabilities and content of individual devices.

DartSource/Interoperability Source. DartSource is a
method for specifying all the program renditions and the
code content and data needed for a packaged Dart interop-
erability application. DartSource extends the languages con-
structs commonly used to specify single executable program
targeted to a specific device, into a language which can also
specify the procedures necessary for intelligent recruitment
of teams of devices and the renditions needed so that there
is a suitable rendition to send to run on each recruited device
to carry out that device’s portion of the intended purpose of
the application being specified.

DartFramework/Interoperability Framework. DartFrame-
work is the portion of the DartSource provided for use by
programmers in building interoperability applications which
encapsulate access to many of the advantageous features of
the DartPlatform eliminating the need for the programmer to
have to understand and implement many of the desired
interoperability features of the DartPlatform.

DartTools/Interoperability Tools. The DartTools process
the DartSource application specification into the Dart appli-
cation packages.

DartFormat/Interoperability Format. The DartFormat is
the rules for putting together a Dart package which encap-
sulates all the code, data, and content needed for an interop-
erability applications which can then be loaded and run on
DartDevices, which contain a running DartPlayer.

DartRuntime/Interoperability Runtime. The DartRuntime
is a system for establishing the tight coordination of control,
data and operations between separate processing units of a
running Dart whether the processing units are running on a
single device or across a team of recruited devices. This is
accomplished by an event driven system which ensures the
serialization and synchronization of events flowing thorough
all processing units of the application so that all processing
units can have access to all the directives in the same order
needed to coordinate and synchronize the data and opera-
tions between the processing units.

Linear Tasking. LinearTasking is an advantageous alter-
native to the conventional pre-emptive and cooperative
threading models commonly used on most devices so that
multiple operations can be specified and run as if their
actions were being executed simultaneously. LinearTasking
ensures a simple, reliable, flexible and extensibe way for
processing units to coordinate their activities in a very
deterministic and easily tested manner. LinearTasking is part
of the DartRuntime operating inside a single device.

Vertical Layering. VerticallLayering is an advantageous
alternative to the horizontal layering of protocols in common
use on most devices which requires different levels of

20

25

30

35

40

45

50

55

60

65

16

protocols to communicate through all intermediate levels of
protocols, often having to translate information to conform
to the differing needs of each protocol interface. Dart
processing units use VerticallLayering so that regardless of
their level, processing units can communicate directly with
all other processing units through the use of event structures
and event queues which are accessible and understandable
by all processing units without translation.

Application driven power management. Dart applications
built using LinearTasking and or VerticalLayering as
embodied at least partially in the DartFramework, always
keep track of their exact response time needs so that efficient
power management techniques such as slowing down the
processor can extend the lifetime of batteries, limit the
amount of energy consumed or limit the amount of heat
generated on devices. In the current state of the art most
applications do not keep track of their response time needs,
and if they did would not be able to communicate these
needs through existing layers of protocols which conform to
specifications that do not include interfaces for communi-
cating response time needs to the hardware of the device
from the application.

Interoperability application driven error recovery. Device
to device wireless communications connections are often
unreliable due to interference, distance limitations, and
abrupt shutdowns due to low battery power. In conventional
horizontally layered protocol software implementations on
devices a fatal error in any one layer will result in unrecov-
erable errors which will be difficult for an application to
recover from, both because the application does not have
standard interfaces to easily reestablish the connections and
contexts of the connections, and because conventional appli-
cation programs do not have much infrastructure for track-
ing and reestablishing shared state between applications
running on different devices. The DartFramework keeps
track of shared state, renditioning can be used to easily
reestablish lost state between devices and VerticallLayering
makes it simple for communications errors to be relayed to
the Dart and for the Dart to relay recovery information
directly to the communications processing units. Thus Darts
running across devices can seamlessly recover from inter-
mittent complete losses of communications between coop-
erating devices and the recovery of the shared state of the
devices when the connection is restored even where the
previously lost device has itself lost all its application state.

Interoperability Instruction Set. The Interoperabilityln-
structionSet is used to represent the code portions of a Dart.
The DartEngine executes these instructions. Along with the
conventional fetching, storing, testing, computations and
branching instructions of conventional processors, the
InteroperabilityInstructionset includes instructions to
enhance the speed of operations, carry out interoperability
methodologies and expose the capabilities and content of
devices to each other. Of special note is that there are
instructions for exposing and the use of unique capabilities
and content of devices to other device even when the other
devices have no prior knowledge of the unique capabilities
and content.

Creationism. Creationism is a method used by Darts to
dynamically generate Darts highly customized for a particu-
lar target device and or communications session and or
purpose. Instructions in the DartlnstructionSet exist for
programmatic generation of Darts from parts of the running
Dart itself and any information that can be collected or
computed by the running Dart.

Interoperability Engine/DartEngine. The DartEngine is
software and or hardware used to execute the instructions of

US 9,436,525 B2

17

Darts on a device and carry out their intended purpose. The
DartEngine and the device specific DartPlayer, in which it is
encapsulated, provides the common execution and DartRun-
time environment which allows Recruitment and Rendition-
ing to establish efficient teams of devices and spread their
code, data and content as best to carry out the intended
purpose of Darts.

Interoperability Device Enabling. Interoperability Device
Enabling is the process of turning a conventional device into
a highly interoperable DartDevice through the porting of a
DartEngine as part of a DartPlayer. In addition, implemen-
tation of the Hardware Abstraction Layer needed to access
the device specific information, capabilities and content of
the device is also required. At least one communications
protocol must be implemented before a device with a
DartPlayer becomes a DartDevice.

Interoperability Security Model/DartSecurity. DartSecu-
rity is a system for providing the infrastructure needed for
protecting the integrity of a device and its content from
malicious or accidental damage.

Social Synchronization Interoperability Method/Dart
Social Synchronization. Social Synchronization is an effi-
cient and easy to administrate method for synchronizing
specific sets of data and or operations across any number of
devices and protocols without the need for every device to
contact a master device, or for any device to act as a master.
SocialSynchronization of devices and content is similar to
the way humans share information and tasks and is an
advantageous alternative to mastered synchronization tech-
niques most often used in the current state of the art.

Social Security Interoperability Model/Dart SocialSecu-
rity. SocialSecurity is a particularly simple to administrate
method for forming webs of security between teams of
possible intermittently connected devices. SocialSecurity
works in a similar way to how humans often come to trust
one another. The foundation for SocialSecurity is the use of
SocialSynchronization to spread unique ids generated using
the DartSecurity system along with the allowed access rights
which travel transitively from device to device. Devices
which have never directly communicated will often find that
they are part of a team of devices which are allowed to
interoperate with certain access rights without any need for
further gathering permissions.

Interoperability Device/DartDevice. A DartDevice is a
highly interoperable device by virtue of its running a Dart-
Player containing a DartEngine and at least one communi-
cations protocol for connecting to other DartDevices.

Interoperability Platform/DartPlatform. The DartPlatform
is any set of Dart methodologies which can carry out the
specification, generation, intelligent teaming of DartDevices
and facilitate the spreading and running of Dart interoper-
ability applications across one or more DartDevices.

Virtual Pointers. VirtualPointers is a methodology for
providing programmers with a simple and efficient way to
access and use of one or more independent data address
spaces in a single program. VirtualPointers used by software
programs can adapt their use of main memory and storage
devices to run efficiently on devices with differing sizes and
speeds of a fast but small main memory and larger but
slower storage.

BRIEF DESCRIPTION OF THE DRAWINGS

The Detailed Description of the Illustrative Embodiments
should be read in conjunction with the appended figure
drawings, wherein:

20

25

30

35

40

45

50

55

60

65

18

FIG. 1 is an illustration showing the situation in which
getting N devices to interoperate or work together generally
requires on the order of N-squared adaptations.

FIG. 2 is an illustration showing the complexity of getting
eight devices to work directly together and that it takes on
the order of fifty-six adaptations and requires fifty-six dif-
ferent test configurations to test and verity operation.

FIG. 3 is an illustration showing a block diagram of the
main components and sub-components of an embodiment of
the invention.

FIG. 4 is an illustration showing an exemplary typical
DartDevice overview according to an embodiment of the
invention.

FIG. 5 is an illustration showing an exemplary embodi-
ment of a recruitment procedure in the form of a flow chart.

FIG. 6 is an illustration showing a diagram illustrating an
example of the inventive Recruitment method for extending
and sharing a Dart application (such as a slide show Dart
application) running on a first DartDevice with a second
DartDevice which originally knows nothing about the origi-
nating first DartDevice or the Dart application.

FIG. 7 is an illustration showing a diagram illustrating an
example of Recruitment for remote printing from a slide
show application running on an originating DartDevice on
another DartDevice which originally knows nothing about
the originating DartDevice or the slide show application.

FIG. 8 is an illustration showing a diagram showing an
exemplary embodiment of a print picture application
expressed as a Dart running across a team of three devices
each of which is running a different rendition of the origi-
nating Dart.

FIG. 9 is an illustration showing embodiments of syn-
chronization and serialization of a Dart application running
across a recruited team of cooperating devices.

FIG. 10 is an Illustration of how Recruitments makes a
group of devices act as one device and limits the effort to
achieve interoperability of N devices so that the effort is
simply proportional to N.

FIG. 11 is an illustration showing a block diagram of an
embodiment of the main DartFramework objects and their
relative position in the class hierarchy.

FIG. 12 is an illustration showing a block diagram illus-
trating an application development device and its static and
procedural components used to produce a Dart application.

FIG. 13 is an illustration showing a block diagram illus-
trating the structure of an embodiment of the structure of the
Parts component of an embodiment of the DartFormat.

FIG. 14 is an illustration showing a block diagram of the
structure of an embodiment of the Part Table component of
the DartFormat and the format of the Part Table Record
components of the Part Table, while separately depicting the
structure of an embodiment of a DartProcedure.

FIG. 15 is an illustration showing a flow chart diagram of
the DartRuntime processing for a pass through the hierarchy
of Gizmo derived objects in a Dart application.

FIG. 16 is an illustration showing a flow chart diagram
illustrating aspects of Process Event processing portion of
the DartRuntime.

FIG. 17 is an illustration showing a block diagram illus-
trating the connections between DartDevices used by an
embodiment of a Dart application which starts on one
DartDevice and then extends itself using Recruitment to run
across other DartDevices which then exchange messages in
the form of the Event data structure shown to coordinate
their activities.

FIG. 18 is an illustration showing a block diagram illus-
trating the hierarchical processing arrangement and order of

US 9,436,525 B2

19

execution of Gizmo processing units used in an exemplary
embodiment of a slide show or media display application.

FIG. 19 is an illustration showing an embodiment of Dart
Application Level Error Recovery according to one embodi-
ment of the invention.

FIG. 20 is an illustration showing a flow chart diagram
illustrating the BuiltinInstruction and OEM_BuiltinInstruc-
tion processing carried out by the DartEngine.

FIG. 21 is an illustration showing a hypothetical Neutrino
Detector/Mobile Phone example embodiment showing how
one device can expose its unique capabilities to devices with
no prior knowledge of these unique capabilities.

FIG. 22 is an illustration showing a block diagram illus-
trating an exemplary embodiment of a DartPlayer and the
two main components of a particular implementation of an
embodiment of a DartEngine, namely a portable component,
and the non-portable Hardware Abstraction Layer compo-
nent.

FIG. 23 is an illustration showing a flow chart diagram of
the main loop processing flow of a particular embodiment of
a DartPlayer.

FIG. 24 is an illustration showing a flow chart diagram of
the processing that occurs during a call to the DartEngine
initialization function by the DartPlayer.

FIG. 25 is an illustration showing a flow chart diagram
illustrating the DartRuntime instruction processing imple-
mented in the DartPlayer.

FIG. 26 is an illustration showing a flow chart diagram for
file system instruction processing of a DartPlayer.

FIG. 27 is an illustration showing a block diagram illus-
trating the components of the non-portable Hardware
Abstraction Layer component of an embodiment of the
DartEngine.

FIG. 28 is an illustration showing a diagram illustrating
the non-portable DartDevice specific portions of the file
system which may provide access to files from the Dart but
does not provide any mechanism for access to files that are
not considered part of the running Dart’s protective Sand-
box.

FIG. 29 is an illustration showing a block diagram of an
embodiment of a DartDevice’s DartSecruity components.

FIG. 30 is an illustration showing an embodiment of a
Social Synchronization contact list example.

FIG. 31 is an illustration showing a block diagram of an
exemplary DartDevice and its SocialSecurity components,
and also block diagrams showing the before and after
teaming SocialSecurity contents of an old and a new Dart-
Device.

FIG. 32 is an illustration showing an example Dart Virtual
Pointers being used to access a data element at a specific
virtual pointer address.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS OF THE INVENTION

1. Overview and Introduction

In one aspect, the present invention relates to methods of
and systems for enabling devices to efficiently share a
diverse set of content, control, resources and applications
between similar and more importantly diverse and dissimilar
sets of devices and systems. Aspects of the invention are
embodied as the “DartPlatform.” The name, “Dart,” is
intended to convey that the applications, data, and/or other
hybrid forms of processes, procedures, data, intentions, and
other information in the broadest possible sense are com-
bined into Data that’s smART, and also to denote the manner

20

25

30

35

40

45

50

55

60

65

20

in which complete intelligent packages of procedures, con-
tent and data in the form of Darts, DartProcedures, and
DartParts literally dart (or are communicated) between
devices to achieve a high degree of simplicity, efficiency,
robustness security and interoperability across a diverse set
of devices, device resources and device capabilities.

Furthermore, in the description contained herein, it will be
appreciated that the term Dart means or refers to one
particular embodiment of the invention and that the term
Interoperability is used as the generic term for aspects of the
claimed invention of which a Dart is a particular form of
interoperability.

The invention introduces many new technological system,
device, method, and computer architecture and program-
matic features that establish new paradigms not heretofore
described in the literature. At least in part because the
technical and computer terminology does not yet provide
compact terms that by themselves may fully identify the
innovative elements from conventional elements, this
description frequently uses the term “Dart” or other “Dart-
ism” as a prefix or qualifier for another term, such as used
in the phrases Dart Procedures, Dart Parts, and the like. In
some instances, the two terms are connected such as Dart-
Procedures, DartParts, DartDevice, and the like. Further-
more, it will be appreciated that even more compact forms
such as device, part, or procedure may be utilized in describ-
ing aspects of the invention. The intended meaning should
normally be apparent from the context of the description;
however, it should be appreciated that capitalized single
word forms such as “DartProcedures” are equivalent to
multiple word forms such as “Dart Procedures™, “Dart
procedures”, or even “procedures” when describing an
aspect of the invention. This applies to other “Dartisms” as
well, such as Dart Parts, Dart Player, Dart Platform, and the
like.

Darts in their most general form are not simply data and
not simply procedures or programs and not simply content,
though Darts may be any and may combine elements of all.
“Darts” can be thought of as a special integrated digital
binary package of software, code, data, and/or content along
with the code data and content that can be used to intelli-
gently assemble, save and distribute itself or parts of itself
across devices to carry out the intent of an interoperability
application. The invention results in simple, efficient, reli-
able and secure interoperability between both homogeneous
and heterogeneous devices.

Unfortunately the contemporary paradigm for computing
and information systems and devices has become so
entrenched in common practice of separating and distin-
guishing operating system (OS) components, device driver,
computer program application programs, and user or other
data components, that some commonly accepted terms used
in the computer science arts do not strictly apply to elements
of the present invention. Therefore to the extent possible,
common computing and computer science terms are used
when their meaning is appropriate even if not exact, and
various “Dart” expressions and terms are applied when a
more specific meaning is intended to avoid use of generic
language with many qualifiers.

Some components, features, and advantages of embodi-
ments of the invention are first described to orient the reader
to the Dart Platform, system, method, and computer pro-
gram elements. These and other components, features and
elements are then further described in the remainder of the
detailed description. It will be appreciated that not all
components, features, or advantages provided by every
embodiment of the invention can readily be listed in a few

US 9,436,525 B2

21

paragraphs, therefore the description below is exemplary of
components, elements, and advantages found in some
embodiments, including some optional but advantageous
components and features, and should not be taken as a
limiting description. It will be apparent that embodiments of
the invention may provide and use or not provide or use
some or many of the features described herein, and that other
embodiments will provide and use many or most if not all of
the features and components described here.

Existing methodologies for operating systems, program
formats, programming tools, and communications protocols
were developed largely for a world of ever more powerful
general purpose computers which have access to ample
reliable power supplies and reliable, high-speed, always on,
communications protocols. Furthermore, networks of com-
puters were relatively static and rarely had to be configured
or reconfigured to work together. Also it was assumed that
there would be a knowledgeable pool of human system
administrators available for installing, configuring, recon-
figuring, updating, fixing and otherwise maintaining com-
puters, networks, operating systems and programs.

These existing methodologies are ill suited as commonly
applied to the now quickly evolving world of special pur-
pose devices which often run on batteries, have limited
computing resources, communicate through lower speed
unreliable wireless or power-line protocols and need to be
dynamically reconfigured constantly to work with other
devices, many of which are portable and only intermittently
connected. Despite the increasingly dynamic configuration
needs and diversity of devices and their capabilities which
must work together, it is often highly desirable for these
devices and associated software, to be used and maintained
by people who are not knowledgeable as systems adminis-
trators.

The DartPlatform includes a set of new inventive meth-
odologies and components of a software, and optionally
hardware, eco-system designed specifically around the char-
acteristics and needs of the now quickly evolving world of
special purpose and communicating devices.

According to one embodiment of the invention, the inven-
tive Dart Platform (DP) may advantageously include the
following components:

1. DartInstructionSet—An interoperability instruction set

2. DartEngine—A portable interoperability engine

3. DartFormat—A file or bit-image format to encapsulate
any possible combinations of data, content, codes,
procedures, semantics or other information that may be
necessary to run, save, optimize, copy and/or share the
data, content, code, procedures, or other information
optimally (or near optimally) on any device or subsys-
tem that contains both a DartEngine and a mechanism
for delivering DartFormat information (usually in the
form of a set of digital binary such as in bit file(s) or
bit-image(s) to the device for processing by the Dart-
Engine.

4. Dartools—A set of software tools for creating Dart
Format bit-images and files. Dart Tools may include a
DartCompiler, a DartLinker, and a DartMasterPlayer,
as well as other tools, each of which are described in
greater detail herein below.

5. Dart or Darts—The package of bits, bit image and/or
file instances created by the Dartools for processing by
a device containing a DartEngine that conforms to the
DartFormat file or bit-image format. The DartFormat
may encapsulate combined data/content/codes and the
semantics necessary to run, save, optimize, copy and/or
share the data/content/code optimally on any device or

20

25

30

35

40

45

50

55

60

65

22

set of devices that contain both a DartEngine and a
mechanism for delivering DartFormat bit-images to the
device for processing by the DartEngine. Darts is the
plural form of Dart.

6. DartProcedure(s)—Self-contained lightweight proce-
dure(s) and data made up of sequences of instructions
from the DartInstructionSet combined with data images
and data image values the instructions operate on.

7. DartPlayer—A software program designed to run on a
particular subset of devices which employs a DartEn-
gine to process Darts.

8. DartMaster—A Dart intended to be further optimized
into one or more efficient and/or specialized Darts or
Dart by processing the DartMaster with a special
Dartool called the DartMasterPlayer.

9. DartFramework or DartObjectFramework—A set of
source code which defines the data and methods for a
set of base classes for use in building Darts. The
DartObjectFramework assumes a certain initial execu-
tion point, initial object data pointer, and set of struc-
tures and semantics that govern the order that code and
data and input data and code are processed. This
embodies the device intra-device runtime portion of the
DartRuntime which also extends the intra-device run-
time into an interdevice runtime which synchronizes
and serializes the runtime activities across any number
of teamed devices.

10. DartRuntime—The DartFramework or DartObject
Framework advantageously assumes a certain initial
execution point, initial object data pointer, and set of
structures and semantics that govern the order that code
and data and input data and code are processed. This is
referred to as the intra-device portion of the “DartRun-
time.” There is also an inter-device runtime which
assumes that event structure instances which drive the
governs the synchronization and coordination of activi-
ties and data exchanges amongst teamed devices are
automatically serialized and synchronized between
event queues one of which is maintained by the Dart-
Engine of each device. Together the intra-device Dart-
Runtime and inter-device runtimes together provide for
a simple to use but highly robust and effective system
for carrying out the intent of a Dart where possibly
different renditions of the Dart are each running on a set
of teamed devices.

Among other aspects, this invention is designed to
improve interoperability between and among devices of any
type and to solve the following problems and others in
interoperability amongst intermittently interconnected or
always interconnected devices, systems, or subsystems
without limitation:

1. Adaptation and optimization of display, control, code,
data and functionality when moving content, applica-
tions and controls between dissimilar or heterogeneous
devices.

2. Remove the need for the device user to have to think
about programs, content formats, drivers and/or files,
when all they want is content that works (and prefer-
ably works as well as possible) no matter where the
programs, files and or content goes.

3. Remove the need for the user to have to specify or even
know about the type of device connection(s) or com-
munications used between one or a plurality of devices.

4. Allow for the simple and efficient sharing of content,
controls, and/or resources between all enabled devices.

5. Enable any device or system, from expensive and
complex computer-aided tomography (CAT) scanners

US 9,436,525 B2

23

down to (thin processor/memory) light switches or

other simple devices to make available, document and

grant access to their functions, resources, capabilities
and needs to other connected devices.

6. Bring the overwhelming development effort necessary
using conventional non-procedural approaches to make
some or all of the above possible down to a level that
can be easily achieved with a dramatically lower num-
ber of development projects and costs.

7. Be lightweight (in terms of code size, execution logic,
and memory) enough to be suitable for low-end, cost-
constrained, and/or power constrained devices.

8. Insure that any number of DartDevices can seamlessly
interoperate with all DartDevices, in most any manner
that makes sense, such as for example by including
intimately entwined native support for one or any
combination of:

(a) Dynamic multimedia rich interfaces whenever the
device hardware can support it, and hierarchically
less rich interface if the device hardware does not
support it;

(b) Device power management;

(c) Device discovery;

(d) Service discovery;

(e) Resource discovery;

() Isolating the Dart applications from needing to
know the details of the various communications
physical and protocol layers;

(g) Isolating the Dart applications from needing to
know the details about physical display formats;

(h) Isolating the Dart application from needing to know
details about maintaining synchronization with
applications running across multiple similar or dis-
similar devices;

(1) Requesting, retrieving and running optimized con-
trol panels to run locally, but actually control the
device from which the control panels were retrieved;
and

(j) Loading, running and optimizing separately pro-
duced Dart content as child Dart extensions of the
intra-device DartRuntime environment of one or
more parent Darts.

9. Eliminating the need for programs, data or content to
pre-exist on any of the devices other than the device
(initiating device) that initiates the interoperability
application embodied in a Dart on the originating
device.

10. Allowing devices to efficiently share their resources
based on all or some subset of devices capabilities and
limitations, with no need for any device to be master or
slave.

11. Allowing applications’ code, data, content and hybrids
of these (as embodied in Darts) to dynamically spread
themselves to connected devices in a manner that
allows the connected device to save the application for
use and further spreading to other devices ad infinitum
even after the original or initiating device is no longer
connected.

12. Improving reliability of multi-device operations by
encapsulating all the code, data and content of an
interoperability application in a single package (or set
of packages) which then spreads itself across other
devices as required, eliminating the problems associ-
ated with mixing and matching separately generated
and distributed application or protocol software imple-

20

25

30

35

40

45

50

55

60

65

24

mentations, code, data or content that otherwise would
have to be separately generated and/or distributed to
each device.

13. Accomplishing all the above in a simple, reliable and

secure manner.

With reference to FIG. 8, there is shown an example
PrintPicture Dart running on a cell phone which has
recruited a network attached storage device to use as a
source of pictures and a Printing device to serve as the
destination for carrying out the printing of the pictures. All
the devices are assumed to contain a DartPlayer that has
been ported to each device.

The Dart on the cell phone contains the three renditions
(R1, R2 and R3) which are each capable of serving as
individually executable images when run on a DartPlayer.
Rendition R3 is running on the cell phone and previously
carried out the recruitment of the other two devices by
sending DartProcedures to execute on the candidate devices
which determined that the particular Network Attached
Storage device would function as the best source for pic-
tures, and that the Printer device would best function as the
destination for printing pictures.

Rendition R3 on cell phone then generated the image for
a Dart containing just the rendition R1 which contains event
processing code for identifying and retrieving pictures from
the Network Attached Storage (NAS) device. The Dart
containing rendition R1 is then sent to the Network attached
Storage device as part of a RUN_DART type event. When
the RUN_DART type event is processed by the DartEngine
on the NAS device, rendition R1 is loaded and begins
execution which will process any synchronization events
requesting information or pictures stored on the NAS
device. Similarly, rendition R2 which handles the printing of
pictures that are part of PRINT_PICTURE type events is
formed and sent to run on the chosen Printer device.

Note that the three renditions were all generated from the
same PrintPicture Dart that was originally only resident on
the cell phone. This ensures a high likelihood of compat-
ibility since the application is in effect talking to parts of
itself rather than independently implemented, ported, and
distributed component required for conventional interoper-
ability methods.

Note further that the renditions also share code, data
and/or content and understand an interrelated set of event
types specific to the PrintDart application. The R3 rendition
was able to spread portions of the PrintPicture Dart intelli-
gently to DartDevices even though it had no previous
knowledge of the other two DartDevices, and which devices
had no previous knowledge of the cell phone or the Print-
Dart.

Now rendition R3 running on the cell phone can signal
events to control the selection and printing of pictures
between the recruited NAS and Printer devices across an
event driven DartRuntime now established on and amongst
the three devices.

Note additionally that any combination of protocols may
be employed according to common protocols of the cell
phone and the NAS device and independently chosen for use
any common protocols of the Recruited Printer device. In
addition, since all devices contain a ported DartEngine as
part of the DartPlayer, the devices can interoperate even if
they are running different operating systems on different
processors.

As the invention involves a system with a large number of
elements that may have closely tied complex interrelation-
ships, some of the elements are first described in overview
manner so that some understanding as to why an element

US 9,436,525 B2

25

may be present and how the element works and interacts
with other element. Then each element will be described in
even further detail with due regard for its interaction with
other elements. Making the dramatic improvements to the
state of the art in interoperability embodied in the invention
required the creation of a largely new type of software
ecosystem akin to the move from data passing to functions
to the object oriented methodologies now in widespread use.
In order to more easily describe the inventive, system, and
data and code structures it is useful to first introduce some
new terminology to describe the theory, concepts, charac-
teristics and components of embodiments of the invention.

In one embodiment, the invention itself embodies the
following nine enabling methodologies, some of which may
be optional but are advantageously included: Recruitment,
Interoperability Instruction-set, Renditioning, Creationism,
Vertical Layering, Linear Tasking, Social Synchronization,
Social Security, and Virtual Pointers.

Device “Recruitment” may include a device interaction
model and associated structure and methods and is an
advantageous alternative to the existent client/server and
peer-to-peer models. The “Interoperability Instruction-set”
is portable engine based instruction set which provides a
common efficient executable environment across devices
and inventively provides a programmatic mechanism for
exposing the unique capabilities of a device to other devices
“Renditioning” refers to structures and methods to enable
easily tested and efficient adaptation of application, data,
content, and/or other information. In some aspects rendi-
tioning may include efficiently segmenting groups of code,
data and content into independently executable images,
“Renditions,” to be intelligently generated and distributed
across a plurality of devices. “Creationism” refers to struc-
tures and methods to enable the dynamic efficient generation
and distribution of application, data, content, and/or other
information in differing forms across connected and inter-
mittently connected devices. “Vertical Layering” enables
efficient and effective implementation of features which by
their nature involve close cooperation at the tool, applica-
tion, framework, engine and instruction-set levels. “Linear
Tasking” enables a simple deterministic flow of processor
control and device resources between processing units of the
devices, where the processing units can easily be reconfig-
ured into a single hierarchy which includes processing units
compiled into a Dart, separately compiled Darts, and even
Darts or Renditions running on other devices. “Social Syn-
chronization” refers to an inventive efficient system and
method for synchronizing data or content across any number
of devices with minimal or no user involvement. “Social
Security” refers to an inventive and efficient system and
method for easily establishing and maintaining groups of
devices with the proper authorization to interoperate with
minimal user involvement. These and other components
may be implemented in the form of computer program code
segments that include executable instructions for execution
within a processor of a device. Furthermore, elements of
these components may be embodied in hardware and or a
combination of hardware with software and/or firmware and
or microcode.

Another enabling methodology that may optionally but
advantageously provided is referred to as “Virtual Pointers”,
and provides a variant of and significant improvement over
virtual memory that has several advantageous properties,
including for example:

(a) Multiple large independent address spaces

(b) Application specific control over the number of real

memory pages.

15

20

25

30

35

40

45

50

55

60

65

26

(c) Device specific control over real memory page sizes to
match storage device performance characteristics.

(d) No need for the programmer to predict or administrate
the amount of memory needed for data structures or
lists.

(e) Automatic saving of data in a form independent of
page sizes or number of pages.

(O Effectively caches data from a larger and possibly
slower data store with a minimal amount of precious
fast RAM allowing applications to run as if they have
much larger RAM memories than they physically do.

(g) Simple and efficient base infrastructure for indexed
database operations where the data and indexes are kept
in different virtual pointer address spaces.

Having now described many of the methodologies, com-
ponents, and features of the invention in overview manner,
attention is now directed to detailed descriptions of embodi-
ments of the principle methodologies, structures, and meth-
ods. It will be noted that many of the procedures and
methodologies may be implemented by one or more com-
puter programs or computer program products that may be
executed on general or special purpose processing logic,
such as micro-controllers, processors, microprocessors, cen-
tral processing units (CPU), or other processing hardware or
logic that is capable of executing or operating on computer
program code whether in the form of software, firmware, or
a combination of the two.

Section headers where provided are merely intended to
direct the attention of the reader to portions of the specifi-
cation where one particular aspect or methodology is
described, but it will be appreciated that aspects of all the
methodologies and structures are described throughout the
specification and in the drawings and claims, and that no
limitation should be implied by inclusion or exclusion of any
aspect of the invention within a sub-headed section.

II. Recruitment Interoperability Model

“Recruitment” includes a device interaction model and
methodology embodied throughout the implementation of
the invention. It is an advantageous alternative to the Client/
Server and Peer-to-Peer device interaction models and meth-
odologies used in the current state of the art. The recruitment
model and methodology utilizes a common procedural envi-
ronment that runs on all devices that are to interoperate or be
inspected for resources in contemplation of a possible inter-
operation. In one embodiment of the invention, this common
procedural environment is provided by an instruction set,
such as the Dart instruction set (e.g., the DartInstructionSet),
or an instruction set by any other name that fulfills the
requirements for the common procedural environment
described here or its equivalent.

With reference to FIG. 5 there is illustrated a flow chart
diagram of an embodiment of a recruitment procedure that
provides a method for a software application to recruit and
effectively later run across a plurality or team of devices
much as if they were one device with the combined
resources of all the devices. Reference is also made relative
to an example of recruitment for a shared slide show 10000
FIG. 6 and an example of remote printing of one or more
slides from a slideshow 20000 FIG. 7 Device recruitment (or
more simply, “recruitment” or “Recruitment”) is performed.
Recruitment provides a method for a software application to
recruit and effectively run across a constellation, team, or
other plurality of devices and/or systems much as if they
were one device with the combined resources of all the
devices.

US 9,436,525 B2

27

A resource may be virtually any hardware, software,
firmware, communication capability, configuration, data or
data set, capability possessed or accessible by a device or
system. A resource may for example be a processor, a CPU,
memory, a list of contacts, a sound output device, a display
type, DARTS, pictures, or any other procedural, structural, or
information item without limitation. A capability may for
example be computer code to sort a list, hardware or
software to decode an mpeg file, communicate with Blu-
etooth™ devices, or the like. The recruitment procedure has
the intelligence (by virtue or its programming and support-
ing frameworks, platforms, engines, and the like described
herein, to independently of the initiating device, make
complex determinations as to the suitability of the recruit-
able or recruited device to carry out the intent of the
application which sent the procedure, or some portion of the
intent of the application.

In one embodiment, the initiating device first sends or
broadcasts a message in the form of an inspection procedure
or procedures in a common executable form, from itself as
the source or initiating device, to any number of reachable
devices over any number of communications protocols, see
FIG. 6 10011 and FIG. 7 20011. The initiating device forms
and sends this message in an attempt to find other devices
with needed resources or capabilities, a procedure or plu-
rality of procedures structured, coded, or otherwise imple-
mented in the common procedural environment is sent,
transmitted, broadcast, or otherwise communicated over a
connection or plurality of connections to other devices
(known or unknown at the time of the communication)
which also contain the common procedural environment.
The initiating device need not know what devices may be
reachable when it sends or broadcasts the message. Whether
other devices are reachable may for example depend on the
communications channels and/or protocols that the initiator
device has as compared with the possible set of candidate
recruited devices.

This source device is alternatively referred to as the
initiator device because it initiates the interaction (see FIG.
610100 and FIG. 7 20100), the source device because it may
be the source of a recruitment procedure, or the recruitor
device because it is the device that is attempting to recruit
other devices which may themselves be referred to as
recruited devices, destination devices, target devices, or
simply other devices than the initiator device.

If for example, the initiator device includes a Bluetooth™
wireless communications link, an Infrared communications
link, and an IEEE 802.11 (a) (b) or (g) communications link
and broadcasts the message over each of these channels,
only candidate recruitable devices then configured to receive
communications over these communications links may
receive the recruitment message. Of these, only those
devices that provide the operating environment and under-
stand and can execute the inspection procedure will respond.
Note that even among such possibly responsive devices, a
user of the otherwise recruitable device may selectively or
globally block such recruitment or interrogation inspection
procedures, for example according to security settings.

Second, the inspection procedure then executes its
instructions on each device that responded and was found, to
identify needed resources and capabilities and/or interre-
lated sets of resources and capabilities of the device, or those
available to the device for carrying out the application or
portion of the intent of the application. In one embodiment,
this inspection is performed with the use of an instruction set
profile or get profile instruction, such as for example the
Dart instruction set profile instruction (e.g. DartInstruction-

20

25

30

40

45

50

55

60

65

28

Set PROFILE_INSTRUCTION) which results in an access
or call to the Hardware Abstraction Layer (HAL) of the
candidate recruitable device to access information about the
particular device and its resources and capabilities as stored
or computed in the device specific Hardware Abstraction
Layer (See for example the Hardware Abstraction Layer
HAL 652 of FIG. 27.

Third, the inspection procedures return procedures, data,
content or other information to the initiating device over the
communication channel and protocol indicating that it
received the message (see FIG. 6 10012 and FIG. 7 20012).
The responding device may either identify and save an
indication of the communication channel and protocol over
which is received and optionally the identity of the device
from which the recruitment message was received, or may
broadcast a response that will likely be received by that
initiator device.

In some embodiments, the responding device only
answers the initiator’s query as to the availability of a
particular resource or set of resources (such as a color
printing capability), while in other embodiments, the inspec-
tion procedure may identify and respond with a complete list
of features, capabilities, and resources. Usually, a simple yes
I have the needed resource is preferred (response is a single
bit or byte or word), so that the size of the communication
is minimized. Codes identifying one or more types or class
or of resource or resource subclass may alternatively be
used. In one embodiment, the inspection procedures return
information to the source device as to the resources and
capabilities of the device they ran on. This information can
for example, take the form of a static data structure, a
procedure, a Dart, a free-form tagged language, or any other
form of information. See return FIG. 610012 of yes
response, as well as processor speed in MIPS and preferred
display resolution of the recruited dart device FIG. 6 10200
in the slide show example 10000 of FIG. 6 and return of FIG.
7 20012 of yes response and preferred printer resolution of
the recruited dart device FIG. 7 20200 in the slide printing
example of FIG. 7.

Fourth, the application code on the initiating device
collects all of the returned information possibly including
procedures, data, content, or other information from all of
the responding reachable devices, and executes any proce-
dures received and inspects them in order to determine how
to make use of the reachable devices and their resources to
carry-out the intent of the application.

Fifth, the application specific code on the initiating device
spreads code, data, content, or any other information to each
of the reachable devices as needed according to the deter-
minations in the fourth step (see FIG. 6 10020, 10021 and
FIG. 7 20020, 20021). The application code, data, content,
or other information may be sent in single common form or
may be customized according to embodiments of this inven-
tion, such as by using methods described relative to Rendi-
tions and Creationism, or according to other methods and
techniques.

Sixth, optionally but advantageously recursively have
code, data and content now spread across the initiating and
initially reachable devices together with the application
code, data and content resident on the reachable devices
spread farther recursively as necessary using the first
through fifth steps on the initial set of reachable devices,
now acting as initiating devices (secondary or subsequent
initiating devices) as necessary to extend the application as
needed to other reachable devices until all desired devices
and resources needed or desired to carry-out the original
application intent have been reached, effectively forming a

US 9,436,525 B2

29

complete team of devices and their associated resources. It
will be appreciated that the secondary or subsequent rounds
of recruitment may not be necessary if devices having
needed resources were identified in the first round. On the
other hand, the secondary or subsequent round of recursive
recruitment may be necessary if required or desired
resources cannot initially be found. The recursive recruit-
ment also increases the possibility of a first round recruited
device operating as a bridge or translator so that the original
initiator acting through a first round recruited device can
communicate with a second round recruited device (acting
for example, to translate a Bluetooth communication to a
hardwired network connection).

Seventh, have the code, data and content now distributed
from and among the team of devices according to the needs
of the initiating application perform the required operations
and resource access, to carry out the intent of the originating
application by executing code and exchanging whatever
code, data, content, or other information that is necessary or
desired to carry out or coordinate the operations that are to
performed across the said team of devices to carry out the
intent of the initiating application.

This step of distributing executable code, data, and con-
tent may be an ongoing operation of the application itself—
up to this point the process was primarily focused on were
forming the team spreading data, code and content to
establish the members of the team with what they need to do
their part of the application. The process continues to carry
out the intent of the application or task. In the example of a
slide show, slides (really digital images or data sets) are
being added to a joint slide show, or slides may be flip or
sequentially displayed on all the devices for viewing on all
devices. Procedures for continuing the interoperation
beyond this initial recruitment phase are described else-
where herein.

This completes the initial recruitment phase and provides
an opportunity for the recruitor (initiator) and recrutees
(other teamed devices) to interoperate and share resources as
described elsewhere herein an as may be appreciated as
shown in FIG. 6. 10031, 10032, 10033

The application’s operations across devices may then be
synchronized by having the Events 800 (see FIG. 17) which
drive the application’s processing as described herein else-
where, and advantageously through which all input to the
application is obtained, placed in the queue of all recruiting
and recruited devices that are marked as being synchronized
for its Event type. Events and event queuing are described
in greater detail hereinafter, including relative to FIG. 17.

With reference to FIG. 17, Events 800 may be data
structure instances with the fields shown in 800 FIG. 17,
including in this embodiment, an event type 801, event
parameters 802, and an event related file 810 that may
include procedure 811, content, 812, and/or Dart 813. These
Events 800 may provide input, communicate data and
semantics, and carry out synchronization functions as they
flow through a runtime, such as through a DartRuntime 8000
(See FIG. 15), Gizmo hierarchy 10000 (See FIG. 18), or
between DartDevices 400 along the lines labeled 451-x (See
FIG. 17).

Events 800 may carry references to files 810 for any kind,
kinds, or amount of data. References may preferably be
made to open files. Typically the files contain one or more
of DartProcedures to be run on another DartDevice, com-
plete Darts to extend the reach of a Dart application across
another Dart Device, a Dart containing a control panel to
another Device, or general enumeration or input information
that does not otherwise fit in the other parameters of the

10

20

25

30

35

40

45

50

55

60

65

30

Event as shown in 800 FIG. 17. These and other Dart types
and general enumeration or input information are described
in greater detail elsewhere herein. Event processing is fur-
ther illustrated in the DartRuntime flow charts 8000 illus-
trated in FIG. 15 and Engine Event Processing builtin
function flowcharts 5000 FIG. 16.

A file 810 associated with an Event 800 may consider the
file associated with the event to be separate from the event
or preferably part of the event itself since in one embodiment
of the invention the structural and methodological infra-
structure that sends events automatically sends the associ-
ated file along with the event. Therefore, in at least one
embodiment, before an event is placed in the event recipi-
ent’s event queue, the file referred to on the sending side has
been copied by the communication infrastructure to a file on
the recipient side which can be read using a file identifier
(e.g. fileld) associated with the copied file image on the
recipient device. Common or differentiated file names or file
identifiers may be used on the sender and recipient sides. In
the case of a run Dart (e.g., RUN_DART type event) or run
procedure (e.g., RUN_PROCEDURE) type event, when the
event gets to the head or top of the queue so that it is next
in the queue, the engine will cause the DartProcedure or Dart
that can now be read using the fileld in the event to execute.
There may generally be events that are processed by the Dart
engine itself, even where no application is currently running.
In one embodiment, driving the Event queue is always either
a running Dart or an idle procedure (e.g., a Dart IdleProce-
dure) built into the engine which keeps calling the engine
event processing procedure to keep the communications
going. This is essentially a loop that keeps running until
there is an event to process. When power management
(described elsewhere herein) is applied, various techniques
for stopping and then waking up or restarting this loop may
be implemented.

It will now therefore be appreciated that the Recruitment
model, method, and associated structures performs ad-hoc
device, service, and resource discovery to identify needed
devices, then sends enabling procedures and information to
the devices by using an event data structure, such as Events
800, and intelligently and effectively forms a team of
devices, and then further coordinates the team of devices,
again using an event data structure Events 800, in an effort
to accomplish the original goal of the Dart 700 or application
originally running on the source device.

FIG. 10 Hlustrates how recruitment results in making a
connected group of devices act as if it were a single device.
One of the most profound affects of this is that implemen-
tation and testing of new interoperability devices and Dart
based applications only requires an effort proportional to the
number of devices, N. Conventional static and procedural
approaches where there is a need to separately implement
and distribute components to all devices which need to
interoperate require an effort that grows at a rate propor-
tional to N squared.

Other aspects of recruitment and the recruitment interop-
erability model, including the serializaiton and synchroni-
zation of events between the recruited devices are described
elsewhere in this specification including in the examples.
Some particular exemplary embodiments of the recruitment
interoperability model are also set forth below.

In one embodiment (1), the invention provides a method
for a software application running on a source device to
recruit a team of devices, the method comprising: sending an
inspection procedure operative to find a device having a
needed resource or capability to at least one reachable
device different from the initiating source device over at

US 9,436,525 B2

31

least one communication link, the inspection procedure
including inspection procedure instructions coded in an
executable form common to both the initiating source device
and to the device the inspection procedure is intended to
reach; receiving on the initiating device the return response
from each of the reachable devices directly or indirectly over
a communication link; analyzing, by a procedure executing
on the initiating device, the received returns from all
responding reachable devices to determine a utilization plan
identifying the combination of capabilities and resources of
the initiating source device and the responding reachable
devices to best carry out the intent of the software applica-
tion; and distributing, by an application program executing
on the initiating device, at least one of executable code, data,
content, and/or Dart to at least one of each of the reachable
devices identified as having a needed resource or capability
according to the identified utilization plan.

In another embodiment (2), the invention provides a
method for recruiting a team of devices, the method com-
prising: receiving on a candidate device and executing an
inspection procedure operative to determine if a receiving
reachable candidate device has a resource or capability
needed by another recruiting device over a communication
link, the inspection procedure including inspection proce-
dure instructions coded in an executable form known to both
the receiving device and the recruiting device; and identi-
fying the source device for the received inspection proce-
dure and sending a return to the source device status and
information about whether the receiving reachable device
has access to a resource or capability or set of resources and
capabilities identified as being needed by the initiating
source device; and receiving in the case where the reachable
device is determined by the source device to have resources
or capabilities needed to form a team to carry out the intent
of a software application at least one of executable code,
data, content, and/or Dart from the source, device, recruiting
device, or another candidate device.

In another embodiment (3), the invention provides a
method for recruiting a team of devices, the method com-
prising: (a) sending, from an initiating source device, an
inspection procedure operative to find a device having a
needed resource or capability to at least one reachable
device different from the initiating source device over at
least one communication link, the inspection procedure
including inspection procedure instructions coded in an
executable form common to both the initiating source device
and to device the inspection procedure is intended to reach;
(b) receiving and executing the received inspection proce-
dure on each of the reachable devices to identify if there is
at least one resource or capability of the reachable device
needed by the initiating source device; (c) sending a return
to the initiating source device at least when the reachable
device has access to a resource or capability identified as
being needed by the initiating source device; (d) receiving
the return from each of the reachable devices directly or
indirectly over the communication link; (e) analyzing, by an
application executing on the initiating device, the received
returns from all responding reachable devices to determine
a utilization plan identifying the combination of capabilities
and resources of the initiating source device and the
responding reachable devices to best carry out the intent of
the application; and (f) distributing, by an application pro-
gram executing on the initiating device, at least one of
executable code, data, content, and/or Dart to at least one of
each of the reachable devices identified as having a needed
resource or capability according to the identified utilization
plan.

20

25

30

35

40

45

50

55

60

65

32

In another embodiment (4), the invention provides the
method of (3)), further comprising receiving, by the at least
one reachable device, the distributed at least one of execut-
able code, data, content, and/or Dart.

In another embodiment (5), the invention provides the
method of (3)), wherein the method further comprises:
interoperating with the at least one reachable device to
which the at least one of executable code, data, content, and
Dart was distributed to carry out at least a portion of the
initiating device’s application’s intent.

In another embodiment (6), the invention provides the
method of (3)), wherein the method further comprises: with
each reachable device acting as secondary initiating source
devices, spreading executable code, data, content, and/or
Dart, across the initiating and reachable devices optionally
together with the application code, data, content, and or
Darts resident on the reachable devices farther recursively to
other devices reachable by previously reached and teamed
devices as necessary to extend the application as needed or
as desired to other reachable devices until all or a predeter-
mined criteria of desired devices and resources or capabili-
ties needed or desired to carry out the intent of the original
initiating device application have been reached, effectively
forming a larger complete team of devices; and distributing
executable code, data, content, and/or Dart from and among
the team of initiating and reachable devices according to the
needs and desires of the initiating device application to
perform the required or desired operations and resource
access to carry out the intent of the initiating device’s
application by executing code and exchanging whatever
executable code, data, and content and or Darts are neces-
sary to carry out and/or coordinate the operations that are to
performed across the team of devices to carry out the intent
of the initiating application.

In another embodiment (7), the invention provides the
method of (3)), wherein the initiating source device receives
the return directly from an initially reached device that the
initiating device sent the recruitment message to or indi-
rectly from another reachable device via one or more inter-
mediary reachable devices in a serial or recursive manner.

In another embodiment (8), the invention provides the
method of (3), wherein the return to the initiating source
device is also sent when the reachable device does not have
access to a resource or capability identified as being needed
by the initiating source device.

In another embodiment (9), the invention provides the
method of (3), wherein the return to the initiating source
device is a simple parameter that identifies that the reachable
device has itself or access to (e.g., true or logical “1”) or
does not have itself or access to (e.g., false or logical “0”)
the resource or capability identified as being needed by the
initiating source device.

In another embodiment (10), the invention provides the
method of (3), wherein the return to the initiating source
device comprises one of a DartEvent, a part of a Dart, data,
content, executable procedures, a Dart, a plurality of darts,
and any combination of these.

In another embodiment (11), the invention provides the
method of (3), wherein the return to the initiating source
device comprises returned data or content identifying the
resources and/or capabilities of the particular reachable
device to the initiating device over the communication
protocols.

In another embodiment (12), the invention provides the
method of (3), wherein the inspection procedure includes an
instruction to inspect for at least one particular identified
resource or capability needed by the initiating source device

US 9,436,525 B2

33

to carry out the intent of the application task being per-
formed at least in part on the initiating source device.

In another embodiment (13), the invention provides the
method of (3), wherein the method is implemented at least
in part by a software application encoded as a computer
program product recruiting and effectively running an appli-
cation across a team of devices.

In another embodiment (14), the invention provides the
method of (3), wherein the method is effective to couple and
subsequently permit control of the operations of the recruit-
ing and recruited devices as if they were one device with the
combined resources of all the recruiting and recruited
devices.

In another embodiment (15), the invention provides the
method of (3), wherein the returns comprises any one of: no
return, a data or content return, any digitally encoded
information, one or more procedures, an indication that the
device will be useful, a returned event, a return event
containing any amount of data or sets of data via its file
payload, a return procedure, a Dart, a return event that
includes text names and descriptions of the device so a
human can select from a menu on the initiating device which
device(s) to use, an identifier of a specific package of at least
one instance of a set of executable code, data and content
residing on or capable of being generated on the source
device, rendition or set of renditions most suitable to run on
the device or a combination of any of these.

In another embodiment (16), the invention provides the
method of (3), wherein the at least one resource or capability
is selected from the set consisting of: (i) available resources
or a particular needed resource; (ii) available capabilities or
a particular needed capability; (iii) one or more interrelated
sets of resources and capabilities of the reachable device, or
those resources and/or capabilities available to the reachable
device for carrying out the intent of the application; and (iv)
any combination of these.

In another embodiment (17), the invention provides the
method of (3), wherein the resources or capabilities include
at least one of an identified capability selected from the set
of resources or capabilities consisting of: an identified data
manipulation software, an identified information processing
software, an identified computational software, an identified
picture processing software, an identified communications
software, an identified communications hardware, an iden-
tified media, an identified data set(s), an identified content,
an identified program or programs, an identified configura-
tion information, an identified graphics acceleration hard-
ware or software, an identified storage medium whether
temporary or not temporary (permanent), an identified print-
ing capability, an identified faxing capability, an identified
scanning capability, an identified user interface device
whether input or output or both input and output, an access
to the resources of other devices with which the device can
communicate and with which the other devices can com-
municate in an unending chain, and any combination of two
or more of these.

In another embodiment (18), the invention provides a
method as in (3), wherein the inspection procedures in a
common executable form comprises at least one inspection
procedure formed from a Dart compliant instruction set
(DartInstructionSet) as embodied in a Dart instruction com-
patible engine (DartEngine) or any other Interoperability
Instruction Set.

In another embodiment (19), the invention provides a
method as in (3), wherein the at least one communications
link comprises any number of communications links, chan-
nels, and/or protocols that comprise any number or set of

20

25

30

35

40

45

50

55

60

65

34

homogeneous or heterogeneous communications protocols
whether wired or wireless, and whether permanently avail-
able or intermittent.

In another embodiment (20), the invention provides a
method as in (3), wherein the heterogeneous and homoge-
neous communications links, channels, and protocols are
supported by an identified hardware abstraction layer imple-
mentations that are parts of players running on any two or
more communicating devices.

In another embodiment (21), the invention provides a
method as in (20), wherein the identified hardware abstrac-
tion layer implementations comprises a Dart Hardware
Abstraction Layer implementation that are components of
the DartEngine.

In another embodiment (22), the invention provides the
method in (3), wherein the at least one communications link
and a communications protocol are used to send events of a
run procedure type, and an event identifier of the event
references a file identifying the procedure to run on the
reachable device.

In another embodiment (23), the invention provides the
method in (22), wherein the events comprise DartEvents,
and the run procedure type event comprises a Dart RUN_
PROCEDURE type event.

In another embodiment (24), the invention provides the
method in (3), wherein the event identifier that references a
file identifying the procedure to run on the reachable device
comprises a file identifier of the event referring to a file
containing an image of the procedure to run on the reachable
device.

In another embodiment (25), the invention provides the
method in (24), wherein the file comprises a Dart compliant
file (DartFile) conforming to the DartFormat, and the image
of the procedure comprises a binary data image of a Dart
Procedure (DartProcedure).

In another embodiment (26), the invention provides the
method in (3), wherein the inspection procedures comprise
either DartProcedures or complete Darts.

In another embodiment (27), the invention provides the
method in (3), wherein the inspection procedures are sent as
the file associated with an event, and the receipt of the
inspection procedure by a reachable device as the file
associated with the event causes the inspection procedure to
start executing on the reachable devices.

In another embodiment (28), the invention provides the
method in (3), wherein the inspection procedure comprises
a DartProcedure.

In another embodiment (29), the invention provides the
method in (3), wherein resources and capabilities including
base resources and capabilities of the reachable device are
determined through use of an instruction set profile instruc-
tion.

In another embodiment (30), the invention provides the
method in (29), wherein the instruction set profile instruc-
tion comprises a Dart compliant profile instruction (Dart-
Profilelnstruction) of a Dart compliant instruction set (Dart-
InstructionSet).

In another embodiment (31), the invention provides the
method in (3), wherein the inspection procedure execution
within each reachable device determines a best rendition of
the initiating Dart embodied application according to a
rendition determination rule to be sent to the or each
particular reachable device and sends back an identifier of
the determined best Rendition as part of the returned data.

In another embodiment (32), the invention provides the
method in (31), wherein the Rendition determination rule is
embodied in as at least one procedures which is adapted to

US 9,436,525 B2

35

perform any needed computations of any complexity and
access any needed profile information through a profile
instruction to determine the resources, capability, and/or
state of the reachable device.

In another embodiment (33), the invention provides the
method in (31), wherein the inspection procedure execution
determines the best Rendition from a plurality of renditions
by reference to rules that define an order of Rendition, and
checking each reachable device to determine if all the
requirements of each of the plurality of Renditions are met
in a predefined order of Rendition preferences until the first
Rendition in the ordered plurality of renditions is found that
meets all of the Rendition’s requirements.

In another embodiment (34), the invention provides the
method in (3), wherein the inspection procedure(s) return
Darts, procedures, data, or content to the initiating device
over the communication link using an understood commu-
nications protocol.

In another embodiment (35), the invention provides the
method in (3), wherein the returns include at least one of
returned procedures, data, or content and any one or com-
bination of: complete Darts, DartParts, DartProcedures, or
DartEvents, and the one or any combination may be returned
with or without an associated event file.

In another embodiment (36), the invention provides the
method in (3), wherein the return includes at least one of
returned procedures, data, content, and/or Dart and further
optionally includes a return code indicating an error has
occurred, the error code identify either that a specific error
has occurred or that a non-specific error has occurred, and
the error code optionally including information useful in
correcting or communicating the particular error and/or the
nature of the error.

In another embodiment (37), the invention provides the
method of (3), wherein the application code is at least one
of'a Dart, a DartProcedure, or any program of any form that
can be executed on the initiating device or on devices which
the initiating device has access to for initiating transfer or
execution of a program and making use of the results of the
execution.

In another embodiment (38), the invention provides the
method of (3), wherein the application code comprises a
Dart, a DartProcedure, or another procedural format that can
execute on or otherwise convey information to the reachable
device(s) whether or not the procedural format makes use of
the DartlnstructionSet, to be executed on the reachable
device.

In another embodiment (39), the invention provides the
method of (3), wherein the recruited team of devices may
dynamically extend the team to include other reachable
devices or reduce the team of devices to exclude reachable
devices as desired during the lifetime or defined period of
time for execution of the application.

In another embodiment (40), the invention provides the
method of (3), wherein the distributing is accomplished
through the sending of at least one of Darts, DartProcedures,
data, content, or other information, or any combination of
these, that are encapsulated as part of dart events (Dart-
Events) whether or not the information referenced by a field
in the event is sent along or as part of the event.

In another embodiment (41), the invention provides the
method of (3), wherein the code, data, and content that have
been distributed from and among the team of devices
according to the needs of the initiating application, perform
the required operations and resource access to carry out the
intent of the originating application by executing code and
optionally exchanging whatever additional or different code,

20

25

30

35

40

45

50

55

60

65

36

data, and content that is necessary to carry out or coordinate
the operations that are to be performed across the team of
devices to further carry out the intent of the initiating
application.

In another embodiment (42), the invention provides the
method of (3 wherein the application is embodied in a single
binary image which contains all the code that is distributed
to all the devices as part of the recruitment process.

In another embodiment (43), the invention provides the
method of (3), wherein the method further comprises syn-
chronization, serialization, and coordination of activates on
the team of devices, and the synchronization, serialization
and coordination is accomplished wholly or in part by the
passing or exchanging of events or DartEvents alone or
optionally with a file associated with DartEvents or events.

In another embodiment (44), the invention provides the
method of (43), wherein the events reference at least one file
so that they effectively contain and incorporate by that
reference a file or files having file images of any complexity
by virtue of that reference, and these file images are com-
municated along with the event structure contents.

In another embodiment (45), the invention provides the
method of (3)), further comprises the passing or exchanging
of DartEvents events between interoperating and communi-
cating initiating and recruited devices alone or optionally
with a file associated with DartEvents or events, and the
events effectively contain files or other data or data struc-
tures of any complexity, by a file identifier (field) reference
in the DartEvent structure, and that file images when refer-
enced are always communicated along with the event struc-
ture contents.

In another embodiment (46), the invention provides the
method of (43), wherein the DartEvents or events are
automatically copied and/or synchronized across event
queues of any number of teamed devices by the DartFrame-
work, DartRuntime, and/or DartEngine, or alternatively by
anon-DartPlatform specific event driven implementation, so
that DartEvents or events which are identified for automatic
synchronization and which are placed on an event queue by
a Dart appear in the event queues of any number of teamed
devices in an automatically serialized and synchronized
manner.

In another embodiment (47), the invention provides the
method of (46), wherein the automatic serialization and
synchronization are accomplished by a procedure for auto-
matic serialization and synchronization of event driven
cooperative applications, functions or renditions running
across a plurality of cooperating devices including an initi-
ating device, the method comprising: instantiating a con-
nection manager object instance on the originating device by
an application for each inter-device cooperative function
desired; communicating a list of event types to be synchro-
nized over all cooperating devices procedurally by the
application to the connection manager; establishing a team
of cooperating devices having one connection manager on
each device and sharing the same list of synchronization
event types; and maintaining, by the connection manager, a
sessions list identifying teamed devices and event types to
be synchronized; and examining, by the connection man-
ager, all events to be put in the event queue, and if a
particular event examined is an event type the connection
manager knows from the sessions list should be synchro-
nized, then marking the event as an event to be synchronized
with the other sessions and placing the event in the event
queues of the devices listed in the connection manager.

In another embodiment (48), the invention provides the
method of (47), wherein all events to be placed on cooper-

US 9,436,525 B2

37

ating device event queues by the any one of the event driven
cooperative applications functions or renditions are serial-
ized by not allowing an event to be placed on the any one
device’s event queue until it receives acknowledgement that
all cooperating device event queues to which the event has
been sent directly by the any one device has successfully
been placed on the cooperating devices’ event queues.

In another embodiment (49), the invention provides the
method of (48), wherein all events to be placed on cooper-
ating device event queues received by any one of the event
driven cooperative applications functions or renditions are
serialized by not allowing an event to be placed on the
receiving any one device’s event queue until it receives
acknowledgement that all cooperating device event queues
to which the event has been sent by the any receiving one
device has successfully been placed on the cooperating
devices’ event queues.

In another embodiment (50), the invention provides the
method of (48), wherein any number of cooperating devices’
event queues whether the devices are communicating
directly or indirectly through a chain of directly communi-
cating devices establishes a single serialized system of
queued events across all cooperating devices.

In another embodiment (51), the invention provides the
method of (49), wherein any number of cooperating devices’
event queues whether the devices are communicating
directly or indirectly through a chain of directly communi-
cating devices establishes a single serialized system of
queued events across all cooperating devices.

In another embodiment (52), the invention provides the
method of (47), wherein events to be placed on the coop-
erating devices’ queues from two or more cooperating
devices are synchronized into a single serialization of events
in the cooperative devices’ queues by a system where only
one master device is allowed to place the events of the types
in the list of event types to be synchronized so that all such
events will be serialized across all cooperating devices.

In another embodiment (53), the invention provides the
method of (52), wherein the master device is informed of the
events to issue on behalf of other cooperating devices by
way of a master request event type event which contains all
the information needed for the master device to place the
intended event into the queues of all cooperating devices.

In another embodiment (54), the invention provides the
method of (52), wherein each device which has been
recruited into the team of cooperating devices by another
into the set of cooperating devices considers its relative
master device to be the device that recruited it.

In another embodiment (55), the invention provides the
method of (53), wherein each device which has been
recruited into the team of cooperating devices by another
into the set of cooperating devices considers its relative
master device to be the device that recruited it.

In another embodiment (56), the invention provides the
method of (54), wherein the placing of a master request
event type event into a relative master device’s queue will
cause the event to be propagated from device to relative
master device until an initiating master device which has no
relative master then forms an event using the information
needed for the master device to place the intended event into
the queues of all cooperating devices.

In another embodiment (57), the invention provides the
method of (52), wherein the designated master device can be
changed by issuing to the synchronized and/or serialized
queues of cooperating devices a change master type event
which is itself on the list of serialized events which informs

20

25

30

35

40

45

50

55

60

65

38

all devices in a synchronized serialized manner that a new
master device is to replace the current master device.

In another embodiment (58), the invention provides the
method of (54), where the master request event propagates
thorough the queues of cooperating devices until the new
master device processes the event.

In another embodiment (59), the invention provides the
method of (55), where the master request event propagates
thorough the queues of cooperating devices until the new
master device processes the event.

In another embodiment (60), the invention provides the
method of (53), where the optional file identified as part of
the event specified to be sent by the master request event
type event, if such a file reference is present, is maintained
on each propagating device with an identifier that will allow
it to be re-associated with the event to be sent by the master
as if it had been sent as part of the event sent by the master,
this in order to reduce the amount of information that would
might otherwise have to be send as part of each event sent
as the result of a master request event type processed by the
master.

In another embodiment (61), the invention provides an
initiating apparatus comprising: a processor coupled with a
memory and adapted to execute a procedure that includes
instructions for performance of an intended task; means for
executing at least partially in the processor and memory for
recruiting at least one recruited device different from and
external to the apparatus to participate in the performance of
the intended task, the recruited device including at least the
hardware resources necessary for a version of performance
of the intended task; and means stored entirely within the
apparatus for supplementing the resources of the recruited
device so that the hardware resources plus the enabling
supplemented resources make the recruited device fully
enabled to perform the intended task.

In another embodiment (62), the invention provides an
initiating apparatus as in (61), wherein the apparatus and the
recruited device each operate in a common procedural
environment, and the means executing at least partially in
the processor and memory for recruiting includes means for
broadcasting a procedure implemented in the common pro-
cedural environment over at least one connection to other
devices which also include or operate in the common
procedural environment.

In another embodiment (63), the invention provides an
initiating apparatus as in (62), wherein the means for recruit-
ing further includes means for initiating the execution of the
procedure on the other devices to programmatically inspect
the resources and capabilities of each of the other devices in
order to determine if each device has a needed resource or
capability to participate in a performance of the particular
task.

In another embodiment (64), the invention provides an
initiating apparatus as in (63), wherein the inspection is
performed in each particular other device at least in part by
accessing a device specific hardware abstraction layer infor-
mation stored in or computed about the particular device.

In another embodiment (65), the invention provides an
initiating apparatus as in (64), wherein the means for supple-
menting further includes means for sending and installing
enabling procedures, data, and/or content that are required to
enable each device to carry out its part of the particular task.

In another embodiment (66), the invention provides an
initiating apparatus as in (61)), further including means for
temporally or permanently synchronizing operations across

US 9,436,525 B2

39

the initiating and other devices, the means for synchronizing
including a task event queue and means for maintaining the
task event queue.

In another embodiment (67), the invention provides a
recruited apparatus comprising: a set of hardware resources
including a processor and a memory coupled to the proces-
sor, and computer program code resources adapted to the
performance of a set of tasks, the hardware resources being
capable or performing at least a version of a performance of
a particular task but the computer program code resources
not initially capable of performance of a desired version or
method for carrying out of the particular task or aspect of the
particular task and means for receiving a communication
including at least one of a computer program code commu-
nication and a data communication, the computer program
code communication including supplemental computer pro-
gram code resources that render the apparatus capable of
performance of the desired version, method or aspect of the
particular task.

In another embodiment (68), the invention provides a
recruited apparatus as in (67), wherein the recruited appa-
ratus and the initiating device each operate in a common
procedural environment.

In another embodiment (69), the invention provides a
recruited apparatus as in (68), further including means for
execution of the procedure received from the initiating
device to programmatically inspect the resources and capa-
bilities of the recruited device in order to determine if the
recruited device has a needed resource or capability to
participate in a performance of the particular task.

In another embodiment (70), the invention provides a
recruited apparatus as in (69), wherein the inspection is
performed in the recruited device at least in part by access-
ing a device specific hardware abstraction layer information
stored in or computed about the recruited device.

In another embodiment (71), the invention provides a
recruited apparatus as in (70), further comprising means for
installing enabling procedures, data, and/or content that are
required to enable the recruited device to carry out its part
of the particular task.

In another embodiment (72), the invention provides a
recruited apparatus as in (61), further including means for
temporally synchronizing operations across the initiating
device and the recruited device, the means for synchronizing
including a task event queue and means for maintaining the
task event queue.

In another embodiment (73), the invention provides a
method for forming an integrated ad-hoc on-the-fly distrib-
uted information processing system among a plurality of
heterogeneous devices to participate in the performance of a
particular task, the method comprising: initiating formation
of the distributed information processing system by an
initiating device, the formation including broadcasting a
message using at least one communication channel and
protocol with the intention to identify and recruit other
recruited devices that may possess a resource or capability
to participate in the performance of the particular task; and
communicating at least one of procedures, data, and content
as required to each of the recruited devices so that each of
the recruited devices are made capable of carrying-out its
part of the particular task.

In another embodiment (74), the invention provides a
method as in (73), further comprising: executing at least
partially in a processor and memory of the initiating device
a procedure for recruiting at least one recruited device
different from and external to the initiating device to par-
ticipate in the performance of the intended task, the recruited

20

25

30

35

40

45

50

55

60

65

40

device including at least the hardware resources necessary
for a version of performance of the intended task; and
storing entirely within the initiating apparatus a procedure
and optional data for supplementing the resources of the
recruited device so that the hardware resources plus the
enabling supplemented resources make the recruited device
fully enabled to perform the intended task.

In another embodiment (75), the invention provides a
method as in (74), wherein the initiating device and the
recruited device each operate in a common procedural
environment, and the procedure executing at least partially
in the processor and memory for recruiting includes broad-
casting a procedure implemented in the common procedural
environment over at least one connection to other devices
which also include or operate in the common procedural
environment.

In another embodiment (76), the invention provides a
method as in (75), wherein the recruiting further includes
initiating the execution of the procedure on the other devices
to programmatically inspect the resources and capabilities of
each of the other devices in order to determine if each device
has a needed resource or capability to participate in a
performance of the particular task.

In another embodiment (77), the invention provides a
method as in (76), wherein the inspection is performed in
each particular other recruited device at least in part by
accessing a device specific hardware abstraction layer infor-
mation stored in or computed about the particular device.

In another embodiment (78), the invention provides a
method as in (77), wherein the supplementing further
includes sending and installing enabling procedures, data,
and/or content that are required to enable each device to
carry out its part of the particular task.

In another embodiment (79), the invention provides a
method as in (77, further including temporally synchroniz-
ing operations across the initiating and other recruited
devices, the synchronizing including generating and main-
taining a task event queue.

In another embodiment (80), the invention provides a
method as in (73), wherein the communication is a commu-
nication and interaction that is neither in a client-server
communication interaction nor in a peer-to-peer communi-
cation interaction.

In another embodiment (81), the invention provides a
method as in (73), wherein the recruitment performs ad hoc
device, service, and resource discovery to identify needed
devices, then sends enabling procedures and information to
the devices using events; intelligently and effectively forms
a team of devices, and then coordinates the team of devices
using events, in order to accomplish, the goal of the Dart or
application or task originally running on the source initiating
device.

In another embodiment (82), the invention provides a
method as in (73), wherein the distributed information
processing system includes access and coordinated use of
some or all of the physical capabilities of the devices.

In another embodiment (83), the invention provides a
method as in (82), wherein the physical capabilities of the
device are selected from the set that optionally includes an
ability to print, fax, display, render music, render video,
control other devices, store data whether digital or analog on
any media, manufacture goods, provide elimination, take
pictures, or any other physical capabilities which can be
accessed, monitored or controlled by the processing capa-
bilities of the devices.

In another embodiment (84), the invention provides the
method of (1), wherein the software application running on

US 9,436,525 B2

41

more than one device is at least partially performing the
interoperability operations on two or more devices with code
and or data and or content that were originally part of a
single software package on the initiating device so as to
enjoy a reliably of interoperability greater than that where
independently developed and or independently distributed
applications are used to perform the interoperability opera-
tions.

In another embodiment (85), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner to recruit
a team of recruited devices for interoperation, the program
module including instructions for: sending an inspection
procedure operative to find a device having a needed
resource or capability to at least one reachable device
different from the initiating source device over at least one
communication link, the inspection procedure including
inspection procedure instructions coded in an executable
form common to both the initiating source device and to the
device the inspection procedure is intended to reach; receiv-
ing, on the initiating device, the return response from each
of the reachable devices directly or indirectly over a com-
munication link; analyzing, by a procedure executing on the
initiating device, the received returns from all responding
reachable devices to determine a utilization plan identifying
the combination of capabilities and resources of the initiat-
ing source device and the responding reachable devices to
best carry out the intent of the software application; and
distributing, by an application program executing on the
initiating device, at least one of executable code, data,
content, and/or Dart to at least one of each of the reachable
devices identified as having a needed resource or capability
according to the identified utilization plan.

In another embodiment (86), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner to form
an integrated ad-hoc on-the-fly distributed information pro-
cessing system among a plurality of heterogeneous devices
to act as a single virtual device and participate in the
performance of a particular task, the program module
including instructions for: initiating formation of the dis-
tributed information processing system by an initiating
device, the formation including broadcasting a message
using at least one communication channel and protocol with
the intention to identify and recruit other recruited devices
that may possess a resource or capability to participate in the
performance of the particular task; and communicating at
least one of procedures, data, and content as required to each
of the recruited devices so that each of the recruited devices
are made capable of carrying-out its part of the particular
task.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any

20

25

30

35

40

45

50

55

60

65

42

different combinations or permutations of the features and
elements are also embodiments of the invention.

III. Renditioning Adaptation And Interoperability
Segmentation Model

In another aspect of the invention, system, apparatus,
method and computer program for Renditioning are pro-
vided. Renditioning includes a methodology for segmenting
interoperability applications into a set of discrete execution
units, exactly one of which is to be selected to run on a given
device or player for a given circumstance and point in time.

In one particularly advantageous embodiment and imple-
mentation, the Dart application framework (DartFrame-
work) includes Rendition objects that serve as the top of the
hierarchy of processing units called Gizmos (see FIG. 11).
For purposes of attempting to understand what a Rendition
is, a single Rendition may be thought of as complete
conventional program—though it is not the same as a
conventional program in that it may be one of a plurality of
Renditions generated and packaged together with interre-
lated functionality and content which is necessary to carry
out interoperability operations. Often no one Rendition from
the set could effectively or efficiently carry out the intent of
the application or package of Renditions on its own. An
interoperability application, such as a Dart, is an integrated
collection of program parts, possibly including procedures,
data, content and/or resources which know how to put
together the parts to form and manage dynamically and
statically assembled programs, or Renditions, from the parts
(see FIG. 3 300, FIG. 13, FIG. 14). Furthermore, an interop-
erability application or Dart contains the means for intelli-
gently distributing possibly different Renditions or set of
Renditions, one set for each device in a team of devices,
which can then communicate and cooperate as a team with
other Renditions of other devices of the team to effectively
and efficiently carry out the intent of the application.

The benefits of Renditioning include among others, the
sharing of parts between execution units so as to limit the
size of an interoperability application. Using conventional
programming techniques it would often be necessary to
package a set of applications so that there is one that is
suitable for each target device or environment. Without
Renditioning, this would often result in the need to store
redundant procedures, data content and resources in each of
the programs in the package. Another advantage of Rendi-
tioning is that there can be selection procedures (see FIG. 14
4000) associated with each Rendition to be used in the
Recruitment model to intelligently select the correct Rendi-
tion to run on a target device or environment. Still another
advantage of Renditioning is that it can limit the number of
adaptations possible to a small enough set that thorough
testing of the interoperability application is possible, while
allowing for a large enough set for there to be at least one
Rendition suitable to run well on any one device or envi-
ronment.

Renditions can also be used to allow the Dart tools (see
DartTools FIG. 12 200) to automatically configure the parts
into special purpose Darts to be sent to other devices. For
example, they may be prepared for printing an image or
document. Such Renditions or sets of Renditions may be
created statically by the DartTools, or dynamically through
the Creationism methodology (FIG. 7 20020) described
elsewhere in this document which uses an interoperability
instruction set, such as the DartlnstructionSet, or by a
combination or the two possibly in conjunction with other
techniques.

US 9,436,525 B2

43

Another use of Renditions is for creating a set of language
or cultural versions to be selected according to the users’
needs or desires. For example, different Renditions having
essentially the same information may be created for the
French language, Chinese language or the like; and, different
renditions may provide for somewhat different information,
such as using photographs of Japanese models for a clothing
advertisement to a primarily Japanese audience, and photo-
graphs of Italian models for the same advertisement to be
presented to an Italian or European audience.

Still another use of Renditions is to limit the use of
content that might be objectionable, or unimportant, or
otherwise not appropriate to certain groups, for whatever
reason. Yet still another use of Renditions is to target the use
of content to certain groups or devices such as children or
Texans. Even still another use of Renditions might be to
target different localities such as Dart Renditions that con-
tain local weather related information,

In one aspect, Renditioning provides a method for inti-
mately packaging parts of a set of software applications and
associated data, procedures, content and selection criteria
procedures into a single binary image. It also provides a
database of parts, their proprieties, their identifiers and their
location in the binary image. It further provides a mapping
of parts into a plurality of individually executable software
applications comprised of procedures, and/or data and/or
content. It additionally provides a procedure or set of
procedures which when executed determines which one
from a set of software applications and associated data,
procedures and content in a binary image are to be executed
for a given device, user preferences, communications char-
acteristics, and/or environment. It further provides a toolset
which allows the automated generation and packaging of
parts into a single binary image (or if desired into a plurality
of binary or other format images) according to a set of
source materials. Aspects of Renditioning also provide a
mechanism for finding and accessing the database of parts
inside a given binary image. Example use of distributed
renditions from within and by a single Dart are illustrated in
FIG. 8 and FIG. 9.

Some particular exemplary embodiments of the rendition-
ing adaptation and interoperability segmentation model are
also set forth below.

In one embodiment (1), the invention provides a method
for segmenting a software application into a set of separately
executable images, the method comprising: separating the
devices to be encountered into classes according to their
possible resources and capabilities for carrying out one or
more aspects of the intent of the application; separating the
environment or operating requirements likely to be encoun-
tered into classes according to the needs for distinct render-
ing or other runtime requirements for carrying out one or
more aspects of the intent of the application; specifying the
data, code, content and other digitally representable
resources needed for an executable image needed to be able
to carry out one or more aspects of the intent of the
application on each class of device and each environment or
operating requirement; generating a utilization plan for
choosing which devices and corresponding individually
assigned executable images are to be run on each device to
be used to carry out the intent of the application given a list
of candidate devices, their resources and capabilities, and
the required or desired environment or operating parameters;
and specifying the data, code, content and other digitally
representable resources needed to implement and carry out
the utilization plan on each class of device and each envi-
ronment or operating requirement.

20

25

30

35

40

45

50

55

60

65

44

In another embodiment (2), the invention provides a
method as in (1), wherein the software application is
intended to run across one or more homogeneous or hetero-
geneous communicating devices.

In another embodiment (3), the invention provides a
method as in (1), wherein exactly one such selected execut-
able image is to be selected to run on a given device with a
particular environment.

In another embodiment (4) the invention provides a
method as in (3), wherein the exactly one such executable
image is to be selected and run on each device in accordance
with the needs of the application with respect to the
resources and capabilities of each device and the environ-
ment and operating requirements.

In another embodiment (5), the invention provides a
method as in (3), wherein at least one of the devices is a Dart
device.

In another embodiment (6), the invention provides a
method as in (1), further comprising executing the generated
utilization plan.

In another embodiment (7), the invention provides a
method as in (1), wherein the software application expressed
as a Dart.

In another embodiment (8), the invention provides a
method as in (1), wherein the separately executing images
are renditions.

In another embodiment (9) the invention provides a
method as in (7), wherein the renditions are expressed in the
form of Dart Renditions packaged by the DartTools in
conformance with the DartFormat.

In another embodiment (10), the invention provides a
method as in (2), wherein the utilization plan of (1) is
implemented in whole or part as procedures sent to run on
the candidate devices to determine the particular class of
device, its resources and/or its operating environment.

In another embodiment (11), the invention provides a
method as in (10), wherein the procedures are DartProce-
dures comprised at least in part as instructions of an Interop-
erability Instruction Set.

In another embodiment (12), the invention provides a
method as in (11), wherein the Interoperability Instruction
Set is the DartInstructionSet.

In another embodiment (13), the invention provides a
method as in (11), wherein the Interoperability Instruction
Set is of a form that is executable on one or more homo-
geneous or heterogeneous communicating devices which are
to run procedures.

In another embodiment (14) the invention provides a
method as in (13), wherein the communicating devices run
procedures to determine the particular class of device, its
resources, and/or its operating environment.

In another embodiment (15), the invention provides a
method as in (10), wherein the procedures are expressed as
Darts which are part of the application.

In another embodiment (16), the invention provides a
method as in (15), wherein the application is expressed as a
Dart which contains other Darts used to carry out the intent
of'the application on heterogeneous communicating devices.

In another embodiment (17), the invention provides a
method as in (1), wherein the recruitment method of (1) is
used to send and distribute the procedures and separate
executable images to form teams of heterogeneous or homo-
geneous devices.

In another embodiment (18), the invention provides a
method as in (1), wherein parts are sharable between dif-
ferent separately executing images in different target devices

US 9,436,525 B2

45

and processing environments so that the size of an interop-
erability application may be limited.

In another embodiment (19), the invention provides a
method as in (1), wherein parts are sharable between sepa-
rately executing images so that the amount of data to be
stored in the software may be limited.

In another embodiment (20), the invention provides a
method as in (1), wherein parts are sharable between sepa-
rately executing images so that the amount of data to be
communicated between devices may be limited.

In another embodiment (21), the invention provides a
method as in (18), wherein parts are one of code, data,
content, procedures, code sets, data sets, content, content
sets, meta information on how to find and combine the parts,
descriptive text, pictures, video, images, tables of data, or
any other unit of information or set of information capable
of being represented in a digital form.

In another embodiment (21), the invention provides a
method as in (21), wherein parts are DartParts and or meta
information is expressed as Dart RenditionsTable part, and
or Dart RenditionTable parts, and or Dart Part Table, and or
DartTrailer.

In another embodiment (22), the invention provides a
method for segmenting a software application into a set of
separately executable images, the method comprising: sepa-
rating the devices to be encountered into classes according
to their possible resources and capabilities; separating the
environment or operating requirements likely to be encoun-
tered into classes; specifying the data, code, content and/or
other digitally representable resources needed for an execut-
able image to be able to carry out one or more aspects of the
intent of the application on each class of device and each
environment or operating requirement; and generating a
utilization plan for choosing which devices and executable
images are to be run on each device to be used to carry out
the intent of the application.

In another embodiment (23), the invention provides an
apparatus for segmenting a software application into a set of
separately executable images, the apparatus comprising:
means for separating the devices to be encountered into
classes according to their possible resources and capabilities
for carrying out one or more aspects of the intent of the
application; means for separating the environment or oper-
ating requirements likely to be encountered into classes
according to the needs for distinct rendering or other runtime
requirements for carrying out one or more aspects of the
intent of the application; means for specifying the data,
code, content and other digitally representable resources
needed for an executable image needed to be able to carry
out one or more aspects of the intent of the application on
each class of device and each environment or operating
requirement; means for generating a utilization plan for
choosing which devices and corresponding individually
assigned executable images are to be run on each device to
be used to carry out the intent of the application given a list
of candidate devices, their resources and capabilities, and
the required or desired environment or operating parameters;
and means for specifying the data, code, content and other
digitally representable resources needed to implement and
carry out the utilization plan on each class of device and
each environment or operating requirement.

In another embodiment (24), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a

20

25

30

35

40

45

50

55

60

65

46

program module that directs the computer system or infor-
mation appliance to function in a specified manner to
segment a computer program software code application into
a set of separately executable computer program software
code images, the program module including instructions for:
separating the devices to be encountered into classes accord-
ing to their possible resources and capabilities; separating
the environment or operating requirements likely to be
encountered into classes; specifying the data, code, content,
and/or other digitally representable resources needed for an
executable image to be able to carry out one or more aspects
of the intent of the application on each class of device and
each environment or operating requirement; and generating
a utilization plan for choosing which devices and executable
images are to be run on each device to be used to carry out
the intent of the application.

In another embodiment (25), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner to
segment a computer program software code application into
a set of separately executable computer program software
code images, the program module including instructions for:
separating the devices to be encountered into classes accord-
ing to their possible resources and capabilities for carrying
out one or more aspects of the intent of the application;
separating the environment or operating requirements likely
to be encountered into classes according to the needs for
distinct rendering or other runtime requirements for carrying
out one or more aspects of the intent of the application;
specifying the data, code, content and other digitally repre-
sentable resources needed for an executable image needed to
be able to carry out one or more aspects of the intent of the
application on each class of device and each environment or
operating requirement; generating a utilization plan for
choosing which devices and corresponding individually
assigned executable images are to be run on each device to
be used to carry out the intent of the application given a list
of candidate devices, their resources and capabilities, and
the required or desired environment or operating parameters;
and specifying the data, code, content and other digitally
representable resources needed to implement and carry out
the utilization plan on each class of device and each envi-
ronment or operating requirement.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

IV. DartSource/Interoperability Source

Recall that the DartSource provides structure and method
for specifying all the program renditions and the code
content and data needed for a packaged Dart interoperability
application. DartSource extends the languages constructs
commonly used to specify single executable program tar-
geted to a specific device, into a language which can also
specify the procedures necessary for intelligent recruitment
of teams of devices and the renditions needed so that there

US 9,436,525 B2

47

is a suitable rendition to send to run on each recruited device
to carry out that device’s portion of the intended purpose of
the application being specified.

In one embodiment (1), the invention provides a method
for specifying a software application package of digitally
encoded data, code and content, along with meta informa-
tion in the form of data, code and content needed to carry out
an intended purpose (intent) on one or more connected or
intermittently connected devices; the method comprising
expressing in an interoperability software programming
language one or more or any combination of the following:
(a) an object oriented framework and or library; (b) source
code for expressing the main code and data used to carry out
the logic of the application, whether to be expressed as one
executable image or an integrated set of executable images;
(c) digitally expressible resources; and (d) system calls or
instruction invocations necessary for connecting the logic of
the application to the native underlying hardware and soft-
ware of the device(s).

In another embodiment (2), the invention provides the
method of (1), where the system calls or instructions are
used to connect the logic of the application to one or more
of the following native underlying hardware and software of
the device: (a) software engine; (b) software operating
system; (c) communications subsystem; (d) graphics sub-
system; (e) cryptographic subsystem; (f) security subsystem;
(g) storage, audio rendering, and or input/output subsystems;
(h) native code expressed algorithms or procedures; (i)
media compression and or decompression subsystems; (j)
data processing or database processing; (j) device specific
unique functions and capabilities exposed through applica-
tion program interfaces; (k) device specific profile informa-
tion for retrieving information about the resources, content
and capabilities of the device; (1) an event queue and
associated event queue management subsystem to drive the
synchronous and asynchronous operations of the application
across devices; (m) user interface, text, audio, video or other
transcoding or rendering operations, and or general compu-
tation operations, and or general database operations; (n)
power management, suspend/resume, and or application
level error recovery from intermittent connections through
the use of events to drive the sharing and cooperative
operations of software, data, content and state within and or
between one or more cooperating devices; (0) subsystems to
dynamically save, configure, optimize and or send parts,
packages of parts, procedures, executable images, or pack-
ages of executable images to or from physical storage, or to
and from other connected devices; and (p) any combination
of these.

In another embodiment (3), the invention provides the
method of (1), wherein the framework or library and/or
source code includes class definitions and object implemen-
tations to carry out, encapsulate, order access to, and/or
organize one or more of the native underlying software or
hardware accessible which are listed in (a)-(p).

In another embodiment (4), the invention provides the
method of (1), wherein the framework or library and/or
source code includes class definitions and object implemen-
tations to provide a basis for conforming to specific runtime
conventions used for event driven execution on or amongst
one or more cooperating devices.

In another embodiment (5), the invention provides the
method of (1), wherein the framework or library and/or
source code includes class definitions and object implemen-
tations to ensure synchronous processing of events within an
executable, and synchronized operation between devices by

20

25

30

35

40

45

50

55

60

65

48

serializing the processing of events between parts of the
software application distributed and then run on a set of
cooperating devices.

In another embodiment (6), the invention provides the
method of (1), wherein the framework comprises the Dart-
Framework.

In another embodiment (7), the invention provides the
method of (1), wherein source code is expressed at least in
part in any one or more of: a version or extension of the C
programming language, a version or extension of the C++
programming language, a processor assembly language, an
interoperability instruction set, the DartlnstructionSet, or
any other suitable high-level, mid-level, low-level or
machine language.

In another embodiment (8), the invention provides the
method of (1), wherein the interoperability software pro-
gramming language is an extension of an existing program
language for expressing a single application executable
image with one or more of the following extensions: (i)
semantics for specifying resources to be made into parts of
the output package; (ii) semantics for specifying indepen-
dently executable procedures to be made into parts of the
output package that is the result of processing the source;
(iii) semantics for referencing parts or ids of the parts; (iv)
semantics for specifying separately executable image start-
ing points; (v) semantics for referencing the separately
executable images to be encapsulated into the output pack-
age or packages that is the result of processing of the source;
and (vi) any combination of these

In another embodiment (9), the invention provides the
method of (8), wherein the existing application program
language comprises the C or C++ programming language.

In another embodiment (10), the invention provides the
method of (9), wherein one or more of the extensions are
expressed as #pragma statements.

In another embodiment (11), the invention provides the
method of (9), wherein one or more of the extensions are
expressed as builtin functions with reserved names known to
the software tools that parse and processes the source code
expressed in the application program language.

In another embodiment (12), the invention provides the
method of (9, wherein the extensions are parsed and pro-
cessed by the DartTools.

In another embodiment (13), the invention provides the
method of (11), wherein the extensions are parsed and
processed by the DartTools.

In another embodiment (14), the invention provides the
method of (1), wherein the digitally expressible resources
are selected from the set of resources consisting of one or
more of: (i) a JPEG, PNG, GIF, TIFF, MPEG, or any other
picture, video, audio or other media formats resource; (ii) a
Darts or any other executable package format resource,
whether intended to run on one or a plurality of devices; (iii)
a Content resource; (iv) a Code resource; (v) a Dataset
resource; (vi) a Database resource; (vii) an Index resource;
(viii) any other digitally representable unit or package of
information resource; and (ix) any combination of theses
resources.

In another embodiment (15), the invention provides the
method of (1), wherein the interoperability software appli-
cation is expressed as a Dart.

In another embodiment (16), the invention provides the
method of (2), wherein the software engine is the DartEn-
gine.

US 9,436,525 B2

49

In another embodiment (17), the invention provides the
method of (2), wherein the system calls or instructions used
to connect the logic of the application are from an Interop-
erability Instruction Set.

In another embodiment (18), the invention provides the
method of (17), wherein the Interoperability Instruction Set
is the DartlnstructionSet.

In another embodiment (19), the invention provides the
method of (2), wherein the device specific unique functions
and capabilities exposed through application program inter-
faces are implemented in the hardware abstraction layer of
the DartEngine through the use of the OEM_BUILTIN_IN-
STRUCTION

In another embodiment (20), the invention provides the
method of (2), wherein the device specific profile informa-
tion for retrieving information about the resources, content
and capabilities of the device are accessed from the hard-
ware abstraction layer of the DartEngine through the use of
the PROFILE_INSTRUCTION.

In another embodiment (21), the invention provides the
method of (2), wherein the subsystems to dynamically save,
configure, optimize and or send parts, packages of parts,
procedures, executable images, or packages of executable
images to or from physical storage, or to and from other
connected devices carry out these operations according to a
creationism procedure.

In another embodiment (22), the invention provides the
method of (2), wherein the event queue management are
carried out according to a Recruitment method.

In another embodiment (23), the invention provides the
method of (2), wherein the power management, suspend/
resume, and or application level error recovery are carried
out using a LinearTasking method and/or a VerticalLayering
method.

In another embodiment (24), the invention provides the
method of (3), wherein the framework or library and or
source code are the DartFramework.

In another embodiment (25), the invention provides the
method of (4), wherein specific runtime conventions are the
conventions of the DartRuntime method.

In another embodiment (26), the invention provides an
apparatus for specifying a software application package of
digitally encoded data, code and content, along with meta
information in the form of data, code and content needed to
carry out an intended purpose (intent) on one or more
connected or intermittently connected devices; the apparatus
comprising: a processor and a memory coupled with the
processor; and means accessible to the processor for
expressing in an interoperability software programming
language one or more or any combination of the following:
(a) an object oriented framework and or library; (b) source
code for expressing the main code and data used to carry out
the logic of the application, whether to be expressed as one
executable image or an integrated set of executable images;
(c) digitally expressible resources; and (d) system calls or
instruction invocations necessary for connecting the logic of
the application to the native underlying hardware and soft-
ware of the device(s).

In another embodiment (27), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner to specify
an application package of digitally encoded data, code

20

25

30

35

40

45

50

55

60

65

50

and/or content, optionally along with meta information in
the form of data, code and/or content needed or desirable to
carry out an intended purpose on one or more connected or
intermittently connected devices, the program module
including instructions for expressing in an interoperability
software programming language one or more or any com-
bination of the following: (a) an object oriented framework
and/or library; (b) source code or executable code for
expressing the main code and data used to carry out the logic
of'the application, whether to be expressed as one executable
image or an integrated set of executable images; (c) digitally
expressible resources; and (d) system calls or instruction
invocations necessary for connecting the logic of the appli-
cation to the native underlying hardware and software of the
device(s).

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

V. DartFramework/Interoperability Framework

Recall that the DartFramework is the portion of the
DartSource provided for use by programmers in building
interoperability applications which encapsulate access to
many of the advantageous features of the DartPlatform
eliminating the need for the programmer to have to under-
stand and implement many of the desired interoperability
features of the DartPlatform. Additional aspects of the
Interoperability Framework including aspects of the more
particular DartFramework are also described relative to the
linear tasking section of this description.

In one embodiment (1), the invention provides a method
for specifying an object oriented interoperability framework
having a set of object oriented class definitions, and imple-
mentation code thereof to be used as part of the source
specifications of an event driven software application pack-
age, the method comprising: (i) specifying using an object
oriented language as a base event processing class that
contains at least the following data and code members: (a)
a process member that takes as a parameter a reference or
copy of an instance of an event data structure; and (b) an
ordered list member of references to or instances of other
event processing objects which have the same base class;
and (i1) implementing the members and methods of the class
specification in source code.

In another embodiment (2), the invention provides the
method of (1), wherein the software application package is
designed and implemented to carry out an intended purpose
(intent) on one or more connected or intermittently con-
nected devices.

In another embodiment (3), the invention provides the
method of (2), wherein the software application package
conforms to the DartFormat.

In another embodiment (4), the invention provides the
method of (1), wherein the base class is the Dart Gizmo
class.

In another embodiment (5), the invention provides the
method of (1), where there is also a rendition class that
inherits from the base class which serves as the root of a tree
of inheriting instances of the base class where the parameter
of the process member is optionally an empty or NULL
reference.

US 9,436,525 B2

51

In another embodiment (6), the invention provides the
method of (5), where the rendition class is used to signify the
beginning entry point for execution of a separately execut-
able image that is to be embodied in the output package or
packages to be generated from the source code that makes
use of the object oriented interoperability framework.

In another embodiment (7), the invention provides the
method of (5), where a master rendition class is specified as
part of the framework wherein the base class is the Dart
Gizmo class which inherits from the rendition class that
contains a list of references to or instances of rendition
objects.

In another embodiment (8), the invention provides the
method of (7), where the execution of a specified method of
the master rendition class results in the filling in of its list of
renditions that serve as the starting point for independently
executable images that are to be included in the output
package or output packages that result from the processing
of the source code with makes use of the framework.

In another embodiment (9), the invention provides the
method of (5), wherein the rendition class is a Dart Rendi-
tion class which inherits from the Gizmo base class.

In another embodiment (10), the invention provides the
method of (7), wherein the master rendition class is a Dart
MasterRendition class which inherits from the Dart Rendi-
tion class.

In another embodiment (11), the invention provides the
method of (2), wherein there are object oriented class
definitions and/or implementation code are for performing
one or more of the following functions or operations: (i)
rendering, and/or managing and/or editing of any one or
more of video, audio, pictures, images, animations, text,
symbols, graphics or any other media type, code, content or
data representable as a sequence of digital numbers; (ii)
intelligently limiting or ordering access to data, resources,
and/or code, to one or more of database records, fields of
records, sound, video, audio, text from different processing
units; (ii) container classes for collecting, ordering, editing,
managing and controlling access to object instances or
structures; and (iv) user interface elements and the process-
ing thereof including any one or more of the following:
menus, buttons, selection boxes, text boxes, radio buttons,
checkboxes, dropdown selection boxes, tables, windows or
any other user input or device output used to interact with a
user or software running on an external processor.

In another embodiment (12), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner to specify
an object oriented interoperability framework having a set of
object oriented class definitions and implementation code
thereof to be used as part of the source specifications of an
event driven software application package, the program
module including instructions for: (i) specifying using an
object oriented language as a base event processing class
that contains at least the following data and code members:
(a) a process member that takes as a parameter a reference
or copy of an instance of an event data structure; and (b) an
ordered list member of references to or instances of other
event processing objects which have the same base class;
and (ii) implementing the members and methods of the class
specification in source code.

20

25

30

35

40

45

50

55

60

65

52

In another embodiment (13), the invention provides a
computer program product as in (12, wherein the application
package is designed and implemented to carry out an
intended purpose (intent) on one or more connected or
intermittently connected devices.

In another embodiment (14), the invention provides a
computer program product as in (12), wherein there are
object oriented class definitions and/or implementation code
for performing one or more of the following functions or
operations: (i) rendering, and/or managing and/or editing of
any one or more of video, audio, pictures, images, anima-
tions, text, symbols, graphics or any other media type, code,
content or data representable as a sequence of digital num-
bers; (ii) intelligently limiting or ordering access to data,
resources, and/or code, to one or more of database records,
fields of records, sound, video, audio, text from different
processing units; (ii) container classes for collecting, order-
ing, editing, managing and controlling access to object
instances or structures; and (iv) user interface elements and
the processing thereof including any one or more of the
following: menus, buttons, selection boxes, text boxes, radio
buttons, checkboxes, dropdown selection boxes, tables, win-
dows or any other user input or device output used to interact
with a user or software running on an external processor.

In another embodiment (15), the invention provides an
apparatus for specifying an object oriented interoperability
framework having a set of object oriented class definitions,
and implementation code thereof to be used as part of the
source specifications of an event driven software application
package, the apparatus comprising: a processor logic and a
memory coupled with the processor logic; means, accessible
by the processor, specifying using an object oriented lan-
guage as a base event processing class that contains at least
the following data and code members: (a) a process member
that takes as a parameter a reference or copy of an instance
of'an event data structure; and (b) an ordered list member of
references to or instances of other event processing objects
which have the same base class; and means for implement-
ing the members and methods of the class specification in
source code.

In another embodiment (16), the invention provides an
apparatus as in (15), wherein the means specifying using an
object oriented language as a base event processing class
comprises a computer program or a computer program
product.

In another embodiment (17), the invention provides an
apparatus as in (15), wherein the means for implementing
the members and methods of the class specification in source
code comprises a computer program or a computer program
product.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

V1. DartTools/Interoperability Tools

Recall that the DartTools process the DartSource appli-
cation specification into the Dart application packages.

In one embodiment (1), the invention provides a method
for generating an interoperability software application pack-
age of digitally encoded information, along with meta infor-
mation needed to carry out an intended purpose (intent) on

US 9,436,525 B2

53

one or more connected or intermittently connected devices;
the method comprising: processing of source materials
through an interoperability compiler process [software prod-
uct] to create object files; and processing the object files and
optional libraries through an interoperability linker process
to create libraries or an interoperability software application
package.

In another embodiment (2), the invention provides the
method of (1), wherein the digitally encoded information
comprises digitally encoded data, code and/or content and
the meta information comprises meta information in the
form of data, code and/or content.

In another embodiment (3), the invention provides the
method of (1), wherein the interoperability compiler process
is implemented as a compiler computer program software
product and the linker process is implemented as a linker
computer program software product.

In another embodiment (4), the invention provides the
method of (1), wherein the source materials are assembled
according to an Interoperability Source method.

In another embodiment (5), the invention provides the
method of (4), wherein the Interoperability source method
includes a procedure for specifying a software application
package of digitally encoded data, code and content, along
with meta information in the form of data, code and content
needed to carry out an intended purpose (intent) on one or
more connected or intermittently connected devices; and the
method comprising expressing in an interoperability soft-
ware programming language one or more or any combina-
tion of the following: (a) an object oriented framework and
or library; (b) source code for expressing the main code and
data used to carry out the logic of the application, whether
to be expressed as one executable image or an integrated set
of executable images; (c) digitally expressible resources;
and (d) system calls or instruction invocations necessary for
connecting the logic of the application to the native under-
lying hardware and software of the device(s).

In another embodiment (6), the invention provides the
method of (1), wherein the compiler and linker are combined
into a single compiler/linker software tool product.

In another embodiment (7), the invention provides the
method of (1), wherein an optional master software appli-
cation package is optionally further processed into one or
more other interoperability software packages.

In another embodiment (8), the invention provides the
method of (7), wherein the optional master software appli-
cation package is optionally processed into other interoper-
ability software packages by the use of an interoperability
master player software product.

In another embodiment (9), the invention provides the
method of (1), wherein the source materials comprise Dart-
Source source materials.

In another embodiment (10), the invention provides the
method of (1), wherein the interoperability software appli-
cation comprises a Dart conforming to the DartFormat.

In another embodiment (11), the invention provides the
method of (10), wherein the Dart conforming to the Dart-
Format is operable within an object oriented interoperability
framework having a set of object oriented class definitions,
and implementation code thereof to be used as part of the
source specifications of an event driven software application
package, the object oriented interoperability framework
formed according to a procedure comprising: (i) specifying
using an object oriented language as a base event processing
class that contains at least the following data and code
members: (a) a process member that takes as a parameter a
reference or copy of an instance of an event data structure;

20

25

30

35

40

45

50

55

60

65

54

and (b) an ordered list member of references to or instances
of other event processing objects which have the same base
class; and (ii) implementing the members and methods of
the class specification in source code.

In another embodiment (12), the invention provides the
method of (1), wherein the interoperability compiler com-
prises the DartCompiler.

In another embodiment (13), the invention provides the
method of (1), wherein the interoperability linker comprises
the DartLinker.

In another embodiment (14), the invention provides the
method of (7), wherein the optional master software appli-
cation comprises a DartMaster.

In another embodiment (15), the invention provides the
method of (8), wherein the interoperability master player
comprises a Dart MasterPlayer.

In another embodiment (16), the invention provides the
method of (1), wherein the source materials include code
and data references in a software programming language
which has been extended to include one or more or any
combination of the following semantics: (1) first semantics
for specitying resources to be made into parts of the output
package; (2) second semantics for specifying independently
executable procedures to be made into parts of the output
package that is the result of processing the source; (3) third
semantics for referencing parts or ids of the parts of the
output packages; (4) fourth semantics for generating the
parts or ids of the parts of the output packages for use at
runtime by code or data structure instances in the source
code; (5) fifth semantics for specifying separately executable
image starting points; (6) sixth semantics for referencing the
separately executable images to be encapsulated into the
output package or packages that is the result of processing
of the source; and (7) seventh semantics for specitying the
processing needed to direct the compiler and/or the linker
and/or the master player software products to include at least
one of parts, corresponding part table entries, and other data
in the package for identifying pointer variables which are to
effectively point to a private memory address space inde-
pendent from all other such pointers, procedures, main
program data, main and program code.

In another embodiment (17), the invention provides the
method of (16), wherein the application program language is
a version of the C or C++ programming language.

In another embodiment (18), the invention provides the
method of (16), wherein one or more of the extensions are
expressed as C or C++ #pragma statements.

In another embodiment (19), the invention provides the
method of (16), wherein one or more of the extensions are
expressed as builtin functions with reserved names known to
the interoperability compiler that parses and processes the
source code expressed in the application program language.

In another embodiment (20), the invention provides the
method of (16), wherein the software programming lan-
guage is the DartlnstructionSet or any other programming
language which is known to be Turing Complete.

In another embodiment (21), the invention provides the
method of (16), where the interoperability compiler and
interoperability linker include parsing and processing of
program statements conforming to the semantics of one or
more of the listed semantics.

In another embodiment (22), the invention provides the
method of (16), wherein the resources are selected from the
set consisting of one or more or any combination of the
following: (i) an external file or any other binary data image
accessible by the compiler, linker and/or master player
procedures or software products; (ii) a data structure

US 9,436,525 B2

55

instance specified in the source code; (iii) a procedure or
function whether or not the procedure is a DartProcedure
specified in the source code; (iv) an executable program, an
executable package, or a Dart; and (v) any combination of
any number of the above whether stored separately, pack-
aged together, and/or compressed and/or encrypted.

In another embodiment (23), the invention provides the
method of (16), wherein the resources are included by
reference in a #pragma statement which causes the compiler,
linker and/or optional master player procedure or software
products to include the resources as parts of the output
package.

In another embodiment (24), the invention provides the
method of (16), wherein the parts are linear contiguous
binary images to be placed into packages or Dart parts
assigned and referenced as part of a package by a scalar
identifier partld with a value which is unique in the package.

In another embodiment (25), the invention provides the
method of (16), wherein a part table is also generated by the
compiler, linker, and/or master player as part of the output
packages with information used to find the part image inside
the package, and to provide parameters or descriptive infor-
mation relevant to the part.

In another embodiment (26), the invention provides the
method of (25), wherein the parameters or descriptive infor-
mation are one or more or any combination of the following:
(1) a scaler or text describing the content type of the part; (ii)
an offset into the package where the part starts; (iii) an offset
into the package where the part ends, or a length of the part
so that the part end can be computed; (iv) a flags or plurality
of flags to indicate special processing options for the part
according to the content type for the loading, usage and or
saving of the package or part; and (v) optionally other
content type specific parameters which are specific to the
content type.

In another embodiment (27), the invention provides the
method of (25), wherein the part table is the Dart Part Table
conforming to the DartFormat.

In another embodiment (28), the invention provides the
method of (16), wherein the pointer variables are to function
as virtual pointers.

In another embodiment (29), the invention provides the
method of (16), wherein the pointer variables are Dart
VirtualPointers.

In another embodiment (30), the invention provides a
method as in (16), wherein the second semantic executable
procedures include DartProcedures.

In another embodiment (31), the invention provides a
method as in (16), wherein the second semantics take the
form conforming generally to the following: #pragma Pro-
cedure(<name of function>).

In another embodiment (32), the invention provides a
method as in (16), wherein the first semantics take the form
conforming generally to one or more of the following: (1)
#pragma FileToPart(<file path and name> <parameters such
as content type, picture size destined for parameters of Part
TableRecord>); or (2) #pragma partvariable(<variable or
structure name>).

In another embodiment (33), the invention provides a
method as in (16), wherein the fourth semantic ids are Part
Ids used in the Part TableRecords and other sections of the
DartFormat.

In another embodiment (34), the invention provides a
method as in (16), wherein the third semantics take the form
conforming generally to the following: partnumberof(<iden-
tifier name>).

20

25

30

35

40

45

50

55

60

65

56

In another embodiment (35), the invention provides a
method as in (16), wherein the seventh semantics take the
form conforming generally to the following: #pragma vir-
tualpointer (<pointer variable identifier><values to control
optional automatic saving of values when a Dart SAVE_IN-
STRUCTION is executed and to control the number of real
memory pages to be used>).

In another embodiment (36), the invention provides the
method of (1), wherein the interoperability compiler,
interoperability linker and interoperability master player are
the DartTools.

In another embodiment (37), the invention provides the
method of (1), wherein the interoperability software appli-
cation package comprises a Dart conforming to the Dart-
Format.

In another embodiment (38), the invention provides the
method of (8), where as an option, the source code specifies
a single master independently executable image that is
output in the package generated by the compiler and/or the
linker along with extra parts containing object class,
instance, and linkage information used when the package is
executed on an optional software tool product or the master
player, to intelligently generate one or more packages.

In another embodiment (39), the invention provides the
method of (38), wherein a single master independently
executable image execution entry point is an entry point to
a method of a special derived class from the base event
processing class, with the following added features: (i) data
elements and/or methods to form, hold and manage a list of
special object base class or derived class object instances
and/or references to such instances that are to be output in
a particular package; and (ii) one or more setup methods
which are called when the master is executed.

In another embodiment (40), the invention provides the
method of (38), wherein a single master independently
executable image execution entry point is an entry point to
a method of a special derived class from the base event
processing class, the method being for specifying an object
oriented interoperability framework having a set of object
oriented class definitions, and implementation code thereof
to be used as part of the source specifications of an event
driven software application package, and the method com-
prising: (i) specifying using an object oriented language as
a base event processing class that contains at least the
following data and code members: (a) a process member that
takes as a parameter a reference or copy of an instance of an
event data structure; and (b) an ordered list member of
references to or instances of other event processing objects
which have the same base class; and (ii) implementing the
members and methods of the class specification in source
code; the method further including: (i) providing data ele-
ments and/or methods to form, hold and manage a list of
special object base class or derived class object instances
and/or references to such instances that are to be output in
a particular package; and (ii) providing one or more setup
methods which are called when the master is executed.

In another embodiment (41), the invention provides the
method of (39), wherein the execution of the master results
according to the specifications of the source in the forming
of the list.

In another embodiment (42), the invention provides the
method of (38), wherein the special derived class is a Dart
Rendition class.

In another embodiment (43), the invention provides the
method of (39), wherein the single master independently
executable image is a Dart Rendition inside a Dart.

US 9,436,525 B2

57

In another embodiment (44), the invention provides the
method of (41), wherein as an option the execution which
results in the forming of the list also include configuring,
creating, optimizing, adding parts to or otherwise affecting
the independently executable images that are referenced by
the list.

In another embodiment (45), the invention provides the
method of (44), wherein the list is formed and the config-
uring, creating, optimizing and/or adding parts to or other-
wise affecting the generation or makeup of independently
executable images is performed using input from or more of
the following sources: (i) a human input solicited during the
master’s execution; (ii) an automated procedure that was
specified by the source code; (iii) an information collected
from the computing device on which the master is executing
by the executing code of the master package; (iv) an
information collected from any number of computing
devices over any number of communications mediums by
the executing code of the master package; and (v) combi-
nations of these.

In another embodiment (46), the invention provides the
method of (39), wherein as a step for each package to be
produced by executing the master on a master player, the
generated list is used to find the starting points for all the
independently executable images and the assembly of the
package is performed according to a procedure comprising
the steps: (1) identifying the execution entry point of one of
the derived class object instances and or references on the
list; (ii) recursively or interactively tracing all the possible
execution paths starting at the execution entry point while
keeping track of all the reachable elements; (iii) generating
all the code, data, resources, and other digitally represent-
able parts necessary to form a single executable image for
placement in a package which includes all the reachable
elements that have been tracked; (iv) performing steps (i),
(i1) and (iii) for each of the derived class object instances and
or references on the list; and (v) generating a package of
individually executable images.

In another embodiment (47), the invention provides the
method of (39), wherein the generating of a package of
individually executable images comprises at least one of the
following: a) meta information necessary for locating, load-
ing, and extracting each individual executable image; and b)
parts which together contain all the reachable elements that
have been tracked for all the separately executable images.

In another embodiment (48), the invention provides the
method of (39), wherein the recursively or interactively
tracing all the possible execution paths starting at the
execution entry point while keeping track of all the reach-
able elements, includes keeping track of all reachable vari-
ables, data structure instances, functions and all the objects
that are pointed to or otherwise referenced by the data in or
by the methods, variables, data structure instances, functions
and objects, and further iteratively or recursively all such
elements to which these point to or reference.

In another embodiment (49), the invention provides the
method of (46), wherein elements not tracked as being
reachable are not generated as meta information or parts or
any other representation of the package to reduce the size
and or complexity of the package, or the handling or
execution of the package or parts of the package.

In another embodiment (50), the invention provides the
method of (38), wherein processing of the master by a
master player is used for one or more or any combination of
the following purposes: (i) as a program generator for
dynamic customization of one or a plurality of packages; (ii)
to collect real-time information that is to be part of the

20

25

30

35

40

45

50

55

60

65

58

generated package or packages that was not collected or was
not obtainable at the time of compiling and or linking of the
master; (iii) as a graphical user interface for interactively
selecting, laying out, and/or providing new information
needed to generate particular packages; (iv) for creating,
and/or viewing, and/or testing, and/or correcting, and/or
building various aspects of various independently execut-
able images or sets of independently executable images to be
output in one or more packages in an optionally interactive
manner with optional visual feedback of the changing char-
acteristics of the package or packages to be output; and (v)
for dynamically generating tables, code, content, or other
resources, or collections thereof to be used as parts of the
generated package or packages.

In another embodiment (51), the invention provides the
method of (49), wherein the processing of the master ben-
eficially avoids the need to recompile and or relink or
otherwise re-process the source code.

In another embodiment (52), the invention provides the
method of (49), wherein the user interface is presented as
part of the execution of the master for customizing the
package generation.

In another embodiment (53), the invention provides the
method of (52), wherein the user interface is presented
according to the code, data and/or resources of the master.

In another embodiment (54), the invention provides the
method of (48), wherein some subset of the code, data and
or resources that are elements of the master for carrying out
the purposes are referenced only as the result of execution
starting at execution entry points of derived class object
instances that are not on the list.

In another embodiment (55), the invention provides the
method of (49), wherein some subset of the code, data and
or resources that are elements of the master for carrying out
the purposes are referenced only as the result of execution
starting at execution entry points of derived class object
instances that are not on the list.

In another embodiment (56), the invention provides the
method of (54), wherein the subset is left out of the
generated package.

In another embodiment (57), the invention provides the
method of (56), wherein the subset is left out to decrease the
size of the package or reduce the complexity of the package.

In another embodiment (58), the invention provides the
method of (46), wherein tracking information about reach-
able elements or sets of elements also includes further
information for each such element or set of elements an
access list containing on this access list all the entries from
which the particular element or set of elements is reachable.

In another embodiment (59), the invention provides a
method as in (46), wherein the individual part binary images
are sharable between the independently executable images
so that the size of an interoperability application may be
limited.

In another embodiment (60), the invention provides the
method of (59), wherein the further information is used by
the master player product to produce a package or packages
where parts image instances inside the generated package
are shared amongst the separately executable images rather
than having to duplicate such part images for each separately
executable image in the package which logically contains
the part image.

In another embodiment (61), the invention provides the
method of (58), wherein one or more procedural elements of
the package are compiled/linked and optionally processed
by the master player into a form conforming to a Interop-
erability Instructions Set.

US 9,436,525 B2

59

In another embodiment (62), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner to
generate an interoperability software application package of
digitally encoded information, optionally along with meta
information needed to carry out an intended purpose on one
or more connected or intermittently connected devices, the
program module including instructions for: processing of
source materials through an interoperability compiler pro-
cess [software product] to create object files; and processing
the object files and optional libraries through an interoper-
ability linker process to create libraries or an interoperability
software application package.

In another embodiment (63), the invention provides a
computer program product as in (62), wherein the digitally
encoded information comprises digitally encoded data, code
and/or content and the meta information comprises meta
information in the form of data, code and/or content.

In another embodiment (64), the invention provides a
computer program product as in (62), wherein the interop-
erability compiler process is implemented as a compiler
computer program software product and the linker process is
implemented as a linker computer program software prod-
uct.

In another embodiment (65), the invention provides a
computer program product as in (62), wherein the source
materials are assembled according to an Interoperability
Source method.

In another embodiment (66), the invention provides a
computer program product as in (65), wherein the Interop-
erability source method includes a procedure for specifying
a software application package of digitally encoded data,
code and content, along with meta information in the form
of data, code and content needed to carry out an intended
purpose (intent) on one or more connected or intermittently
connected devices; and the method comprising expressing in
an interoperability software programming language one or
more or any combination of the following: (a) an object
oriented framework and or library; (b) source code for
expressing the main code and data used to carry out the logic
of'the application, whether to be expressed as one executable
image or an integrated set of executable images; (c) digitally
expressible resources; and (d) system calls or instruction
invocations necessary for connecting the logic of the appli-
cation to the native underlying hardware and software of the
device(s).

In another embodiment (67), the invention provides an
interoperability software products tool set whether packaged
separately, dynamically linked together, or packaged into a
single executable in any combination comprising: a) an
interoperability compiler; b) an interoperability linker; and
¢) an interoperability master player.

In another embodiment (68), the invention provides the
interoperability software products tool set of (67), wherein
the interoperability compiler and linker in combination
execute a method for generating an interoperability software
application package of digitally encoded information, along
with meta information needed to carry out an intended
purpose (intent) on one or more connected or intermittently
connected devices; the method comprising: processing of
source materials through an interoperability compiler pro-
cess to create object files; and processing the object files and

20

25

30

35

40

45

50

55

60

65

60

optional libraries through an interoperability linker software
product to create libraries or an interoperability software
application package.

In another embodiment (69), the invention provides the
interoperability software products tool set of (67), wherein
the master software application package is optionally pro-
cessed into other interoperability software packages by the
use of an interoperability master player software product.

In another embodiment (70), the invention provides the
interoperability software products tool set of (67), wherein
the software product or products are implemented and or
designated and or used as DartTools.

In another embodiment (71), the invention provides the
interoperability software products tool set of (67), wherein
there is a single selection procedure or set of selection
procedures associated with each rendition to be used in a
recruitment procedure to intelligently select the most suit-
able independently executable image, from the available
images, to run on a target device and or target device
environment.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

VIIL. DartFormat/Interoperability Format

Recall that the DartFormat comprise the structure and the
rules for putting together a Dart format package which
encapsulates all the code, data, and content needed for an
interoperability applications which can then be loaded and
run on DartDevices, which contain a running DartPlayer.

In one embodiment (1), the invention provides a method
for storing a software application package conforming to an
interoperability format of digitally encoded data, code and
content, along with meta information in the form of data,
code and content needed to carry out an intended purpose
(intent) on one or more connected or intermittently con-
nected devices, the method comprising: forming at least one
linearly contiguous binary encoded part image; forming any
necessary linearly contiguous part images comprised of
combinations of binary encoded resources or program ele-
ments that are to be used to identity, load, select, identify,
execute or be processed as part of the application package;
forming meta information; and packaging the parts and meta
information together in a form where part images can be
deterministically located and independently executable
images identified, loaded, and executed.

In another embodiment (2), the invention provides a
method as in (1), wherein the at least one linearly continuous
binary encoded part image contains at least one of a main
code, a main data, a table of records for each of the
independently executable images, and a table of records for
each of the parts belonging to a particular independently
executable image.

In another embodiment (3), the invention provides a
method as in (1), wherein the at least one linearly continuous
binary encoded part image contains each of a main code, a
main data, a table of records for each of the independently
executable images, and a table of records for each of the
parts belonging to a particular independently executable
image.

US 9,436,525 B2

61

In another embodiment (4), the invention provides a
method as in (1), wherein the necessary linearly contiguous
part images optionally including any number or combination
selected from the set consisting of: (a) programs, Darts,
DartProcedures, or procedures; (b) pictures, video, image,
audio, sound or any other media capable of being rendered;
(c) data structure instances, lists, and or parameters; (d) lists
of data or tables of data; and (e) any combination of these.

In another embodiment (5), the invention provides a
method as in (1), wherein the forming meta information
includes forming meta information of at least one of: (a) a
table for finding parts given its identifier; (b) a first infor-
mation used to find the table of parts; (c) a second infor-
mation needed to load and execute the linearly contiguous
part images; and (d) a third information used to find the list
of independently executable images.

In another embodiment (6), the invention provides the
method of (1), wherein one or more of the following linearly
contiguous binary encoded part images are also formed: (i)
procedures, Darts, DartProcedures; (ii) content including
content selected from the set of content items consisting of
pictures, audio, video, or other multimedia content or ani-
mations; (iii) databases; (iv) indexes; (v) parameters for list
items or table items; (vi) virtual pointer data; (vii) applica-
tion heap data; and (viii) anything else expressible as a
contiguous binary data image.

In another embodiment (7), the invention provides the
method of (1), wherein one or more of the following meta
information are also formed: (i) signature information; (ii)
keywords or other information to be accessed to identity the
names, types, content and or uses of the software application
package; (iii) parameters for list items or table items; (iv)
virtual pointer parameters; (v) security checksums, and or
signatures, and or certificates and or hashes; and (vi) unique
identifiers.

In another embodiment (8), the invention provides the
method of (1), wherein the steps are performed by tools
embodied in the interoperability compiler, interoperability
linker and or interoperability master player.

In another embodiment (9), the invention provides the
method of (1), wherein any one, any combination, or all of
the following are true: (i) the format for the storing a
software application package is the DartFormat; (ii) the
software application package is a Dart; (iii) the parts are
DartParts; (iv) the table of independently executable images
is a Dart RenditionsTable; (v) the table of records for each
of the parts is a Dart RenditionTable; (vi) the table for
finding parts given its identifier is a Dart Part Table; and (vii)
the Information used to find the table of parts is the Dart-
Trailer and its known size, fields, and location in the
DartFormat image.

In another embodiment (10), the invention provides the
method of (1), wherein the main code is comprised of
instructions from an interoperability instruction set.

In another embodiment (11), the invention provides the
method of (1), wherein interoperability instruction set is the
Dart Interoperability Instruction set.

In another embodiment (12), the invention provides the
method of (2), wherein the main code contains all the code
not otherwise explicitly designated in the originating source
to go into an independent part.

In another embodiment (13), the invention provides the
method of (12), wherein the main code instruction data
address fields reference data assigned to one linear data
address space in the main data part.

20

25

30

35

40

45

50

55

60

65

62

In another embodiment (14), the invention provides the
method of (12), wherein the main code instruction branching
fields reference other code assigned to one linear address
space in the main code part.

In another embodiment (15), the invention provides the
method of (2), wherein the main data contains all the data
instances not otherwise explicitly designated in the origi-
nating source to go into an independent part.

In another embodiment (16), the invention provides the
method of (2), wherein the table of independently execut-
able images contains table records with at least the part
identifier of a table for finding parts given its identifier

In another embodiment (17), the invention provides the
method of (2), wherein the records of the table of indepen-
dently executable images contains one or more of the
following optional fields in any combination: (i) the smallest
linear address range of the main code part that contains all
the code needed for the independently executable image; (ii)
the smallest linear address range of the main data part that
contains all the data needed for the independently executable
image; and (iii) the requested or required amount of memory
or other resources that is to be reserved to be used during
execution of the independently executable image.

In another embodiment (18), the invention provides the
method of (6), wherein the Virtual pointer data includes any
number of address ranges followed by the data instance
values of the address range so as to efficiently represent a
possibly sparse list of ranges of data values.

In another embodiment (19), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner for
storing a software application package conforming to an
interoperability format of digitally encoded data, code and
content, along with meta information in the form of data,
code and content needed to carry out an intended purpose
(intent) on one or more connected or intermittently con-
nected devices, the program module including instructions
for: forming at least one linearly contiguous binary encoded
part image; forming any necessary linearly contiguous part
images comprised of combinations of binary encoded
resources or program elements that are to be used to identify,
load, select, identify, execute or be processed as part of the
application package; forming meta information; and pack-
aging the parts and meta information together in a form
where part images can be deterministically located and
independently executable images identified, loaded, and
executed.

In another embodiment (20), the invention provides a data
structure for storing a software application package con-
forming to an interoperability format of digitally encoded
data, code and content, along with meta information in the
form of data, code and content needed to carry out an
intended purpose (intent) on one or more connected or
intermittently connected devices, the data structure compris-
ing: at least one linearly contiguous binary encoded part
image; any necessary linearly contiguous part images com-
prised of combinations of binary encoded resources or
program elements that are to be used to identify, load, select,
identify, execute or be processed as part of the application
package; meta information; and the data structure packaging
the parts and meta information together in a form where part

US 9,436,525 B2

63

images can be deterministically located and independently
executable images identified, loaded, and executed.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

VIII. DartRuntime/Interoperability Runtime

In another aspect, the invention provides a software
run-time model (such as the DartRuntime model) which is
largely event driven, and in some embodiments entirely
event driven, for all software operations whether Dart or
device control related. A set of event semantics, types,
structures and operations on events common to both the
applications and the low-level device control software is
provided by one event queue running on each interoperating
device in a team of interoperating devices (FIG. 17 660)
which drives the sequencing of synchronous application
event processing and asynchronous application, device,
communications and interoperability operations. Also pro-
vided are an instruction set or system calls which are used
to manage the queuing, dequeuing and processing of events.
It also provides an optional robust device interoperability
communications runtime model where communications
between devices is maintained, error corrected, and when
necessary reestablished with cooperation, but with only a
small amount of or no disruption to Darts running effectively
across a team of interoperating devices (see FIG. 19). These
features may optionally be extended to separately generated
Darts and/or other devices.

Other aspects of the DartRuntime are described elsewhere
in this specification including in the examples and in the
exemplary embodiments below.

In one embodiment (1), the invention provides a method
for an interoperability runtime system to carry out the
execution of an event driven software application package of
digitally encoded data, code and content, along with meta
information in the form of data, code and content needed to
carry out an intended purpose (intent) on one or more
connected or intermittently connected devices, the method
comprising: (a) selecting and loading a separately execut-
able image from a given package of independently execut-
able images; (b) recruiting devices into a team by the
executing image; (c) distributing at least one of code,
renditions, data, and/or content amongst the team of
recruited devices; (d) processing in an orderly manner of
synchronous and asynchronous events to carry out the
intent; (e) synchronization and serializing event processing
within and between devices of the recruited team of devices;
and (f) saving of running packages of individually execut-
able images including saving data and state in a storage.

In another embodiment (2), the invention provides the
method of (1), wherein the (a) selecting and loading of a
separately executable image from a given package of inde-
pendently executable images is the selecting and loading of
exactly one separately executable image from a given pack-
age of independently executable images.

In another embodiment (3), the invention provides the
method of (1), wherein the runtime is the DartRuntime.

In another embodiment (4), the invention provides the
method of (1), wherein the selecting and loading, recruiting,

20

25

30

35

40

45

50

55

60

65

64

distributing, processing, and synchronizing and reserializing
are carried out according to the a recruitment procedure.

In another embodiment (5), the invention provides the
method of (1), wherein the saving of running packages
including data and state is carried out by the SAVE_IN-
STRUCTION of the DartInstructionSet.

In another embodiment (6), the invention provides the
method of (1), wherein the saving of running packages
including data and state comprises: getting a pointer to a
table which contains a plurality of records and where each
record provides information about a single separately
executable image; processing each record of the table in
turn; and creating an interoperability software package of
one or more individually executable images based on the
processed records.

In another embodiment (7), the invention provides the
method of (6), wherein the table is a renditions table.

In another embodiment (8), the invention provides the
method of (6), further comprising optionally forming a
header with one or more header fields.

In another embodiment (9), the invention provides the
method of (6), further comprising optionally forming a
trailer with one or more trailer fields.

In another embodiment (10), the invention provides the
method of (7), wherein the processing of each record of the
renditions table in turn comprises: (a) getting a pointer to a
rendition table which contains records, each renditions table
record comprising: (i) a part ID (partid) which identifies or
references a part image that is to be included in the saved
package; (ii) a linear contiguous address range for the code
from the running package’s main code needed to be included
for the separately executable image corresponding to the
information of the record of the renditions table being
processed; and (iii) a linear contiguous address range for the
data from the running package’s main data needed to be
included for the separately executable image corresponding
to the information of the record of the renditions table being
processed; (b) accumulating all the partids; (¢) accumulating
the outside bounds for the main code linear address ranges
of all previously processed records; and (d) accumulating
the outside bounds for the data code linear address ranges of
all previously processed records.

In another embodiment (11), the invention provides the
method of (7), wherein at least one of the created individu-
ally executable images includes: (i) the renditions table; (ii)
the rendition tables; (iii) a main code part with at least the
range of data accumulated during the processing of each
record; (iv) a main data part with at least the range of data
accumulated during the processing of each record; (v) all the
accumulated parts; and (vi) a part table with a record for
each part in the package.

In another embodiment (12), the invention provides the
method of (7), wherein the part table with a record for each
part in the package includes at least the following: (i) a
partld that this record refers to; (ii) a starting offset within
the image of the part image; and (iii) an ending offset and or
length of the image of the part image.

In another embodiment (13), the invention provides the
method of (7), wherein the individually executable images
further includes an optional header if one was formed.

In another embodiment (14), the invention provides the
method of (7), wherein the individually executable images
further includes an optional trailer if one was formed.

In another embodiment (15), the invention provides the
method of (6), wherein a header and or trailer or any other
data structure with a known same fixed offset is required in
all instances of software application packages.

US 9,436,525 B2

65

In another embodiment (16), the invention provides the
method of (15), wherein the header and/or trailer and or
other data structure once located using the fixed offset,
provides the offset of the part table or part database data.

In another embodiment (17), the invention provides the
method of (15), wherein where the header and/or trailer or
other data structure includes the part table or part database
data.

In another embodiment (18), the invention provides the
method of (1), wherein the saving of running packages
including data and state is carried out by the SAVE_IN-
STRUCTION of the DartInstructionSet.

In another embodiment (19), the invention provides the
method of (1), wherein the runtime is embodied and carried
out through an interoperability platform comprising at least
the following: (1) an object oriented framework for speci-
fying code, data, content and resources for use in interop-
erability application packages; (2) a source for specifying
the code, data, content and resources, including that of the
object oriented framework, for an interoperability applica-
tion package; (3) a known process for storing the interop-
erability application package as a set of parts and meta
information for finding, accessing, and loading the package
or portions of the package on a device to carry out the
execution of the package and therefore carry out the intent
embodied in the application package; (4) an Interoperability
Instruction set for providing a binary code compatibility
between two or more devices; (5) a first software product or
product(s) tool(s) which take the source and generate one or
more interoperability application package), where some or
all of the code elements are represented by sequences of
instructions from the interoperability instruction set; (6) a
second software product which loads and executes interop-
erability application packages; (7) a procedure for ordering
the execution of the various processing units embodied in
the framework; (8) a procedure for intelligently spreading
code, data, and content to one or more other devices as
needed to carry out a software application; and (9) a pro-
cedure for serializing and synchronizing the activities of the
code and data once distributed across one or more devices.

In another embodiment (20), the invention provides the
method of (19), further comprising providing at least one of:
(1) a procedure for application level error recovery; (ii) a
procedure for application level power management; (iii) a
procedure for tightly coupling execution units by having a
single semantic entity generated and used by all the execu-
tion units whether performing high level application tasks or
low level communications or hardware access tasks; and (iv)
a procedure for ordering and managing event driven execu-
tion and runtime environments of a plurality of event
processing units of a software application.

In another embodiment (21), the invention provides the
method of (19), wherein one or more or any combination of
the following are true: (1) the interoperability platform is as
described herein elsewhere in the description; (2) the frame-
work is as described herein elsewhere in the description; (3)
the interoperability application packages are as described
herein elsewhere in the description; (4) the source is as
described herein elsewhere in the description; (5) the frame-
work is as described herein elsewhere in the description; (6)
the known process for storing the interoperability applica-
tion package is as described herein elsewhere in the descrip-
tion; (7) the Interoperability Instruction Set is as described
herein elsewhere in the description; (8) the software product
or product(s) tools are as described herein elsewhere in the
description; (9) the software product which loads and
executes interoperability application packages is as

20

25

30

35

40

45

50

55

60

65

66

described herein elsewhere in the description; (10) the
procedure for ordering the execution of the various process-
ing units embodied in the framework is as described in the
Linear Tasking section of this description; and (11) the
procedure for ordering the execution of the various process-
ing units embodied in the framework is as described in the
Linear Tasking section of this description.

In another embodiment (22), the invention provides the
method of (19), wherein one or more or any combination of
the following are true: (1) the interoperability platform is a
DartPlatform; (2) the framework is a DartFramework; (3)
the interoperability application packages are Darts; (4) the
source is a DartSource; (5) the framework is a DartFrame-
work; (6) the known process for storing the interoperability
application package is any method for creating a package
conforming to a DartFormat; (7) the Interoperability Instruc-
tion Set is a DartlnstructionSet; (8) the software product or
product(s) tools are a DartTools; (9) the software product
which loads and executes interoperability application pack-
ages is a DartEngine; (10) the procedure for ordering the
execution of the various processing units embodied in the
framework is a Dart Linear Tasking; and (11) the procedure
for ordering the execution of the various processing units
embodied in the framework is a Dart Linear Tasking.

In another embodiment (23), the invention provides the
method of (19), wherein the intelligently spreading code,
data and content to one or more other devices as needed
comprises recruitment and/or renditioning.

In another embodiment (24), the invention provides the
method of (23), wherein the recruitment comprises Dart-
Recruitment and the renditioning comprises DartRendition-
ing.

In another embodiment (25), the invention provides the
method of (19), wherein the serializing and synchronizing
the activities of the code and data once distributed across one
or more devices is performed by recruitment.

In another embodiment (26), the invention provides the
method of (25), wherein the recruitment comprises Dart-
Recruitment.

In another embodiment (27), the invention provides the
method of (20), wherein the method for application level
error recovery is as described elsewhere in this specification.

In another embodiment (28), the invention provides the
method of (20), wherein the method for application level
power management is as described elsewhere in this speci-
fication.

In another embodiment (29), the invention provides the
method of (20), wherein the method for tightly coupling
execution units is as described in the Vertical Layering
description elsewhere in this specification.

In another embodiment (30), the invention provides the
method of (20), wherein the method for ordering and man-
aging event driven execution is as described in the recruit-
ment runtime description elsewhere in this specification or is
DartRecruitment.

In another embodiment (31), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner to
provide an interoperability runtime system to carry out the
execution of an event driven application package of digitally
encoded data, code and/or content, along with meta infor-
mation in the form of data, code and/or content needed to

US 9,436,525 B2

67

carry out an intended purpose on one or more connected or
intermittently connected devices, the program module
including instructions for: (a) selecting and loading a sepa-
rately executable image from a given package of indepen-
dently executable images; (b) recruiting devices into a team
by the executing image; (c¢) distributing at least one of code,
renditions, data, and/or content amongst the team of
recruited devices; (d) processing in an orderly manner of
synchronous and asynchronous events to carry out the
intent; (e) synchronization and serializing event processing
within and between devices of the recruited team of devices;
and (f) saving of running packages of individually execut-
able images including saving data and state in a storage.

In another embodiment (32), the invention provides an
interoperability runtime system for carrying out the execu-
tion of an event driven software application package of
digitally encoded data, code and/or content, optionally along
with meta information in the form of data, code and/or
content needed to carry out an intended purpose (intent) on
one or more connected or intermittently connected devices,
the system comprising: (a) a processor and a memory
coupled with the processor; (b) means, accessible by the
processor, for selecting and loading a separately executable
image from a given package of independently executable
images; (c) means, accessible by the processor, for recruiting
devices into a team by the executing image; (d) means,
accessible by the processor, for distributing at least one of
code, renditions, data, and/or content amongst the team of
recruited devices; (¢) means, accessible by the processor, for
processing in an orderly manner of synchronous and asyn-
chronous events to carry out the intent; (f) means, accessible
by the processor, for synchronization and serializing event
processing within and between devices of the recruited team
of devices; and (g) means, accessible by the processor, for
saving of running packages of individually executable
images including saving data and state in a storage.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

IX. Linear Tasking

In another aspect of the invention, system, apparatus,
method and computer program for linear tasking are pro-
vided. Linear Tasking includes a methodology that enables
a simple deterministic flow of processor control and device
resources between processing units. Processing units can
easily be reconfigured into a single hierarchy which includes
processing units compiled into an application, separately
compiled applications, and even applications running on
other devices.

Conventional software eco-systems, especially conven-
tional operating systems, are built using either a cooperative
tasking model or a pre-emptive tasking model. While there
are advantages to these conventional tasking models for
some devices which run applications which require com-
puter response times in the milliseconds or even microsec-
onds, these advantages are outweighed by the benefits of a
Linear Tasking model for the most common types of interop-
erability applications where most often response time
requirements are often under 30 milliseconds. Many of the
applications and tasks will only require response times of

20

25

30

35

40

45

50

55

60

65

68

tenths of seconds, and even to response times on the order
of a second to several seconds.

The advantages of a Linear Tasking model are especially
well suited to interoperability applications because most
such applications are intended for individual users. Here the
run-time penalty for having to pass control to each process-
ing unit is not important, as human response time needs are
generally limited to a thirtieth of a second or longer.

Although there are many advantages of the inventive
linear tasking model and method, only a few are set forth
here while others will be apparent from the further descrip-
tion in this specification.

A first advantage is a deterministic or near-deterministic
path for the order of processing of all the processing units of
all the teamed devices leads to a simpler programming
model and greatly reduced bugs due to limiting the order in
which operations are performed to a well controlled pattern.

Second, all processing units are able to complete complex
sequences of operations without the possibility of being
interrupted in time or being effected by the actions of
interrupting processes.

Third, there is easy support for controlled shutdowns,
controlled hibernation and recovery and advantageous Ver-
tical Layering mechanisms, that may for example be used
for such applications as power management.

Fourth, arranging and rearranging the hierarchy is at least
one easy way for enabling and disabling groups of process-
ing units as the modes of operation or interaction with the
user changes

Fifth, environments can be inherited, changed or distorted
by parent processing units in a manner where the children do
not need to contain code which knows how their parents are
using their outputs, such as bitmaps, or controlling their
environment, such as their sense of time.

Sixth, separately produced executables can be easily
assimilated into the processing hierarchy of a running
executable. In the DartPlatform, this feature allows Darts to
assimilate other Darts into its runtime during use. For
example, a slide show (SlideShow) Dart application
described earlier can readily be built which can collect and
contain separately produced Darts as slides, just as easily as
it can collect still JPEG pictures as slides. The JPEG picture
would be contained by a still picture display Gizmo (Gizmo
is the base calls for event processing units) while a Dart
would be contained by a Dart container Gizmo.

In one embodiment, Linear Tasking is advantageously
embodied throughout the implementation of the Dart plat-
form (DartPlatform FIG. 3) from the Dart framework (Dart-
Framework, FIG. 11, to the Dart runtime (DartRuntime FIG.
9, F1G. 16, FIG. 17), to the Dart engine (DartEngine FIG. 22
600) and instructions in the Dart instruction set (Dartln-
structionSet FIG. 20, FIG. 25). Other embodiments may use
Linear Tasking in conjunction with alternative implementa-
tions with the benefit of complete Dart infrastructure.

In one embodiment, the inventive linear tasking provides
a method for deterministically ordering the execution and
runtime environments of a plurality of processing units of
software application programs. A software or firmware pro-
gram event driven run-time model provides or creates an
environment where all processing units are executed in a
predefined order based on the linkage between the process-
ing units. A software object oriented framework, the Dart-
Framework (FIG. 11), is provided wherein there is a base
processing unit class (Gizmo in FIG. 11 115) containing at
least one of and possibly all of the following object members
(FIG. 11 115) in any combination:

US 9,436,525 B2

69

(a) a possibly null reference to a parent processing unit;

(b) a possibly empty ordered linear list of references to a

child processing units;

(c) optional binary flags corresponding to classes of event

types that are to be acted upon by this processing unit;

(c) optional binary flags corresponding to the classes of

event types that are to be acted upon by any of the child
processing units descending down the chain of parent
and child processing until there are no more children;

(d) procedural methods for adding, deleting, or reordering

the references to the parent and child processing units;
and

(e) a procedural method for ordering the processing of

events.

In at least one embodiment, the procedural method for
ordering the processing of events includes the following
steps (see FIG. 15):

(1) Perform any pre-children processing of the event
needed based on the event type, its values and references the
tasks of the processing unit and the current run-time envi-
ronment as specified by the event, the parent and the state of
the device (see FIG. 15 8004);

(2) Set the optional flags corresponding to the classes of
event types that are to be acted upon by the child processing
unit chain to indicate that no event types are to be acted
upon;

(3) Set up any environment changes needed for each
child’s processing, and call each child in the order of the list
of references to child processing units (see FIG. 15 8005);

(4) As each call returns logically OR the binary flags of
processing types needed to be processed by each of the just
called child to collect the combined event processing type
based needs of all the children and their decedents;

(5) Perform any post-children processing of the event
based on the event type its values and references the tasks of
the processing unit and the current run-time environment as
specified by the event, the parent and the state of the device
(see FIG. 15 8004);

(6) Set the flags of event types that are now to be handled
by this processing unit in the future;

(7) Return control to the parent processing unit if the
reference is non-null (see FIG. 15 8006); and

(8) Return control to the main processing loop if the
parent is null FIG. 15 8008.

The collected binary flags can optionally be used for
pruning of the graph of calls since the flags can be used to
indicate which event types are not needed for processing by
each child and their all its descendents. If the child’s or’ed
flag value corresponding to the event type classification the
flag is associated with is not 1 then the child and its
descendents have no need to process the event.

Other exemplary embodiments of linear tasking are now
described. In one embodiment (1), the invention provides a
method of linear tasking for ordering and managing event
driven execution and runtime environments of a plurality of
event processing units of a software application package, the
method comprising: providing a software object oriented
framework which includes a base event processing unit
class, and zero or more event processing unit classes which
inherit either directly or indirectly from the base event
processing unit class; creating, maintaining, adding, deleting
or reordering links that form a graph or topology of event
processing units in a manner that ensures that there is always
a single linear deterministic ordering for passing events
through the graph of processing units formed by the links;
and dynamically changing the graph or topology of process-
ing units according to the needs of the running application.

20

25

30

35

40

45

50

55

60

65

70

In another embodiment (2), the invention provides the
method of linear tasking (1), wherein the graph is logically
extended to include the graphs of separately generated
application packages statically by reference within one or
more application packages or applications packages that are
themselves part of one or more other application packages.

In another embodiment (3), the invention provides the
method of (1), wherein the graph is logically extended to
include the graphs of separately generated application pack-
ages dynamically during the running of the application
package.

In another embodiment (4), the invention provides the
method of (2), wherein the event processing unit at a
topmost node of the separately generated application pack-
age’s graph determines by way of the parameters passed into
a event processing method if it is logically a part of an
extended graph or actually the start of a topmost application
package that is not extended by any other application
package.

In another embodiment (5), the invention provides the
method of (3), wherein the event processing unit at a
topmost node of the separately generated application pack-
age’s graph determines by way of the parameters passed into
a event processing method if it is logically a part of an
extended graph or actually the start of a topmost application
package that is not extended by any other application
package.

In another embodiment (6), the invention provides the
method of (4), wherein if and only if the parameters do not
specify an event to process, the topmost node will explicitly
attempt to retrieve an event from a queue of events for
processing by itself and any other event processing units in
the linear order of the graph.

In another embodiment (7), the invention provides the
method of (5), wherein if and only if the parameters do not
specify an event to process, the topmost node will explicitly
attempt to retrieve an event from a queue of events for
processing by itself and any other event processing units in
the linear order of the graph.

In another embodiment (8), the invention provides the
method of (3), wherein a container event processing unit
class is used to instantiate objects to load, link, unload, and
manage the environment of separately generated application
packages so that their event processing units become a
logical extension of the graph.

In another embodiment (9), the invention provides a
method as in (1), wherein the event processing unit base
class comprises at least one of the following class object
members: (1) a possibly null reference to a parent processing
unit; (2) a possibly empty ordered linear list of references to
child processing units; (3) one or more optional binary
flag(s) corresponding to classifications of event types that
are to be acted upon by the processing unit itself), wherein
the flags are used to eliminate unnecessary passing of events
down to children or their descendants that will not process
any events of a particular class; (4) one or more child
optional binary flag(s) corresponding to the classes of event
types that are to be acted upon by any of the child processing
units descending down a chain of parent processing and
child processing until there are no more children or child
processing units; (5) a procedure for adding, deleting, modi-
fying, and/or reordering a reference to at least one of the
parent and child processing units; and (6) a procedure for
ordering the processing of events.

In another embodiment (10), the invention provides a
method as in (9), wherein the event processing unit class

US 9,436,525 B2

71

comprises at least one processing unit class object member
for ordering the processing of events.

In another embodiment (11) the invention provides the
method in (10), wherein the procedure for ordering the
processing of events is performed according to the following
steps: (1) optionally perform any pre-children processing of
the event needed; (2) initially set (or reset) optional child
binary flags maintained to track the combined event pro-
cessing needs of all the children event processing units
needs along with the needs of all their dependents (chil-
dren)), where each optional child flag is a single bit corre-
sponding to exactly one classification of event types, to
initially indicate that no events of any of the classifications
are to be acted upon by children or their decedents; (3) set
up any environment changes needed for each child process-
ing and call each child event processing unit in the order of
the list of children; (4) as each call to a child returns,
logically OR the optional child binary flags of processing
types needed to be processed by each of the just called child
to collect the combined event processing type based needs of
all the children and their decedents; (5) optionally perform
any post-children processing of the event; (6) set the binary
flags of event type classifications that are now to be handled
by this event processing unit in the future; (7) return control
to a parent processing unit if the parent reference is a first
state (non-null state); and (8) return control to a main
processing loop which logically called this processing unit if
the parent reference is a second state (null state).

In another embodiment (12), the invention provides a
method as in (11), wherein the optional pre-children and or
post-children processing of the event is based on at least one
of: (i) the event type; (ii) the events fields, parameters and/or
associated file contents values, and/or those on any list of
referenced child processing units to the tasks of the process-
ing unit; and (iii) the current run-time environment as
specified by the event, the parent, and or the state of the
device.

In another embodiment (13), the invention provides a
method as in (11), wherein the set up of any environmental
changes needed may optionally include at least one of
providing a bitmap as a virtual screen, distorting the child’s
sense of time, distorting the coordinates of a mouse click to
conform to the different size, translation or angle of orien-
tation the parent is displaying of the image or bitmap the
child gizmo is rendering into.

In another embodiment (14), the invention provides a
method as in (11), wherein managing the links is used to
flexibly and dynamically mix and match event processing
units in a manner where changes in functionality are easily
made by creating and maintaining the ordered graph.

In another embodiment (15), the invention provides a
method as in (11), wherein where the environment for linked
processing units can be controlled by a parent processing
unit to provide advanced functionality without the need for
the child processing units to understand how their environ-
ments are being virtualized by parent processing units.

In another embodiment (16), the invention provides a
method as in (11), wherein the deterministic flow of pro-
cessing makes for a robust system because the order of event
processing is more tightly controlled and more easily tested
than they would be in non-deterministic asynchronous event
processing runtimes.

In another embodiment (17), the invention provides a
method as in (11), wherein processing units compiled into
one Dart can proxy for separately compiled and generated

20

25

30

35

40

45

50

55

60

65

72

Darts that can dynamically be added to the Linear Tasking
graph and then function as if they were part of the originally
generated Dart.

In another embodiment (18), the invention provides a
method as in (17), wherein separately generated Darts can be
saved automatically as parts of parent Darts as the result of
a SAVE_INSTRUCTION or SAVE_BUILTIN_INSTRUC-
TION.

In another embodiment (19), the invention provides a
method as in (1), wherein one or more or any combination
of the following are true: (i) the runtime is the DartRuntime;
(i1) the software object oriented framework is the Dart-
Framework; (iii) the base event processing units are Dart
Gizmos; (iv) the event processing unit classes which inherit
either directly or indirectly from the base event processing
unit class includes either the Dart Rendition class and/or the
Dart MasterRendition class.

In another embodiment (20), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner for
ordering and managing event driven execution and runtime
environments of a plurality of event processing units of a
software application package, the program module including
instructions for: generating or providing a software object
oriented framework which includes a base event processing
unit class, and zero or more event processing unit classes
which inherit either directly or indirectly from the base event
processing unit class; creating, maintaining, adding, deleting
or reordering links that form a graph or topology of event
processing units in a manner that ensures that there is always
a single linear deterministic ordering for passing events
through the graph of processing units formed by the links;
and dynamically changing the graph or topology of process-
ing units according to the needs of the running application.

In another embodiment (21), the invention provides a
computer program product as in (20), wherein the event
processing unit base class comprises at least one of the
following class object members: a possibly null reference to
a parent processing unit; a possibly empty ordered linear list
of references to child processing units; one or more optional
binary flag(s) corresponding to classifications of event types
that are to be acted upon by the processing unit itself),
wherein the flags are used to eliminate unnecessary passing
of events down to children or their descendants that will not
process any events of a particular class; one or more child
optional binary flag(s) corresponding to the classes of event
types that are to be acted upon by any of the child processing
units descending down a chain of parent processing and
child processing until there are no more children or child
processing units; a procedure for adding, deleting, modify-
ing, and/or reordering a reference to at least one of the parent
and child processing units; and a procedure for ordering the
processing of events.

In another embodiment (22), the invention provides an
apparatus providing ordering and managing of event driven
execution and runtime environments of a plurality of event
processing units, the apparatus comprising: a processing
logic or processor and a memory coupled with the process-
ing logic or processor; means, accessible to the processing
logic or processor, for generating or providing a software
object oriented framework which includes a base event
processing unit class, and zero or more event processing unit

US 9,436,525 B2

73

classes which inherit either directly or indirectly from the
base event processing unit class; means, accessible to the
processing logic or processor, for creating, maintaining,
adding, deleting or reordering links that form a graph or
topology of event processing units in a manner that ensures
that there is always a single linear deterministic ordering for
passing events through the graph of processing units formed
by the links; and means, accessible to the processing logic
or processor, dynamically changing the graph or topology of
processing units according to the needs of the running
application.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

X. Vertical Layering

In another aspect of the invention, system, apparatus,
method and computer program for vertical layering are
provided. Vertical Layering includes enabling efficient and
effective implementation of features which by their nature
involve close cooperation amongst the tool, application,
framework, engine, Rendition and instruction-set implemen-
tation, and operations.

In conventional software eco-systems or environments,
the native instruction set of the processor is abstracted in a
number of horizontal layers which often include a Basic
Input-Output System (BIOS), an operating system, a graph-
ics subsystem, an application framework, and finally an
application. In each case there is a nearly complete abstrac-
tion of what the layer is to do, implemented in the abstrac-
tion of the layer below. This mapping from abstraction layer
to abstraction layer conventionally requires a great deal of
computer program code and obscures much of the informa-
tion in one layer from those layers above and below them.
A widely known and used example is the seven layers of the
OSI model which are Physical, Data Link, Network, Trans-
port, Session, Presentation, and finally Application.

While building devices and operating software in stan-
dardized abstraction layers can be very useful in allowing
code to be developed independently from different entities,
and still work together on general purpose computers; there
are problems which render the use of many abstractions
levels especially undesirable when dealing with device
interoperability.

One problem of conventional horizontal layering of
abstraction layers as in the OSI model, is that the complexity
of the specifications leads almost inevitably to imperfect
implementations which can interact with other perfect or
imperfect implementation to produce a wide array of errors
when operating in cooperation with other layers or imple-
mentations of the same layer. While the interactions of the
layers residing on a single computer are easily tested
together and incompatibilities removed before distribution,
the testing of layers and corrections of incompatibilities
found on devices which must work with a large number of
permutations of layers on other devices found in the field is
very difficult. Still more difficult is the task where differing
horizontal layer implementations must cooperate across
ad-hoc teams of devices where the functions, resources,
operating systems, CPUs or other processors or processing
logic are all potentially different.

20

25

30

35

40

45

50

55

60

65

74

It would be rare for independently implemented layers to
work the first time they were tested together on a single
device, but through repeated testing and fixing of incom-
patibilities the layers of originally independently developed
modules can be made to work reliably together on a single
computer. The same repeated testing and fixing of incom-
patibilities is not easily realizable for the potentially large
number of permutations of devices and layer implementa-
tions which may need to interoperate. The result is that many
incompatibilities are not found until the devices using the
separate implementations are in widespread use.

Another problem with the traditional horizontal layering
of abstraction levels is that all interactions of all abstraction
layers must be known and understood by the time the
standard is to be implemented in products to ensure that all
necessary interactions of layers can be passed through all
intervening layers. An example, as will be explained further
below, is the optional but very advantageous need for an
application to interact with the hardware to carry out effi-
cient power management. Current horizontally layered pro-
tocol specification standards lack any support for the appli-
cation to communicate its response time requirements
through all the intervening layers to the hardware. While
there are many power management implementations on
devices, these implementations are most often highly device
specific implementations that bypass or corrupt the standard
implementation of the layers, and use heuristics based on
patterns of hardware access at the lower levels in place of the
actual response time needs knowable only to the software
running at the higher application levels.

Alternatively to the conventional horizontal layering in
the current state of the art, is the inventive Vertical Layering,
which can be advantageously employed if the programming
tools, applications, players, runtime, operating system, and/
or low-level functions, can share data structures and com-
munications semantics throughout.

In one implementation embodiment, Vertical Layering in
optionally but advantageously embodied throughout the
implementation of the DartPlatform (FIG. 3). Two examples
of where Vertical Layering is advantageously employed in
the DartPlatform, are power management and application
level error recovery (FIG. 19).

For example, power management functions are most often
implemented in conventional devices using heuristics based
on input or output activities detected at the lowest levels;
yet, only the application itself really knows if it requires
control to return to its processing to decode the next frame
of a video in Y30 second, or there will be no requirement for
further processing until the user does something.

In one advantageous embodiment of the invention, the
dart platform (DartPlatform) collects the processor response
requirements as the Dart runtime (DartRuntime) makes each
pass though a single hierarchy Linear Tasking of event
processing units called Gizmos (FIG. 11, FIG. 15). After
each pass through the intra-device parts of the DartRuntime
(FIG. 15), whenever a Dart is built using the Dart framework
(DartFramework) hierarchy of Gizmo based processing
units (FIG. 11), the DartPlatform combines the minimum
synchronous Gizmo tree response time requirements (FIG.
15 8010) with the asynchronous event time requirements in
the event queue (EventQueue FIG. 22 660) of the device
engine (DartEngine FIG. 22 600) to determine an accurate
and reliable amount of time that the device can power down
or reduce power levels or consumption for before returning
control to the DartPlayer. Methods of power management,
such as reduction in a processor logic clock, reducing logic
or power supply voltage levels, or powering down portions

US 9,436,525 B2

75

of a larger circuit, are known in the art. Consider for
example, an interoperability slide show Dart application
described herein before. This application running on an
originating device can form a team of say five devices
through Recruitment where each device in the team displays
the same slide as the originating application, albeit option-
ally scaled or otherwise adapted for efficient transmission
and display on each connection and each device. What
happens if a device with a wireless connection goes out of
range, or a portable device shuts down automatically to save
battery life. In a conventional implementation only the slide
show (SlideShow) application knows how to recover should
this device suddenly move back in range or get turned back
on (see example of FIG. 19). It would require a great deal of
programming at all levels of a conventional horizontally
layered device to be able to seamlessly recover, especially
where a non-originating device has powered off and lost the
entire slide show data and state. This is because conven-
tional software eco-systems do not built into the horizontal
abstractions the semantics necessary for all levels from the
low-level routines that detect the lost connections to the
application. Without a direct mechanism for information to
flow from the application to the low-level communications
system and back it is difficult for an application to be written
to automatically resend the data and state information to the
connection recovered device.

With the Vertical Layering employed in the DartPlatform,
reseeding application data and procedures to recover an
application over a team of devices when connections are lost
is built into the application through the DartFramework, the
DartRuntime, and the DartEngine. So any application built
using the DartFramework and run on a DartPlayer does not
need any special programming for robust multi-device appli-
cation and data synchronization recovery.

In one embodiment of the Dart Platform, the traditionally
low-level operations (such as for example, communications)
interoperate directly with the traditionally high-level opera-
tions (such as for example, the application) directly by
passing DartEvents directly between the Dart application
that is running on the DartInstructionSet and the native code
that is handing communications.

The DartTools (FIG. 3 200, FIG. 12 200), Dartlnstruc-
tionSet, DartRuntime (FIG. 9, FIG. 15, FIG. 16, FIG. 17)
and Linear Tasking (FIG. 18) are all designed to provide an
environment largely devoid of layers of abstraction where
the applications form and process DartEvents with the exact
same (or substantially the same) structure and semantics as
the communications functions inside the DartEngine. Thus,
applications can easily and effectively collect, synchronize
and communicate all its needs and status with all other
software operations that are part of the DartPlatform through
the passing and processing of Events understood by most all
components of an interoperating system at every level,
whether these components are part of an application, the
engine executing the application, or interoperating parts of
an application distributed throughout a team of devices.

In one embodiment, the vertical layers provides for a
system, method, and computer program for closely coupling
the operations of software applications and the device con-
trol software to foster a high-level of cooperative function-
ality between the application and the device control software
with low-complexity, low-processing requirements, few
application program interfaces, and few protocol interfaces.
It also provides a software run-time model which is largely
event driven for all software operations whether application
or device control related; as well as a set of event semantics,
types, structures and operations on events common to the

20

25

30

35

40

45

50

55

60

65

76

applications and the low-level device control software. An
event queue which drives the sequencing of synchronous
application event processing and asynchronous application,
device, communications and interoperability operations, are
also provided. The vertical layering approach also provides
an instruction set or system calls which are used to manage
the queuing, dequeuing and processing of events. An
optional robust device interoperability communications run-
time model may also be provided, where communications
between devices is maintained, error corrected, and when
necessary reestablished with cooperation, but a with a small
amount of disruption to applications running effectively
across a team of interoperating devices. A system for Seri-
alization and Synchronization of Events passing through a
cooperative team of devices is beneficially applied to keep
all components of an interoperable system of asynchronous
operations tightly coupled, and therefore reliable, simple to
implement, efficient and simple to use.

In another embodiment, the invention provides a method,
computer program software, device and system for directly
coupling the operations of software applications and the
device control software operations on a device or set of
communicating devices to foster a highly efficient and
flexible degree of cooperative functionality between soft-
ware operations, whether on one device or across one or
more cooperating devices. This may include source code and
resources, software tools, a prepackaged or pre-specified
software framework or library, an event driven runtime, and
an instruction set or set of system calls to manage a queue
of'events on each device. In at least one embodiment exactly
one queue of events is managed on each device for this
purpose.

The application may be a Dart, and the device control
software may be a DartEngine or DartPlayer. In some
embodiments the set of devices is or includes a team set up
using Recruitment as described herein or via a different
method for recruiting a team of devices. In one embodiment,
the software framework is the DartFramework. In one
embodiment the event driven runtime is the DartRuntime. In
one embodiment the source code and resources are the
DartSource source code and the software tools are the
DartTools. In one embodiment, the instruction set and
system calls are provided by the DartlnstructionSet and/or
the functions that can be invoked as part of built-in instruc-
tion type instructions, such as for example the Dart BUIL-
TIN_INSTRUCTION (FIG. 20 670, 671, 672, 673) and/or
the OEM_BUILTIN_INSTRUCTION. (FIG. 20, 674, 680,
681, 682).

In at least one embodiment, the efficiency is achieved at
least in part by having a single data structure with commonly
understood semantics used to communicate information
and/or content and/or status amongst the system of devices
(FIG. 17 800), applications, and communications code.

In at least one embodiment, events such as for example,
DartEvents (FIG. 17 800), are used as the single data
structure.

In at least one embodiment, the device control software
operations includes communications, device configuration
management, device discovery, managing allocation, de-
allocation and access to memory, physical storage, physical
displays physical input/output devices or any other physical
or software virtualized physical aspect of a device.

In one embodiment, software tools take the software
source code and resources written to use the pre-specified
software framework which will ensure conformance to the
event driven execution model of the runtime supported by

US 9,436,525 B2

77

access to the instruction set or set of system calls which are
used to manage the enqueuing, processing and dequeuing of
events.

In at least one embodiment, the event processing of the
application is as expressed and described for FIG. 15, FIG.
9, FIG. 16, FIG. 17. In at least one embodiment, the events
put onto the queues of devices are serialized and synchro-
nized. The serialization and synchronization are performed
according to the serialization and synchronization method
shown in FIG. 9.

Particular exemplary embodiments involving an aspect of
vertical layering are now described. In one embodiment (1),
the invention provides an event driven vertical layering
system for coordinating the operations of and data move-
ment between procedural (software) components which per-
form application level operations, device hardware control
level operations, communications level operations, or any
other level or subset of operations within or between one or
more teamed devices to establish an efficient and/or robust
cooperative functionality between the procedural (software)
components, the system comprising: (a) a static event data
structure whose fields and field semantics are generally
known and understood between all the event generating and
processing units across one or more devices and the proce-
dural (software) components running in the one or more
devices; (b) a queue on each teamed device which stores,
removes, manages, and controls access to the event data
structure instances; (c) means for managing the placing,
modification, and removing of events on the queue acces-
sible from all the cooperating procedural (software) com-
ponents; (d) means for specifying and maintaining a com-
mon list of event types which are to be serialized and
synchronized between the queues of the cooperating
devices; and (e) means for ensuring that all the events of any
of the types on the common list are processed by the
procedural (software) components in the exact same order
on all devices regardless of what procedural (software)
components initiated the events, or which of the teamed
devices the procedural (software) components that initiated
the events are running on.

In another embodiment (2), the invention provides the
system of (1), wherein the queue on each teamed device
which stores, removes, manages, and controls access to the
event data structure instances consists of exactly one queue
on each teamed device.

In another embodiment (3), the invention provides the
system of (1), wherein the means for managing the placing,
modification, and removing of events on the queue acces-
sible from all the cooperating procedural (software) com-
ponents comprises a procedure implemented as a computer
program including a plurality of program instructions
executing in a processor logic of the interoperating devices.

In another embodiment (4), the invention provides the
system of (1), wherein the means for specifying and main-
taining a common list of event types which are to be
serialized and synchronized between the queues of the
cooperating devices comprises a procedure implemented as
a computer program including a plurality of program
instructions executing in a processor logic of the interoper-
ating devices.

In another embodiment (5), the invention provides the
system of (1), wherein the means for ensuring that all the
events of any of the types on the common list are processed
by the procedural (software) components in the exact same
order on all devices regardless of what procedural (software)
components initiated the events, or which of the teamed
devices the procedural (software) components that initiated

20

25

30

35

40

45

55

60

78

the events are running on comprises a procedure imple-
mented as a computer program including a plurality of
program instructions executing in a processor logic of the
interoperating devices.

In another embodiment (6), the invention provides the
system of (1), wherein one or more or any combination of
the following are true: (1) the static event data structure is
the DartEvent; (2) the teamed devices where assembled for
cooperation through the used of device recruitment; (3) the
methods for managing the placing, modification and remov-
ing of events are accessed through the use of an Interoper-
ability Instruction Set or the DartlnstructionSet; (4) the
system carries out its event driven functionality at least in
part through the Interoperability Runtime or the DartRun-
time; (5) the methods for specifying the common list and
ensuring that all events of any of the types on the common
list are processed in the same order are as described for
serialization and synchronization of events on Recruitment;
and (6) the Interoperability Tools or the DartTools are used
to generate the software application operations code of the
system.

In another embodiment (7), the invention provides the
system of (1), wherein coordinating the operations is a
means for directly coupling the operations of the procedural
(software) components without the need for any intermedi-
ating layers of software, application program interface
(API), or other semantics translating means or mechanism.

In another embodiment (8), the invention provides the
system of (7), wherein the intermediating layers of software,
API, or other semantics translating means or mechanism
which are not needed as intermediating layers includes any
of the seven horizontal layers of the conventional OSI
Protocol model, or combinations thereof.

In another embodiment (9), the invention provides a
system as in (1), wherein at least a component of the
efficiency is achieved by having a single data structure with
commonly understood semantics used to communicate and
transport information and/or content and/or status amongst
the devices and procedural (software) components.

In another embodiment (10), the invention provides a
system as in (7), wherein at least a component of the
efficiency is achieved by having no intermediating layers of
software which needs to process the communication or
transport.

In another embodiment (11), the invention provides a
system as in (7), wherein at least a component of the
robustness is achieved by having no intermediating layers of
software where problems or incompatibilities or misunder-
standings of implementation may otherwise occur.

In another embodiment (12), the invention provides a
system as in (1), wherein application level operations
optionally include one or more or any combination of the
following: (1) application directed power management; (2)
application directed error recovery; (3) application directed
Interfacing and or any interactively with a human or auto-
mated user; (4) application directed media rendering or
editing; and (5) application directed data processing.

In another embodiment (13), the invention provides a
system as in (12), wherein application directed means that
the initiation and or carrying out of operations is performed
at least in part by the processing instructions generated by
traditional compilers and linkers.

In another embodiment (14), the invention provides a
system as in (12), wherein application directed means that
the initiation and or carrying out of operations is performed
at least in part by the processing instructions of an interop-

US 9,436,525 B2

79

erability instruction set generated by one or more Interop-
erability Tools or by one or more DartTools.

In another embodiment (15), the invention provides a
system as in (12), wherein the application conforms to the
Interoperability Format or the DartFormat.

In another embodiment (16), the invention provides a
system as in (1), wherein device hardware control level
operations optionally includes or is selected as one or more
of'the following operations: (1) accessing one or more in any
combination of memory, hard disk drive storage, displays,
power regulation, device power-up, and device shutdown;
(2) compression/decompression circuits or processors, or
input and output circuits of any type; (3) setting or reading
hardware operating modes or any other information physi-
cally stored digitally or in an analog fashion; (4) accessing
random numbers or other forms of entropy for use in
simulations or cryptographic and or security operations; (5)
managing device configuration; (6) discovering devices and/
or services; and (7) managing allocation and/or deallocation
and or access to memory, physical storage, physical displays
physical input/output devices, or any other physical or
software virtualized physical aspect of a device, and any
combinations of these.

In another embodiment (17), the invention provides a
system as in (1), wherein communications level operations
optionally includes or is selected as any one or more of the
following in any combination: (1) sending and or receiving
of data, and or code and or content; (2) sending and or
receiving of meta data about data, and/or code and/or
content to be sent or received; (3) device and/or service
discovery; (4) broadcasting of data and/or code and/or
content; (5) transmission error detection and or correction;
(6) establishing and or maintaining channels between
devices; (7) establishing and or maintaining separate logical
sessions on a single and or multiple channels; (8) managing
any of the following: (a) bridging protocols; (b) extending
the reach of communications mechanisms; (c) acting as a
proxy for a device; and (d) providing a gateway for passing
information through or from different physical media or
protocols.

In another embodiment (18), the invention provides a
system as in (1), wherein an Interoperability Engine or a
DartEngine or a DartPlayer or any combination of these is
used at least in part to embody the system.

In another embodiment (19), the invention provides a
system as in (1), further comprising software tools adapted
for operating on software source code and resources written
to use a particular software framework which will ensure
conformance to the event driven execution model of the
runtime supported by access to an instruction set or to a set
of system calls which are used to manage the enqueuing,
processing, and dequeuing of events.

In another embodiment (20), the invention provides a
system as in (19), wherein one or more of the following in
any combination are true: (1) the software tools comprise the
Interoperability Tools or the DartTools; (2) the software
framework comprises the Interoperability Framework or the
DartFramework; (3) the event driven execution model com-
prises the Interoperability Runtime or the DartRuntime; and
(4) the instruction set or set of system calls comprises the
Interoperability Instruction Set or the DartlnstructionSet.

In another embodiment (21), the invention provides an
event driven vertical layering method for coordinating the
operations of and data movement between procedural com-
ponents within or between one or more teamed devices, the
method comprising: (a) defining or generating a static event
data structure whose fields and field semantics are generally

20

25

30

35

40

45

50

55

60

65

80

known and understood between all the event generating and
processing units across one or more devices and the proce-
dural (software) components running in the one or more
devices; (b) defining or generating a queue on each teamed
device which stores, removes, manages, and controls access
to the event data structure instances; (c) managing the
placing, modification, and removing of events on the queue
accessible from all the cooperating procedural (software)
components; (d) specifying and maintaining a common list
of event types which are to be serialized and synchronized
between the queues of the cooperating devices; and (e)
ensuring that all the events of any of the types on the
common list are processed by the procedural components in
the exact same order on all devices regardless of what
procedural components initiated the events, or which of the
teamed devices the procedural components that initiated the
events are running on.

In another embodiment (22), the invention provides an
event driven vertical layering method as in (21), wherein the
procedural components perform application level opera-
tions, device hardware control level operations, communi-
cations level operations, or any other level or subset of
operations within or between one or more teamed devices to
establish an efficient and/or robust cooperative functionality
between the procedural components.

In another embodiment (23), the invention provides an
event driven vertical layering method as in (21), wherein the
procedural components are implemented as computer pro-
gram code software.

In another embodiment (24), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner for
coordinating the operations of and data movement between
procedural components within or between one or more
teamed devices, the program module including instructions
for: (a) defining or generating a static event data structure
whose fields and field semantics are generally known and
understood between all the event generating and processing
units across one or more devices and the procedural (soft-
ware) components running in the one or more devices; (b)
defining or generating a queue on each teamed device which
stores, removes, manages, and controls access to the event
data structure instances; (¢) managing the placing, modifi-
cation, and removing of events on the queue accessible from
all the cooperating procedural (software) components; (d)
specifying and maintaining a common list of event types
which are to be serialized and synchronized between the
queues of the cooperating devices; and (e) ensuring that all
the events of any of the types on the common list are
processed by the procedural components in the exact same
order on all devices regardless of what procedural compo-
nents initiated the events, or which of the teamed devices the
procedural components that initiated the events are running
on.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

US 9,436,525 B2

81

XI. Application Event Driven Power Management

Recall that Dart applications built using LinearTasking
and or VerticalLayering as embodied at least partially in the
DartFramework, always keep track of their exact response
time needs so that efficient power management techniques
such as slowing down the processor can extend the lifetime
of batteries, limit the amount of energy consumed or limit
the amount of heat generated on devices. In the current state
of the art most applications do not keep track of their
response time needs, and if they did would not be able to
communicate these needs through existing layers of proto-
cols which conform to specifications that do not include
interfaces for communicating response time needs to the
hardware of the device from the application.

Particular embodiments of application event driven power
management are now described. Additional embodiments
are set forth in the examples. In one embodiment (1), the
invention provides a method for device energy and power
management and energy and power consumption reduction
comprising: establishing an event driven runtime environ-
ment within at least one device for which the energy and
power management and consumption reduction is to be
achieved; generating and maintaining at least one event
queue identifying all synchronous and asynchronous pro-
cessing events and associated minimum expected processing
times for the processing events in the queue; and selecting
a final minimum estimated response time based on the
expected minimum synchronous and asynchronous event
processing times in the queue.

In another embodiment (2), the invention provides a
method as in (1), further comprising: searching through all
the events on a first asynchronous event queue that drive all
the asynchronous processing and collect the minimum time
needed before any of the asynchronous events need to be
processed; searching through all the events on a second
synchronous event queue that drive all the synchronous
processing and collect the minimum time needed before any
of the synchronous events need to be processed; and deter-
mining the final minimum response time needed by selecting
the lesser of the minimum time needed for the asynchronous
events and the minimum time needed for the synchronous
events.

In another embodiment (3), the invention provides a
method as in (2), further comprising: performing power
management or power consumption reduction tasks using
the final minimum response time value before further pro-
cessing any events.

In another embodiment (4), the invention provides a
method as in (2), wherein the first asynchronous event queue
and the second asynchronous event queue are the same
single unified event queue.

In another embodiment (5), the invention provides a
method as in (2), wherein the first asynchronous event queue
and the second asynchronous event queue are different event
queues.

In another embodiment (6), the invention provides a
method as in (3), wherein the events are DartEvents.

In another embodiment (7), the invention provides a
method as in (3), wherein both synchronous and asynchro-
nous events are maintained on a single unified queue.

In another embodiment (8), the invention provides a
method as in (7), wherein the unified queue is managed by
an Interoperability Engine as described elsewhere in this
specification or by the DartEngine.

20

25

30

35

40

45

50

55

60

65

82

In another embodiment (9), the invention provides a
method as in (3), wherein the event driven runtime is an
Interoperability Runtime or is a DartRuntime.

In another embodiment (10), the invention provides a
method as in (3), wherein the synchronous events are
queueable events which drive the synchronous processing
needed to carry out the intent of the application by getting
processed by the event processing units of an application
that is compiled and linked.

In another embodiment (11), the invention provides a
method as in (3), wherein asynchronous events are queuable
events which drive the asynchronous processing needed to
carry out the intent of an application, drive state machine
driven hardware functions, or create, maintain, or make use
of'the communications of one device with another by getting
processed by an Interoperability Engine or a DartEngine.

In another embodiment (12), the invention provides a
method as in (3), wherein the power management and/or
power consumption reduction tasks are carried out by one or
more of the following in any combination: (a) making a
native threaded operating system call to initiating the block-
ing of the current thread of execution until such time as an
external stimulus or an explicit timeout based on the final
minimum response time needs, or an implied or device
specific timeout period has expired. (b) returning control to
a calling cooperative processes which is given the time
period for which no processing by the events on the queue
or queues in needed. (¢) directly or indirectly instructing the
hardware and or processor to slow down, speed up, or shut
down its clock(s) or various hardware units. (d) directly or
indirectly instructing device hardware and/or processor and/
or logic to control the amount of voltage and or current in
one or more circuits or electrical units; and (e) any other
method wherein power use is regulated based on the final
minimum response time.

In another embodiment (13), the invention provides a
method for device power management and/or power con-
sumption reduction carried out at least in part by an event
driven runtime, the method comprising: (1) at the start of
each processing pass through an event driven application,
setting a minimum response time variable to its expected
highest-value, which expected highest-value is interpreted
by the system as a value indicating an infinite response time
need of the application event processing and any asynchro-
nous event processing driven by events already in the
runtime event queue; (2) when the first synchronous event
processing unit of an application is called, the first synchro-
nous event processing unit checking to determine if the
event reference passed into the processing unit as a param-
eter reference points to an actual event instance to be
processed; (3) if there is no event referenced, the processing
unit makes a system call directly or indirectly by way of
executing an instruction to request the next synchronous
application event that needs processing, the system call
causing the run-time to look through all the asynchronous
operations that are being driven by events on the queue, and
if there is an event to be processed, then processing contin-
ues at step 8. (4) asynchronous events on the queue which
are ready for processing cause an operation corresponding to
each asynchronous event to be executed; (5) as each asyn-
chronous event on the queue is inspected to see if it is ready
to be processed, the minimum time until the next asynchro-
nous event will be ready to be processed is gathered in the
minimum response time variable, replacing the highest wait
time value with any gathered minimum time value which is
less than the highest value; (6) when the system call returns,
a return value is tested to determine whether there is a

US 9,436,525 B2

83

synchronous application event now at the head of the queue
which needs to be processed by the application; (7) if there
is no synchronous application event at the head of the queue
which needs to be processed, then a synchronous application
processing event of a type to indicate general processing is
generated for application processing; (8) the synchronous
application event is inspected by all application event pro-
cessing units in a predefined order according to the software
run-time model; (9) any synchronous application event
processing unit that needs to continue processing after it
processes the current synchronous event will change the
minimum response time variable value to the minimum of
the minimum response time variable value and that of its
own continued, processing unit needs; (10) when the first
synchronous event processing procedure regains control, a
device specific power management function is called with
the minimum response time variable value as a parameter;
and (11) the device specific power management function
uses the value to stop, slow down, modify an operating
voltage or other parameter of the power consuming compo-
nents of the device until an externally generated stimulus
occurs or the time specified it the parameter occurs.

In another embodiment (14), the invention further includ-
ing: searching through all the events on a first asynchronous
event queue that drive all the asynchronous processing and
collect the minimum time needed before any of the asyn-
chronous events need to be processed; searching through all
the events on a second synchronous event queue that drive
all the synchronous processing and collect the minimum
time needed before any of the synchronous events need to be
processed; and determining the final minimum response
time needed by selecting the lesser of the minimum time
needed for the asynchronous events and the minimum time
needed for the synchronous events.

In another embodiment (15), the invention provides the
method of (2), further comprising: (1) at the start of each
processing pass through an event driven application, setting
a minimum response time variable to its expected highest-
value, which expected highest-value is interpreted by the
system as a value indicating an infinite response time need
of the application event processing and any asynchronous
event processing driven by events already in the runtime
event queue; (2) when the first synchronous event process-
ing unit of an application is called, the first synchronous
event processing unit checking to determine if the event
reference passed into the processing unit as a parameter
reference points to an actual event instance to be processed;
(3) if there is no event referenced, the processing unit makes
a system call directly or indirectly by way of executing an
instruction to request the next synchronous application event
that needs processing, the system call causing the run-time
to look through all the asynchronous operations that are
being driven by events on the queue, and if there is an event
to be processed, then processing continues at step 8 of the
procedure; (4) asynchronous events on the queue which are
ready for processing cause an operation corresponding to
each asynchronous event to be executed; (5) as each asyn-
chronous event on the queue is inspected to see if it is ready
to be processed, the minimum time until the next asynchro-
nous event will be ready to be processed is gathered in the
minimum response time variable, replacing the highest wait
time value with any gathered minimum time value which is
less than the highest value; (6) when the system call returns,
a return value is tested to determine whether there is a
synchronous application event now at the head of the queue
which needs to be processed by the application; (7) if there
is no synchronous application event at the head of the queue

20

25

30

35

40

45

50

55

60

65

84

which needs to be processed, then a synchronous application
processing event of a type to indicate general processing is
generated for application processing; (8) the synchronous
application event is inspected by all application event pro-
cessing units in a predefined order according to the software
run-time model; (9) any synchronous application event
processing unit that needs to continue processing after it
processes the current synchronous event will change the
minimum response time variable value to the minimum of
the minimum response time variable value and that of its
own continued processing unit needs; (10) when the first
synchronous event processing procedure regains control, a
device specific power management function is called with
the minimum response time variable value as a parameter;
and (11) the device specific power management function
uses the value to stop, slow down, modify an operating
voltage or other parameter of the power consuming compo-
nents of the device until an externally generated stimulus
occurs or the time specified it the parameter occurs.

In another embodiment (16), the invention provides the
method of (13), wherein the synchronous events are pro-
cessed by Dart Gizmo class instances or instances of classes
that inherit directly or indirectly from the Dart Gizmo class.

In another embodiment (17), the invention provides the
method of (15), wherein the synchronous events are pro-
cessed by Dart Gizmo class instances or instances of classes
that inherit directly or indirectly from the Dart Gizmo class.

In another embodiment (18), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner for
device energy and power management and energy and
power consumption reduction of the computer system or
information appliance, the program module including
instructions for: establishing an event driven runtime envi-
ronment within at least one device for which the energy and
power management and consumption reduction is to be
achieved; generating and maintaining at least one event
queue identifying all synchronous and asynchronous pro-
cessing events and associated minimum expected processing
times for the processing events in the queue; and selecting
a final minimum estimated response time based on the
expected minimum synchronous and asynchronous event
processing times in the queue.

In another embodiment (19), the invention provides a
computer program product as in (18), further comprising
instructions for: searching through all the events on a first
asynchronous event queue that drive all the asynchronous
processing and collect the minimum time needed before any
of the asynchronous events need to be processed; searching
through all the events on a second synchronous event queue
that drive all the synchronous processing and collect the
minimum time needed before any of the synchronous events
need to be processed; and determining the final minimum
response time needed by selecting the lesser of the minimum
time needed for the asynchronous events and the minimum
time needed for the synchronous events.

In another embodiment (20), the invention provides a
computer program product as in (19), further comprising
instructions for: performing power management or power
consumption reduction tasks using the final minimum
response time value before further processing any events.

US 9,436,525 B2

85

In another embodiment (21), the invention provides an
apparatus for energy and power management and energy and
power consumption reduction within at least one device, the
apparatus comprising: a logic circuit within the at least one
device utilizing energy and power to perform a logic pro-
cessing operation; means for establishing an event driven
runtime environment within at the least one device for which
the energy and power management and consumption reduc-
tion is to be achieved; means for generating and maintaining
at least one event queue identifying all synchronous and
asynchronous processing events and associated minimum
expected processing times for the processing events in the
queue; means for selecting a final minimum estimated
response time based on the expected minimum synchronous
and asynchronous event processing times in the queue; and
means for searching through all the events on a first asyn-
chronous event queue that drive all the asynchronous pro-
cessing and collect the minimum time needed before any of
the asynchronous events need to be processed; means for
searching through all the events on a second synchronous
event queue that drive all the synchronous processing and
collect the minimum time needed before any of the syn-
chronous events need to be processed; means for determin-
ing the final minimum response time needed by selecting the
lesser of the minimum time needed for the asynchronous
events and the minimum time needed for the synchronous
events; and means for performing power management or
power consumption reduction tasks for the logic circuit
using the final minimum response time value before further
processing any events.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

XII. Interoperability Application Event Driven
Error Recovery

Recall that device to device wireless communications
connections are often unreliable due to interference, distance
limitations, and abrupt shutdowns due to low battery power.
In conventional horizontally layered protocol software
implementations on devices a fatal error in any one layer
will result in unrecoverable errors which will be difficult for
an application to recover from, both because the application
does not have standard interfaces to easily reestablish the
connections and contexts of the connections, and because
conventional application programs do not have much infra-
structure for tracking and reestablishing shared state
between applications running on different devices. The
DartFramework keeps track of shared state, renditioning can
be used to easily reestablish lost state between devices and
VerticalLayering makes it simple for communications errors
to be relayed to the Dart and for the Dart to relay recovery
information directly to the communications processing
units. Thus Darts running across devices can seamlessly
recover from intermittent complete losses of communica-
tions between cooperating devices and the recovery of the
shared state of the devices when the connection is restored
even where the previously lost device has itself lost all its
application state.

Additional embodiments of Interoperability application
event driven error recovery are now described. In one

20

25

30

35

40

45

50

55

60

65

86

embodiment (1), the invention provides a method for grace-
fully continuing an operation in an environment of lost or
intermittent communications), wherein an event driven
interoperability application package running cooperatively
across multiple teamed devices gracefully continues its
operations and/or partially recovers from temporarily loos-
ing communications with devices that are part of the team,
the method comprising: (1) generating a communications
session lost type event instance on a team member device
when communication from the team member device to a
teamed device is lost or interrupted and cannot be reestab-
lished within a predetermined or dynamically determined
time period and wherein each team member and teamed
device is carrying out part of the intent of an application
package; (2) sending the communications session lost type
event is directly or via a queue of events which drives
synchronous operations of the application package to the
application event processing unit which handles communi-
cations session lost events; (3) the event processing unit of
the application package modifying the behavior of the
application package where possible to continue its opera-
tions without the teamed device with which communications
has been lost or interrupted; (4) generating a communica-
tions session recovered type event instance on the team
member device when the communication is restored
between the team member and teamed devices; (5) the
communications session recovered type event being sent
directly or via a queue of events which drives the synchro-
nous operations of the application to the application event
processing unit which handles recovered communications
sessions; (6) the event processing unit of the application then
causing the team member device to send whatever code,
data, and/or content is needed to bring the teamed device
into synchronization with the rest of the event driven
interoperability application; and (7) the event processing
unit of the application then modifying the behavior of the
application package to include the now recovered teamed
device in the process of carrying out the intent of the
application:

In another embodiment (2), the invention provides the
method of (1), wherein one or more of the following are true
in any combination: (1) the event driven interoperability
application package conforms to the interoperability format
or is the DartFormat; (2) the interoperability application is as
described elsewhere in this detailed description or the
interoperability package is a Dart; (3) the recruitment
method is used to establish the running cooperatively across
multiple teamed devices; (4) the events are or include
DARTEvents; (5) the event processing unit is a Dart Gizmo
class instance, or an instance of any class which inherits
directly or indirectly from the Dart Gizmo class; (6) the
coordination and synchronization of events is carried out on
each device by an interoperability engine or is carried out by
the DartEngine; and (7) the coordination and synchroniza-
tion of events on and between devices is carried out accord-
ing to an interoperability runtime or the DartRuntime.

In another embodiment (3), the invention provides the
method of (1), wherein the modified behavior of the appli-
cation to continue its operations without the teamed device
is optionally selected from the set of modifications consist-
ing of one or more of the following in any combination: (1)
the device which is lost is simply displaying status allowing
the application to continue without the display; (2) the
functions being done by the lost device are redundant and
are therefore not required to carry out the intent of the
application; (3) the functions being done by the lost device
can be performed instead by any remaining member or

US 9,436,525 B2

87

members of the team; (4) the functions being done by the
lost device can be performed instead by another device
reachable by the team, and which can then be recruited into
the team; (5) the functionality of the remaining teamed
devices can proceed in a reduced mode of operation; and (6)
any combination of the above.

In another embodiment (4), the invention provides the
method of (1), wherein the connection is lost due to any one
or more of these factors alone or in any combination: (1)
battery power gets low or runs out and the device shuts down
its communications, or the entire device is shut down, and or
the device stops functioning; (2) a user or other automated
or non-automated process causes the device to stop func-
tioning as part of the team without smoothly shutting down
the application; (3) the device or communications protocol
stops functioning correctly for any reason other than an
orderly shutdown of the part of the application running on
the device; (4) the device is reset; (5) the device goes out of
range of the wireless protocol being used; (6) the device
looses line of sight needed to maintain communication over
a directional protocol; (7) interference by signals or objects
which block the communications; and (8) any combination
of the above.

In another embodiment (5), the invention provides the
method of (1), wherein a hierarchy of event processing units
comprise a hierarchy of processing units that include at least
one Dart Gizmo processing unit or many Dart Gizmo
processing units arranged in a graph with processing
sequenced and coordinated using linear tasking.

In another embodiment (6), the invention provides the
method of (1), wherein continuing or recovering is per-
formed over a team of cooperating devices when connec-
tions are lost is carried out through the use of the Dart-
Framework, the DartRuntime, and/or the DartEngine.

In another embodiment (7), the invention provides the
method of (6), wherein Darts built using the DartFramework
and run on a Dart Player do not need any application specific
special programming to support robust multi-device appli-
cation, data, and communications session recovery.

In another embodiment (8), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner for
gracefully continuing an operation in a processing environ-
ment of lost or intermittent communications), wherein an
event driven interoperability application package running
cooperatively across multiple teamed devices gracefully
continues its operations and/or partially recovers from tem-
porarily loosing communications with devices that are part
of the team, the program module including instructions for:
(1) generating a communications session lost type event
instance on a team member device when communication
from the team member device to a teamed device is lost or
interrupted and cannot be reestablished within a predeter-
mined or dynamically determined time period and wherein
each team member and teamed device is carrying out part of
the intent of an application package; (2) sending the com-
munications session lost type event is directly or via a queue
of events which drives synchronous operations of the appli-
cation package to the application event processing unit
which handles communications session lost events; (3) the
event processing unit of the application package modifying
the behavior of the application package where possible to

20

25

30

35

40

45

50

55

60

65

88

continue its operations without the teamed device with
which communications has been lost or interrupted; (4)
generating a communications session recovered type event
instance on the team member device when the communica-
tion is restored between the team member and teamed
devices; (5) the communications session recovered type
event being sent directly or via a queue of events which
drives the synchronous operations of the application to the
application event processing unit which handles recovered
communications sessions; (6) the event processing unit of
the application then causing the team member device to send
whatever code, data, and/or content is needed to bring the
teamed device into synchronization with the rest of the event
driven interoperability application; and (7) the event pro-
cessing unit of the application then modifying the behavior
of the application package to include the now recovered
teamed device in the process of carrying out the intent of the
application.

In another embodiment (9), the invention provides an
apparatus capable of gracefully continuing an operation in
an environment of lost or intermittent communications with
another teamed device), wherein an event driven interoper-
ability application package running cooperatively across
multiple teamed devices gracefully continues its operations
and/or partially recovers from temporarily loosing commu-
nications with other teamed devices that are part of the team,
the apparatus comprising: a processor or processing logic
and a memory coupled with the processor or processing
logic; logic means generating a communications session lost
type event instance on a team member device when com-
munication from the team member device to a teamed
device is lost or interrupted and cannot be reestablished
within a predetermined or dynamically determined time
period and wherein each team member and teamed device is
carrying out part of the intent of an application package; first
communications means sending the communications session
lost type event is directly or via a queue of events which
drives synchronous operations of the application package to
the application event processing unit which handles com-
munications session lost events; an event processing unit of
the application package for modifying the behavior of the
application package where possible to continue its opera-
tions without the teamed device with which communications
has been lost or interrupted; second communications means
generating a communications session recovered type event
instance on the team member device when the communica-
tion is restored between the team member and teamed
devices; the communications session recovered type event
being sent directly or via a queue of events which drives the
synchronous operations of the application to the application
event processing unit which handles recovered, communi-
cations sessions; the event processing unit of the application
causing the team member device to send whatever code,
data, and/or content is needed to bring the teamed device
into synchronization with the rest of the event driven
interoperability application; and the event processing unit of
the application then modifying the behavior of the applica-
tion package to include the now recovered teamed device in
the process of carrying out the intent of the application.

In another embodiment (10), the invention provides the
apparatus as in (9), wherein the apparatus comprises at least
one of a computer, a music player, a media player, a personal
data appliance (PDA), an information appliance, a printer, a
recorder, a mobile or cellular telephone, a camera, an
electrical appliance, or any combination of these.

In another embodiment (11), the invention provides the
apparatus of (9), wherein one or more of the following are

US 9,436,525 B2

89

true in any combination: (1) the event driven interoperability
application package conforms to the interoperability format
or is the DartFormat; (2) the interoperability application is a
Dart; (3) the recruitment method is used to establish the
running cooperatively across multiple teamed devices; (4)
the events are or include DARTEvents; (5) the event pro-
cessing unit is a Dart Gizmo class instance, or an instance of
any class which inherits directly or indirectly from the Dart
Gizmo class; (6) the coordination and synchronization of
events is carried out on each device by an interoperability
engine or is carried out by the DartEngine; and (7) the
coordination and synchronization of events on and between
devices is carried out according to an interoperability run-
time or the DartRuntime.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

XVI. Interoperability Instruction Set

In another aspect, the invention provides an interoperabil-
ity method, software, and instruction set. Software or hard-
ware that implement an Interoperability Instruction Set (IIS)
is an efficient methodology for implementing a common
procedural environment as benefited to the: (i) Recruitment
model for teaming and spreading or distributing an appli-
cation; (i1) for allowing unmodified applications to run on
otherwise dissimilar devices; and (iii) for exposing the
unique resources, unique capabilities and/or unique content
to other applications and devices.

In one advantageous embodiment and implementation of
the invention, the interoperability instruction-set is the Dart
instruction set (DartlnstructionSet) as embodied in or com-
patible with the Dart engine (DartEngine FIG. 22 600).

It will be appreciated that components of computer and
information systems and devices may be implemented in
hardware, firmware, and/or software, and that there is often
a design and implementation choice as to which of hard-
ware, firmware, or software to use for a particular compo-
nent of a particular implementation. So it is with the Dart
engine and the interoperability instruction set. Therefore it
may be appreciated that although certain components of
certain embodiments may be described in terms of one of
hardware, firmware, or software; alternative embodiments
may use different combinations of hardware, firmware, or
software to provide the means for accomplishing the desired
function or result.

In one exemplary embodiment, the hardware and/or soft-
ware for carrying out an Interoperability Instruction-set is
comprised of eleven components, though the components
and functions may be grouped differently so that the number
is not determinative of the structure or operation of the
engine or instruction set (see FIG. 4 3010).

First, a processor or central processing unit (CPU),
memory, and input output (I/O) capabilities for programs to
run or execute on, and to support communications to and
from systems, devices, networks and the like outside or
external to the device.

Second, there should be memory access, computation, test
and branch, input/output instructions to carry out at least
conventional general purpose computing tasks.

20

25

30

35

40

45

50

55

60

65

90

Third, there are advantageously provided interoperability
performance enhancing instructions used to extend the prac-
tical reach of common binary applications and Renditions to
lower performance devices.

Fourth, there are advantageously provided interoperabil-
ity instructions to carry out the Dart methodologies of
Recruitment, Renditioning, Creationism, Vertical Layering,
Linear Tasking, Social Synchronization, Social Security, and
VirtualPointers although as described elsewhere herein not
all of these Dart components are required for all embodi-
ments of implementations. Fifth, there are also advanta-
geously provided certain unique capability instructions that
are operative to expose any characteristics, resources, capa-
bilities, and/or functions possessed by or accessible from of
a particular device to software applications and other
devices.

Sixth, security maintenance instructions are advanta-
geously provided to control and otherwise access the setting
of security features, the grouping of devices with a particular
set of cross device access rights, and/or setting the access
rights for applications to devices and/or resources.

Seventh, containment instructions, such as Dart contain-
ment (DartContainment) instructions, are also advanta-
geously provided to allow Darts or Dart compatible instruc-
tions to effectively extend the execution of an originating
Dart across other separately generated Darts that are col-
lected, maintained, and run as part of the operation of the
originating Dart.

Eighth, common user-interface (UI) instructions are
advantageously provided for one or more of decoding,
encoding, compressing and decompressing and manipulat-
ing and rendering pictures, bitmaps, sounds, input events,
text rendering, and other such operations.

Ninth, communications instructions are advantageously
provided for example, for opening, closing, and maintaining
sessions and the data that goes across the sessions.

Tenth, storage instructions are advantageously provided
to control and maintain access to storage, storage devices,
storage resources, and the like.

Eleventh, compatibility instructions are advantageously
provided to convert or transcode between differing formats
or parameters of data, content and/or code.

The advantages of an Interoperability Instruction-set over
other common methodologies, such as for example the use
of virtual machines, is that the interoperability instruction
set (and particularly the Dart Interoperability Instruction
Set) is designed and optimized to perform all necessary
interoperability operations as instructions that are dis-
patched to functions which are compiled or assembled into
the native code of the device processor. In one embodiment
that includes some optional features and capabilities, the
Interoperability Instruction-set should have most if not all of
the following: (ii) Recruitment instructions, (ii) Profile
instructions, (iii) Synchronizing instructions, (iv) user-inter-
face or Ul and graphics instructions, (v) power management
instructions, (vi) Connection and Session management
instructions, (vii) Storage instructions, (viii) Rendition
instructions, (ix) Creationism instructions, (x) application
parts management instructions, (xi) cryptographic large
number math instructions, (xii) Text and/or symbol parsing
instructions, (xiii) Virtual Pointer management instructions,
and (xiv) instructions that are capable of exposing unique
capabilities of the device to DARTs and thereby to any other
DartDevices or Dart compatible devices.

Additional particular embodiments of the interoperability
instruction set are now described. In one embodiment (1),
the invention provides an apparatus for effecting an interop-

US 9,436,525 B2

91

erability instruction set (IIS), the apparatus comprising: a
processor, a memory coupled to the processor, and an
input/output (I/O) interface to support communications with
the processor by an entity external to the apparatus; execu-
tion supportive interoperability means for carrying-out
methodologies involving at least one of recruitment, rendi-
tioning, creationism, vertical layering, linear-tasking, social
synchronization, and social security; and communications
interoperability instructions for opening and maintaining a
communication session and the procedures, data, content or
other information that goes between communicating devices
during the communication session.

In another embodiment (2), the invention provides an
apparatus as in (2), wherein: the execution supportive
interoperability means comprises interoperability instruc-
tions for carrying-out the methodologies.

In another embodiment (3), the invention provides an
apparatus as in (1), wherein one or more of the following are
true: recruitment is as described elsewhere in this detailed
description; renditioning is as described elsewhere in this
detailed description; creationism is as described elsewhere
in this detailed description; vertical layering is as described
elsewhere in this detailed description; liner tasking is as
described elsewhere in this detailed description; social syn-
chronization is as described in elsewhere in this detailed
description; and social security is as described elsewhere in
this detailed description:

In another embodiment (4), the invention provides the
apparatus of (1), wherein the instruction set includes one or
more of the Dart instructions selected from the set consisting
of BUILTIN_INSTRUCTION, OEM_BUILTIN_IN-
STRUCTION, PROFILE_INSTRUCTION, and SAVE_IN-
STRUCTION.

In another embodiment (5), the invention provides the
apparatus of (1), wherein the Interoperability Instruction Set
is the DartlnstructionSet and is carried out by an Interoper-
ability Engine.

In another embodiment (6), the invention provides the
apparatus of (5), wherein the Interoperability Engine is a
DartEngine.

In another embodiment (7), the invention provides the
apparatus of (1), wherein the instruction set is embodied in
one or more of: (1) a software product running on a
processor with a different native instruction set, whether the
native instruction set is embodied in hardware, software,
firmware, microcode, hardware logic or any combination
thereof; (2) firmware, or microcode coordinating and direct-
ing the activities of hardware logic units; (3) hardware logic;
or (4) any combination of these.

In another embodiment (8), the invention provides the
apparatus in (1), further comprising: common user interface
(U]) interoperability means for manipulating text, symbolic
information, and images.

In another embodiment (9), the invention provides the
apparatus in (8), wherein: the common user interface
interoperability means comprise common user interface
interoperability instructions; and the user interface interop-
erability instructions include instructions for at least one of
decoding, encoding, compressing and decompressing and
manipulating and rendering pictures, bitmaps, sounds, input
events, text, symbols, audio/video, or other digitally
encoded entity, and any combination of one or more of these.

In another embodiment (10), the invention provides the
apparatus in (1), further comprising: a processor or CPU,
memory coupled to the processor or CPU, and an input/

20

25

30

35

40

45

50

55

60

65

92

output (I/O) interface being operable to support communi-
cations with the processor by an entity external to the
apparatus.

In another embodiment (11), the invention provides the
apparatus in (1), further comprising: an operating environ-
ment associated with the processor, memory, and input/
output interface for performing memory access, computa-
tion, test and branch, and input/output instructions at least
for carrying out general purpose computing tasks.

In another embodiment (12), the invention provides the
apparatus in (1), further comprising: device performance
enhancing interoperability means used to extend the practi-
cal reach of common binary applications and renditions to
lower performance devices because the instructions are
implemented and executed in the native code format of a
physical processor or CPU of the device as part of the
engine, rather then by a sequence of slower executing
emulated instructions of the application program used for
binary compatibility.

In another embodiment (13), the invention provides the
apparatus of (12), wherein the performance enhancing
interoperability means (instructions) include instructions for
one or more of the following: CPU intensive cryptographic
operations on large numbers including one or more of
multiplication, division, addition, subtraction, exponentia-
tion, modular exponentiation, hashing, random number gen-
eration, digital signature generation and verification, key
pair generation, the encoding and decoding of data to be
secured or read, and any instruction or set of instructions
performing a combination of any two or more of these.

In another embodiment (14), the invention provides the
apparatus of (13), wherein the processor or CPU intensive
cryptographic operations on large numbers include opera-
tions involving individual numbers that must be stored in
multiple memory words to assure that the values can be
accurately and precisely represented and or to ensure a
proper degree of security.

In another embodiment (15), the invention provides the
apparatus of (12), wherein the performance enhancing
interoperability means are for performing one or more of the
following CPU intensive graphics operations: bitmap copy-
ing, bitmap scaling, bitmap stretching, bitmap transposing,
bitmap blending, bitmap filling, curve generation, line gen-
eration, circle generation, polygon rendering, piecewise
linear curve generation or rendering, hit detection, font
character generation and placement, and any combination of
these.

In another embodiment (16), the invention provides the
apparatus of (12), wherein the performance enhancing
interoperability means (instructions) are for performing one
or more of the following CPU intensive text or symbol
processing operations: XML parsing, text searching, text
insertion, text deletion, text database operations, text-to-text
representation conversions, text manipulation, text-to-sym-
bol manipulation, symbol-to-symbol manipulation, and any
combination of these.

In another embodiment (17), the invention provides the
apparatus of (12), wherein the performance enhancing
interoperability means are for performing one or more of the
following CPU intensive media processing operations:
audio decompression, video decompression, picture decom-
pression, dataset decompression, audio compression, video
compression, picture compression, dataset compression,
digital image processing, digital audio processing, dataset
processing, database operations and any combination of
these.

US 9,436,525 B2

93

In another embodiment (18), the invention provides the
apparatus in (1), further comprising: capabilities exposing
interoperability means for exposing any characteristics and
functions, including any unique capabilities and functions,
of a particular device to software and/or firmware applica-
tions and other devices that are being teamed or have been
teamed through the use of the recruitment procedure or
methodology.

In another embodiment (19), the invention provides the
apparatus in (1), further comprising: security maintenance
interoperability instructions for accessing and setting or
resetting of: security features, grouping of devices with a
particular set of cross device access rights, and access rights
for applications to devices and resources.

In another embodiment (20), the invention provides the
apparatus in (1), further comprising: containment interop-
erability means allow separately generated Darts or execut-
able procedures, to dynamically become part of the linear
tasking based runtime environment of other Darts or execut-
able procedures, whether as a child that inherits its environ-
ment from its parent or as a parent which provides its
runtime environment to any child, or where the generated
Dart or executable procedure serve as both parent and child
of other executable procedures.

In another embodiment (21), the invention provides the
apparatus in (1), further comprising: containment (DartCon-
tainment) interoperability instructions to allow separately
generated Darts, whether generated by one or more Dart-
Tools or by Dart Creationism, to dynamically become part of
the Linear Tasking based DartRuntime of other Darts,
whether as a child Dart that inherits its environment from its
parent Dart or as a parent Dart which provides its runtime
environment to any child Darts, or where the generated
Darts serve as both parent and child of other Darts.

In another embodiment (22), the invention provides the
apparatus in (1), wherein: Darts effectively extend the
execution of an originating Dart across other separately
generated Darts that are collected, maintained and/or run as
part of the operation of the originating Dart.

In another embodiment (23), the invention provides the
apparatus in (1), further comprising: storage interoperability
instruction means for accessing digital data storage devices
and optionally including any one or more of hard disk
drives, battery backed up memory, flash storage devices, or
other devices which can preserve data while the main power
is removed or turned off on the device.

In another embodiment (24), the invention provides the
apparatus in (1), further comprising: compatibility interop-
erability means (instructions) for signaling, retiring and
otherwise managing DartEvents or events and an event
queue (EventQueue) or DartEventQueue which drives asyn-
chronous and or synchronous processing of a Dart executing
across one or more devices.

In another embodiment (25), the invention provides the
apparatus in (1), further comprising: unique capabilities
instructions to expose any characteristics and functions of a
particular device to software applications and other devices.

In another embodiment (26), the invention provides the
apparatus in (25), wherein the unique capabilities instruc-
tions may include an instruction selected from the set of
instructions consisting of: a Dart PROFILE_INSTRUC-
TION that takes one or more IDs for a resource or capability
and returns a value, structured values, or a list of structured
values.

In another embodiment (27), the invention provides the
apparatus in (26), wherein the ID may be just a scalar value
pre-assigned to indicate a particular resource or capability,

20

25

30

35

40

45

50

55

60

65

94

or a major scalar value indicating the general category plus
a scalar minor value, or the ID may contain a plurality of
scalar values containing any combination of a manufacturer
id, major category and minor category.

In another embodiment (28), the invention provides the
apparatus in (27), wherein one of the major scalar values is
a manufacturer 1D scalar value that is assigned with a single
unique value for every different manufacturer and used to
separate the ID values so those specific to a manufacturer
can not conflict with those specific to a different other
manufacturers IDs for resources or capabilities.

In another embodiment (29), the invention provides the
apparatus in (25), wherein the unique capabilities instruc-
tions include an original equipment manufacturer OEM
instruction which takes as a parameter a manufacturer ID
scalar value, a parameter block specifying the operation to
be performed and all the parameters needed to carry out a
particular unique application program interface to the unique
capabilities.

In another embodiment (30), the invention provides the
apparatus in (25), wherein the original equipment manufac-
turer (OEM) instruction comprises a Dart OEM_BUILTIN_
INSTRUCTION instruction.

In another embodiment (31), the invention provides the
apparatus in (27), wherein any other instructions that are part
of any non-Dart interoperability instruction set is used to
expose unique resources and capabilities of a device through
a manufacturer specified application program interface.

In another embodiment (32), the invention provides the
apparatus in (31), further comprising other instructions that
are part of any non-Dart interoperability instruction set
performs and or is used to expose unique resources and
capabilities of a device, that operate analogously to the Dart
PROFILE_INSTRUCTION and the Dart OEM_BUILTIN_
INSTRUCTION instruction.

In another embodiment (33), the invention provides the
apparatus in (31), further comprising an instruction set
creating a common procedural environment across homo-
geneous and heterogeneous devices, the instruction set com-
prising: a plurality of instructions designed and optimized to
perform all necessary interoperability operations between
and among any of a plurality of homogeneous and hetero-
geneous devices; and the instructions being dispatched to
functions which are compiled or assembled into the native
code of the processor of the destination device.

In another embodiment (34), the invention provides an
interoperability instruction set creating a common proce-
dural environment across homogeneous and heterogeneous
devices, the instruction set comprising: a plurality of instruc-
tions designed and optimized to perform all necessary
interoperability operations between and among any of a
plurality of homogeneous and heterogeneous devices; and
the instructions being dispatched to functions which are
compiled or assembled into the native code of the processor
of the destination device.

In another embodiment (35), the invention provides an
interoperability instruction set as in (34), wherein the
interoperability instruction set comprises the Dart instruc-
tion set as implemented in the DartEngine of a DartPlayer
running on one or more DartDevices.

In another embodiment (36), the invention provides an
interoperability instruction set as in (34), wherein the
interoperability instruction set executes in a portable engine
creating a common procedural environment in the devices
for executing at least one of a device resource and capability
recruitment application and another application unmodified
to execute on the dissimilar heterogeneous device.

US 9,436,525 B2

95

In another embodiment (37), the invention provides an
interoperability instruction set as in (34), wherein the
interoperability instruction set includes at least one and any
combination of the following instructions: recruitment
instructions, profile instructions, synchronizing instructions,
user interface (ui) and graphics instructions, power manage-
ment instructions, connection and session management
instructions, storage instructions, rendition instructions, cre-
ationism instructions, and application parts management
instructions.

In another embodiment (38), the invention provides an
interoperability instruction set as in (34), wherein the
addressing field or fields of the instruction can reference at
least: (1) a registers address space, whether or not disjoint
from the other address spaces; (2) a main data address space,
whether or not disjoint from the other address spaces; (3) a
stack address space, whether or not disjoint from the other
address spaces; and (4) an application heap address space,
whether or not disjoint from the other address spaces.

In another embodiment (39), the invention provides an
interoperability instruction set as in (38), wherein the
addressing field or fields of the instruction can further
reference: (5) one or more of the following additional
address spaces in any combination: (i) one or more disjoint
virtual pointer address spaces; (ii) a separate application
heap element address space; (iii) a virtualized local address
space to the current function data space which is a contigu-
ous subset of another address space; and (iv) one or more
virtualized object instance address spaces which are con-
tiguous subsets of other address spaces.

In another embodiment (40), the invention provides an
interoperability instruction set as in (38), wherein all address
spaces are addressed by an N bit number, and a number of
bits, M, of the N bits specify which of different possible 2
to the M power of address spaces the N-M remaining bits is
actually referencing.

In another embodiment (41), the invention provides an
interoperability instruction set as in (39); wherein all address
spaces are addressed by an N bit number, and a number of
bits, M, of the N bits specify which of different possible 2
to the M power of address spaces the N-M remaining bits is
actually referencing.

In another embodiment (42), the invention provides an
interoperability instruction set as in (40), where the address
space is actually in units of 2 to the power of M of the native
processor’s smallest directly accessible words so that using
the N-M address space can still specify the entire direct
address space of the native processor, only without the
ability to directly address units of memory smaller then 2 to
the power of M.

In another embodiment (43), the invention provides an
interoperability instruction set as in (38), wherein virtual
address pointer address spaces are used.

In another embodiment (44), the invention provides an
interoperability instruction set as in (38), where the decod-
ing of the address fields of instructions for data or code in
any or all of the address spaces is checked by the processor
decoding the instructions to ensure that no access will take
place outside of the currently restricted bounds of the
underlying memory, or other hardware accessible through
the use of the decoded address fields.

In another embodiment (45), the invention provides the
apparatus of (1), wherein the instruction set includes instruc-
tions used to access to a file system that supports traditional
hard files and one or more of the following types of files in
any combination: (i) a memory file; (ii) a subfile file; (iii) a

20

25

30

35

40

45

50

55

60

65

96

part subfile file; (iv) a part descriptor overriding file; and (v)
any combination or sequential or non-sequential layering of
these types of files.

In another embodiment (46), the invention provides the
apparatus of (45), wherein the memory file is a virtualized
a traditional hardfile accessible through the same methods
for accessing a hardfile but where the data is kept in
changeable main memory of a processor rather than on
traditional hard storage such as a hard disk drive or other
physical device other than the type commonly used for main
memory access of processors.

In another embodiment (47), the invention provides the
apparatus of (45), wherein the subfile file is a virtualized file
representing a linear contiguous range of data inside another
file, and where the linear contiguous range is virtualized as
beginning at a logical offset of zero, before which there is no
data, and the end of the range is bounded by the offset
representing the length of the range of data, at and beyond
which there is no data.

In another embodiment (48), the invention provides the
apparatus of (45), wherein the part subfile file is a subfile
which represents a logical individually addressable part
inside a file holding an application package of one or more
independently executable images.

In another embodiment (49), the invention provides the
apparatus of (45), wherein the part descriptor overriding
file), where it exists with the same identifier value as does a
specific part, will serve to override any or existing data
which once represented the part, whether the existing data is
inside a file holding an application package of one or more
independently executable images or it is inside any other
separate file.

In another embodiment (50), the invention provides the
apparatus of (49), wherein the part descriptor overriding file
is used to logically replace old data for a part without the
need to change the existing data inside other files.

In another embodiment (51), the invention provides the
apparatus of (49), wherein the part descriptor overriding file
can represent the data for a part as being one of: logically
deleted or non-existent; physically stored elsewhere or in
another file as identified in the descriptor overriding file;
representative of the access rights or allowed usage of the
part data; and represented inside the descriptor file itself.

In another embodiment (52), the invention provides a
method for effecting an interoperability instruction set (IIS)
in an apparatus, the method comprising: providing a pro-
cessor and memory coupled to the processor, and an input/
output (I/O) interface to support communications with the
processor by an entity external to the apparatus; supporting
execution interoperability methodologies involving at least
one of a recruitment procedure, a renditioning procedure, a
creationism procedure, a vertical layering procedure, a lin-
ear-tasking procedure, a social synchronization procedure,
and a social security procedure; and providing communica-
tions interoperability instructions for opening and maintain-
ing a communication session and the procedures, data,
content and/or other information that may be exchanged
between communicating devices during a communication
session.

In another embodiment (53), the invention provides a
method as in (52), wherein: the execution interoperability
methodology comprises at least one interoperability instruc-
tion for carrying-out the interoperability methodology.

In another embodiment (55), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage

US 9,436,525 B2

97

medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance having a processor and memory coupled to
the processor and an input/output (I/O) interface to support
communications with the processor by an entity external to
the apparatus, to function in a specified manner for effecting
an interoperability instruction set (IIS) in an apparatus, the
program module including instructions for: supporting
execution interoperability methodologies involving at least
one of a recruitment procedure, a renditioning procedure, a
creationism procedure, a vertical layering procedure, a lin-
ear-tasking procedure, a social synchronization procedure,
and a social security procedure; and providing communica-
tions interoperability instructions for opening and maintain-
ing a communication session and the procedures, data,
content and/or other information that may be exchanged
between communicating devices during a communication
session.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

XIV. Creationism

In another aspect of the invention, system, apparatus,
method and computer program for Creationism are pro-
vided. Creationism includes a methodology which enables
an interoperability application to create other interoperabil-
ity applications, which in turn can create still more interop-
erability applications. This allows for the efficient dynamic
generation and distribution of application, data and content
in differing forms across a world of connected and intermit-
tently connected devices.

In the one advantageous embodiment and implementa-
tion, this is the ability for Darts to create other Darts (FIG.
12 700) or Dart procedures (DartProcedures FIG. 14 4000)
which can then create still other Darts or DartProcedures.
Creationism is embodied throughout the Dart Platform
(DartPlatform FIG. 3). For example, the Dart tools (Dart-
Tools FIG. 3 200) allow for the specification of Parts in the
source code, and compile the source code into a DartMaster
(FIG. 12 230) containing these Parts. The DartMaster when
played on a MasterPlayer (FIG. 12 203) can collect more
resources if necessary and provide the user interface for
requesting any needed information on which Renditions and
parts to include in the output Dart or DartProcedure.

Any Dart running on any Dart Player can include instruc-
tions from the DartlnstructionSet supported in the DartEn-
gine to dynamically form Renditions from Parts and package
them together efficiently into DartFormat files. This process
of Dart creation of customized Darts can go on indefinitely
so long as the created Darts and Procedures are formed with
the data, content and procedures necessary to do so.

Creationism provides a method, associated procedures
and computer program code and product for enabling an
interoperability application to create other interoperability
applications, which in turn can create still more interoper-
ability applications in a recursive and or serial and or fanout
manner. Tools are provided for compiling source code (FIG.
3 100) and optionally source data and/or source resources
into a binary image containing at least one Rendition. It also

20

25

30

35

40

45

50

55

60

65

98

uses and may provide executable instructions and/or appli-
cation programming interface(s) for dynamically assem-
bling digital parts into a binary image containing a set of
Renditions (e.g. Dart Renditions) and parts that control how
the Renditions are to be assembled based on the communi-
cations capabilities, device characteristics and environment
of a target device.

The tools may include Dart Tools (FIG. 12 200). The
binary image may include or consist of a Dart in the Dart
format (FIG. 3 300, FIG. 13, FIG. 14), or may be a
differently formatted binary image or an image encoded in
a non-binary form. The digital parts may be procedures, data
sets, and/or content of any type or form expressed as a
structured sequence of numbers.

Additional particular embodiments of creationism are
now set forth. In one embodiment (1), the invention provides
a method for enabling an initial individually executable
image or package of individually executable images to
dynamically generate at least one other target individually
executable data image or package of individually executable
data images to carry out the intent of the initial executable
image or package of individually executable images, the
method comprising: (1) collecting first information about at
least one of the characteristics, content, resources, or capa-
bilities of devices and or other environments for execution
of generated executable images or packages of images
which might be of use in carrying out the intent or part of the
intent of the generating executable image or package; (2)
determining how to assemble at least one of: (i) parts of its
own image, (ii) collected information, or (iii) programmati-
cally generated information, to make efficient use of the
resources, capabilities and content of the target devices or
environments for which information was collected; and (3)
gathering second information necessary to generate one or
more other independently generated executable data images
or image packages as needed to carry out the intent of the
generated target executable image or image package in an
unlimited sequence.

In another embodiment (2), the invention provides a
method as in (1), further comprising: (4) using the gathered
information to generate the one or more independently
generated executable data images or image package.

In another embodiment (3), the invention provides a
method as in (1), wherein one or more of the following are
true in any combination: (1) the individually executable
image is a rendition or a Dart Rendition; (2) the package of
individually executable data images conforms to an interop-
erability format or to the DartFormat; (3) the generation is
carried out as part of a device teaming recruitment method;
(4) the gathering information necessary is collected or
formed into a single Dart RenditionsTable which references
one or more collected or formed Dart RenditionTables
which in turn reference one or more collected or formed
DartParts, to be located using a single collected or formed
Dart Part Table, which is in turn located using a Dart Trailer
or any other of the methods described in an interoperability
format; (5) the collecting information is carried out at least
in part by use of procedures sent to execute on the target
device or devices; (6) the collecting information is carried
out at least in part by use of DartProcedures sent to execute
on the target device or devices; (7) the collecting informa-
tion is carried out at least in part by executing the PROFI-
LE_INSTRUCTION of the DartInstructionSet on the target
device or devices; and (8) the using the gathered information
to generate the one or more independently generated execut-
able data images or image packages is carried out at least in
part by the DartlnteroperablitylnstructionSet SAVE_IN-

US 9,436,525 B2

99
STRUCTION instruction and or the BUILTIN _INSTRUC-
TION instruction being executed on the target device or
devices by an interoperability engine or the DartEngine.

In another embodiment (4), the invention provides a
method as in (1), further comprising by forming and storing
the generated executable images or packages on physical
media.

In another embodiment (5), the invention provides a
method as in (1), wherein the creationism method is used for
one or more of the following or any combination thereof: (1)
distributing an application and or application package of
individually executable images and or dataset or datasets of
any kind to one or more devices; (2) customizing an appli-
cation and or application package of individually executable
images and or dataset or datasets; (3) creating a one time use
executable image or package of executable images to carry
out the intent of the initiating executable image on one or
more target devices; and (4) creating an executable image or
package of executable images which contains a selected
subset of content and or resources and or data and or code
that is part of or is collected by the initiating image.

In another embodiment (6), the invention provides a
method as in (5), wherein the customizing an application and
or application package of individually executable images
and or dataset or datasets according to one or more of the
following list: (a) the needs of the target device or devices;
(b) the environment of the target device or devices; (c)
limitations of the target device or devices; (d) capabilities of
the target device or devices; and (e) access by the target
device or devices, whether current or future, to any other
devices according to any of the items in this list.

In another embodiment (7), the invention provides a
method as in (5), wherein the creating an executable image
or package of executable images which contains a selected
subset of content and or resources and or data and or code
that is part of or is collected by the initiating image so that
the image or package is any one or more of or any combi-
nation of: (a) small enough for efficient storage on the target
device or devices; (b) small enough to be transported more
quickly; and (c) optimized to only hold the subset of interest
or a subset which conforms to a given criteria for inclusion
and or collection of related items and or an intended purpose
or purposes.

In another embodiment (8), the invention provides a
method as in (1), further including generating an executable
image or image package that carries out a distribution of the
generated executables or packages to other environments,
storage devices, and/or devices for which the particular
generated executables or packages where generated and
intended to be distributed.

In another embodiment (9), the invention provides a
method as in (1), further including initiating the execution of
the generated executable images or image packages on other
devices as needed to carry out the intent of the generating
executable images or package.

In another embodiment (10), the invention provides a
method as in (9), wherein the initiation of execution is one
of a command-based initiation, a time-based initiation, a
schedule-based initiation, a statistically-based initiation, an
event-based initiation, or any other criteria based initiation
of execution.

In another embodiment (11), the invention provides a
method as in (10), wherein the initiation is controlled or
influenced by the DartRuntime.

In another embodiment (12), the invention provides a
method as in (1), wherein the intent or part of the intent of
the executable image or package that is generating other

20

25

30

35

40

45

50

55

60

65

100

executable data images or packages is to spread the execut-
able image or image package, or parts of the executable
image or image package to one or more devices and/or
storage mediums.

In another embodiment (13), the invention provides a
method as in (4), wherein the executable images or packages
are spread using a device Recruitment procedure and using
an interoperability instruction set.

In another embodiment (15), the invention provides a
method as in (13), wherein the recruitment method com-
prises the Dart recruitment procedure and using the Dartln-
structionSet.

In another embodiment (16), the invention provides a
method as in (1), wherein the package of individually
executable images is a tightly integrated package of inter-
related individually executable images.

In another embodiment (17), the invention provides a
method as in (1), wherein the package of executable images
comprise a package of tightly integrated individually execut-
able data images.

In another embodiment (18), the invention provides a
method as in (1), wherein the method further includes this
process of generation repeats a plurality of times.

In another embodiment (19), the invention provides a
method as in (18), wherein the plurality of times may be any
number of times), wherein such any number of times may be
an indefinite number or times or indefinitely.

In another embodiment (20), the invention provides a
method as in (1), wherein the method further includes
repeating the process of generation a plurality of times
recursively in a chain of executable images and packages of
executable images.

In another embodiment (21), the invention provides a
method as in (1), wherein the intent is determined at least in
part by the application designer’s and/or implementers’
intended purpose and functions as embodied in the applica-
tion.

In another embodiment (22), the invention provides a
method as in (1), wherein the intent is determined at least in
part by a separate application generation program or set of
such programs intended purpose or functions embodied in
the application.

In another embodiment (23), the invention provides a
method as in (1), wherein collection is accomplished using
Recruitment carried out by the sending of procedures which
may or may not be DartProcedures and/or Darts.

In another embodiment (24), the invention provides a
method as in (1), wherein the information is collected from
storage or other programs running on the device on which
the generating executable image or package is running.

In another embodiment (25), the invention provides a
method as in (1), wherein the information is collected from
storage or other programs running on devices other than the
device on which the generating executable image or package
is running.

In another embodiment (26), the invention provides a
method as in (1), wherein the information is collected over
any communication medium and/or protocol whether wired
or wireless or through the physical transport of storage or
computing devices between the generating device and any
other devices.

In another embodiment (27), the invention provides a
method as in (1), wherein the determining is a determining
accomplished by procedures that are part of the generating
executable image.

In another embodiment (28), the invention provides a
method as in (1), wherein efficient use of resources is

US 9,436,525 B2

101

determined by the execution of procedures that are part of
the originating application designed by the applications
designers and/or implementers to carry out the intent.

In another embodiment (28), the invention provides a
method as in (28), wherein the collection is accomplished at
least in part through the use of at least one of Recruitment
as described elsewhere in this detailed description and
DartProcedures.

In another embodiment (30), the invention provides a
method as in (1), wherein the gathering uses at least any one
of an external executable tool, an internal procedure, an
instruction, and/or a system call by the generating individu-
ally executable image or image package.

In another embodiment (31), the invention provides a
method as in (1), wherein the generating of an executable
image or image package is accomplished at least in part
through the use of DartEvents to carry the information and
do the distribution to DartPlayers.

In another embodiment (32), the invention provides a
method as in (1), wherein the intent or a part of the intent of
the executable image or package that is generating other
executable data images or packages of images in a possibly
unending chain is to perform synchronization of data or
cooperative programs across any number of devices in a
manner where the data, content, and/or procedures associ-
ated or collected by any of the set of generated executable
images or packages is to cooperatively synchronize, merge,
manage, transcode, and/or collect programs, content,
executable images, packages of executable images, pictures,
or any other program, database, or content expressible as an
ordered collection of digital data.

In another embodiment (33), the invention provides a
method as in (1), wherein, the intent or part of the intent of
the executable image or package that is generating other
executable data images or packages is to include only those
parts of the data, content, procedures of the generating
individually executable images or packages, collected data
content and procedures, and/or programmatically generated
content, procedures or collected data, that are needed to
carry out a particular part of the intent of the originating
executable images or packages that are to be carried out
using the generated images or packages on a computational
device or set of devices other than the one that the origi-
nating executing image or package is running on at the time
the generation occurs.

In another embodiment (34), the invention provides a
method as in (33), wherein each image or image package
generated for execution on each device is intelligently
custom built in a form conforming to or optimized for the
characteristics, capabilities and/or content of each device or
set of devices that each generated image is intended for.

In another embodiment (35), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner for
enabling an, initial individually executable image or pack-
age of individually executable images to dynamically gen-
erate at least one other target individually executable data
image or package of individually executable data images to
carry out the intent of the initial executable image or
package of individually executable images, the program
module including instructions for: (1) collecting first infor-
mation about at least one of the characteristics, content,

20

25

30

35

40

45

50

55

60

65

102

resources, or capabilities of devices and or other environ-
ments for execution of generated executable images or
packages of images which might be of use in carrying out
the intent or part of the intent of the generating executable
image or package; (2) determining how to assemble at least
one of: (i) parts of its own image, (ii) collected information,
or (iii) programmatically generated information, to make
efficient use of the resources, capabilities and content of the
target devices or environments for which information was
collected; (3) gathering second information necessary to
generate one or more other independently generated execut-
able data images or image packages as needed to carry out
the intent of the generated target executable image or image
package in an unlimited sequence; and (4) using the gath-
ered information to generate the one or more independently
generated executable data images or image package.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

XV. Interoperability Engine/DartEngine

Recall that the DartEngine is or includes software and or
hardware used to execute the instructions of Darts on a
device and carry out their intended purpose. The DartEngine
and the device specific DartPlayer, in which it is encapsu-
lated, provides the common execution and DartRuntime
environment which allows Recruitment and Renditioning to
establish efficient teams of devices and spread their code,
data and content as best to carry out the intended purpose of
Darts.

Additional particular embodiments of Interoperability
Engine and a more specific embodiment of an Interoper-
ability Engine, the DartEngine, are now set forth. In one
embodiment (1), the invention provides an interoperability
engine which enables or assists devices to interoperate with
each other, the engine comprising: (1) means for loading,
running, and carrying-out at least part of the intent of an
interoperability software package having, code and wherein
at least part of the code is embedded in a sequence of
instructions conforming to an interoperability instruction
set; (2) means for discovering other interoperability devices;
and (3) means for direct or indirect two-way communica-
tions with other interoperability devices.

In another embodiment (2), the invention provides an
interoperability engine as in (1), wherein one or more of the
following are true in any combination: (1) the engine
comprises a DartEngine; (2) the interoperability software
package comprises an interoperability software package or
comprises a Dart conforming to the DartFormat; and (3) the
means to discover other interoperability devices is at least
partially carried out using a recruitment procedure or a Dart
recruitment procedure.

In another embodiment (3), the invention provides an
interoperability engine as in (1), wherein the engine includes
an event queue and carries out instructions to support the use
of the event queue by interoperability application packages.

In another embodiment (4), the invention provides an
interoperability engine as in (1), wherein the engine includes
a computer program product for execution in a processor or
logic circuit of the a device containing the engine.

US 9,436,525 B2

103

In another embodiment (5), the invention provides an
interoperability engine as in (1), wherein the engine includes
a hardware processor implementing the engine within a
device containing the engine.

In another embodiment (6), the invention provides an
interoperability engine as in (1), wherein the engine includes
a hardware processor implementing a portion of the engine
within a device containing the engine and a computer
program product for execution in the hardware processor of
the a device containing the engine.

In another embodiment (7), the invention provides an
interoperability engine as in (6), wherein a source code for
the computer program and computer program product por-
tion of the engine are segmented into a portable section
which can be used without modification on all interoperable
devices and a hardware abstraction layer which may need to
differ for each different type of device.

In another embodiment (8), the invention provides an
interoperability engine as in (7), wherein the hardware
abstraction layer includes code providing access to one or
more of the following device functions in any combination:
(a) memory allocation functions; (b) sound rendering func-
tions; (c) power management functions; (d) printing func-
tions; (e) display functions; (f) media rendering and or
playback and or transcoding functions; (g) computation
functions; (h) storage functions; (i) communications func-
tions; (j) device and or service discovery functions; (k)
profile information gathering functions about the capabili-
ties, resources, content and or environment of the device; (1)
device configuration functions; (m) device status functions;
and (n) any other functions or operations that can be
performed by the native device hardware and software that
can be exposed.

In another embodiment (9), the invention provides a
method for operating an interoperability engine which
enables or assists a plurality of devices to interoperate with
each other, the method comprising: loading, running, and
carrying-out at least part of the intent of an interoperability
software package having code and wherein at least part of
the code is embedded in a sequence of instructions con-
forming to an interoperability instruction set; discovering
other interoperability devices; and directly or indirectly
communicating with other interoperability devices.

In another embodiment (10), the invention provides a
method as in (9), wherein one or more of the following are
true in any combination: (1) the engine comprises a Dart-
Engine; (2) the interoperability software package comprises
an interoperability software package or comprises a Dart
conforming to the DartFormat; and (3) discovering of other
interoperability devices is at least partially carried out using
a recruitment procedure or a Dart recruitment procedure.

In another embodiment (11), the invention provides a
method as in (9), wherein the method further comprises:
generating an event queue within the engine and executing
computer code instructions to support the use of the event
queue by the interoperability application package.

In another embodiment (12), the invention provides a
method as in (9), wherein the method further comprises:
segmenting a source code into a portable section which can
be used without modification on all interoperable devices
and a hardware abstraction layer which may need to differ
for each different type of device.

In another embodiment (13), the invention provides a
method as in (12), wherein the hardware abstraction layer
includes code providing access to and optionally executing
one or more of the following device functions and/or pro-
cedures alone or in any combination: (a) memory allocation

20

25

30

35

40

45

50

55

60

65

104

functions and procedures; (b) sound rendering functions and
procedures; (¢) power management functions and proce-
dures; (d) printing functions and procedures; (e) display
functions and procedures; (f) media rendering and or play-
back and or transcoding functions and procedures; (g)
computation functions and procedures; (h) storage functions
and procedures; (i) communications functions and proce-
dures; (j) device and or service discovery functions and
procedures; (k) profile information gathering functions and
procedures about the capabilities, resources, content and or
environment of the device; (1) device configuration functions
and procedures; (m) device status functions and procedures;
and (n) any other functions and procedures or operations that
can be performed by a native device hardware and software
that can be exposed.

In another embodiment (14), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner for
operating an interoperability engine which enables or assists
a plurality of devices to interoperate with each other, the
program module including instructions for: loading, run-
ning, and carrying-out at least part of the intent of an
interoperability software package having code and wherein
at least part of the code is embedded in a sequence of
instructions conforming to an interoperability instruction
set; discovering other interoperability devices; and directly
or indirectly communicating with other interoperability
devices.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

XVI. Interoperability Device Enabling

Recall that Interoperability Device Enabling is the process
of turning a conventional device into a highly interoperable
DartDevice through the porting of a DartEngine as part of a
DartPlayer. In addition, implementation of the Hardware
Abstraction Layer needed to access the device specific
information, capabilities and content of the device is also
required. At least one communications protocol must be
implemented before a device with a DartPlayer becomes a
DartDevice.

Additional particular embodiments of Interoperability
Device Enabling, are now set forth. In another embodiment
(1), the invention provides a method for using common
software source code for an interoperability engine to create
interoperability software needed to make a device an
interoperability device, the method comprising: (1) creating
an interoperability engine object or instance; (2) creating a
device Hardware Abstraction Layer (HAL) object or
instance; (3) identifying and filling in the functionality of all
the predefined required halBase member functions of the
halBase class or specification; and (4) creating a device
specific Player object that substantially continually runs the
engine on a thread of execution.

US 9,436,525 B2

105

In another embodiment (2), the invention provides a
method as in (1), wherein the creating a device specific
Player object that substantially continually runs the engine
on a thread of execution runs the engine as follows: (a) call
the engine’s initialization function; (b) call the engine’s
process function in a loop that ends if a returned value
indicates an unrecoverable error occurred or that the engine
is to be closed down; (c) call the engine’s un-initialize
function; and (d) stop the thread of execution.

In another embodiment (3), the invention provides a
method as in (2), wherein the creating includes creating by
inheriting from a halBase object.

In another embodiment (4), the invention provides a
method as in (2), wherein the returned value returned
comprises a non-zero value returned.

In another embodiment (5), the invention provides a
method as in (2), wherein the loop that calls a player base
process member function comprises a loop that calls a
playerBase::Process() member function in a loop until a
non-zero value is returned.

In another embodiment (6), the invention provides a
method as in (1), wherein the creating of a device specific
playback object includes creating by inheriting from a
playerBase object.

In another embodiment (7), the invention provides a
method as in (1), wherein the processing engine comprises
a software processing engine.

In another embodiment (8), the invention provides a
method as in (1), wherein the processing engine comprises
a firmware processing engine.

In another embodiment (9), the invention provides a
method as in (1), wherein the processing engine comprises
a Dart software processing engine.

In another embodiment (10), the invention provides a
method as in (1), wherein the software includes C++ pro-
gramming code instructions.

In another embodiment (11), the invention provides a
method as in (1), wherein the functions of the HAL object
that are identified include at least one function from the set
of functions consisting of: allocating a single consecutive
block of memory of a given size, returning the time in
milliseconds, moving a bitmap in one of an identified
standard format, compile time variants to the screen at a
given location, a virtual function for getting profile charac-
teristics of another physical device on which the processing
engine will execute.

In another embodiment (12), the invention provides a
method as in (1), further comprising communicating the
device specific playback object to the device.

In another embodiment (13), the invention provides a
method as in (12), wherein the device comprises at least one
of: a computer, a personal data assistant (PDA), a cellular or
wireless telephone, a radio, a printer, an electronic device, a
music player, a media player, a camera, or any one combi-
nation of thereof.

In another embodiment (14), the invention provides a
method as in (2), wherein the hal functions include interface
functions for interacting with the device specific hardware,
software, firmware, or content for one or more of the
following purposes: (1) getting device specific capabilities
and/or settings and/or status for a given id value or set of
values that identify specific profile words, profile structures,
or the enumeration of profile structures that are to be gotten;
and (2) executing predefined asynchronous operations so
that the execution of other activities of the interoperability
device running on the engine’s tread of execution can
continue to run while the asynchronous operations continue.

20

25

30

35

40

45

50

55

60

65

106

In another embodiment (15), the invention provides a
method as in (14), wherein one of the parameters to the
interface function is a value uniquely assigned to each
different manufacturer and another parameter is a pointer to
a parameter block so that each manufacturer can optionally
define whatever sub-interface functions and/or parameters
required to expose any unique capabilities, status, content,
or operations not otherwise accessible through the other
interface functions.

In another embodiment (16), the invention provides the
method as in (15), wherein the uniquely assigned values are
used to ensure there will be no conflicts with other manu-
facturer generated sub interfaces.

In another embodiment (17), the invention provides the
method as in (16), wherein the manufacturer can control
access to their own developed sub-interfaces in one or more
of the following manners: (1) publish their manufacturer id,
parameter block specification and/or sub-interface function
specifications so that any other manufacturer can make use
of the developed sub interface functions to develop com-
patible devices and applications; (2) keep their manufacturer
id and or parameter block specification and or sub-interface
specifications as trade secrets; and (3) protect the parameters
or functions using the cryptographic instruction implemen-
tations in the engine, a shared secret based algorithm, or any
other cryptographic means so that it will be difficult or
impossible for other manufactures to understand or make
use of the manufacturer developed sub interface functions.

In another embodiment (18), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner for using
software source code common among potentially interoper-
able devices for an interoperability engine to create interop-
erability software needed to make a device an interoperabil-
ity device, the program module including instructions for:
(1) creating an interoperability engine object or instance; (2)
creating a device Hardware Abstraction Layer (HAL) object
or instance; (3) identifying and filling in the functionality of
all the predefined required halBase member functions of the
halBase class or specification; and (4) creating a device
specific Player object that substantially continually runs the
engine on a thread of execution.

In another embodiment (19), the invention provides a
computer program product as in (18), wherein the instruc-
tion for creating a device specific Player object that sub-
stantially continually runs the engine on a thread of execu-
tion runs the engine according to the steps of: (a) calling the
engine’s initialization function; (b) calling the engine’s
process function in a loop that ends if a returned value
indicates an unrecoverable error occurred or that the engine
is to be closed down; (c) calling the engine’s un-initialize
function; and (d) stopping the thread of execution.

In another embodiment (20), the invention provides a
computer program product as in (18), wherein the functions
of the HAL object that are identified include at least one
function from the set of functions consisting of: allocating a
single consecutive block of memory of a given size, return-
ing the time in milliseconds, moving a bitmap in one of an
identified standard format, compile time variants to the
screen at a given location, a virtual function for getting
profile characteristics of another physical device on which
the processing engine will execute.

US 9,436,525 B2

107

In another embodiment (21), the invention provides a
computer program product as in (18), wherein the hal
functions include interface functions for interacting with the
device specific hardware, software, firmware, and/or content
for one or more of the following purposes: (1) getting device
specific capabilities and/or settings and/or status for a given
id value or set of values that identify specific profile words,
profile structures, or the enumeration of profile structures
that are to be gotten; and (2) executing predefined asynchro-
nous operations so that the execution of other activities of
the interoperability device running on the engine’s tread of
execution can continue to run while the asynchronous opera-
tions continue.

In another embodiment (22), the invention provides a
computer program product as in (19), wherein one of the
parameters to the interface function is a value uniquely
assigned to each different manufacturer and another param-
eter is a pointer to a parameter block so that each manufac-
turer can optionally define whatever sub-interface functions
and/or parameters required to expose any unique capabili-
ties, status, content, or operations not otherwise accessible
through the other interface functions.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

XVII. Interoperability Security Model/DartSecurity

Recall that DartSecurity is a system and method for
providing the infrastructure needed for protecting the integ-
rity of a device and its content from malicious or accidental
damage.

A robust security infrastructure is desirable to serve as a
basis for protecting a device, its content or facilities from
being abused, corrupted or otherwise compromised or used
in any undesired manner. Such an infrastructure is the
inventive DartSecurity system embodied in the preferred
manner by elements of the DartPlatform as shown in FIG.
29.

In the preferred embodiment, when a DartDevice
executes the DartPlayer for the first time, part of the initial-
ization process of the DartEngine is to perform the follow-
ing:

1. Gathering enough entropy suitable for generating pub-
lic and private cryptographic key pairs and unique ids (uids)
to statistically guarantee that the generated key pair and
unique ids are truly unique from those generated in a similar
manner, but using different gathered entropy.

Entropy can be reliably gathered by DartDevices by
digitally sampling aspects of the world outside of the device
which are not synchronized in any way to the clock running
the sampling hardware. Communications mechanisms used
to talk to other devices are often good sources of entropy
because the exact timing of packets, timeouts and variations
of data are affected by electromagnetic interference and
quantum noise uncorrelated to the clock of the processor
controlling the sampling. Another easy source of entropy is
for the device to ask for inputs from a human user and
sample a fine grained clock whenever the user provides any
input. The entropy containing timing and data samples can
be hashed into a set of data values used to seed a random
number generator. Although it is difficult in practice to know

20

25

30

35

40

45

50

55

60

65

108

when enough entropy has been gathered, estimates can be
made and over-sampling used to ensure that enough has
been gathered and maintained in the hashed data values.

2. Using a conventional random number generation algo-
rithm and conventional cryptographic operations to generate
a universally unique public/private key pair and a univer-
sally unique DartDevice uid used to uniquely identify the
device for all time. In a preferred implementation all uids are
128-bits long.

3. The private key and entropy hashed set of data values
are stored on the device in any conventional manner known
in the state of the art for obscuring and or hiding data on a
device, yet still having the use of the data by the engine
practical.

4. Limiting access to resources of data, content or facili-
ties of the device based on a set of binary flags. In a preferred
implementation, these flags are 1 if access to the correspond-
ing data for facility of the device is to be blocked. As
examples, individual flags may exist for the following
resources:

a. Blocking access to data or content that is marked as

private,

b. Blocking access to opening communications sessions

to another device,

c. Blocking access to the native storage devices, and

d. Blocking access to user interface elements such as the

screen and keyboard and mouse and sound generation.

5. Every Dart or DartProcedure that is to be loaded to run
on the DartEngine has explicit or implicit sets of flag values
controlling its access to resources of the DartDevice. Every
DartDevice has explicit or implicit sets of access flags
mapped to levels of security. If the application or the device
sending the application does not have all the flags for the
resources it needs to access set to zero on the target device
the Dart application or DartProcedure will not be loaded
unless the device first gets the proper authorization from a
user or other device with acceptable credentials or flags
authorizing the Dart or DartProcedure to run on the specific
device. Access flags tied to the uids of Darts, DartProce-
dures, or DartDevices can be maintained permanently on a
target DartDevice, or for a specific period of time, or for the
duration of the execution of the Dart or DartProcedure or the
duration of the communications session between the
devices.

6. If a Dart application attempts to cause the DartEngine
to access any of the resources on its behalf to which the
application’s context flags are set to 1, the DartEngine will
immediately stop executing the instructions of the applica-
tion and close the application down.

In one preferred implementation Darts must be digitally
signed along with the flags sets for access. Encryption/
Decryption of parts or content or of communications ses-
sions between devices is also part of the DartSecurity
system.

FIG. 25 shows a DartDevice 400 with some of the
Security System elements. The DartEngine has instruction
based and methods for supporting encryption 150, entropy
gathering 153, random number generation 152, and securing
all communications between devices using the DartSecure
protocol to ensure that any communications between any
two DartDevices can be automatically encrypted so that
DartEngine base communications does not need to rely on
any outside protocols to protect the communication of data.
The DartSecure protocol 153 can be implemented using the
Secure Sockets Layer (SSL) protocol or any other protocol
which establishes a secure communications link between
devices. In a preferred implementation a subset of the

US 9,436,525 B2

109

functionality in the SSL protocol standard is implemented to
reduce the size and complexity as many of the options in
SSL are not needed. All the necessary large number math
cryptographic primitives 150 and 151 are shown as part of
the DartEngine. For performance reasons it is high desirable
to have the cryptographic math primitives implemented in
the native code of the engine instead of inside the Dart.

FIG. 25 Also shows that the DartEngine maintains lists of
uids 155 and 156 corresponding to levels of security. The
figure also shows that there is a table that maps level
numbers to sets of access rights flags 159. The list of device
and application ids that are part of a particular level of rights
is maintained by the DartEngine and in a preferred mode of
operation is allowed to propagate transitively when permis-
sion is allowed to do so from device to device so that any
device in the list can gain access to the new device without
the need for farther collection of credentials. This inventive
transitive teaming of devices and applications at specific
levels of security, SocialSecurity, is further described else-
where in this document.

To ensure that even after presenting its flags, passing
muster, and getting loaded, the Dart application or DartPro-
cedure cannot purposely or accidentally access resources
that are off limits; all such attempted accesses are checked
by the engine using a context data structure 160 and 170
which carries with it all the permission flags originally
presented by the Dart or DartProcedure.

Note that a revocation list 155 can be transitively main-
tained as described further elsewhere in this document as,
SocialSynchronization, so that any device previously
teamed with other devices at a particular security level can
have its access rights logically revoked for interoperability
with any device which transitively learns of the revocation
from any other device of the team. In one preferred imple-
mentation if a revoked device comes in contact with a
teamed device with knowledge of the revocation, the Dart-
Engines will render the revoked device inoperable or par-
tially inoperable. Revocation of access rights across a team
of interoperable devices with common access rights is not
perfect but in many situations it is a practical system for
carrying out the revocation of the access rights of a lost,
misbehaving or malevolent device across a team of possible
intermittently connected devices.

The method of spreading of access rights or the revoca-
tion thereof is much like humans who tell their friends about
an abusive person, and the information spreads like gossip
from person to person so that most people know about and
can stay away from the abusive person even if they have
never talked directly to the person with the first knowledge
of the abusiveness of the person.

The DartEngine context in addition to access flags also
contains information that the engine uses to limit access by
the running Dart or DartProcedure to any memory or storage
or code that is not a part of the running Dart. This limiting
of access is known in the state of the art as a “sandbox.” The
DartEngine enforces such a sandbox on all Darts and
DartProcedures so that Darts cannot be used to access the
device outside of the functions, memory and storage por-
tions explicitly provided for use by Darts and DartProce-
dures running in the sandbox.

Darts

In one preferred implementation of the invention there is
little specialization between what is conventionally though
of as code, data, operating system, graphics or user input
subsystems, and threading, or for that matter between con-
tent, programs, or even devices. The DartPlatform (FIG. 3)
can intelligently mix and match software procedures, code,

20

25

30

35

40

45

50

55

60

65

110

data, content, and device electronics into an integrated
virtual system which carries out the intent of an application
as designed by the Dart designer and then specified in the
DartSource (FIG. 3 100).

Darts built by the DartTools can self-optimize, reorganize,
send and synchronize versions or extensions of itself for the
efficient sharing of programs, controls, hardware resources
and content between and among various devices.

Darts are built with all the data, content and procedures
needed to establish an integrated working application
capable of running well in any number of dissimilar devices,
but also across numerous similar or dissimilar devices
simultaneously.

In addition, the runtime environment of a single Dart can
also dynamically or statically include other Darts as parent
Dart or child Dart extensions of any Dart. Thus the Dart-
Runtime environment is unique in its reach across unknown
devices and unknown separately produced Darts.

Unlike interoperability technologies employed currently,
Dart technology though not limited to such tasks, is opti-
mized around human sized data and tasks such as picture
slide shows, appointment calendars, contacts, control panels
and messages. The response time of the system is fast
enough to do motion video and respond to button presses or
requests to find a particular contact in a personal contact list
within a fifth of a second. For humans, such response times
are nearly indistinguishable from being instantaneous. Dart
response times requirements are much more lenient com-
pared to most real-time operating systems at the base of most
application environments, because real-time operating sys-
tems are generally expected to run applications such as data
servers which must handle hundreds of operations per
second. Because Darts only need to be responsive in human
time, an advantageously simple and highly robust and flex-
ible hierarchal event processing mechanisms are employed
in place of the standard pre-emptive or cooperative threaded
systems employed in the current state of the art interoper-
ability operating systems and their associated runtime envi-
ronments.

Consider as an example a slide show Dart application.
Although any programming language may be used, in one
implementation, the slide show Dart is written in C++
program code language, using the DartFramework (FIG. 11
102), also written in C++, and compiled and linked using the
DartTools (FIG. 12 200). The C++ source code also contains
Dart specific C++ pragma statements that extend the appli-
cations that can be created to include all the DartProcedures,
Renditions, and other interoperability extensions necessary
for the Dart applications to find and inspect other devices,
send optimized copies or parts of themselves based on the
said inspection, cause the optimized copies or parts to
execute on selected discovered devices, and then interoper-
ate by way of event queues on all involved devices. Such
devices may be event driven with the events automatically
serialized and/or synchronized so that all components of the
application are operating in a highly cooperative and robust
manner in order to express the intent of the interoperable
application as encapsulated in a Dart (FIG. 9). In the
preferred implementation, a DartMaster (FIG. 12 230) gen-
erated directly from the DartTools (FIG. 12 200) that will
consist of a single MasterRendition (FIG. 11 113) derived
object, which provides a main method as the starting point
for execution which proceeds to build a list maintained by
the MasterRendition object which contains references to
other Rendition derived objects (FIG. 11 114).

DartMasters are typically built by programmers in C++,
or other high level languages using tools and a framework

US 9,436,525 B2

111

that target the DartInstructionSet. To cover the full range of
devices that a Dart may find itself running on, the Master-
Dart will typically contain content and procedures used by
the MasterPlayer to generate between one and five different
Renditions.

Logically, Renditions can be thought of as separate pro-
grams, or executable images, where in the preferred imple-
mentation, only one of which will be chosen to run at any
one time on any one device.

Physically, the Renditions often advantageously share
most of their data, code and content components so that
there is advantageously a greatly minimized amount of
duplication in the actual DartFormat binary image or file.

A Dart’s DartSource (FIG. 3 100) should also include
procedures that run on a device to determine which Rendi-
tion is best to run on that device.

For example, a slide show Dart containing a collection of
pictures might have the following three Renditions: (i) a
simple text Rendition for devices that only have a single line
or a few lines of text display and this Rendition scrolls
through the name of the slide show and a list of the names
of the slides included since it cannot possibly show the
images themselves; (ii) a small screen Rendition such as
may be suitable for cell phones and PDA’s with small screen
dimensions and limited CPU power; and, (iii) a high-end
large screen Rendition that shows large pictures with mul-
tiple display options, indexes and transition effects, as may
be suitable for running on lager screen personal computers
(PCs) or home entertainment systems.

In one particularly advantageous operating mode, when a
Dart containing multiple Renditions first starts running on a
device, a Dart procedure uses the Profile Instruction of the
DartInstructionSet to inspect the device profile built into the
DartEngine on that device to determine if the device has all
the features necessary to run the most advanced Rendition.
If it does, then the most advanced Rendition will be run. If
it does not, then the device profile is procedurally checked
against each less advanced Rendition until one is found that
can run effectively on the device.

Note that target devices that do not have a DartEngine
built-in can be accessed by or through any device with a
DartEngine that is built with intimate knowledge of the
target device and the ability to proxy for and virtualize the
operations of the DartEngine for the device over a connec-
tion to the target devices. An example is the use of a printer
without a DartEngine which is never-the-less reachable by a
device that wants to print on it through a personal computer
which is itself running a DartEngine which exposes its
printing resources through the PROFILE_INSTRUCTION.
Any other initiating device with a DartEngine will have
access to the printers available to the personal computer so
long as the DartEngine running on the PC exposes the
printing capability and access through the profile and print
methods of the hardware abstraction layer (HAL) object of
the DartEngine on the personal computer.

When a Dart is asked to send itself to another device, one
of the user options in most Darts will be to have the set of
Renditions sent limited to those that can run on the target
device. In this way the user can limit the transmission time
to, and the memory requirements on, the target device. Of
course the new device will not then have higher level
Renditions to resend to more capable devices.

Since a great deal of content, and the application pro-
grams that create and edit the content is PC or Internet based,
it is important that Dart content be able to import and export
content in a form native to existent software systems.

20

25

30

35

40

45

50

55

60

65

112

Darts may advantageously contain standard format data
for JPEG pictures, any other forms of data or content that are
likely to be encountered, and the like, and menu options can
be built into the Dart content that will import and export
pictures, video, audio, text, and XML documents that tie
various components together.

The DartlnstructionSet optionally but advantageously
contains JPEG and other standard media format decompres-
sion and playback instructions so that the CPU intensive
decompressing tasks are implemented in efficient functions
compiled as part of the DartEngine into the native instruc-
tion set of the DartDevice’s CPU. These instructions also
limit the amount of code that must be included in Darts since
the DartEngine does much of the decompression and display
as part of executing the DartlnstructionSet. Similarly there
are XML and other text parsing instructions to limit the
amount of application code and provide native code speed
advantages when parsing text, RTF, XML and other text
based documents.

In addition, PC applications can easily be adapted by their
manufacturers to import and export Dart content directly.
Darts can contain content access APIs and control API’s that
allow other applications and Darts to programmatically
enumerate and extract content Parts such as JPEG pictures,
and audio clips along with the text names and descriptions
of the Parts.

Dart control APIs, along with text descriptions of the API
functions can also be enumerated and accessed to control the
operations of the Darts themselves from other Darts or
devices allowing remote control of Darts and the devices
they operate.

Embodiment of a Procedure for Porting a Dart Engine to a
Device

A procedure for porting a DartEngine to a new device is
now described. The example assumes that the Dart Engine
is a C++ code Dart Engine, but that does not distract from
the generality of the procedure.

First, create your own Hardware Abstraction Layer (FIG.
4 3020, FIG. 22 650, FIG. 27 650) object by inheriting from
the halBase object or in any other way such as by direct
creation.

Second, fill in the functionality of the halBase member
functions which include such functions as allocating a single
consecutive block of memory of a given size, returning the
time in milliseconds, moving a bitmap in one of the three
standard internal formats, or compile time variants to the
screen at a given location. The halBase class also includes a
virtual function for getting profile information words that
must be provided to allow Darts running on the DartEngine
to determine the CPU, memory, screen, communications,
sound, printing, and other characteristics of the actual
device. Of particular benefit is to design and build a pro-
grammatic interface through the use of the OEM_Function
method of the halBase object to expose any unique capa-
bilities, content or functionality of the device not otherwise
exposed by the pure virtual methods of the base halBase
class.

Third, create a device specific DartEngine object (FIG. 22
600) by inheriting from the playerBase object, or create it
directly without benefit of inheritance.

Fourth, build the device’s DartPlayer executable (FIG. 22
600) which employs the DartEngine object, which includes
a loop that calls the DartEngine’s Process() member func-
tion (such as for example, a playerBase::Process() member
function (FIG. 23 4003, FIG. 25 611)) in a loop until a
predetermined condition, such as a non-zero value, is
returned. All synchronous (FIG. 15 8010) and asynchronous

US 9,436,525 B2

113

operations (FIG. 16 Asynchronous Event Processing show
inside the dotted box) of the DartPlayer including commu-
nications are driven by the execution thread of this simple
loop so that a multithreaded OS is not needed.

The Dart solution to device interoperability advanta-
geously changes the adaptation and testing complexity equa-
tion from an N-squared (FIG. 1, and FIG. 2) to an N-ordered
one. Instead of having to consider how a new device will
share content and control with every other kind of dissimilar
device and implement individual solutions, with Darts one
only needs to port the DartEngine into a DartPlayer specific
to the device (FIG. 10).

One will need to implement functions that understand all
the communications channels that the device has, and build
routines to report the CPU speed, screen size and the like,
but one never has to consider how a device will share
content and control. The Dart content does that instead of the
device’s built in software.

It will be appreciated that this porting provides a Dart that
is a manageable N-order solution rather than an N-squared
solution, and that the porting of the DartPlayer is done only
once for each new device and further that it is only necessary
to develop a Dart once for each new application so that each
new device or application requires only one additional unit
of work.

Embodiment of a DartPlayer

A description of one embodiment of a DartPlayer (FIG. 22
500), implemented for example in C++ language and com-
piled using conventional programming tools to the native
instruction set of the DartDevice’s processor or in some
embodiments central processing unit (CPU) follows.

The playerBase class from which the DartPlayer class
inherits, executes Dart programs which are a series of
opcodes with parameters. Basically, the DartPlayer may be
analogized to a microprocessor, and the DartlnstructionSet
analogized with a set of machine instructions; however, in
the case of Darts most of the instructions are much more
high level than in the typical microprocessor. The instruc-
tions native to the DartPlayer may for example, include
single instructions that decompress JPEG pictures into a
buffer, move pictures in buffers to a particular place on the
physical screen in the correct format, and save the entire
state of the running DART and all its code and data. In
addition a full set of 2D graphics primitives, advanced user
input processing, and audio decompression processing
instructions may advantageously be built into the Dartln-
structionSet.

When a Dart wants to: (i) send itself, (ii) send an
optimized version of itself, (iii) request a control panel, (iv)
request a DART procedures, or (v) request data from another
device, it uses an Enumerationlnstruction or puts an Enu-
merationEvent on an EventQueue using a BulltinInstruction.
The Enumeration instruction or Enumeration Event causes
the player to call a halBase enumeration member function
that gets the name and description of each Dart device it can
make a connection to. Optionally, a DartProcedure can be
sent to each such device, which runs the procedure, and itself
returns a procedure that runs on the originating device. Thus
Enumerationinstructions in concert with the general pro-
cessing, mathematics, and test and control instructions can
be used to effectively inspect any connected device to see if
it is capable of carrying out most any desired set of func-
tions, or contains code, data or content of use or interest.

Since the function of the DartProcedures or Darts sent to
other devices and received back can contain code to do most
anything, this functionality advantageously is all that is
needed for a wide range of inter-device cooperative tasks. In

20

25

30

35

40

45

50

55

60

65

114

most instances, it is up to the person or programmer porting
the player to a device to decide what types of physical
connections, protocols, security measures, and the like
design choices to take when making a connection to other
devices. In one particularly advantageous implementation,
the DartPlayer assumes that any communication block
received is error corrected and has already passed whatever
security requirements the porting programmer built into the
halBase virtual functions. Advantageously, aside from the
low level sending and receiving of such blocks in the device
specific functions of the HAL, the functionality for setting
up secure communications sessions, sending events with
associated data, code and content, and the automatic request-
ing and processing of blocks that have been lost in transit,
the automatic recovery of sessions temporarily lost between
devices is all performed in the portable code portions of the
DartEngine. This greatly reduces the amount of work needed
to support various communications protocols on a DartDe-
vice and greatly improves the reliability of implementations
between devices because the same source code base is used
to port the portable parts of the DartEngine.

Embodiment of the Use of a Dart Instruction Set for Physical
Discovery

Embodiments of the DartlnstructionSet advantageously
primarily deals with device, service, and resource discovery
and inter-device communication at a very high level of
functionality. In some embodiments, the DartInstructionSet
deals exclusively with device, service, and resource discov-
ery and inter-device communication at a very high level of
functionality. While a running Dart can inspect a device
profile to determine actual communication characteristics
such as communication speed and latency, advantageously
generally a running Dart does not care or need to know
whether the actual communication between devices is
HTTP, TCP IP, USB, 802.11b, or some other protocol, or a
shared memory card, a physically transported memory card
or any other physical medium or protocol.

Similarly, physical discovery of other devices, services, or
resources or authentication and security can to be built into
the halBase override functions by the people specifying and
implementing the port.

One advantageous way to build such a port is to create as,
part of the playerBase based DartPlayer, a user editable
“friendly” device list. This way the user can specify the
Internet Protocol (IP) addresses and/or network names and/
or passwords needed to access all the devices she wishes to
allow the device to have access to which are otherwise
undiscoverable, difficult to discover or difficult to pinpoint
among other numerous networked devices, through other
means.

Embodiments of the invention may advantageously be
made so that all DartPlatform characters are 32-bit words to
advantageously accommodate any character representation
system such as Unicode or multi-byte, without any need for
special handling inside by Dart procedures. It is up to the
halBase derived HAL implementing object to translate to
and from these 32 bit characters to match the native capa-
bilities of the particular device. However, the invention is
not limited to any particular bit word size and larger or
smaller bit word sizes may be used.

Devices which wish to do device, resource, and/or service
discovery should comply with standards that are in place.
The Dart Enumeration instruction interface or SignalEvent
BuiltinInstruction (FIG. 20 670) processing advantageously
hides the differences between the various device discovery
standards for Dart applications, while helper functions can
be provided for use in the hardware abstraction layer, to aid

US 9,436,525 B2

115

in building compatible support for IP, Infrared (IR), Blu-
etooth, 802.11x, and other connected or connectable devices
or systems.

On at least one exemplary DartPlatform, most all adap-
tation of content, data and procedures are advantageously
performed by the Dart instead of being built into the engine.
It is the Dart itself that decides what Rendition will run best
on the target device. And it is the procedures in the Dart that
adapt the content playback for connected DartDevices.

Advantageously, with the DartPlatform, there is no need
to plan for every application and other device that a new
device will need to work with because the protocol between
devices is very simple, yet powerful. One DartDevice can
send a DartProcedure over to any other DartDevice which
automatically run in the target DartDevice and then returns
an Event or procedure that is automatically run or processed
on the originating device. The DartDevices do not need to
know whether the procedures or Darts they are running are
delivering data, an application, a control panel or just
inspecting capabilities.

In at least one particularly advantageous embodiment, the
DartPlatform does not use either the Client/Server or Peer-
to-Peer modes of inter-device interoperability. Instead it
advantageously uses the Recruitment model.

Recruitment and the recruitment model and method
allows Dart applications to automatically extend their reach
or connectivity across a multitude of differing connections
and devices. Recruitment is a radical departure from Client/
Server or Peer-to-Peer connectivity or communication and
bestows unique and highly desirable properties to the Dart-
Platform.

Embodiments of the Recruitment model allows Dart
applications to form teams of devices around the application
in the same manner that people form teams to get a job done.
If one is a construction contractor who wants to build a
house, one locates carpenters and lumber suppliers with the
skills and resources needed for the construction job. Then
one works as a team with the suppliers and carpenters thus
recruited to get the lumber to the carpenters and then to
coordinate the building of the house according to the intent
of the contractor who initiated the building of the house.
Similarly, a Dart application can reach out and inspect the
resources of all DartDevices it can communicate with over
any existent communications medium by sending proce-
dures that automatically get run on target devices. A running
Dart itself finds, qualifies, and forms a team of DartDevices,
sending any content and code as needed to each DartDevice
in the team to effect the application for the user. Device user
involvement is not required.

Darts extend their operation across the Recruited Dart-
Devices and effectively run inside all DartDevices simulta-
neously. The result is a system that advantageously does not
require any central control device as in Client/Server con-
figuration or operation. Advantageously, the Dart system
does not require programs related to the mission of the
originating Dart to reside on any but the originating device,
as opposed to Peer-to-Peer configuration and operation. And
the device user never has to think about media formats,
communications protocols, nor loading drivers. The Recruit-
ment model also allows Dart applications and data to spread
themselves from Dart device to Dart device whenever
another DartDevice is Recruited into a team. Thus advan-
tageously, distribution of Darts and their encapsulated con-
tent, programs, and data can occur through usage or without
any explicit loading or saving of applications or their
associated data. Security may often be a necessary part of
the DartPlatform to prevent the spread of malicious or

20

25

30

35

40

45

50

55

60

65

116

malfunctioning Darts or other code and data. This security
partially comes in the form of requiring a potential recruited
device to accept or reject recruitment by not allowing
communications, or simply declining to run procedures or
Darts from other devices.

In one particularly advantageous implementation, the
Recruitment model and method is based on the DartInstruc-
tionSet. The procedures are expressed using the DartInstruc-
tionSet which is optimized for device interoperability, mul-
timedia user interfaces, and the use of the Recruitment
model and method.

Advantageously, most any high level language can be
compiled to target the DartInstructionSet. In one particularly
advantageous embodiment at this time, the high level lan-
guage used is C++ with extensions added through the C++
pragma facility. These advantages derive from the wide
spread current use of the C++ programming language, but
the invention is not limited to any particular language, and
may be equally or better implemented with other languages
either now existent or to be developed in the future, includ-
ing for example improvements, enhancements, and/or exten-
sions to the C++ programming language.

Additional particular embodiments for Interoperability
Security Model or a more specific embodiment, DartSecu-
rity Model are now described. In one embodiment (1), the
invention provides a method for limiting access to and or the
understanding of resources or capabilities of an interoper-
ability application package and or resources or capabilities
of interoperability devices, the method comprising: (1)
forming a basis for security using at least a plurality of the
following steps: (a) automatically collecting an entropy state
measure associated with the device; (b) generating a key
pair; (¢) generating a device Id; and (d) storing the key pairs,
device id, and the entropy state measure on the device for
continued use whenever the device is active; (2) forming
rules for allowing or preventing the limiting access; and (3)
using the formed basis and formed rules to provide a security
task at least for the device.

In another embodiment (2), the invention provides a
method for limiting access to and or the understanding of
resources or capabilities of an interoperability application
package and or resources or capabilities of interoperability
devices, the method comprising: (1) forming a basis for
security in at least one of the following steps when a device
first starts operation: (a) automatically collecting of entropy;
(b) generating a public/private key pair; (¢) generation of a
unique device Id; and (d) storing the public and private key
pairs, device unique id, and the entropy state for a random
number generator on the device for continued use whenever
the device is active; (2) forming rules for allowing or
preventing the limiting access; (3) use of the formed basis
for one or more of the following security tasks: (a) enforcing
the rules for access to devices, applications and resources;
(b) securing the rules themselves so that they cannot be
modified by an unauthorized user or agent; (c) securing the
storage of the public and private key pairs, device unique id,
and the entropy state for a random number generator; (d)
securing operating parameters or data to be shared between
applications and devices; (e) securing communication chan-
nels; (f) encrypting resources so that they can only be
understood or used by a particular device or set of devices,
and/or a particular application or set of applications, and/or
when accessed using a shared secret; and (g) generating
universally unique ids and using them for identifying
devices, applications, data formats, collections, records,

US 9,436,525 B2

117

individual media files, or even individual data items valid
across all devices and or applications and or datasets or
items for all times.

In another embodiment (3), the invention provides the
method of (2), further comprising: revoking or modifying
the rules used to limit access.

In another embodiment (4), the invention provides the
method of (2), wherein the limiting access to and or the
understanding of resources of comprise one or more of the
following in any combination: (1) enforcing rules for which
devices are allowed to communicate with each other and or
for what purposes devices are allowed to communicate; (2)
encrypting data that flows between devices so that other
devices which might have access to the data will not be able
to understand or make use of the data; (3) signing packages
of data, content, code or other resources to ensure that the
packages have not been modified since the signing took
place; and (4) managing digital rights to enforce a set of
rules for the handling of data, code content, or any other
digitally representable resources with regard to one or more
of the following actions: sharing, copying, printing, display-
ing, performing, distributing, playback, rendering, execut-
ing, modifying, or any combination of these.

In another embodiment (5), the invention provides the
method of (2), wherein one or more of the following are true:
(a) the application package conforms to an interoperability
format or the Dart Format and or is a Dart; and (b) the
limiting access is performed at least in part by an Interop-
erability Engine or is performed at least in part by a
DartEngine or by a DartPlayer.

In another embodiment (6), the invention provides the
method of (2), wherein the forming the basis for security is
performed only once for any particular device.

In another embodiment (7), the invention provides the
method of (2), wherein the forming the basis for security is
comprised of the following steps when a device first starts
operation: (a) the automatic collection of entropy state; (b)
the generation of public/private key pairs; (c) the generation
of'a unique device Id; AND (d) the storage of the public and
private key pairs, device unique id, and the entropy state for
a random number generator on the device for continued use
whenever the device is active.

In another embodiment (8), the invention provides the
method of (2), wherein the forming rules for limiting access
further comprise: (i) collecting the unique ids of devices
and/or applications which wish to interoperate (ii) collecting
the set of access rights needed or requested for the interop-
eration; (iii) obtaining permission to allow or the directive to
disallow the range of access rights; (iv) creating a unique id
for the set of access rights; and (v) storing the unique id and
set of access rights on all devices and or in all the application
packages which are to interoperate.

In another embodiment (9), the invention provides the
method of (7), wherein the basis of is used for the generation
and storage of unique ids.

In another embodiment (10), the invention provides the
method of (2), wherein use of the basis is used for one or
more of the following security procedures alone or in any
combination: (a) enforcing rules for access to devices and
resources; (b) securing the rules themselves; (c) securing
communication channels; (d) encrypting resources so that
they can only be understood by a particular device or set of
devices, and or a particular application or set of applications,
and or when accessed using a shared secret; (e) generating
universally unique ids and using them for identifying
devices, applications, data formats, collections, records,
individual media files, or even individual data items valid

20

25

30

35

40

45

50

55

60

65

118

across all devices and or applications and or datasets or
items for all times; and (f) revoking or modifying the rules
used to limit access.

In another embodiment (11), the invention provides the
method of (2), wherein the resources or capabilities are one
or more of the resources or capabilities in the set consisting
of: (a) a data or data sets of any form; (b) a code of any form;
(c) a content of any form; (d) a capability to communicate
in any form and to any other device; (e) a capability to
control any aspect of the device or any other device; (f) a
capability to control any aspect of the device’s operation and
or of any other devices’ operations; (g) a capability to render
and/or print and/or display and/or modify and/or copy and/or
distribute data or any other element which can be repre-
sented by a binary sequence or set of binary sequences; (h)
a capability to collect information in any digital form by any
means; (i) a capability to physically change the position,
disposition, properties and or location of physical objects; (j)
a capability to run code and process data; and (k) any
combination of the above.

In another embodiment (12), the invention provides the
method of (2), wherein the method applies to the applica-
tions whether they are stored as an application image and or
running on one or more devices.

In another embodiment (13), the invention provides the
method of (2), wherein the basis is implemented in a manner
where entropy gathering and the random number generation
is seeded and then used to generate a unique id is automati-
cally initiated when the device is first turned on or is made
use of so that the manufacturer does not need to assign or
install different software or hardware to assure that each
device has a universally unique id.

In another embodiment (14), the invention provides the
method of (2), wherein the entropy is gathered by collecting
via the execution of software running on a processor timing
or data or counter or hardware state values which are at least
partially generated by any one or more of: quantum electri-
cal effects, communications or other electrical circuits run-
ning on a clock unsynchronized to the processor clock, air
currents, or any other physical phenomena.

In another embodiment (15), the invention provides the
method of (7), wherein the basis is used for the generation
and storage of unique ids.

In another embodiment (16), the invention provides the
method of (15), wherein the if a device loses its unique id or
private or public key and cannot be recovered, it will be
necessary for a new unique id and private and public key to
be generated for the device before the device can again be
used.

In another embodiment (17), the invention provides the
method of (16), wherein after a new unique id and private
and public key is generated for the device, the device is
considered for all purposes of security to be a new device.

In another embodiment (18), the invention provides the
method of (2), wherein a device or application unique id is
revoked, the unique id is placed on a list of revoked unique
ids that is maintained and distributed on teamed devices and
or other devices so that the device or application will no
longer function as part of a team or teams when it tries to
interoperate with any of the devices with the revoked unique
id which is on such a list.

In another embodiment (19), the invention provides the
method of (18), wherein when a revoked device forms a
communication link with another device which has the
revoked device’s unique id on its revocation list, the soft-

US 9,436,525 B2

119

ware driving the communication link will initiate the
destruction of the unique id and public and private keys of
the revoked device.

In another embodiment (20), the invention provides the
method of (18), wherein the revoked id list is maintained and
distributed using the social synchronization procedure.

In another embodiment (21), the invention provides the
method of (18), wherein only devices with certain permis-
sions, unique id, or shared secret is allowed to place a device
or application id on any revocation list.

In another embodiment (22), the invention provides the
method of (19), wherein one or more master devices with
certain permission, unique id or shared secret or has the
capability to communicate of a special secure channel can
initiate the destruction of the unique id and public and
private keys on the revoked device over the special secured
channel.

In another embodiment (23), the invention provides the
method of (22), wherein the master device is at the headend
of'a mobile phone network can initiate the destruction of the
unique id and public and private keys on the revoked device
over the mobile data network or a side channel thereof.

In another embodiment (24), the invention provides the
method of (2), wherein the rules are stored as lists of the
unique ids of devices and applications associated with a
certain level of security.

In another embodiment (25), the invention provides the
method of (24), wherein the rules are stored as lists of the
unique ids of devices and applications associated with a
certain level of security, and each level of security is
associated with certain access rights binary flags, with each
binary flag associated with permission to access a particular
category of data, resource, code or capability.

In another embodiment (26), the invention provides the
method of (25), wherein a device or the runtime context in
which an executable image is running maintains the access
rights flags values which determine which types of access or
elements are to be allowed for the executable images run-
ning on that device or the executable image running a
particular runtime context.

In another embodiment (27), the invention provides the
method of (26), wherein an interoperability engine running
an interoperability instruction set checks any or all of the
flag values whenever an application attempts to access the
elements or capabilities which correspond to the flags, and
does not allow such access if the flag values indicate that
such access is not to be allowed.

In another embodiment (28), the invention provides the
method of (27), wherein one or more of the following are
true: (1) the interoperability engine is as described elsewhere
in the detailed description or is the DartEngine; and (2) the
interoperability instruction set is as described elsewhere in
the detailed description or is the DartlnstructionSet.

In another embodiment (29), the invention provides the
method of (25), wherein the rules embodied by the stored
lists are generated using one or more of the following
method: (1) default mappings for flags to security level
numbers are supplied by the manufacturer and optionally
modifiable by possibly secured interfaces on the manufac-
tured device; (2) the security level and or flag values that are
needed for a particular executable image to carry out one or
more operations of an interoperability application software
package is embedded in the image, which is optionally
signed to ensure that the security level and or flag values
have not been tampered with; (3) when an executable image
is to be loaded by an interoperability engine, the embedded
level and or flag values are compared to the stored rules to

20

25

30

35

40

45

50

55

60

65

120

see if permissions to access all the needed access is allowed;
(4) if all permissions are allowed the executable image is
loaded to run in a context that contains the access flag values
embedded in the executable image; (5) if during execution,
assess to any resource or capability for which the flags in the
context do not allow access causes the interoperability
engine to immediately stop execution without allowing the
access; and (6) if any of the permissions are not allowed the
interoperability engine will not load or run the executable
image.

In another embodiment (30), the invention provides the
method of (2), wherein the method is used for one or more
of the following purposes or operations: (1) assurance that
the content, code, and or data hasn’t changed since some
predetermined date or event; (2) assurance that the content,
code, and or data has been inspected or otherwise certified
by a particular party as one or more of the following in any
combination: (a) robust; (b) devoid of viruses, malicious
code, of other undesirable features or operations; (c) devoid
of a predetermined or dynamically determined particular
kind of objectionable materials; (d) to have been created by
or received from a particular third party; and (e) being or not
being any one or combination of the above; (3) protection
from the spread of software viruses or malicious computer
code; (4) protecting intellectual property rights including but
not limited to copyrights and trademarks; (5) enforcing
intellectual property rights and agreements; (6) obfuscation
of the rules, unique ids, code or data on a device so that it
is difficult for someone to find and or understand the
meaning of the obfuscated items; and (7) the generation of
universally unique ids to assign to data sets, data items,
categories of items or any other element or grouping of
elements or ideas which needs to be uniquely identified.

In another embodiment (31), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner for
limiting access to and or the understanding of resources or
capabilities of an interoperability application package and or
resources or capabilities of interoperability devices, the
program module including instructions for: (1) forming a
basis for security using at least a plurality of the following
steps: (a) automatically collecting an entropy state measure
associated with the device; (b) generating a key pair; (c)
generating a device Id; and (d) storing the key pairs, device
id, and the entropy state measure on the device for continued
use whenever the device is active; (2) forming rules for
allowing or preventing the limiting access; and (3) using the
formed basis and formed rules to provide a security task at
least for the device.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

XVIII. Social Synchronization Interoperability
Method/Dart Social Synchronization

Synchronization of data sets or operations across a plu-
rality of devices is most often done with traditional methods

US 9,436,525 B2

121

where there is assumed to be a single master device to which
all other devices directly synchronize their data sets. These
methods provide a highly robust synchronization system in
the corporate and government networks of general purpose
computers that are always connected to each other with
reliable high speed networks administered and maintained
by trained professionals. Most current synchronization of
individuals’ devices such as mobile phones, PDAs, and
digital cameras is now conventionally performed using these
same direct to single master device methodologies where the
master device is a personal computer or an internet con-
nected server; however, having to require synchronization to
single master is very limiting for the world of intermittently
connected, often mobile devices for many reasons including,

1. All devices must share at least one communication
protocol with the master device.

2. Some mobile devices can only synchronize when they
are in close proximity to the master device because they only
have limited range wired or wireless direct connections
suitable for synching data sets with the master.

3. The master device provides a single source of failure
for all devices.

4. The individual users without training must concern
themselves with loading device specific synchronization
software on the master device and configuring and main-
taining this software.

5. There is no easy way for mobile devices to synchronize
directly to each other, even when they are in close proximity
of each other and share a common communications proto-
col.

The inventive SocialSynchronization is a particular subset
of the methods that can be used to synchronize DartDevices
that provides many benefits over the conventional mastered
synchronization methods commonly used in the current state
of the art. Recall that SocialSynchronization is an efficient
and easy to administrate method for synchronizing specific
sets of data and or operations across any number of devices
and protocols without the need for every device to contact a
master device, or for any device to act as a master. Social-
Synchronization of devices and content is similar to the way
humans share information and tasks and is an advantageous
alternative to mastered synchronization techniques most
often used in the current state of the art.

Some of the benefits and advantages of the inventive
system and method over the conventional mastered synchro-
nization methods commonly used in the current state of the
art include:

1. Synchronization can be performed for teams of devices
where there is no need for all the devices to be able to
communicate directly to a single master; rather, synchroni-
zation can be carried out so long as there is any path of
communication through any number of devices’ between
each other, and where such paths do not need to be estab-
lished simultaneously.

2. Mobile devices do not need to be able to direct connect
to a master; rather, they just need to be able to direct connect
to any one of the mobile devices in a team of devices
established for the synchronization.

3. There is no master device and so no single source of
failure. Teamed devices which fail can be replaced by new
devices which can then easily synchronize to any other
devices in the team.

4. There is no need to install device specific software on
any of the devices or to actively maintain or configure such
software; rather any device in a synchronization team can
directly add any other device to the team.

20

25

30

35

40

45

50

55

60

65

122

5. Devices can synchronize directly with any other
devices in the team to which there is any path of connectivity
through any sequence of connects between devices, even
where such connections are not available simultaneously.

SocialSynchronization works somewhat like teams of
humans who share information with other humans who they
encounter, who in turn often then share that same informa-
tion with still other humans. A human analogy can also be
used to illustrate the limitations of mastered synchroniza-
tion. Imagine a company with a large number of employees
who have no way of sharing information about all the
activities and initiatives of their coworkers except by talking
to a single boss. There are just too many interactions
necessary to distribute all the needed information for it to be
practical for all knowledge that needs to be shared to go
through a single boss, or even through a fixed hierarchy of
bosses. Individual employees need to share information of
common interest directly to each other as they encounter
each other and expect that information will get distributed to
others with a need to know through intermediaries. In effect,
these methods of social synchronization, while not perfect,
are very effective methods of distributing information
among a group or team of people or devices where there are
a number of ongoing intermittent and possibly irregular
connections taking place between humans or between
devices.

FIG. 30 shows an example of how SocialSynchronization
is performed in one preferred embodiment. The example
shows the synchronization of simple changes to a simple
contact list, but it should be appreciated that the synchro-
nization can be performed for complex databases and or the
synchronization of not just data but also of the operations of
and results of operations of a team of DartDevices and or
Darts.

In the example of FIG. 30, there is an initiating device, A,
with a ContactList Dart application which initially contains
two entered names. The two other devices, B and C initially
have no knowledge about the existence or characteristics of
the ContactList Dart running on A. In one preferred embodi-
ment, the ContactList Dart running on Device A enumerates
all the devices with which it can share the ContactList Dart
that contains and controls the list of contacts. The Con-
tactList Dart, uses the method of Dart Recruitment and
optionally the method of renditioning. The Recruitment by
the ContactList Dart on Device A of Device B is initiated by
the user by selecting a “Team to Other Devices” menu item.
The user is then presented with a list of devices currently
reachable and suitable for the teaming of the ContactList as
determined by one or more DartProcedures or Darts sent to
run on the reachable devices, and return information about
their suitability for becoming recruited. The user selects
device B from the list which results in the ContactList Dart
saving a Dart containing one or more or all of its renditions
and the data that constitutes the content list elements. This
saved Dart is sent to B as part of a RunDart type event. When
the Dart runs on device B it saves itself so that it will be
available on B even after the device is disconnected from
device A or powered off. The Dart now running across both
devices makes an entry, if none yet exists, in each device’s
SocialSync uid list. The entry contains the uid of the
ContactList with the two names to be shared that was
generated by the Dart when it first created this particular list
of contact names. Uids are generated using the DartSecurity
infrastructure described elsewhere in this document. The
entry also contains the uid of the ContactlList Dart. The
DartTools automatically place a uid into every Dart instance
generated.

US 9,436,525 B2

123

Similarly at some time after device A finishes its perma-
nent teaming operation with B, device B is used to perma-
nently team to SocialSync ObjectUid/DartHandlerUid lists
with an entry for the 128 BitUidA that identifies the par-
ticular teamed logical instance of the contact list. The entry
also contains the uid of the Dart stored on the same device
which can be used to carry out the synchronization of the
contacts for that list. Note that in general, the handler Dart
can perform any synchronization decisions or operations or
rules expressible as a Dart and is not limited to simple data
synchronization operations as in this example.

The three devices now all contain the SocialSync entries
containing, the uids and two names of the original contact
list even though device C has never communicated directly
with Device A.

In the example, after the devices are teamed the connec-
tions are closed and a new name is added to the list on
Device C by the user who runs ContactHandlerDart Z. The
three block diagrams show the state of the three devices
immediately after the third name is added on Device C.

Next the ContactHandlerDart Z or any other Dart running
on C initiates a connection to Device A. While setting up the
connection, the DartEngine on C automatically compares
the SocialSync uids on the two devices and determines that
they share the 128 BitUidA uid. The DartEngine on C will
automatically start up ContactHandlerDart 7 and it will
coordinate the synchronization of the data whether stored in
Darts or stored separately. Now devices A and C contain all
three names in their contact lists.

After Device B connects to either A or C it will similarly
run ContactHandlerDart Y which will carry out the synchro-
nization of names between device B and the device it
connects to. Note that event though A had never communi-
cated with C before syncing, they knew that they needed to
sync and how to sync because of the Dart and data passed
by the intermediating device B during the individual Team-
ings.

It logically follows that any number of devices can be
easily added to the team transitively by any device already
teamed even if the new devices knows nothing about the
Contactlist/ContactHandler Dart or originating Dart until
Teamed. So long as the ad-hoc connections between the
teams of devices are sufficient, all the devices automatically
maintain a high degree of synchronization of the shared list
of contacts even in the absence of any master device.

The inventive system, method, and computer programs
and computer program products also provide a platform
having Serialization and Synchronization. The intra-device
DartRuntime shown in FIG. 15, FIG. 16 and FIG. 18 along
with the inter-device DartRuntime shown in FIG. 17
together create a single event driven DartRuntime where all
operations are advantageously carefully serialized and syn-
chronized across all processing units of all teamed devices.
FIG. 9 llustrates how this serialization and synchronization
infrastructure embodied throughout the DartPlatform
including in Dart Recruitment, Dart Renditioning, the Dart-
Source, the DartTools, the DartFramework the DartRuntime
and the DartEngine. Together these systems and methods
and means provide an infrastructure for ensuring the robust
interoperability for Dart interoperability applications with
little effort on the part of the Dart programmer needed to set
up or administrate the complex interactions and ordering of
operations across processing units cooperating on and
between multiple devices, even in the face of communica-
tions and other errors.

Writing Dart applications using the DartPlatform and
particularly the DartFramework automatically gives appli-

20

25

30

35

40

45

50

55

60

65

124

cations binary portability across all DartDevices, robust
power management, robust application level error recovery,
the simple and efficient teaming of devices, the intelligent
discovery and use of resources across devices, and many of
the other benefits of the DartPlatform, all with relatively
little effort on the part of the Dart programmer. A key
element for delivering these benefits is embodied in the
DartRuntime through the largely automatic serialization and
synchronization of events as shown in the example of FIG.
9.

The DartRuntime coordinates the passing or exchanging
of Dart Events and associated files between interoperating
and communicating initiating and recruited devices. Dart
Events are automatically copied and/or synchronized across
event queues of any number of teamed devices. Events
designated as synchronized events are robustly distributed
across all the event queues of all devices which share a list
of synchronized event types. This is carried out in the
example shown in FIG. 9 as follows:

1. The initiating application, rendition 701a of Dart 700
instantiates a connection manager object instance on the
originating device 400-1 for a specific unspecified inter-
device cooperative function. The Connection Manager is an
instance of a ConnectionManager class that is provided in
the DartPlatform (FIG. 3) as part of the DartFramework
(FIG. 3 102).

2. The initiating rendition, 701a, recruits a team of
devices using Recruitment and Renditioning to create a team
of devices with a shared duplicative list of event types to be
serialized and synchronized over all cooperating devices.
This list is maintained by instances of the Connection
Manager 420 on each of the teamed devices (400-1, 400-2,
400-3, 400-N).

3. Whenever any events are to be placed into a queue on
any of the teamed devices that is on the shared list, then the
event will be placed in all the queues (660) of all directly
connected teamed devices first and then delay the placement
of the event in the initiating device’s queue until acknowl-
edgement is received that the event has successfully been
placed onto all directly teamed devices’ queues. Since all the
other devices will do the same, the original event is not
placed into the initiating device’s queue until all other
teamed devices have the event in their queues, even those
devices which are not directly connected to the initiating
device. This ensures that events are not processed by any of
the teamed devices if there are any errors which prevent the
placement of the event on any of the queues of the teamed
devices. Errors are reported by the serially propagated return
of the original event to the senders with an error flag
indicating that the event is returning status, and with an error
code in the returnedValue word of the Event structure
instance.

4. In order to prevent events generated by one device from
arriving out of order on any directly connected devices, all
events to be placed on directly connected teamed devices’
event queues are serialized by not allowing any new events
to be placed on a teamed device’s queue until acknowledge-
ment is received that the previously sent event has been
successfully placed on the queue. An example of where this
is necessarily is where the first event is an ADD_SLIDE type
event used to add a new slide to the shared slide show, and
a second event is a show slide (SHOW_SLIDE) type event
indicating that the new slide is to be shown. Due to its much
smaller size, it is quite likely that the second event would
arrive on the device before the first and the application might

US 9,436,525 B2

125

try to show the slide before it was finished arriving. This is
why it is necessary to serialize the events between all
directly connected devices.

Serialization of events sent to all directly connected
devices ensures that all events sent from an individual
device will be processed in the exact order sent on all teamed
devices; however, it is also necessary to synchronize the
exact order of events when two or more different devices
independently signal events marked for synchronization by
virtue of being on the shared synchronized event lists 430
present on all teamed devices.

One preferred method for ensuring that all synchronized
events are processed in the same order on all devices even
when synchronized events need to be signaled indepen-
dently by two or more devices is through the use of a
MasterSendEvent event type reserved for use by the con-
nection managers. Each connection manager considers the
device that recruited it through a direct connection as its
logical master. In FIG. 9 device 400-N’s logical master is
device 400-3, device 400-3’s logical master is device 400-2,
device 400-2’s logical master is device 400-1. Device 400-1
has no logical master because it performed the initiating
recruitment of the team. This makes device 400-1 the team
master. Any device with a logical master’s connection
manager will not place events to be placed onto its queue
into its queue unless it is being placed there by its logical
master, rather the connection manager will encapsulate all
the information needed to signal the event into a Mas-
terSendEvent event type event and place that in all its direct
connected teamed devices. All such MasterSendEvent
events will eventually propagate to the team Master. When
the event is to be placed on its queue, the connection
manager, knowing that it is the team master will attempt to
place the reconstituted original contained event onto its
queue. If the contained event type is on the synchronization
list of the connection managers it will now be propagated to
all the teamed devices in a serialized manner just as if it had
been generated and signaled by the team master.

In effect the team master is the only device allowed to
send synchronized events to be placed onto the queues of
other teamed devices. All other devices need to request that
the master send any synchronized events for them. Since all
synchronized events are sent by the team master over a
serialized channel, all devices in the team will receive all
events on their queue in the exact same order, preserving the
integrity of the synchronized operations across all teamed
devices as desired.

Note that in one preferred embodiment, that the serial-
ization of synchronized events can itself be used to ensure
that the connection managers on all devices maintain the
exact same list of event types to synchronize. Also the
serialization system can be used to send serialized and
synchronized events of a type that indicates that a new
device is to be considered the team master. Since the event
declaring a new master is serialized and synchronized all
devices will receive such events in the exact same order
ensuring that even multiple devices sending events declaring
different new masters will eventually resolve itself with all
devices getting the same last event declaring a new master
so that the last such event processed will win out.

Selected particular embodiments of the invention involv-
ing a Social Synchronization Interoperability Method or the
more particular Dart SocialSynchronization, are now set
forth. In one embodiment (1), the invention provides a
method for maintaining synchronization of resources across
one or more dynamically created teams of homogeneous
and/or heterogeneous devices which can be intermittently

20

25

30

35

40

45

50

55

60

65

126

directly connected and/or can be indirectly connected
through a sequence of direct connections which themselves
can be independently intermittently made between other
teamed devices, the method comprising: (1) running on an
interoperability device an initiating interoperability applica-
tion program package of one or more independently execut-
able images which logically or physically encapsulates the
resource or resources to be synchronized and/or includes all
the capabilities needed to collect and manage the resources
to be synchronized; and (2) teaming of other devices by the
initiating interoperability application program wherein a
possibly intermittent connection is made to other devices
and the initiating application spreads interoperability infor-
mation to the newly teamed devices.

In another embodiment (2), the invention provides the
method in (1), wherein the method further optionally
includes: (3) the repetition of the teaming of other devices
where the interoperability application packages running on
any one or more of the teamed devices acts as the initiating
interoperability application program package so that the
team of devices can continue to grow in a limited or possibly
unlimited manner.

In another embodiment (3), the invention provides the
method in (1), wherein the method further optionally
includes: (4) synchronizing resources among and between
the devices.

In another embodiment (4), the invention provides the
method in (1), wherein the method further optionally
includes: (3) the repetition of the teaming of other devices
where the interoperability application packages running on
any one or more of the teamed devices acts as the initiating
interoperability application program package so that the
team of devices can continue to grow in a limited or possibly
unlimited manner; and (4) synchronizing resources among
and between the devices.

In another embodiment (5), the invention provides the
method in (3), wherein the synchronization method further
optionally includes: (a) initiating a communication session
between any two teamed devices; (b) comparing the syn-
chronization unique ids on one device with the synchroni-
zation unique ids on the other device; (¢) running the
interoperability application program associated with every
matching unique id; (d) spreading the execution of the
interoperability application program across both devices;
and (e) performing, by the interoperability application pro-
gram which has its operations spread across the two devices,
whatever synchronization methods are needed to carry out
the interoperability synchronization purpose.

In another embodiment (6), the invention provides the
method in (4), wherein the synchronization method further
optionally includes: (a) initiating a communication session
between any two teamed devices; (b) comparing the syn-
chronization unique ids on one device with the synchroni-
zation unique ids on the other device; (¢) running the
interoperability application program associated with every
matching unique id; (d) spreading the execution of the
interoperability application program across both devices;
and (e) performing by the interoperability application pro-
gram which has its operations spread across the two devices
whatever synchronization methods are needed to carry out
the interoperability synchronization purpose.

In another embodiment (7), the invention provides the
method in (1), wherein the interoperability information
includes: (i) one or more interoperability universally unique
ids to be used to signify that devices are teamed for a
particular synchronization purpose; and (ii) one or more

US 9,436,525 B2

127

interoperability application packages associated with the
universally unique ids which can be executed to carry out the
synchronization purpose.

In another embodiment (8), the invention provides the
method in (6), wherein the interoperability information
includes: (i) one or more interoperability universally unique
ids to be used to signify that devices are teamed for a
particular synchronization purpose; and (ii) one or more
interoperability application packages associated with the
universally unique ids which can be executed to carry out the
synchronization purpose.

In another embodiment (9), the invention provides the
method of (1), wherein one or more of the following are true
in any combination: (1) the teams are formed at least in part
using a device recruitment procedure or Dart Recruitment;
(2) one or more of the interoperability devices is a DartDe-
vice; (3) the interoperability application program package
conforms to the Interoperability Format or conforms to the
DartFormat and or is a Dart; (4) the independently execut-
able images are renditions or are Dart Renditions; (5) the
resources are one or more of the types described as resources
by the description of Interoperability Source; (6) the interop-
erability universally unique ids are created using the social
security procedural basis; and (7) the one or more interop-
erability application program packages are generated using
one or both of the recruitment method or the creationism
method.

In another embodiment (10), the invention provides the
method of (1), wherein synchronization comprises one or
more of the following in any combination: (1) maintaining
independent instances and/or semantics of commonly iden-
tified database instances and/or anything that can be held by
a database or element contained in a database in such a
manner that changes made independently to the separate
instances are resolved in whatever ways are needed to
maintain one or more of: (a) the integrity of the database as
encapsulating the intended data and purpose associated with
the common identification; (b) the elements of the database;
(c) the semantics of the database and/or interrelationships of
elements of the database; and (d) the common identity of the
instances of the databases; (2) tracking the adding, deleting
or modification of elements on a lists of items independently
stored and or modified on independent devices; (3) the
collecting and or processing and or collating of information
by a team of devices; (4) maintaining lists of unique ids,
shared secrets and security settings needed to control and
limit access to resources or capabilities of devices; (5)
inter-device management of settings effecting the operation
of devices or the set of devices; (6) configuration manage-
ment across multiple devices; (7) installation of software or
content across multiple devices; (8) taking inventory of
devices and or the resources of the devices or reachable by
the devices or for which information is stored and or
maintained by one or more of the devices; (9) software or
content distribution or updating across multiple devices; and
(10) any combinations of the above.

In another embodiment (11), the invention provides the
method of (10), wherein the synchronization is done in an
intelligent manner at least in part by the execution of
software procedures so that synchronization is done in a way
specific to each device and/or subsets of devices and/or the
environment thereof.

In another embodiment (12), the invention provides the
method of (1), wherein the grow in a limited or possibly
unlimited manner is optionally carried out using one or more
of the following: (1) limiting by a set fanout value so that
each device or application is only allowed to bring a

20

25

30

35

40

45

50

55

60

65

128

predetermined limited number of other devices or applica-
tions into the team equal to or within some predetermined
magnitude relationship to the fanout value; (2) limiting by a
set generation limit procedure comprising the following: (a)
incrementing a generation tracking value carried by each
application package that sends application packages to
teamed devices so that each application package sent to
newly teamed devices has a tracking value one greater than
the sending application package; and (b) limiting by a set
generation stop value so that application packages with a
generation tracking value equal to the set generation stop
value are not allowed to bring new devices or applications
into the team; (3) limiting according the capabilities or
resources of the devices; (4) limiting according to the rules
as embodied in the code, data and content of the indepen-
dently executing images; (5) limiting according to the level
of security of potentially teamed devices or applications
and/or any other required credentials; and (6) any combi-
nations of the above.

In another embodiment (13), the invention provides the
method of (1), wherein the purposes are one or more of the
purposes selected from the list of purposes consisting of: (1)
maintaining independent instances and/or semantics of com-
monly identified database instances and/or anything that can
be held by a database or element contained in a database in
such a manner that changes made independently to the
separate instances are resolved in whatever ways are needed
to maintain one or more of: (a) the integrity of the database
as encapsulating the intended data and purpose associated
with the common identification; (b) the elements of the
database; (c) the semantics of the database and/or interre-
lationships of elements of the database; and (d) the common
identity of the instances of the databases; (2) tracking the
adding, deleting, or modifying elements on a lists of items
independently stored and or modified on independent
devices; (3) collecting and or processing and or collating of
information by a team of devices; (4) maintaining lists of
unique ids, shared secrets and security settings needed to
control and limit access to resources or capabilities of
devices; (5) inter-device managing of settings effecting the
operation of devices or the set of devices; (6) configuration
managing across multiple devices; (7) installation of soft-
ware or content across any one or multiple devices; (8)
inventorying of devices and/or the resources of the devices
and/or resources reachable by the devices and/or for which
information is stored and or maintained by one or more of
the devices; (9) distributing software or content and/or
updating software or content across multiple devices; and
(10) any combination of the above.

In another embodiment (14), the invention provides the
method of (1), wherein the method is used as an alternative
to other synchronization methods because less human
administration is necessary and/or the sophistication of the
humans who do the administration does not need to be as
high as conventional approaches.

In another embodiment (15), the invention provides the
method of (1), wherein one or more of the teamed devices
are reachable on the Internet as servers running an interop-
erability engine.

In another embodiment (16), the invention provides the
method of (1), wherein one or more of the teamed devices
are reachable on a network as servers running an interop-
erability engine.

In another embodiment (17), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage

US 9,436,525 B2

129

medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner for
maintaining synchronization of resources across one or more
dynamically created teams of homogeneous and/or hetero-
geneous devices which can be intermittently directly con-
nected and/or can be indirectly connected through a
sequence of direct connections which themselves can be
independently intermittently made between other teamed
devices, the program module including instructions for: (1)
running on an interoperability device, an initiating interop-
erability application program package of one or more inde-
pendently executable images which logically or physically
encapsulates the resource or resources to be synchronized
and/or includes all the capabilities needed to collect and
manage the resources to be synchronized; and (2) teaming of
other devices by the initiating interoperability application
program wherein a possibly intermittent connection is made
to other devices and the initiating application spreads
interoperability information to the newly teamed devices.

In another embodiment (18), the invention provides a
computer program product as in (17), further optionally
including instructions for: (3) the repetition of the teaming
of other devices where the interoperability application pack-
ages running on any one or more of the teamed devices acts
as the initiating interoperability application program pack-
age so that the team of devices can continue to grow in a
limited or possibly unlimited manner.

In another embodiment (19), the invention provides a
computer program product as in (18), further optionally
including instructions for: (4) synchronizing resources
among and between the devices.

In another embodiment (20), the invention provides an
interoperability device maintaining synchronization of
resources across one or more dynamically created teams of
homogeneous and/or heterogeneous devices which can be
intermittently directly connected and/or can be indirectly
connected through a sequence of direct connections which
themselves can be independently intermittently made
between other teamed devices, the device comprising: an
initiating interoperability application program package of
one or more independently executable images which logi-
cally or physically encapsulates the resource or resources to
be synchronized and/or includes all the capabilities needed
to collect and manage the resources to be synchronized;
means for running, on the interoperability device, the initi-
ating interoperability application program package; and
means for teaming of other interoperable devices by the
initiating interoperability application program wherein a
possibly intermittent connection is made to other devices
and the initiating application spreads interoperability infor-
mation to the newly teamed devices.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

XIX. Social Security Interoperability Model/Dart
SocialSecurity

Recall that SocialSecurity is a particularly simple to
administrate method for forming webs of security between

20

25

30

35

40

45

50

55

60

65

130

teams of possible intermittently connected devices. Social-
Security works in a similar way to how humans often come
to trust one another. The foundation for SocialSecurity is the
use of SocialSynchronization to spread unique ids generated
using the DartSecurity system along with the allowed access
rights which travel transitively from device to device.
Devices which have never directly communicated will often
find that they are part of a team of devices which are allowed
to interoperate with certain access rights without any need
for further gathering permissions.

One of the biggest problems in the current state of the art
in security is that it is so difficult for end users to understand
and administer security methods that they end up not using
them at all. There is a direct relationship between the
strength of security methods used and the complexity of
administration. In traditional corporate and government
computer networks a high degree of strength was deemed
necessary and was necessarily administered by highly
trained full-time professionals. The fact that such networks
were rarely reconfigured made the amount of administration
reasonable for the professionals. These same conventional
security methods are often applied to the evolving and
growing world of mobile devices used by individuals with
no training and no time or patience for full time adminis-
tration of securing networks of devices that would need
constant administration as mobile devices come and go. The
inventive SocialSecurity method, while perhaps not as
strong as the traditional methods employed in corporate and
government networks, does deliver a good level of security,
while being so easy to administrate for devices, that most
people will actually use it where they often would not use or
turn off the traditional methods. Thus SocialSecurity advan-
tageously delivers a good level of security in situations
where no security would otherwise be used.

Email is a good example. Traditional secure email pro-
tocols have been available and built into the majority of
existing email users’ client software since they began using
email; yet, few email end users make use of these secure
email protocols. One reason is that the administration
needed to get, secure and use certificates and ensure that
everyone they want to email to securely has also performed
the administration necessary to get, secure and use certifi-
cates is too complex and tedious. Another example is that it
is so difficult to set up security on wireless access ports that
many home wireless networks are left unsecured.

SocialSecurity is similar to human models for securing
interactions. One learns to trust a new employee of a
company with company proprietary information because the
new employee was introduced by others in the organization.
It is likely that old employees will began trusting the new
employee without ever talking directly to anyone with
original knowledge that the new employee is a bona fide
employee of the company. This web of trust is established
without any need for central coordination or tracking.
Devices such as cell phones, printers, PDAs, laptops, digital
cameras and portable music players often have media,
information or control to share, but they are never all
connected together at once or to any one same central
source. Yet it is desirable to use security methods to protect
the integrity of the information on devices from improper
use or corruption by other devices or software. The Social-
Security method is a particular subset of the inventive
Interoperability Security or inventive DartSecurity method-
ologies of the DartPlatform where access rights are passed
from device to device automatically establishing webs of
trusted devices and software applications or Darts with a

US 9,436,525 B2

131

specific set of access rights with a minimum of administra-
tion or training required for the users of the devices.

The SocialSecurity methodology builds upon the DartSe-
curity methodology described elsewhere in this document.
DartSecurity (FIG. 29) ensures that every DartDevice and
Dart application has a universally unique identifier, uid.
Each DartDevice also maintains lists of uids of other Dart-
Devices which are allowed access rights as indicated by sets
of binary flags. Each set of binary access rights flags is
assigned to a level.

SocialSecurity is a transitive method for forming and
maintaining teams of devices, and distributing and main-
taining the lists of devices with common access rights across
all teamed devices. FIG. 31 shows a DartDevice on the left
side with the DeviceSecurity Lists, a Revoked List, and
Device Uid elements of SocialSecurity. The SocialSync List
shown is part of the SocialSynchronization methodology
described elsewhere in this document which is used in a
preferred implementation at least in part to spread and
synchronize the Dartlists transitively across devices.

The right side of FIG. 31 shows an example of the state
of old and new DartDevices before and after teaming to help
in illustrating the SocialSecurity methodology. In this
example before teaming, the Old DartDevice uidA has lists
of uids of applications and devices which will be allowed to
interoperate within the access rights of the flags correspond-
ing to the level of the list. Before teaming the New Dart-
Device uidZ’s only DeviceSecurity List allows the device
itself to interoperate with itself at Level 9. Ordinarily some
of the Dart applications that are shipped with the Device
from the manufacturer need a high level of access to
configure the device and or the security aspects of the
device, so the device will grant the applications on the
Device itself a high level of access as indicated by having
the device’s own uid in the Level 9 list.

When a Dart on the new device initiates the device’s first
contact with the old device and attempts to send and run a
Dart generate from renditions of itself to run on the old
device, the access rights in the Dart and of the new device
are checked. Of course the old device knows nothing about
the new device and in this example case it also has no
security information about the access rights of the Dart
application attempting to spread its execution to the old
device. In this example, the user will be asked via a user
interface on each device for permission for these devices to
interoperate according to the access needs communicated by
the flags in the Dart. FIG. 31 shows, on the bottom right, the
state of the devices after permission is granted for the
devices to interoperate at level 7, corresponding to the
access flags set which grants all the access rights specified
in the Dart passed to the old device. After getting permission
from the user via the user interface, both the old and new
DartDevices now contain the same level 7 list of uids of
devices and Darts that are allowed to interoperate without
asking permission. Note that should the New DartDevice
next attempt to send a Dart to any of the other devices on its
new level 7 list with the same security access flags require-
ments, it will be allowed to run without any need to ask the
user. In effect the devices are vouching for all the other
devices it knows about. A trusted team of devices will trust
each other, even those that it has never directly made contact
with before if the team’s lists of uids has been distributed
across the devices through connections even where inter-
mittent with other devices of the team. In a preferred
implementation, the lists of uids are synchronized using
parts of the SocialSynchronization methodology described
elsewhere in this document.

20

25

30

35

40

45

50

55

60

65

132

Note that the only administration requiring user involve-
ment or understanding to form and maintain the team was
the ability to answer questions directly relating to what kinds
of access must be granted before the devices can start
interoperating in the needed manner. The simple tasks of
using the devices and Darts drives the collecting and dis-
tributing of access rights with a small number of easily
understood requests for permissions from the user.

Revocation of access rights for a device can also be
accomplished using SocialSecurity to spread a list of
revoked uids of devices and Darts. In a preferred implemen-
tation, any attempts to interoperate between devices which
are one of the devices’ revoked lists with the needed rights
will not be permitted and the uids in the lists of teams of the
revoked devices for the appropriate levels of security will be
removed.

Additional particular embodiments of the inventive social
security interoperability model and of the more specific
version of that model, the Dart Social Security model, are
now set forth. In one embodiment (1), the invention provides
a method for automatically and transitively spreading the
access rights and credentials between interoperability
devices, the method comprising: (1) assigning to each
interoperability device a unique id; (2) assigning to each
interoperability device an initial set of access rights; (3)
assigning to each interoperability software package one or
more unique ids and embedding in the package the sets of
unique ids and associated access rights needed by all and or
each of the independently executable images that are part of
the application package; and (4) when two interoperability
devices open a communication channel any existing access
rights for device teams or applications associated with
unique ids that are no more restrictive than those existing for
the interoperability of the two devices on either device are
synchronized with those on the other device.

In another embodiment (2), the invention provides the
method of (1), wherein one or more of the following are true:
(1) the interoperability device comprises a Dart device; (2)
the basis for the unique ids are an interoperability security
procedure; (3) the access rights are as described in interop-
erability security procedure; (4) the package is an interop-
erability software package and/or a Dart; (5) the opening of
a communication channel is initiated as part of a device
recruitment procedure; and (6) the access rights are syn-
chronized using a Social Synchronization procedure.

In another embodiment (3), the invention provides the
method of (1), wherein the method is carried out in the
following steps: (1) initiating a communication session from
an interoperability software package running on an initiating
interoperability device to a target interoperability device in
order to carry out a particular interoperability purpose; (2)
determining if proper access rights exist between and among
the devices for the intended purpose; and (3) if the proper
access rights exist, the application software package is
allowed to extend its execution to the target device by
sending an independently executable image to the target
device and running the image in a context with the needed
access rights.

In another embodiment (4), the invention provides the
method of (3), further comprising: (4) if during execution
the independently executable image attempts an access not
allowed by the needed access rights of the context in which
it is running, the execution will be terminated by the
interoperability engine on the target device.

In another embodiment (5), the invention provides the
method of (4), further comprising: (5) if the proper required
access rights do not exist, the user or users are presented as

US 9,436,525 B2

133

necessary on one or both devices on a user interface request-
ing that the proper access rights be granted and or the proper
credentials be provided.

In another embodiment (6), the invention provides the
method of (5), further comprising: (6) if the proper access
rights are granted and/or the proper credentials are provided,
the user may optionally be requested specity if the access
rights and credentials are to be stored on the devices for a
period of time.

In another embodiment (7), the invention provides the
method of (6), wherein the period of time may optionally be
selected from the periods of time consisting of: (i) the
lifetime of the current communication session, (ii) a speci-
fied period of time or target date and time when the access
rights and or credentials storage and or use are to expire; (iii)
for an open period of time without defined expiration, or (iv)
forever or forever until revoked.

In another embodiment (8), the invention provides the
method of (6), further comprising: (7) independently of
whether or not the proper access rights exist or are granted
and/or the proper credentials are gathered for the specific
purpose and then stored the following procedure is option-
ally preformed: all the now stored access rights and creden-
tials that are valid forever for all devices and interoperability
applications ever stored which are no more restrictive than
those for the same devices or applications as indicated by the
unique ids of the devices and applications associated with
the stored access rights and credentials are then synchro-
nized across both devices.

In another embodiment (9), the invention provides the
method of (5), wherein the determining if proper access
rights exist between and among the devices for the intended
purpose), further comprises: (2a) communicating the access
rights needs and credentials the software package will need
to carry out the interoperability purpose by the executing
software package; (2b) inspecting lists of unique ids and
associated access rights and credentials stored on either one
of or both devices by the interoperability engines of one or
both devices to determine if the devices already have the
needed access rights; and (2¢) checking to determine if the
access rights and/or credentials already exist on the target
device and/or on the initiating device that will allow the
access needed for the intended purpose.

In another embodiment (10), the invention provides the
method of (8), wherein the effect is that the access rights
already gathered for devices and applications at the level or
below that is now common to both devices will now be
allowed without user prompting even in cases where the
unique ids, access rights, and/or credentials where never
directly exchanged between two interoperability devices.

In another embodiment (11), the invention provides the
method of (8), wherein the step of synchronizing across both
devices access rights and credentials may be reversed such
that access rights and/or credentials can be subsequently
revoked by a device with the proper access rights and/or
credentials and/or physical access required by the security
mechanisms of the interoperability players that contain the
interoperability engines running on the devices.

In another embodiment (12), the invention provides the
method of (1), wherein the number of user involvements in
granting access rights between all combinations of N
devices which frequently communicate to be roughly lin-
early proportional to the number of devices N, rather than
other methods wherein the number of user involvements
grows faster as N increases.

In another embodiment (13), the invention provides the
method of (8), wherein the number of user involvements in

20

25

30

35

40

45

50

55

60

65

134

granting access rights between all combinations of N
devices which frequently communicate to be roughly lin-
early proportional to the number of devices N, rather than
other methods wherein the number of user involvements
grows faster as N increases.

In another embodiment (14), the invention provides the
method of (12), wherein the growth of interactions is sub-
stantially proportional to N while conventional other meth-
odologies provide for interactions that are proportional to
the (N Choose 2) gamma function because conventional
methodologies do not have transitivity.

In another embodiment (15), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner for
automatically and transitively spreading the access rights
and credentials between interoperability devices, the pro-
gram module including instructions for: (1) assigning to
each interoperability device a unique id; (2) assigning to
each interoperability device an initial set of access rights; (3)
assigning to each interoperability software package one or
more unique ids and embedding in the package the sets of
unique ids and associated access rights needed by all and or
each of the independently executable images that are part of
the application package; and (4) when two interoperability
devices open a communication channel, any existing access
rights for device teams or applications associated with
unique ids that are no more restrictive than those existing for
the interoperability of the two devices on either device are
synchronized with those on the other device.

In another embodiment (16), the invention provides an
apparatus that automatically and transitively spreads access
rights and credentials between interoperability devices, the
apparatus comprising: (1) means for assigning to each
interoperability device a unique id; (2) means for assigning
to each interoperability device an initial set of access rights;
(3) means for assigning to each interoperability software
package one or more unique ids and embedding in the
package the sets of unique ids and associated access rights
needed by all and or each of the independently executable
images that are part of the application package; and (4)
means for synchronizing access rights with those on the
other devices when two interoperability devices open a
communication channel so that any existing access rights for
device teams or applications associated with unique ids that
are no more restrictive than those existing for the interop-
erability of the two devices on either device are synchro-
nized with those on the other device.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

XX. Interoperability Device/DartDevice

Recall that a DartDevice is a highly interoperable device
by virtue of its running a DartPlayer containing a DartEn-
gine and at least one communications protocol for connect-
ing to other DartDevices. Aspects of the interoperability

US 9,436,525 B2

135
device and the more particularized DartDevice are illus-
trated in FIG. 3 (300) and FIG. 4 (3000).

In one embodiment (1), the invention provides an interop-
erability device comprising: (1) a physical Turing complete
instruction set based processor coupled with a physical
memory capable of performing general computation and
input/output operations; (2) at least one means for two way
communication with other devices; and (3) an interoperabil-
ity engine running on the processor and encapsulated in an
interoperability player embodied in an executable format
loadable and executable on the device.

In another embodiment (2), the invention provides an
interoperability device as in (1), further comprising the
interoperability player.

In another embodiment (3), the invention provides an
interoperability device as in (1), wherein one or more of the
following are true either alone or in any combination: (1) the
interoperability device is a DartDevice; (2) the Interoper-
ability Engine comprises a DartEngine; and (3) the interop-
erability player comprises a DartPlayer.

In another embodiment (4), the invention provides a
method for operating a device in an interoperability mode
with other similar or dissimilar devices, the method com-
prising: (1) providing a physical Turing complete instruction
set executable within a processor coupled with a physical
memory and in combination capable of performing general
computation and input/output operations; (2) sending and
receiving two-way communications between at least the
device and another device; and (3) operating an interoper-
ability engine on the processor and encapsulated in an
interoperability player embodied in an executable format
loadable and executable on the device.

In another embodiment (5), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner for
operating a device in an interoperability mode with other
similar or dissimilar devices, the program module including
instructions for: (1) providing a physical Turing complete
instruction set executable within a processor coupled with a
physical memory and in combination capable of performing
general computation and input/output operations; (2) send-
ing and receiving two-way communications between at least
the device and another device; and (3) operating an interop-
erability engine on the processor and encapsulated in an
interoperability player embodied in an executable format
loadable and executable on the device.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

XXI. Interoperability Platform/DartPlatform

Recall that the DartPlatform may be any set of Dart
methodologies which can carry out the specification, gen-
eration, intelligent teaming of DartDevices and facilitate the
spreading and running of Dart interoperability applications
across one or more DartDevices. Aspects of the Interoper-

20

25

30

35

40

45

50

55

60

65

136
ability Platform, and the more particular DartPlatform of the
generic interoperability platform, are illustrated in FIG. 3 as
well as in other portions of the detailed description.

Additional embodiments of the interoperability platform,
of which the Dart Platform is a specific example, are now
described. In one embodiment (1), the invention provides a
system for specifying, building, distributing, and carrying
out the intent of an interoperability software package of
independently executable images across a plurality of pos-
sibly heterogeneous devices in a secure, reliable, efficient
and robust manner, the system comprising: (1) an interop-
erability source for specifying an interoperability computer
program software package; (2) interoperability tools for
building procedural instructions; (3) an interoperability for-
mat for packaging at least the procedural instructions; (4) an
interoperability instruction set for representing the proce-
dural instructions generated by the interoperability tools; (5)
an interoperability engine for running the interoperability
software package and providing a common interoperability
infrastructure on all interoperability devices; and (6) device
recruitment means for forming, distributing, and maintain-
ing a team of interoperability devices.

In another embodiment (2), the invention provides the
system of (1), wherein the device recruitment means further
includes: means for sending an inspection procedure opera-
tive to find a device having a needed resource or capability
to at least one reachable device different from the initiating
source device over at least one communication link, the
inspection procedure including inspection procedure
instructions coded in an executable form common to both
the initiating source device and to the device the inspection
procedure is intended to reach; means for receiving on the
initiating device the return response from each of the reach-
able devices directly or indirectly over a communication
link; means for analyzing, by a procedure executing on the
initiating device, the received returns from all responding
reachable devices to determine a utilization plan identifying
the combination of capabilities and resources of the initiat-
ing source device and the responding reachable devices to
best carry out the intent of the software application; and
means for distributing, by an application program executing
on the initiating device, at least one of executable code, data,
content, and/or Dart to at least one of each of the reachable
devices identified as having a needed resource or capability
according to the identified utilization plan.

In another embodiment (3), the invention provides the
system of (1), wherein one or more of the following optional
components are included or used in the system in any
combination: (1) an interoperability framework; (2) linear
tasking means; (3) vertical layering means; (4) application
driven power management means; (5) application driven
error recovery means; (6) an interoperability runtime; (7) an
interoperability application driven runtime; (8) creationism
means; (9) virtual pointers; (10) an interoperability security
model means; (11) social synchronization means; (12) social
security means; and (13) interoperability device enabling
means.

In another embodiment (4), the invention provides the
system of (1), wherein one or more of the following are true
in any combination: (1) the system includes a DartPlatform;
(2) the interoperability software package conforms to the
interoperability format or is a Dart conforming to the
DartFormat; (3) the independently executable images are
renditions; (4) the Interoperability Source is a DartSource;
(5) the Interoperability Tools are DartTools; (6) the Interop-
erability Format is a DartFormat; (7) the Interoperability

US 9,436,525 B2

137

Instruction Set is a DartlnstructionSet; and (8) the recruit-
ment method is a Dart Recruitment method.

In another embodiment (5), the invention provides the
system of (3), wherein one or more of the following are true
in any combination: (1) the Interoperability Framework is a
DartFramework; (2) the Linear Tasking is a Dart Linear
Tasking; (3) the Vertical Layering is a Dart Vertical Layer-
ing; (4) the Application driven power management is a Dart
Application driven power management; (5) the Application
driven error recovery is as described elsewhere in the
detailed description; (6) the Interoperability Runtime is a
DartRuntime; (7) the creationism is Dart Creationism; (8)
the virtual pointers are Dart Virtual Pointers; (9) the Interop-
erability Security Model is as described elsewhere in the
detailed description; (10) the Social Synchronization is as
described elsewhere in the detailed description; (11) the
Social Security is as described elsewhere in the detailed
description; and (12) the Interoperability Device Enabling is
as described elsewhere in the detailed description.

In another embodiment (6), the invention provides the
system of (1), wherein the system is simple because of one
or more of the following features: a programmer or creator
of'the application writes and or tests just one interoperability
application that targets an interoperability engine and it will
provide the following features alone or in any combination:
(1) run well on all suitable interoperability devices running
that engine; (2) automatically allow any user interface input
and output to be performed on nearby or remote Personal
Computer or intelligently across many devices with superior
interface hardware or software resources eliminating the
need to separately write and separately distribute special
Personal Computer synchronization applications; (3) per-
form tasks which can only be performed or are better
performed with two or more cooperating devices; (4) serve
as internet server software without the need to write any
more code by placing the application on an interoperability
device running the interoperability engine that is connected
to the Internet; (5) distribute itself from device to device in
a limited or unlimited manner; (6) the use of virtual pointers
eliminates the need to write more tedious code using file
operations; (7) make use of virtual pointers to eliminate the
need for considering or writing algorithms used to improve
the speed of access to various storage mediums; (8) make
use of virtual pointers to eliminate the need for thinking
about or partitioning and maintaining the partitioning of a
single address space where different memory allocations
must be kept from growing into each other, or be resized
dynamically, or copied to larger partitions so they could
grow in size; (9) make use of the hardware abstraction layer
code with makes all communications mechanisms look the
same to the application regardless of the protocol being
used; (10) make additional coding unnecessary to support
the automatic bridging of protocols so that devices can be
serially teamed even if different protocols are used between
different devices; (11) allow the programmer to use the code
in the Interoperability Framework and its use of the rest of
the Interoperability Platform to perform much of the most
difficult aspects of interoperability applications without the
need to write the code; (12) provide a program development
effort that grows linearly with the number of devices to
support, N, instead of order development methodologies
where the effort grows as the square of N or any other
methodology where the growth rate is greater than being
linear with N; (13) provide a program testing effort that
grows linearly with the number of devices to support, N,
instead of order development methodologies where the
effort grows as the square of N or any other methodology

20

25

30

35

40

45

50

55

60

65

138

where the growth rate is greater than being linear with N;
and (14) limit the necessary testing is simplified because
adaptation is limited to small number of well defined clas-
sifications of devices by a renditioning method.

In another embodiment (7), the invention provides the
system of (6), wherein the (11) allow the programmer to use
the code in the Interoperability Framework and its use of the
rest of the Interoperability Platform to perform much of the
most difficult aspects of interoperability applications with-
out the need to write the code, the aspects including one or
more of the following in any combination: (a) recruitment’s
device discovery; (b) recruitment’s device teaming; (c)
recruitment’s spreading of parts of the application intelli-
gently across devices; (d) application level power manage-
ment; (e) application level error recovery; (f) the mixing and
matching of event processing units wherein the functionality
is rearranged just by changing the graph of event processing
units; (g) the dynamic extension of the runtime to include
separately generated interoperability applications into the
runtime of other applications; and (h) maintaining harmo-
nious operation among the teams of devices using event
processing which is automatically serialized and synchro-
nized across teams of devices.

In another embodiment (8), the invention provides the
system of (1), wherein the system is simple because of one
or more of the following features: the end user of the
application has to consider and or understand and or admin-
istrate any of the following less often, if ever, than the user
would have to were conventional static interoperability
methods and or conventional procedural interoperability
methods used alone or in any combination: (1) needing to
know about, finding, getting or loading drivers; (2) choices
presented wherein a list of devices that cannot perform the
intended functionality are presented along with those that
can because the underlying system does not yet know what
the limitations of the devices are when the list is created; (3)
what protocols are to be used, so that the end user does not
have to pre-select the protocol or communications technol-
ogy before initiating interoperability or knowing what the
end user’s choices are; (4) the rules for securing devices and
or data and or code and or content because of the transitivity
ofrules as carried out by the Interoperability Security Model
and or the Social Security Method; (5) the forming of teams
of'devices to carry out an intended purpose can be automated
by the application; (6) the application components of code
and data and content and meta data are all packaged together
according to the interoperability format and travel together
so that the user does not have to deal with the preponderance
of compatibility errors that would otherwise when interden-
tally generated and or independently distributed components
that come into contact are incompatible due to one or more
of: (a) versioning incompatibilities; (b) specification misun-
derstandings; (c) errors in implementation; (d) shortcuts in
implementation made by the programmers or manufactur-
ers; and (e) necessary components that are found to be
missing or otherwise unreachable; and (7) explicitly install-
ing separately generated applications on devices for syn-
chronizing and or backing up data and or content across one
or more devices.

In another embodiment (9), the invention provides the
system of (1), wherein the system is simple because of one
or more of the following features: the manufacturer of the
device is simple as compared with conventional static and or
procedural methodologies for one or more of the following
reasons alone or in any combination: (1) much less devel-
opment effort since only the functions and protocols of the
actual device need to be considered in porting an interop-

US 9,436,525 B2

139

erability engine, and not all the permutations of possible
protocols and characteristics of other devices because all the
adaptation for different devices is carried out by the appli-
cations not by each and every device; (2) no or less need to
coordinate, participate or wait for application standards to be
created before designing and or building and or bringing to
market interoperability devices; (3) lesser support needs
because interoperability of devices and applications are
easier to configure and use by the end user; (4) can expose
unique capabilities to other devices without writing or
distributing components to other types of devices; (5)
devices can work with other manufacturers’ devices without
any or reduced coordination of efforts and or negotiating of
contracts; and (6) can advance or cost reduce hardware
without the need to rewrite software applications and or
distribute new software applications and or software updates
to other devices.

In another embodiment (10), the invention provides the
system of (1), wherein the system is simple because of one
or more of the following features: the publishing of the
interoperability software applications is simple as compared
with conventional static and conventional procedural meth-
ods because of one or more of the following alone or in any
combination: (1) there is only one package instead of many
packages and parts needed to address the market of hetero-
geneous devices and combinations of devices and protocols
so that there is a bigger market addressable with one product
which results in one or more of the following simplifica-
tions: (a) lower development efforts; (b) simpler inventory;
(c) simpler distribution; and (d) simpler marketing since
market is not as segmented by device types and/or commu-
nications protocols and or processor types, and/or screen
sizes; (2) simpler pricing and promotion models; (3) more
sales with less effort; (4) easier use means simpler support;
(5) distribution of digital code and or data and/or content
and/or packages thereof can be performed directly from
device to device; and (6) applications or teasers about the
applications can be distributed directly from device to
device without the need to find other ways to communicate
the benefits, existence or actual software directly to the
potential users of a service accessible through the applica-
tions or directly to potential purchasers of software.

In another embodiment (11), the invention provides the
system of (1), wherein the system is secure for one or more
of'the following reasons: (a) the engine provides a protective
sandbox by way of the checking of all application memory
accesses for violations, and limiting direct application
access to storage and other aspects of the device’s resources
so that interoperability applications code cannot be used to
damage the device, its data, or content or run native code to
get around the sandbox; therefore, only the limited code of
the engine needs to secured against virus or other malicious
attacks, and not all of the almost unlimited application code
which can be written to run on the devices; (b) viruses
cannot propagate easily from devices with one native device
processor type to devices with other native processors; since
having the same processor is no longer necessary to ensure
interoperability, more types of processors are likely to be
deployed, making the world of interoperability devices more
secure from the spread of viruses and other malicious
software; (c) the Social Security Model is so simple to
administrate and use that people will actually leave security
on, rather than turn it off to avoid the administration other-
wise necessary with conventional security methods; and (d)
the Interoperability Security Model is implemented entirely

20

25

30

35

40

45

50

55

60

65

140

or mostly in portable source code that can be thoroughly
implemented and debugged once, greatly decreasing the
likelihood of errors.

In another embodiment (12), the invention provides the
system of (1), wherein the system is reliable and or robust
for one or more of the following reasons in any combination:
(a) applications running on one or more devices are often or
always communicating with parts of an initial package
spread via the recruitment and renditioning methodologies
s0 as to enjoy a reliably of interoperability greater than that
where independently developed and or independently dis-
tributed applications used to perform the interoperability; (b)
the same portable source code of the Interoperability Engine
is used on all devices largely eliminating the problems of
implementation and or misunderstandings of the specifica-
tion or other problems associated with independently devel-
oped and distributed source or code used to enable interop-
erability between or across devices; (c) the Interoperability
Framework provides much of the common interoperability
functionality across applications and devices so that there is
more testing of the Framework code and fewer separate
designs and implementations, leading to fewer bugs or
interoperability issues; (d) Linear Tasking and or Vertical
Layering and or the serialization and synchronization meth-
ods of Recruitment ensures a largely deterministic order of
processing of events driving the application and device
operations, leading to fewer possible permutations of oper-
ating order that might otherwise cause errors; (e) application
level error recovery is built into the Interoperability Plat-
form, from the Interoperability Source, Interoperability
Tools, the Interoperability Runtime and the Interoperability
engine to ensure that intermittent interruptions in commu-
nications can often be elegantly handled without the need for
the application to stop all operations or terminate, or be
explicitly reset; and (f) the Interoperability Security System
and or the sandbox and or the access rights enforcement
implemented in the Interoperability Engine can blocks
viruses or other applications from harming the device or its
data whether the potential harm is intentional or uninten-
tional.

In another embodiment (13), the invention provides the
system of (1), wherein the system is efficient for one or more
of the following reasons alone or in any combination: (a)
only the code, data and content needed for a particular target
device and or particular task needs to be sent over a
communications channel and processed by a target device
by the virtues of the Recruitment and or Renditioning and or
Creationism methods for spreading code, data and content;
(b) only one application package is needed to effect even
complex multiple device interoperability; (c) the Part images
of an interoperability application that conforms to an
interoperability format are often shared between separately
executable images of the application so that it is not neces-
sary to duplicate much of the data shared by the separately
executable images; (d) Virtual Pointers automatically make
advantageous tradeoffs between the use of main memory
and physical storage to make applications able to run with
less physical memory than would otherwise be necessary;
(e) Virtual Pointers automatically make advantageous
tradeoffs between the use of main memory and physical
storage to make applications able to run faster than if
conventional memory and/or storage methods were
employed; and (f) Virtual Pointers make intelligent advan-
tageously efficient tradeoffs of memory requirements and
speed of operation based on the access patterns expected in
applications and the physical characteristics of the main
memory and storage of each particular device.

US 9,436,525 B2

141

In another embodiment (14), the invention provides the
system of (1), wherein the software application running on
more than one device is at least partially performing the
interoperability operations on two or more devices with code
and/or data and/or content that were originally part of a
single software package on the initiating device so as to
enjoy a reliably of interoperability greater than that where
independently developed and/or independently distributed
applications are used to perform the interoperability opera-
tions.

In another embodiment (15), the invention provides the
system of (3), wherein the (1) interoperability framework
further comprises a computer program or computer program
product for executing within a processor logic and associ-
ated memory and including a plurality of computer program
code instructions implementing a procedure to establish an
interoperability framework.

In another embodiment (16), the invention provides the
system of (3), wherein the (2) linear tasking means further
comprises a computer program or computer program prod-
uct for executing within a processor logic and associated
memory and including a plurality of computer program code
instructions implementing a procedure performing linear
tasking.

In another embodiment (17), the invention provides the
system of (3), wherein the (3) vertical layering means further
comprises a computer program or computer program prod-
uct for executing within a processor logic and associated
memory and including a plurality of computer program code
instructions implementing a procedure performing vertical
layering.

In another embodiment (18), the invention provides the
system of (3), wherein the (4) application driven power
management means further comprises a computer program
or computer program product for executing within a pro-
cessor logic and associated memory and including a plural-
ity of computer program code instructions implementing a
procedure performing application driven power manage-
ment.

In another embodiment (19), the invention provides the
system of (3), wherein the (5) application driven error
recovery means further comprises a computer program or
computer program product for executing within a processor
logic and associated memory and including a plurality of
computer program code instructions implementing a proce-
dure performing application driven error recovery.

In another embodiment (20), the invention provides the
system of (3), wherein the (6) interoperability runtime
further comprises a computer program or computer program
product for executing within a processor logic and associ-
ated memory and including a plurality of computer program
code instructions implementing a procedure establishing a
interoperability runtime.

In another embodiment (21), the invention provides the
system of (3), wherein the (7) interoperability application
driven runtime further comprises a computer program or
computer program product for executing within a processor
logic and associated memory and including a plurality of
computer program code instructions implementing a proce-
dure establishing and performing an interoperability run-
time.

In another embodiment (22), the invention provides the
system of (3), wherein the (8) creationism means further
comprises a computer program or computer program prod-
uct for executing within a processor logic and associated

20

25

30

35

40

45

50

55

60

65

142

memory and including a plurality of computer program code
instructions implementing a procedure performing creation-
ism.

In another embodiment (23), the invention provides the
system of (3), wherein the (9) virtual pointers further com-
prises a computer program or computer program product for
executing within a processor logic and associated memory
and including a plurality of computer program code instruc-
tions implementing a procedure performing creationism.

In another embodiment (24), the invention provides the
system of (3), wherein the (10) interoperability security
model means further comprises a computer program or
computer program product for executing within a processor
logic and associated memory and including a plurality of
computer program code instructions implementing a proce-
dure establishing an interoperability security model.

In another embodiment (25), the invention provides the
system of (3), wherein the (11) social synchronization means
further comprises a computer program or computer program
product for executing within a processor logic and associ-
ated memory and including a plurality of computer program
code instructions implementing a procedure performing an
interoperability security model.

In another embodiment (26), the invention provides the
system of (3), wherein the (12) social security means further
comprises a computer program or computer program prod-
uct for executing within a processor logic and associated
memory and including a plurality of computer program code
instructions implementing a procedure establishing social
security.

In another embodiment (27), the invention provides the
system of (3), wherein the (13) interoperability device
enabling means further comprises a computer program or
computer program product for executing within a processor
logic and associated memory and including a plurality of
computer program code instructions implementing a proce-
dure performing social security.

In another embodiment (28), the invention provides a
method for specifying, building, distributing, and carrying
out the intent of an interoperability software package of
independently executable images across a plurality of pos-
sibly heterogeneous devices in a secure, reliable, efficient
and robust manner, the method comprising: (1) generating or
providing an interoperability source for specifying; (2) gen-
erating or providing interoperability tools for building pro-
cedural instructions; (3) generating or providing an interop-
erability format for packaging at least the procedural
instructions; (4) generating or providing an interoperability
instruction set for representing the procedural instructions
generated by the interoperability tools; (5) generating or
providing an interoperability engine for running the interop-
erability software package and providing a common interop-
erability infrastructure on all interoperability devices; and
(6) performing device recruitment for forming, distributing,
and maintaining a team of interoperability devices.

In another embodiment (29), the invention provides a
method as in (28), further comprising: sending an inspection
procedure operative to find a device having a needed
resource or capability to at least one reachable device
different from the initiating source device over at least one
communication link, the inspection procedure including
inspection procedure instructions coded in an executable
form common to both the initiating source device and to the
device the inspection procedure is intended to reach; receiv-
ing on the initiating device the return response from each of
the reachable devices directly or indirectly over a commu-
nication link; analyzing, by a procedure executing on the

US 9,436,525 B2

143

initiating device, the received returns from all responding
reachable devices to determine a utilization plan identifying
the combination of capabilities and resources of the initiat-
ing source device and the responding reachable devices to
best carry out the intent of the software application; and
distributing, by an application program executing on the
initiating device, at least one of executable code, data,
content, and/or Dart to at least one of each of the reachable
devices identified as having a needed resource or capability
according to the identified utilization plan.

In another embodiment (30), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner for
specifying, building, distributing, and carrying out the intent
of an interoperability software package of independently
executable images across a plurality of possibly heteroge-
neous devices in a secure, reliable, efficient and robust
manner, the program module including instructions for: (1)
generating or providing an interoperability source for speci-
fying; (2) generating or providing interoperability tools for
building procedural instructions; (3) generating or providing
an interoperability format for packaging at least the proce-
dural instructions; (4) generating or providing an interoper-
ability instruction set for representing the procedural instruc-
tions generated by the interoperability tools; (5) generating
or providing an interoperability engine for running the
interoperability software package and providing a common
interoperability infrastructure on all interoperability devices;
and (6) performing device recruitment for forming, distrib-
uting, and maintaining a team of interoperability devices.

In another embodiment (31), the invention provides the
computer program product of (30), wherein the instructions
for performing device recruitment further includes instruc-
tions for: sending an inspection procedure operative to find
a device having a needed resource or capability to at least
one reachable device different from the initiating source
device over at least one communication link, the inspection
procedure including inspection procedure instructions coded
in an executable form common to both the initiating source
device and to the device the inspection procedure is intended
to reach; receiving on the initiating device the return
response from each of the reachable devices directly or
indirectly over a communication link; analyzing, by a pro-
cedure executing on the initiating device, the received
returns from all responding reachable devices to determine
a utilization plan identifying the combination of capabilities
and resources of the initiating source device and the
responding reachable devices to best carry out the intent of
the software application; and distributing, by an application
program executing on the initiating device, at least one of
executable code, data, content, and/or Dart to at least one of
each of the reachable devices identified as having a needed
resource or capability according to the identified utilization
plan.

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

20

25

30

35

40

45

50

55

60

65

144
XXII. Virtual Pointers

Conventional programs are most often compiled and
linked targeting a conventional processor which can directly
address just one linear data address space. Often processors
implement virtual memory to allow programs and operating
systems to directly address main memory larger than the
physical memory by implementing a system of virtual
memory where a limited number of real memory blocks, or
pages, are automatically swapped in and out of a larger but
slower storage device. This advantageously frees the pro-
grammer from having to concern herself with logic other-
wise needed to directly manage the swapping between the
directly addressable fast main memory and slower but larger
storage devices.

Still programmers must often concern themselves with
memory management logic to keep separate data structures
from addressing conflicts with each other as they dynami-
cally change size during execution of programs. Dynami-
cally dividing up and managing the shared use of a single
address space is often complex and prone to bugs, even
where virtual memory techniques are used to create a larger
effective data address space.

Another limitation of conventional virtual memory tech-
niques is that the processor only supports real memory pages
of a fixed size regardless of the characteristics of the
program that is running, or in a way that requires one size
of real memory changes to be used for multiple programs
where the size does optimally match the needs of all the
simultaneously loaded programs or sections of programs.

In one implementation of the invention, more complex
addressing logic is used either in a hardware processor or a
software instruction set execution engine to provide multiple
independent address spaces for use by each program, and to
allow the number of real memory pages and their size to
advantageously vary depending on the physical size of
available real main memory, speed and performance char-
acteristics of the main memory, and the expected access
patterns of specific programs to specific data sets. Inventive
programming language extensions are supported in the
source code, compiler and linker to provide for the use of the
inventive VirtualPointers. Using VirtualPointers has the fol-
lowing benefits:

1. Multiple large independent address spaces. Each
dynamically resized data structure can be kept in Its
own different VirtualPointer address spaces so that no
conflicts with data structures in other address spaces
can occur.

2. Application specific control over the number of real
memory pages for each individual independent address
space. The optimal number of real memory pages can
be set according to the expected access patterns to limit
the amount of real memory required, an or to limit the
number of slow block reads and writes that are needed
to swap data between real memory and storage. For
example, if a large amount of data is always accessed
starting at zero and continuing in linear order, more
than one memory page would be supertluous. The page
size could be set to the optimal access block size of the
actual storage to ensure good performance speed, or
limit the number of accesses to the storage blocks so as
not to wear out the device.

3. Device specific control over real memory page sizes to
match storage device performance characteristics or
improve the lifetime of the storage device. Often
devices use flash memory for storage which have a
known limited number of guaranteed block accesses

US 9,436,525 B2

145

before they start malfunctioning. Hard disks often store
or cache data in blocks of a specific size.

4. No need for the programmer to predict or administrate
the amount of memory needed for data structures or
lists because the virtual pointer automatically logically
includes values for an address space larger than the
expected largest such data structure or list used to
access it;

5. Automatic saving of data in a form independent of page
sizes or number of pages. DartSource can be used to set
a parameter of each VirtualPointer variable which
indicates whether the saving of Dart using the Dartln-
structionSet SAVE_INSTRUCTION will automati-
cally save the entire data state of the address space. In
one preferred implementation, the values of each Vir-
tualPointer that are to be saved are kept as a DartPart
with a sparse list of ranges of values without regard to
the page size or number of pages currently in use by the
running Dart. This makes it possible for the running of
the saved Dart on other devices where there are needs
for differing page size and or number of pages.

6. Efficient caching of data from a larger and possibly
slower data store with a minimal amount of precious
main memory RAM allowing applications to run as if
they have much larger RAM memories than they physi-
cally have.

7. Simple and efficient base infrastructure for indexed
database operations where the data and indexes are kept
in different virtual address spaces.

In a preferred implementation VirtualPointers are sup-
ported by the DartSource, DartTools, and DartEngine to
provide the listed benefits.

In the DartSource each virtual pointer is specified using a
#pragma VirtualPointer(parameters) extension of the C or
C++ language with parameters which include:

1. The name of a pointer variable that will hold the
starting address of a virtual address space when the program
starts execution.

2. The number of real memory pages suggested for use.

3. A binary flag indicating if the values in the address
space are to be automatically saved along with the applica-
tion.

4. The suggested size of the real memory pages.

The DartTools process the DartSource #pragma state-
ments to create a Dart which will load the pointer address
value which effectively serves as the starting offset of the
separate address space. This starting offset is really part of
a multi-field address that will be interpreted by the DartEn-
gine to identify a specific virtual pointer.

A Dart Virtual Pointer example is shown in FIG. 32. In a
preferred implementation the address space of a Dart is in
units of 32-bit words, rather than the more common 8 bit
bytes of most conventional processors where the maximum
directly addressable space is 2732 8-bit bytes. The DartPlat-
form uses the two most significant bits of a 32-bit address as
a field indicating the type of address space to be used. Since
the addressable units of the DartInstructionSet carried out by
the DartEngine are 32-bit words, there is no loss in the size
of memory addressable, which is 2730 32 bit words. The
example in FIG. 32 shows an address where the address
space type field indicates that this is a VirtualPointer address
space. The next five-bit field indicates that VirtualPointer 1
is being used, meaning that in this implementation, there can
be up to 2°5=32 different VirtualPointer address spaces. The
remaining 25-bits are the offset or address of the data item
in VirtualPointer 1’s address space.

20

25

30

35

40

45

50

55

60

65

146

The example in FIG. 32 shows a specific instance of how
VirtualPointer 1°s access is being managed by the DartEn-
gine on a specific device for a specific address, 0x50001.
Since the block (page) size is 64K=2"16 words, the upper
9-bits of the 25-bit offset indicate which 64K block contains
the data value being accessed. In the example shown, neither
of the two real memory pages currently holds that block.
Also neither of the flash storage block files for Virtual-
Pointer]l hold the data block needed. These files are the
result of past accesses which required the real memory pages
for block 100 and 101 to be replaced in the past by other
pages. The DartEngine automatically saved the data values
of these blocks in the two Flash memory files before
replacing the real memory pages. The actual current data
value for this access is still in a VirtualPointerl Part in the
running Dart file. This Part was created when the running
Dart was last saved using data values then current in its
VirtualPointer1’s address space. The access in the example
will be competed when the data values for block 101 are
read from the third range in the Part into one of the two real
memory pages. If the real memory page to be replaced has
data market as changed or dirty, then a new Flash storage file
will be written out to save the current values in the real
memory page before it’s values are replaced. The access is
complete when a pointer to the value for 0x50001 now in
real memory, is returned for processing by the accessing
Dart instruction.

Additional aspects and embodiments of virtual pointers
and their use relative to other aspects of the invention are
now set forth. In one embodiment (1), the invention provides
a method of providing a plurality of large independent data
access address spaces accessible within a software applica-
tion program which efficiently make use of physical memory
and or physical storage devices, the method comprising: (1)
specifying the properties of one or more independent
address spaces; (2) processing computer program code
source statements into an executable image suitable to run
on a particular software engine and or hardware processor
which supports virtual pointer functionality; and (3) running
the executable image on the particular software engine or
hardware processor which executes an instruction set that
resolves accesses to data referenced by the address space by
using a fast access limited size main memory and slower
access but larger size secondary storage in an efficient
manner.

In another embodiment (2), the invention provides the
method in (1), wherein the specifying the properties of one
or more independent address spaces is performed using a
computer programming language that supports statements
conforming to a syntax and semantics for doing so.

In another embodiment (3), the invention provides the
method in (1), wherein the processing comprises running
software tools which process the source statements into an
executable image suitable to run on a particular software
engine and or hardware processor.

In another embodiment (4), the invention provides the
method of (1), wherein the efficiently making use of and the
in an efficient manner are carried out at least in part by: (1)
for each independent address space, creating, and maintain-
ing a number of real memory pages all of a single specific
size; (2) when accesses to data logically in the independent
address space are made, resolving the access and returning
a value or pointer to main memory containing the value to
the instruction or program making the access, using the
following procedure: (a) determining if the data is in one of
the main memory pages; (b) if the data is not in one of the
main memory pages performing the following procedure: (i)

US 9,436,525 B2

147

determining if the data is in the secondary storage; (ii) if it
is not in the secondary, storage, perform one or more of the
following procedures: (1) return a default value; (2) return
with a pointer to a pointer to a main memory data element
that contains a default value; and (3) return with an access
to unknown data code or other indicator that there is no
known value for the data; (c) if the data is in the secondary
storage, perform the following procedure: (i) selecting a real
memory page and starting address that will hold the block of
data that contains the data value needed; (ii) if the selected
real memory page is marked as dirty then writing out or
otherwise cause the values in the selected real memory page
to be written to secondary storage; (iii) reading or otherwise
loading the contiguous range of addressable data into the
real memory page that is the size and has the same new
starting address as the real memory page; (iv) mark the data
in the real memory page as being not dirty; and (v) return the
value of the data now in the selected main memory page or
a pointer to the data now in the selected main memory page.
(d) if the data is in one of the main memory pages perform
the following procedure: (i) if the access is known to be one
that indicates that the consumer of the value may change the
value of the data, mark the main memory page as dirty; and
(i) return the value of the data main memory page or a
pointer to the data in the main memory page that is found to
include the data.

In another embodiment (5), the invention provides the
method of (4), wherein if the data is not in a real memory
page and the data is not on the secondary storage, proceed
as if the data was in secondary storage, except that instead
of'loading the selected real memory page with data from the
secondary storage, fill the selected real memory page with a
default value.

In another embodiment (6), the invention provides the
method of (5), wherein the method is only used if any of the
accesses to data in the read memory page is known to be one
that indicates that the consumer of the value may change the
value of the data.

In another embodiment (7), the invention provides the
method of (4), wherein the default value is optionally
selected to be one of the following values: zero (“0), one
(“1”), all bits set to one, all bits set to zero, negative one, the
most significant bit set to 1 and all others set to zero, a
particular value reserved to indicate an uninitialized value or
an unknown value.

In another embodiment (8), the invention provides the
method of (1), wherein one or more of the following are true
in any combination: (a) the software application program is
a DartRendition or a Dart; (b) specifying the properties of
one or more independent address space is done using
extensions to the language for interoperability source; (c) the
software tools are the interoperability tools or are the
DartTools; (d) the particular software engine and or hard-
ware processor is the interoperability engine or the DartEn-
gine; and (e) the instruction set is an interoperability instruc-
tion set or is the DartInstructionSet.

In another embodiment (9), the invention provides the
method of (4), wherein the values kept in secondary storage
are logically overwritten by the presence of data stored in a
superseding file.

In another embodiment (10), the invention provides the
method of (8), wherein the values are initially kept inside a
saved DartFormat Image and when a value is changed by the
execution of a Dart, instead of having to rewrite or copy and
replace the data values in the DartFormat image the data is
logically overwritten by a descriptor file with the same

20

25

30

35

40

45

50

55

60

65

148

starting address as the block of data corresponding to a block
which might be loaded into real memory pages.

In another embodiment (11), the invention provides the
method of (1), wherein the properties are optionally selected
to be one or more of the following in any combination: (a)
number of real memory pages; (b) a binary flag indicating if
the values in the address space are to be automatically saved
along with the application; (c) the size of the real memory
pages; and (d) the method for determining the above prop-
erties when not explicitly provided in the statement.

In another embodiment (12), the invention provides the
method of (11), wherein the real memory page size is
determined by one or more of the following factors or any
combination thereof: (i) amount of available real memory;
(i1) block size of flash media or other media type; (iii)
random access memory (RAM) buffer size of the physical
storage; and (iv) speed of reading or writing of data to main
memory and or physical storage.

In another embodiment (13), the invention provides the
method of (12), wherein the main memory page size
matches the size of the physical unit of access of a secondary
storage device, or is an integer fractional size of the physical
unit of access of a secondary storage device.

In another embodiment (14), the invention provides the
method of (1), wherein the specification is done via a
#pragma statement of a C language or C++ language or
extended language for processing by the interoperability
tools or by the DartTools.

In another embodiment (15), the invention provides the
method (of 1), wherein the method advantageously provides
one or more of the following properties in any combination:
(a) multiple large independent address spaces; (b) applica-
tion specific control over the number of real memory pages
for each individual independent address space; (c) device
specific control over real memory page sizes to match
storage device performance characteristics; (d) no need for
the programmer to predict or administrate the amount of
memory needed for data structures or lists because the
virtual pointer automatically logically includes values for an
address space larger than the expected largest such data
structure or list used to access it; (¢) automatic saving of data
in a form independent of page sizes or number of pages; (f)
effective caching of data from a larger and possibly slower
data store with a minimal amount of precious RAM allowing
applications to run as if they have much larger RAM
memories than they physically do; and (g) simple and
efficient base infrastructure for indexed database operations
where the data and indexes are kept in different virtual
pointer address spaces.

In another embodiment (16), the invention provides the
method of (1), wherein access to data values in the address
space is through the use of one or more of in any combi-
nation: (a) reserved pointer types; (b) reserved pointer
values; (c) the values used as pointer values; and (d)
reserved instruction addressing modes.

In another embodiment (17), the invention provides the
method of (1), wherein physical memory and storage
resources are one or more of in any combination: (a) flash
memory; (b) hard disk; (c¢) optical storage media; (d) solid
state storage media; and (e) any other physical medium
which is slower than the main memory attached to a pro-
Ccessor.

In another embodiment (18), the invention provides the
method of (1), wherein efficiency is achieved for one or
more of in any combination of factors: (a) a programmer
does not need to write explicit code to do one or more of the
following: (i) allocate and reallocate memory in ways that

US 9,436,525 B2

149

would otherwise be necessary; (ii) perform or specify
explicit file operations; and (iii) storing and restoring of data
in the independent address spaces where such storing is done
automatically as part of saving the application; (b) a pro-
grammer does not need to specify or consider the amount of
main memory needed; (c) a programmer does not need to
specify or consider the speed of the application’s operations;
(d) a programmer does not need to specify or consider the
application or user interface response times as experienced
by a human user; (e) a programmer does not need to specify
or consider the speed of access to data and or of the process
for locating and or collating data; (f) improving the lifetime
of secondary storage devices by reducing the number of
block accesses; and (g) the amount of code needed in an
application based on the reduced need as in item a) of this
list.

In another embodiment (19), the invention provides the
method of (8), wherein a SAVE_INSTRUCTION and or
BUILTIN_INSTRUCTION is used to automatically save the
data.

In another embodiment (20), the invention provides the
method of (8), wherein the data values are saved in a Dart
Part which contains possibly sparse sets of contiguous
ranges of values.

In another embodiment (21), the invention provides the
method of (20), wherein the data values are selectively
restored or not restored based on the value of an autoload
flag bit in the flags word of the Part Table record for each
VirtualPointer independent address space during loading of
the Dart by a DartEngine.

In another embodiment (22), the invention provides a
computer program product for use in conjunction with a
computer system or information appliance, the computer
program product comprising a computer readable storage
medium and a computer program mechanism embedded
therein, the computer program mechanism comprising: a
program module that directs the computer system or infor-
mation appliance to function in a specified manner for
providing a plurality of large independent data access
address spaces accessible within a software application
program which efficiently make use of physical memory and
or physical storage devices, the program module including
instructions for: (1) specitying the properties of one or more
independent address spaces; (2) processing computer pro-
gram code source statements into an executable image
suitable to run on a particular software engine and or
hardware processor which supports virtual pointer function-
ality; and (3) running the executable image on the particular
software engine or hardware processor which executes an
instruction set that resolves accesses to data referenced by
the address space by using a fast access limited size main
memory and slower access but larger size secondary storage
in an efficient manner.

In another embodiment (23), the invention provides a
virtual pointer data structure, comprising: a memory storage;
a plurality of pointers stored in the memory storage; the
pointers permitting specification and access to a plurality of
large independent data access address spaces accessible
within a software application program which efficiently
make use of physical memory and/or physical storage
devices; the pointers specifying the properties of one or
more independent address spaces; and the pointers permit-
ting resolution of access to data referenced by the address
space by using a fast access limited size main memory and
slower access but larger size secondary storage in an effi-
cient manner.

20

25

30

35

40

45

50

55

60

65

150

The features and/or elements recited in these exemplary
embodiments as well as of exemplary embodiments
described elsewhere in this detailed description or in the
drawings may be combined in many different ways so that
embodiments recited above are not limitations of the inven-
tion and additional or alternative embodiments having any
different combinations or permutations of the features and
elements are also embodiments of the invention.

Having described many different aspects, features, advan-
tages, and embodiments of the invention, attention is now
directed to a couple of illustrative examples of the inventive
technology so that its structure, procedures, and operation
may be more readily understood. The examples also
describe additional features of the invention that may not
otherwise be described in the sections above.

XXIII. Example Applications and Application
Scenarios

A. Neutrino Detector Application Example

With reference to FIG. 21, there is illustrated an example
of an embodiment of the invention showing how the Dart-
Platform, through the use of the DartInstructionSet’s OEM_
BUILTIN_INSTRUCTION, can be used to make the native
functionality of a new type of DartDevice, a home Neutrino
Detector 3500, discoverable and useable by a mobile phone
DartDevice 3600 even when the mobile phone initially has
no knowledge of the existence or characteristics of the
Neutrino Detector 3500.

The home Neutrino Detector 3500 is a device which only
exists theoretically today, but should one exist, it will be
appreciated that there would be no existing standards for
interoperating with such a device. Yet the DartPlatform
provides methods for enabling the Neutrino Detector (ND)
to be interoperable with other DartDevices, in this case a
mobile phone 3600, even though no existing standards or
knowledge of the functionality of such devices was known
to the manufacturer of the mobile phone DartDevice 3600.

The manufacturer of the ND is Mirabella Electronics
which has been assigned the unique id assigned to the
symbol, MIRABELLA_ELECTRONICS_ID so as to dif-
ferentiate any unique OEM functions created and used by
Mirabella Electronics from those created and used by all
other manufacturers. Mirabella, desiring to have its device
interoperable with DartDevices, ported the DartEngine as
part of a DartPlayer running on the ND. To expose the
device’s unique capability of sampling the number of Neu-
trinos which passes through its detector in a five second
period, the native embedded function, CollectSamples, that
causes the collection and returns the number of Neutrinos
which passed through the detector is called from the HAL’s
OEM(<oemld>, <subfunction>) method. Mirabella elec-
tronics then used the DartSource and DartTools to create a
control panel Dart which contains a rendition, R1, that
displays a user interface for the control panel, and a rendi-
tion, RO, which processes Dart specific events of a type
reserved for signaling that sampling is to take place.

Every DartDevice with user interface capabilities will
normally be shipped with a GetControlPanels Dart resident
on it to be used to find all the control panels implemented as
Darts reside on reachable DartDevices which are willing to
share its control panel Darts with other DartDevices. When
the GetControlPanels Dart is started on the mobile phone
3600, it sends a GetControlPanelList DartProcedure to run
on all devices reachable by any of its communications
protocols. In this case the Mobile Phone finds and estab-

US 9,436,525 B2

151

lishes a communications session using the Bluetooth proto-
col common to both devices, then sends the DartProcedure
as part of a RunProcedure type event to the Neutrino
Detector which runs the DartProcedure. The DartProcedure
gathers a list of names and descriptions and the unique id of
the ControlPanel Dart when it is executed on the ND through
the use of builtin instructions that are part of every Dart-
Device’s DartlnstructionSet. The name and description of
the available control panel Dart resident on the ND are sent
back to the Mobile Phone and displayed by the GetControl-
Panels Dart for selection by the user. After selecting the
control panel from the list on the Mobile Phone, an event is
sent requesting that the Control Panel Dart identified by its
unique id start execution on the ND and then recruit the
Mobile Phone over the established communications session,
which automatically replaces the GetControlPanel Dart on
the phone with a running Rendition R1 sent by the recruiting
ND ControlPanel Dart’s running R0 rendition.

Rendition R1 then displays a big green sample button on
the Mobile Phone’s screen. When the user selects the button,
R1 generates an event marked for synchronization that
request that a sample be taken. The event is automatically
sent by the DartRuntime to the teamed ND’s event queue
which results in the processing of the event by using the
OEM_BUILTIN_INSTRUCTION to carry out the sampling
by causing the DartEngine to call the halOEM() method
with the parameters assigned by Mirabella Electronics to
cause the CollectSamples() native device function and
return the number of samples back to the caller of hal
OEM() which is then returned by the engine to the execut-
ing RO rendition. RO then calls to place a DisplayNumber-
OfSamples type event which is marked for synchronization
on its queue which results in the placing of the DisplayNum-
berOfSamples type event on the queue of the teamed Mobile
Phone. The R1 rendition running on the Mobile Phone then
processes the event and displays the number of detected
Neurtrinos carried in a parameter of the DisplayNumberOf-
Samples type event on the screen.

Thus the example of FIG. 21 demonstrates that the
DartPlatform can be advantageously used to expose and
extend capabilities and control of even very unique devices
to DartDevices with no prior knowledge of the existence,
characteristics or capabilities of the unique devices.

Some of the significant points from the above example
and descriptions, include the following:

First, a device whose sole purpose could not be consid-
ered by a standards committee was able to become a
DartDevice 400, requiring about the same amount of devel-
opment effort as making any other device a DartDevice 400.

Second, this new device is able to easily expose its unique
hardware capability to other devices that existed prior to the
existence of any devices of this type. Preexisting DartDe-
vices 400 can interoperate with the new device, controlling
its behaviors, which are new and unique and previously
unknown to any devices.

Third, the development effort required to make the Neu-
trino Detector 3500 a DartDevice 400, is similar to making
any device a DartDevice 400, without any additional work
for any other devices, even though those devices existed
prior to the technology being exposed. That is, the devel-
opment effort which rises in an N-squared manner when
using conventional interoperability methodologies is just an
N order effort when implemented using the methodologies
embodied in the DartPlatform. Because the DartApplica-
tions’ renditions are communicating with other renditions
from the same original Darts, a high degree of reliability is
attained as compared to conventional interoperabilities

20

25

30

35

40

45

50

55

60

65

152

where there would be a need to separately implement and
distribute interoperability components which are much more
likely to encounter incompatibilities.

B. Slide Show Application Example—Stages of
Development Through Usage

Now we describe in still greater detail an exemplary
system, method, computer program and components thereof
in the context of an example that describes development
through usage using a slide show Dart application as the
principle example application. This slide show example is
only for purposes of explanation and it will be appreciated
that the same technology can be advantageously employed
for virtually any software application including software
applications that interact with or utilize or control hardware
which needs to run on virtually any device or set of devices
whether on one device at a time, sequentially, on many
devices simultaneously or in parallel, or otherwise.

In this example, DartSouce (FIG. 3 100) files (C++) and
the DartFramework (FIG. 3 102) of class definitions and
source code (FIG. 3 101) designed to be used as an optional
basis for expressing the algorithms and code necessary to
build interoperability applications

With reference to FIG. 3, the exemplary slide show Dart
application begins as DartSource files, 100 on FIG. 3.
Application Code 101 generally conforms to the standard
C++ language. The SlideShow DartSource 100 also includes
standard C++ source files which express the DartFramework
102. The DartFramework 102 is a set of class definitions and
code designed to be used as an optional basis for expressing
the algorithms and code necessary to build interoperability
applications to be rendered into the DartFormat 300 and
which conforms to the DartRuntime 8000 (See FIG. 15.)

Calls from DartSource 100 to Dart Engine functions are
made through the BUILTIN_INSTRUCTION (FIG. 20 670)
which is part of the DartlnstructionSet. Calls from the C++
source code to the engine functions are mode though the
Compiler 201 generated BUILTIN_INSTRUCTION 670
(See FIG. 20), which is part of the DartlnstructionSet
executed by the device independent DartEngine 600 that is
part of a device specific DartPlayer 500 running on a
DartDevice 400 (See FIG. 4).

Extensions have advantageously been made to the C++
language so that many types of Resources 103, may be
referenced from within the Application Code 101 and Dart-
Framework 102. This is done by specially named built-in
functions, specifically named data structures, and #pragma
extensions with keywords that are recognized by the Dart
Compiler 201.

Resources may include any type of data or code or
references to data or code anywhere in a file or dynamically
generated and reachable by the DartTools 200 via a file
system (see FIG. 22 612, FIG. 27 5100, FIG. 28 5000, and
FIG. 26) or any form of network access, wireless access, or
via any form of communication. For the example slide show
application, Resources 103 may for example include back-
ground image files in JPEG format, sound effect files in
PCM format, and/or any pictures slides or images, video,
text, symbols, or even complete Dart files (700) to be
included as default demonstration slides. Pragma extensions
to the C++ language may also be used to identify to the
DartTools 200 which functions are to be automatically made
into DartProcedures 4000 (See FIG. 14), or Parts 303 (See
FIG. 13) rather than included in the MainCode 2103 and
MainData 2102 (See FIG. 13) Parts (FIG. 3 303). A part-
number() built-in function extension to the C++ language

US 9,436,525 B2

153

may be used in the source code to get the Compiler 201
generated partld 32-bit value used to reference the part when
used as parameters to functions, or buildin instructions
which are part of the DartlnstructionSet.

The DartFramework 102, (See FIG. 3 and FIG. 11),
advantageously includes a hierarchy of class specifications
and implementations. One of the key base classes is the
Gizmo 115 class. Gizmos 115 may be used to encapsulate a
single functional unit of processing. Gizmo 115 derived
classes contain Setup() and Process() methods, and refer-
ences to a parent Gizmo and a list of child Gizmos. These
references may optionally be null references.

Rendition 114 classes are inherited from the Gizmo class,
and are designed to serve as the starting point for a part of
an application that can be loaded and run independently of
other Renditions 114 in the application.

A MasterRendition 113 class inherits from the Rendition
114 class. This is the only active Rendition in a MasterDart
230 (See FIG. 12). The MasterDart 230 is a binary Dart-
Format 300 file or image output from the DartTools 200 (See
FIG. 3 and FIG. 12) which preferentially contains a single
MasterRendition instance. The MasterDart 230 may advan-
tageously include all the code, data, content, procedures, and
resources referenced in the source code, and is automatically
loaded when it is played on the MasterPlayer 203. After
loading the MasterDart 230, the MasterPlayer 203 executes
the C++ constructor methods which should be run before the
start of the main() entry point. The Master Rendition’s 113
Main() method serves as the logical starting point for the
MasterDart 230.

FIG. 12 shows an embodiment wherein the DartSource
100 is input to the DartTools 200. The Compiler 201
converts the DartSource into the DartInstructionSet one file
at a time into Objects 220, and collections of these Objects
into Libraries. Alternatively, these Libraries can be created
by a librarian tool. The Objects and/or Libraries 220 can also
serve as Resources 103 of the DartSource 100 for other
DartMasters and Dart applications. The operations of the
Compiler 201, the optional Librarian tool, and the Linker
202 are generically similar to those of conventional C++
compilers, librarians and linkers now in use, except for
certain significant differences. Some of these differences
include the following:

First, the target instruction set is from the Dartlnstruc-
tionSet. Second, the output executable is a MasterDart 230
intended for execution on a MasterPlayer 203, rather than
targeting the actual end target devices; and, the MasterDart
and the MasterPlayer represent components unique to the
invention. Third, much of the class definition and linkage
structures that are generated during the operations of con-
ventional compilers, librarians and linkers that is usually
thrown away after use is maintained in the MasterDart for
use by the MasterPlayer. The class definitions and linkage
structures that are retained are also different from those that
may transiently exist in conventional compilers, librarians,
and linkers. Fourth, the DartTools 200, process extensions to
the source language for: (i) specifying or automatically
collecting the run-time resource requirements that will be
needed during execution; (ii) the inclusion in the MasterDart
of Resources 103 as Parts 303 (FIG. 3, FIG. 13); and a
partnumber() source code function which provides the part
numbers that serve as identifiers of resources assigned by the
DartTools 200 for use by the application procedures. Addi-
tionally inventive is that the resulting MasterDarts and Darts
output by the DartTools may contain any number of Ren-
ditions and the information needed to put together possibly
shared Parts in the Dart or MasterDart image to construct

20

25

30

35

40

45

50

55

60

65

154

these Renditions as needed. Still farther inventive is that the
Darts and MasterDarts output by the DartTools contain
procedures, data, code and content needed to carry out
Recruitment to intelligently establish ad-hoc teams of
devices, and then carry out the intent of the application
according to the DartRuntime.

The Linker 202 FIG. 12 combines and packages the
Object/Libraries 220 into a single binary image conforming
to the DartFormat 300 (FIG. 3). This image is a DartMaster
230. The DartMaster 230 is intended to run on a Master-
Player 203, which contains a DartEngine 500 (See FIG. 22).
This DartEngine 500 contains some Builtln Instruction (See
FIG. 25 and FIG. 20) support for calling DartEngine system
functions that make use of the symbol table Parts 2100 (See
FIG. 13 and FIG. 14), and other meta-data parts generated
by the Compiler 201 and Linker 202. These functions can be
used by the code in the MasterDart to aid in the collection,
for example, of Resources 103, initialization of data, and
assemblage of Parts 2100 and parts of Parts 2200 into a Dart
700 or set of Darts 700. These functions can also aid in
reducing the size of the code, or increasing the processing
efficiency of the code by, Parts 2100, and data needed in the
Dart or Darts to be generated.

A MasterDart conforms to the DartFormat 300 (See FIG.
3), but may be limited to having just one RenditionTable
2104 referenced by its Partld in the RenditionsTable 2101.
Partlds are integer valued identifiers used as references to
Parts FIG. 12 303 inside a Dart 700. In one embodiment the
Partlds are 32-bit, but identifiers with different bit counts,
such as 16-bit, 24-bit, 40-bit, 48-bit, 64-bit or any other
number of bits may be used. In one embodiment, only one
MasterRendition object instance is allowed in the Dart-
Source. The DartTools 200 use the information in the source
code for the initialization of the MasterRendition 113 object
instance and data structures it references to initialize the
parameters inside the RenditionsTable 2101 record. Some
parameters in the RenditionsTable 2101 record that corre-
sponds to the MasterRendition 113 instance may be filled in
automatically by the DartTools 200. These RenditionsTable
parameters include the number of events and files, and, the
amount of heap memory that should be initially allocated
when the Rendition 114 object instance is first loaded and
prepared for running by a DartPlayer 500. Before any Dart
700 can run on any DartPlayer 500, the DartEngine 600 of
the DartPlayer 500 running on the DartDevice 400 should
advantageously first choose and load a Rendition.

The DartPlayer 500, which provides a device specific
application executable shell around the DartEngine 600, can
specify a Rendition Partld to run, or it can specify zero (“0”),
which in one embodiment is an indication that it is an illegal
Partld. If zero is specified, the DartEngine will load the
Rendition 114 which has the Partld of the first record of the
RenditionsTable 2101.

To find the RenditionsTable, the DartEngine 600 should
first load the Trailer 305 (See FIG. 3), which in one
embodiment should be the last four 32-bit words in the Dart
700 file. The Trailer 305 contains the offset of the Part Table
304 from the beginning of the Dart 700 file. Each record in
the Part TableRecord 314 (See FIG. 14), in the Part Table
304 contains a Partld, such as a 32-bit Partld, along with the
startOffset and endOffset from the beginning of the Dart 700
file where the contiguous image of the Part 303, is found in
the Dart 700 file.

Only one RenditionsTable 2101 FIG. 13 may usually be
allowed in a DartFormat 300 file, and it has a permanently
assigned Partld value which is used by the engine to find the
Part TableRecord 314 corresponding to the RenditionsTable

US 9,436,525 B2

155

2101 part. The offsets in this Part TableRecord 314 are used

to find the RenditionsTable 2101, and the RenditionsTable

records include information about linear segments within in
the MainData 2102 and MainCode 2103 parts needed by the

Rendition that is referenced by the Partld in that record. The

RenditionsTable 2101 record also contains the starting code

image address to begin execution for that Rendition 114

instance. The RenditionTable 2104 records are preferentially

all just one 32-bit word that holds the Partld of a part that
belongs to the Rendition 114 instance.

In one embodiment of the invention, several steps are
associated with loading a Dart 230, on a DartPlayer 203. The
same steps are used to load a MasterDart on a MasterPlayer
as these are just specific instances of a Dart and DartPlayer
respectively. These steps may include the following steps,
including steps that are optional but advantageously per-
formed:

Step 1. The DartPlayer 203 on the Application Development
Device 900 (See FI1G. 12), calls the Dart Engine’s 600 Init
() method (FIG. 24 6000, FIG. 23 4002) with a parameter
specifying a Rendition Partld to start with the value zero.

Step 2. The DartEngine 600 then reads the Trailer from the
end of the Dart 230 file, and extracts the offset of the Part
Table 304.

Step 3. Each record of the Part Table 304 is read until a
record is found with the pre-assigned fixed value for the
Partld of all RenditionsTables. Only one RenditionsTable
with this fixed value Partld is allowed in any DartFormat
image.

Step 4. The DartEngine 600 then extracts the startOffset and
endOffset of the RenditionsTable 2101 and uses that (the
startOffset and endOffset) to read the first Rendition-
sTable record.

Step 5. The first RenditionsTable record is read and the
initial runtime parameters such as the number of files and
events to allocate memory for and the amount of space to
allocate for the heap and stack, are extracted. The Ren-
ditionTable 2104 Partld is also extracted.

Step 6. The RenditionTable Partld is used to find the
startOffset and endOffset of the RenditionTable 2104
from the Part Table 304 entry for this Partld.

Step 7. Each record in the RenditionTable 2104 is then read.
In one embodiment, each record is just one 32-bit word
with the Partld of a Part that belongs to the Rendition.
Each Part TableRecord 314 contains flags and parameters
that govern what happens at load time. For example, there
may be a flag if the Part should be processed in some
manner according to its contentType, parameter(Q, param-
eterl and/or parameter2 values, or according to some
other parameter or condition. The MainData and Main-
Code parts are examples of parts which must be processed
upon loading in order to place the necessary code and data
in memory before the Rendition starts executing.

Step 8. When the required MainCode 2103 Part TableRecord
314 is found, the contentType will hold the fixed value
assigned to the MainCode 2103 contentType and the
Auto-Load flag bit in the flags parameter word should be
set, and parameter O and parameter] will hold the first and
last DartInstructionSet code image address contained in
the MainCode 2103 part. While most executable images
output from widely available C++ tools will result in a
code image that always starts at the same fixed offset, this
may not normally be the case for Darts because only the
linear contiguous regions necessary for the Renditions
that are output as a result of running the MasterDart 230
or saving a set of Renditions of the Dart for backup or sent
to another teamed device. In other words, Dart code

20

25

30

40

45

50

55

60

65

156

images do not always start at the same fixed offset and
only the linear contiguous regions necessary for the
Renditions that are output from MasterDart 230 or Dart
through the use of Creationism or the SAVE_INSTRUC-
TION or the save BUILTIN_INSTRUCTION may nor-
mally be present. Advantageously any Dart 700 that forms
other Darts, generally only includes the linear contigu-
ously addressed sections of the original code or data
output by the DartTools 200 that are needed for the
Renditions actually in the generated Dart. For example,
once the static constructor code of the MasterDart 230 has
been run as part of the load process, there is generally no
need for the constructor code to take up space in Darts
generated while running the MasterDart 230. This is
because the generated Darts do not themselves normally
contain the MasterRendition 230. The same is true for the
data in the MainData 2102 Part of Dart files generated by
the execution of MasterDarts 230 or other Darts.

Step 9. Memory for a Context structure or Context object

instance is allocated to keep track of the memory, access
rights, and status, associated with the Dart that is being
loaded. A unique contextld value is generated to be used
as a global reference for calls by the Dart’s code or other
Darts that may be running on the same DartEngine 600
instance. The flags of the Context will limit the access of
the Dart code to the memory that is explicitly allocated as
the data, DartHeap, or DartStack of the particular running
Dart. Also attempts to access functions, memory or files
that are not a part of this Dart or its DartEngine environ-
ment, or for which access rights have not been estab-
lished, as represented by flag values of the context, will
result in one embodiment in negative valued error return
codes from the DartEngine Process call 4003, which will
cause the Dart’s execution to end, before illegal access
violations can take place.

Step 10. The environmental and initial memory needs

expressed in the parameters of the Part TableRecords 314,
and RenditionsTable records are extracted. If there is a
need to allocate or reallocate memory for any of the
engine maintained Eventlnfo structures, Filelnfo struc-
tures, or CommSessionInfo structures, or there are other
resources needed for the expected execution of the Dart to
be loaded, then allocations, reallocations, initializations
and the like are performed to prepare the DartContext and
DartEngine environment that is shared by DartContexts,
DartProcedureContexts, and DartldleContexts running on
the same DartEngine instance.

Step 11. A SubFile, such as SubFile 698 (See FIG. 26), is

preferentially opened and read to process or execute the

Parts of the DartFormat 300 image File as if they were

independent files without the need to copy the data into a

separate file.

The DartPlatform 50 advantageously uses a unique file
system. The file system is processed 612 (See FIG. 26)
to create a file abstraction attached to a file identifier
(fileld) value that can be used to reference the files in
Dart code or when data is to be read, passed, written or
shared.

Several Builtinlnstruction 670 (See FIG. 20) operation
code values may be used for Read, Write, Open, Close,
Rename, and Position operations. A Filelnfo structure
associated with each field in a one-to-one fashion keeps
track of the type and form of storage, properties and
access rights as well as the current storage locations,
position of a current pointer into the file and the like.

Advantageously, the device specific halBase object which
maps the portable parts of the DartEngine 600 imple-

US 9,436,525 B2

157

mentation with the small set of functions needed to
operate on the DartDevice 400, is kept small and simple
because most operations not related to those of actual
individually physically stored files are virtualized by
the portable code in the DartEngine as shown in FIG.
26.

For the processing of files, only read, write, open, close,
position, getPosition, rename and delete methods of the
HAL are necessary to be implemented to port the
DartEngine 600 to a new DartDevice 400. The portable
portion of the DartEngine 600 implementation builds
file access abstractions for files that are kept in allo-
cated memory 697 (See FIG. 26), or sub-files of other
files. Once opened, a SubFile can be read just like any
other file, but the source and boundaries of the data are
actually a proper subset of another file previously
opened.

Advantageously, a SubFile remains operational even if
the source files are closed before the SubFile. The use
of'a SubFile for reading the code of a Dart for execution
allows the code to be executed in place, making it
unnecessary to load the code into memory from a file.
This is especially advantageous when the Dart is in
ROM or the file storage of a DartDevice is imple-
mented in some other quickly readable memory device
rather than a slow hard disk drive or the like.

If necessary or desired to improve the speed of execution,
the code portion of the Dart associated with the Ren-
dition to be run may be loaded into memory now
allocated for holding and running of the code for the
DartContext, and a memory file (FIG. 26 697) or its
equivalent functionality can be used to execute the
actual DartCode.

Step 12. In the particularly advantageous embodiment and
implementation being described here, the Dart code gen-
erated by the DartTools 200 for the MasterDart 230 or any
other Dart 700 which may still contain initial constructors
may start execution at the initial constructors procedure
that should be called before the main() function is called.
The code address where execution is to start is in one of
the 32-bit words of the RenditionsTable record corre-
sponding to the Rendition instance that is to run.

Step 13. The DartTools 200 automatically put a Builtinln-
struction 659 at the end of the initial constructor with a
sub-function value which causes the DartEngine to set the
starting execution address and this object instance pointer
for continued execution of the MasterDart 230 instruc-
tions once the DartEngine.Process method 4003 is called
for the first time.

This is the last step (Step 13) in the creation and loading
of a Dart according to this particular embodiment of the
inventive method and computer program.

Dynamic Generation of Darts and Dart Procedures—Cre-

ationism

The capacity for continual dynamic generation of Darts
and/or DartProcedures by Darts and their descendant Darts
is one of the more powerful properties of the DartPlatform
50 and Dart technology based systems and methods.
Embodiments of the DartPlatform 50 are designed and
architected throughout the system to support this continuous
efficient generation of Darts from earlier Darts. The meth-
odology for this is referred to as Creationism.

For example the DartSource 100, through the use of C++
extensions, may contain specifications for Parts which can
be mixed, matched, and shared across generations of Ren-
ditions in Darts generated from the original MasterDart 230
or directly by the other DartTools.

20

25

30

35

40

45

50

55

60

65

158

Embodiments of the DartFramework 102 implicitly pro-
vide the mechanism and method for specifying Renditions,
and all the code, data and Parts that are to be included in each
Rendition. This allows the DartTools 200 to parse through
the dependency trees of objects generated by the Compiler
201 and Linker 202 to form an effective database of the
sections of code, data and resources needed for dynamic
generation of Darts and DartProcedures 4000. In a similar
fashion the MasterPlayer 203 can trace through all the data,
code, methods and functions that are reachable at runtime
for any set of starting points, and thereby advantageously
form the information needed to generate Darts which con-
tain only the necessary data, code and resources required.
Unreachable data, code and content are automatically
excluded from DartFormat images based on the contained
Renditions starting points and data values.

Another mechanism of the DartPlatform 50 may advan-
tageously be used to limit the amount of code and data
necessary is the automatic saving of the entire or selected
data state of a running Dart at the time it generates other
Darts 700 or DartProcedures 4000, and the automatic
reloading of the entire or selected data state as part of the
DartEngine’s Dart loading steps as enumerated above.
Because the data values and content of running darts are part
of the DartFormat image themselves, they are easily saved
and restored when run, so there is generally no need in
generated Darts for the initial constructor and setup code
which often makes up much of the kinds of user-centric
applications that the DartPlatform 50 is optimized and
intended for. For example, when a MasterDart 230 is first
loaded, many constructors are called before execution is set
to begin at the main() function. This is true of most all C++
generated programs as well as of other different software or
programming languages that may be used with the inven-
tion. Advantageously, the MasterDart 230 could then save
itself with a minimal set of instructions in the main()
function using the builtin functions which utilized the Buil-
tinlnstruction 659 to access the Save() method of the
DartEngine. Since a complete image of the current data
values is saved by default, and then restored when the saved
Dart 700 is loaded, there is no need to run the constructor
code in the saved Dart 700. For this reason the MasterDart
230 can direct the saving process so that the continuous
linear range of the code that executes the initial constructors
that have already run, is not included in any of the Rendi-
tions in the generated Dart. In this manner the generated
Dart can be significantly smaller than the MasterDart 230
that generated it. It is also likely to be much smaller than a
similar functionality conventional application executable
image which keeps all the static constructor and setup code
needed to reestablish data state whenever the application is
started.

Eliminating the need to include the initial constructor
code is just one of many other mechanisms and methods
used to optimize the size, complexity, and computational
requirements of generated Darts. These optimizations gen-
erally result in smaller size and lower complexity and
computational requirements than would be required using
conventional mechanisms and methods.

Data member data or member method elimination is
performed when a MasterDart 230 or any Dart 700 con-
forming to the DartFormat 300, running on a MasterPlayer
203 generates a Dart or set of Darts. Through a user interface
of the MasterPlayer 203, or execution of the Dart playing on
the MasterPlayer 203, any proper subset of Rendition
objects can be selected to be included in a Dart 700 to be
generated.

US 9,436,525 B2

159

Only the Parts and sections of the code and data that are
required for the selected Renditions should usually be placed
into the generated Dart(s). This is carried out by the Dart-
Tools 200 and MasterPlayer 203 by parsing the relationships
of the objects both from meta-data generated by the Com-
piler 201 and Linker 202 and by tracing through the run-time
data members, procedure methods calls and actual pointer
values, to find all the data members, code members, and
methods of each class and then dynamically eliminate from
the object instances and accessing code all references and
space to and of the data members, structure members, and
method members, which are not reachable by running the
selected Renditions from their starting Process() member
functions. Thus all the class information is effectively opti-
mized based on the actual runtime setup of the Dart running
on a MasterPlayer 203 once all the starting places have been
identified for the Dart(s) 700 to be generated. Also advan-
tageously, all the setup code which is not reachable from a
Renditions’ starting method are not included in the gener-
ated Darts.

Often a significant portion of user-centric applications,
such as those the DartPlatform are primarily intended for,
consists of or include setup code and data for setting initial
screen positions for user interface images, initializing data
structures, building graphs of connected objects, generating
tables, or the like. The DartFramework 102 includes in most
class definitions a Setup() method intended to be called only
by the MasterRendition or nested calls from other Setup()
calls. Advantageously, if the MasterRendition is not selected
to be included in the generated Dart(s) 700, then none of the
Setup() methods and other methods and functions and all
the data members of classes or static data elements that are
not otherwise reachable from the selected Renditions, will
not be included in the generated Dart(s) 700. Advanta-
geously, there is nothing special about the Setup() call that
makes this optimization happen, as any code, data, methods,
or the like, not reachable from the runtime starting points
selected will not be included in the generated Dart(s) 700 by
the DartTools 200.

GatherResources Procedure

The GatherResources procedure or method is another
procedure intended to be used in the DartFramework 102 to
eliminate unnecessary code and data in generated Dart(s)
700. The Setup() method or call tree from calls to this
method of the MasterRendition may call a hierarchy of
GatherResouces() related methods and functions to put up
user interfaces or dynamically gather data, content or other
Resources at the time the MasterDart 230 is run on a
MasterPlayer 203.

It may also me noted, in conjunction with the description
provided here, that the DartTools 200 may include in a
MasterDart 230 a number of Parts to hold the symbol tables,
class definitions, and other meta-data as may be needed by
the MasterPlayer 203 to perform the just described optimi-
zations. If these Parts are not included in any of the selected
Renditions, then advantageously they will not be included in
the generated Dart(s) 700.

Some Selected Other Uses of MasterDarts

It is normal for (but not necessary for) MasterDarts 230 to
contain DartPlatform 50 code and data of much greater size
and complexity than the Dart applications 700 to be gener-
ated. This extra code is used for performing the accessing,
requesting, initializing, user interfaces, pre-calculating of
tables, assembling of Parts, and the like. Thus MasterDart(s)
230, once compiled by the Compiler 201 and linked by the
Linker 202, can be used and reused by a programmer or
non-programmer to generate customized Dart(s) 700 using

20

25

30

35

40

45

50

55

60

65

160

new parameters, and Resources, or other data which might
change with time or according to other circumstances, such
as a stock quote, to generate the Dart applications in a very
wide variety either automatically, or at a user’s request
anytime after being linked by the Linker 202, by running the
MasterDart 230 on the MasterPlayer 203.

Dynamic Reconfiguration, Generation, Assembly, and Opti-
mization of Parts

It should by now be appreciated, that MasterDarts 230 as
well as the Darts generated from other Darts retain their
ability to dynamically reconfigure, generate, assemble and
optimize the selection of Parts and parts of Parts for the
generation of descendent child Darts adapted for new func-
tions and target transports and environments.

Loading of Parts According to contextlype Parameter

Once a Rendition of a Dart 230 has been loaded using the
RenditionsTable which references the RenditionTables,
which each reference the Parts that are included for each
Rendition, all the Parts that require loading are loaded
according to their contentType parameter. The Dartlnstruc-
tionSet and extensions implemented by the Builtinlnstruc-
tion of the DartlInstructionSet make for the efficient recon-
figuring and generation of highly optimized Darts 700 and
DartProcedures 4000 from any Dart 700 or Dart procedure
4000. In one preferred implementation, a flag bit in the flags
parameter of the Part TableEntry record is set only for those
parts with require contentType specific processing during
loading.

The MasterDart may usually contain the complete code
image for all the code that can be reached starting at the
MasterRendition object instance in the MainCode part.
Similarly, the MasterDart may usually contain the complete
data image for all the data that can be reached starting at the
MasterRendition object instance. Much of this will be elimi-
nated from generated DartFormat images.

DartFramework, DartRuntime, and DartEngine

The DartFramework 102, DartRuntime 8000, and Dart-
Engine 600 will now be more fully described. The Dart-
Framework assumes for efficiency and effective use of the
functionality built into the DartEngine, a certain DartRun-
time operation; though, it should be appreciated that most
any C++ program can be successfully built and run using
most any runtime that can be or has been implemented on
any standard set of C++ tools. One of the primary powers of
the DartFramework is largely derived from its tight integra-
tion and use of the instructions, mechanisms, procedures,
and functions implemented as part of the DartEngine. For
example, the decompression and building of a bitmap image
from a compressed JPEG file or Part may be performed by
compiling C++ source code from the JPEG standard
examples available widely on the Internet, but such code
would be expected to execute much more slowly than the
simple use of the builtin functions which employs the
BuiltinInstruction (also referred to as BUILTIN_INSTRUC-
TION elsewhere in this document) to call the DartEngine
method to perform the JPEG decompression operation using
the native code generated when the DartEngine source code
was compiled for the actual processor of the DartDevice.

Similarly, the DartFramework 102 takes advantage of an
ecosystem or environment of built-in functionality through-
out in the implementation of the DartPlatform 50, including
in some embodiments for example, but not requiring all or
limited to, the actual DartlnstructionSet, the DartRuntime
8000 system, the communications subsystem, the event
processing system, the file system (See File System 612 in
FIG. 26), the graphics and input systems, the power man-
agement system, Dart assembly compression and encryption

US 9,436,525 B2

161

mechanisms, and the decomposition, access, protection,
digital rights management and generation mechanisms.

It should be appreciated that having a well-defined broad
set or collection of user-centric functionality expressed with
the efficiency of code generated for the native processor
embodied in any and every device, is an advantageous and
in some embodiments key to making the functions and
adaptations necessary for portable applications that are able
to extend themselves to other devices practical.

In particular it should be appreciated that while in theory,
any Turing compliant instruction set could be used to
generate any other code or carry out any algorithm, in
practice this approach will never be as execution, memory,
power, or cost efficient as a tightly integrated platform which
provides a relatively complete platform, and where the
necessary computational or memory hungry functionality is
implemented in a platform specific fashion as is the case
with the DartEngine’s processing of the DartlnstructionSet.

Generally, in order for a device to be considered a Dart
device (DartDevice) 400, a Dart player such as DartPlayer
500, should be installed on the device and there should be at
least one communication mechanism supported on the
enabled device. The DartPlayer 500 is the device specific
executable unit that provides the environment and optional
user interfaces necessary to startup, initialize, give processor
control to and closedown of a DartEngine 600. The Dart-
Engine 600 is built as an instance of two interconnected
classes, the portable playerBase class and the device specific
halBase class. When the DartEngine 600 is ported to a new
device, a device specific DartPlayer 500 application must be
built to encapsulate the DartEngine’s execution, and a
device specific halBase derived class must be built to
provide a bridge from the platform independent parts of the
DartEngine to the actual device operating system and/or
hardware.

The DartPlayer 500 main loop flow is shown in FIG. 23.
First the DartEngine.Init() 6000 function is called with
parameters that identify the Dart 700 to be loaded, if any.
Then the DartEngine.Process() (FIG. 23 4002, FIG. 24
6000) function is called in a loop until a negative value is
returned causing DartPlayer.Uninit() to be called and the
DartPlayer 500 application to close down. Positive return
values cause value specific DartPlayer processing to be
performed before returning to the main loop (See 4000 FIG.
23).

Such specific DartPlayer processing includes releasing
control to other applications or processes that may be
running on the device, suspending the PlayerEngine thread
based on power management values, collecting inputs such
as mouse moves and keyboard presses and converting them
into calls to add Events 800 to the DartEngine’s EventQueue
(See 8002 FIGS. 15 and 5000 FIG. 16). If the positive return
code value is one of those that is reserved to mean that the
Dart is finished processing, then DartProcess.Uninit() will
be called and the Dart processing will be discontinued. For
example, returning the DONE positive return code value is
the normal manner in which a running Dart will signal its
own termination.

The DartEngine.Init() processing is shown in FIG. 24, for
calls to DartEngine.Init() that include references to a Dart
700 to load. In cases where the DartEngine 600 is called
when no Contexts are active, and there is no Dart 700 to
load, an IdleProcedure internal to the Dartengine will be
loaded into an IdleContext instead of the Dart 700. The
IdleProcedure operating in the IdleContext is made up of a
loop of DartlnstructionSet instructions which performs the
processing necessary to keep the DartEngineEvents 4003

20

25

30

35

40

45

50

55

60

65

162

FIG. 23 process active. In one preferred implementation, the
IdleProcedure simply executes the instructions that cause a
call to the EngineEventProcessing function 8002 FIG. 12
and FIG. 15. In one preferred implementation, a single
instance of the DartPlayer 500 can in general handle any
number of executing Darts 700 in any of several manners.
One way is by calling separate loops within the same
running native processor thread by modifying the main loop
4000, or by creating any number of separate DartEngine 600
instances, or by using separate threads or any combination
of the above. An alternative is for Darts to be explicitly
loaded and run as a subdart or child of a running parent Dart.
Here the event processing passing through the event pro-
cessing units will be passed to the event processing units of
the subdart once loaded as if it were part of the compiled and
linked parent Dart. In the preferred implementation these
event processing units are called Gizmos and are instances
of the DartFramework class Gizmo.

Gizmos

Darts 700 themselves can also run other Darts 700 in
series, or in parallel, or in a highly cooperative fashion
where Darts are run as part of the processing hierarchy of
other Darts. The DartFramework 102 may be made up
largely of Gizmo 115 derived objects. These Gizmos are
advantageously configured in a strictly defined linear order
according to the references in the child and parent Gizmo
pointers (See 10000 FIG. 18). This order is used for col-
lecting Gizmos into interconnected tree graphs which deter-
mine their order of execution and their relationships in terms
of access rights and view of screen real estate, sense of time,
and other environmental characteristics. For example a
parent can change the time or rate of apparent time change
for a child or children Gizmos and its descendents in order
to control their processing and pace. All this is made easier
to implement in a robust fashion by strict adherence to the
specified order of processing as shown, in the example of
FIG. 18.

FIG. 18 shows an example hierarchy of Gizmo 115
derived objects for a running slide show Dart 700 applica-
tion. It is important to understand that the slideshow Dart
700 application is using the DartEngine 600 to carry out the
DartInstructionSet instructions that make up the code of the
slide show Dart. In particular, note that the DartPlayer 500
along with the DartEngine 600 have been compiled, linked,
loaded and run using standard build tools that target the
DartDevice’s 400 native processor and operating system. It
is the DartEngine 600 that executes the slide show Dart’s
700 code made up from instructions from the Dartlnstruc-
tionSet, which was generated from the DartTools 200. The
Menu Gizmo at the top of the hierarchy shown in FIG. 18
is first to get control when the DartlnstructionSet based
Menu.Process() method is started executing on the engine
as a result of a DartPlayer.Process() call which causes the
DartEngine 600 to begin processing the Dart’s 700 instruc-
tions. Note that in the preferred implementation, the Gizmo
at the top of the hierarchy is a Rendition object of a class
inheriting from the base Gizmo class as in FIG. 11.

In the example of FIG. 18, each rounded corner box
represents a Gizmo derived object that handles a unit of user
interface for the slide show application. The Menu handles
the user interface for selecting various functions including
adding slides, starting the automatic sequencing of the
slides, selecting slide transition effects, and the like. One of
the options that may be selected from the Menu, is the view
of the slide show. Views in this example, may for example
include a Hyper-linked Index view where the user can click
on the name or description of a slide, a thumbnail index view

US 9,436,525 B2

163

where the user can click on a small thumbnail view of a
slide, and a slide show view where the slides take up most
of the screen and on screen arrows, physical buttons or a
mouse or pen are used to move forward and backward
through the hierarchy of slides. The Menu only has one child
Gizmo derived object, but when the user selects a view from
the Menu, the pointer to the child Gizmo derived object is
changed to the Gizmo that supports the selected view. Thus
advantageously all that is needed to change how the user
views and navigates the slideshow is to change one pointer
in the Menu Gizmo.

Each view in the example has a list of pointers to the three
child Gizmo 115 derived objects shown in the row below
them in FIG. 18. The children are all simple still pictures or
slides, shown in the order from left to right of the order of
the pointers in each of the child pointer lists of the three
views. The child pointer list of the Gizmo derived object
labeled “3” points to three children in the order shown from
left to right. The object labeled with a “4” represents a
Gizmo 115 derived object that encapsulates a separately
produced running subdart, included in the slide show as a
single slide, but in fact being capable of containing its own
hierarchy of slides which can each themselves contain any
picture, view or Darts 700 and all the functionality thereof.
The boxes labeled “7” and “9” contain Gizmo 115 derived
objects that display real-time playback video/audio slides. It
is noted that for this slide, that processing of events by all
Gizmo 115 derived objects and the contained Darts 700 of
Dart playback Gizmos 115, receive processing control in the
exact order of the graph created by the pointers to children
and parents. This order is explicitly set forth in the sequence
of number values shown inside the boxes in FIG. 18.

Since most all processing by Gizmo 115 derived objects
is through a call to its Process() method with a pointer to an
event to process as parameter, any parent can create or
change the parameters or type of events seen by its children,
or can decide whether or not to pass an event to be processed
its children. So in effect any parent can set the environment
for all its children. For example a Dart container Gizmo
object does not need to know that it has only been given a
portion of the screen real estate available to its parent.
Similarly, when a Gizmo 115 derived object accesses its
GetTime() method, it will automatically request the time
from its parent rather than from a builtin call to the engine
if the parent has signaled that it is a time source for its
children. This ability of parents to control the runtime
environment of its children, and their children is a very
powerful property of the DartFramework 200 and DartRun-
time 8000. This makes it easy to build for example, slide
shows of slide shows, collection Darts which just collect
Darts and allow the user to select which ones to run, the
ability to fetch a control panel in the form of'a Dart 700 from
a printer or other Dart enabled device and run it in a
rectangle embedded inside the fetching Dart.

DartEngine Architecture—Passing of Control

The architecture of the DartEngine 600 facilitates the
passing of control from a Dart container Gizmo 115 derived
object, to the topmost Gizmo 115 in the hierarchy of the
contained Dart by containing BUILTIN_INSTRUCTION
functions to allow a containing Gizmo 115 derived object to
create a DartContext for the contained Dart 700, get the Dart
700 loaded into that Context, and then calling the contained
Dart’s 700 Process() via a DartEngine’s BUILTIN_IN-
STRUCTION call to the contained Dart’s Process() method
of the Gizmo 115 topmost in its hierarchy.

Along with the calls to manage and pass processing to
contained Darts 700, the DartEngine 600 also makes the

20

25

30

35

40

45

50

55

60

65

164

transition from the container Dart 700 code to the contained
Dart’s code more efficient by allowing an EventProcessing
structure instance containing the pointer to the Event 800 to
be processed by the contained Dart, to be in memory
accessible directly through the use of a special pointer (see
FIG. 32 Pointer Type 11) to memory effectively shared
between all DartContexts. This allows the efficient passing
of Events 800 and other parameters between Darts 700
which each have otherwise separate address spaces.

When a call is made from one Dart 700 to another Dart
700 the DartEngine remembers the calling Dart’s DartCon-
text and then starts operating out of the called Dart’s
DartContext until the called Dart’s DartContext executes a
Donelnstruction when the engine stack is at the same place
as when the original call was made. Thus the DartEngine
600 makes it very easy and efficient for Darts 700 to run
Darts 700 that run Darts 700 ad infinitem as part of the
Gizmo 115 derived hierarchy much as they would if they had
been generated by the DartTools as one Dart 700. Contain-
ing Darts can present any environment it wants to contained
Darts 700 just as it can to a child Gizmo 115 derived object.

It might be supposed that the simple passing of control
down the entire hierarchy would waste processor time in
calling Gizmo 115 derived objects which require no pro-
cessing, such as a Gizmo 115 derived object that represents
a still picture which does not need to be redisplayed. This
problem can be militated against in a preferred embodiment
by a system for pruning the tree of Gizmo 115 derived object
calls. Each EventType 801 value is made up a category flag
field where exactly one bit will be set, and a event subtype
field for the specific Event 800 to be processed belonging to
that category. In one embodiment, there are two sets of flags
corresponding to the category flags of an Event Type 801.
One flag is set if the Gizmo derived object itself needs to
handle events of this type, and the other flag is set if any of
its descendents needs to see the specific category of Event
801. In one embodiment, in every pass through the hierar-
chy, the Gizmo 115 derived objects set the flags for them-
selves and collect a logically OR’ed collection of the flags
set by all the children that it calls. Thus a Gizmo always
knows if its children need to be called or not called depend-
ing on the category of the Event 800 to be processed.
Categories are defined by sets of EventsTypes to make the
elimination of unnecessary calls efficient. For example,
Events 800 having to do with user input, do not need to be
passed down trees of Gizmo 115 derived object which don’t
contain any Gizmo 115 derived objects that need to process
user input.

DartEngine.Process() Processing

Examples of the DartEngine.Process() processing is
shown in the embodiments of FI1G. 23, FIG. 15, and FIG. 16.
This drives the main execution of the Dart’s Dartlnstruc-
tionSet instructions 611. A main loop is executed to get the
next instruction from the Dart’s instruction stream, decode
the opcodes and source and destination fields of the instruc-
tions, check that the addressed source and destination
parameters are not outside of the data areas of the Dart’s
DartContext, then jump to the device processor native code
of the DartPlayer 600 method or function that carries out the
function called for by the opcode field of the instruction. If
source or destination fields of the instruction specify param-
eters outside of those allowed to be accessed, then no
dispatch is made based on the opcodes, and control is
returned just after the DartPlayer.Process() call with a
specific negative return value that reflects the specific access
violation. This will cause the DartPlayer 500 to call Dart-

US 9,436,525 B2

165

Player.Uninit() and end the Dart’s execution with an error
message or other optional indicator.

FIG. 22 shows the relationship and some of the function-
ality of the DartPlayer 500, DartEngine 600 and Hardware
Abstraction Layer (HAL) 650. The HAL 650 is the part of
the player implemented as a class derived from the halBase
class used to encapsulate the device specific access functions
needed. Advantageously, the number and complexity of the
halBase functions that are required to be implemented is
kept to a minimum so that porting to new DartDevice 400
types is quick and easy. Having a minimalist approach to the
halBase design also aids in ensuring that separately imple-
mented DartEngines 600 attain a very high degree of com-
patibility because they share most of the implementation
source code functionality. Thus it is highly beneficial to
move as much functionality as possible to the portable
device independent portions of the DartPlayer 500. Ease of
porting and a very high degree of compatibility are key
features of embodiments of the DartPlatform 50 that are
partly realized through the use of portable code wherever
possible, and the use of the same source code on every
device wherever possible. Thus while recompilation and
linking will often be necessary for each different type of
device, most of the functionality will be compiled from the
same source code as the other devices that are expected to
be able to work cooperatively with the device.

Power Management Features of the Architecture

Power management is another feature which though
optional, runs through many parts of the DartPlatfom 50
architecture. When the DartPlayer 500 calls the DartEn-
gine.Process 4003 method, execution of the Gizmo derived
object hierarchy starts by setting a variable that holds a
response time needed in milliseconds (or any other units) to
the highest value representable. As Events are processed by
the ordered tree of Gizmo 115 derived objects, each object
uses a BUILTIN_INSTRUCTION to tell the DartEngine
600 how long it can wait until it needs to have its
Process() method called again.

For example, for an object that is displaying a motion
video, this might be Y40” of a second if this is the frame rate
of the video. The DartEngine 600 collects the lowest
response time needs reported by the BUIILTIN_INSTRUC-
TION which implements gathering of the minimum
response time needs passed in as a parameter. When control
returns to the DartPlayer 500 after making a complete pass
through the hierarchy of the Gizmo tree graph, the Dart-
Player 500 or DartEngine 600 can use this information to
block its thread or otherwise signal that power is not needed
for at least the time indicated. Normally the DartPlayer 500
will block its thread with a timeout equal to the minimum
response time collected. The blocking will also terminate if
new input arrives that needs to be processed by the Dart 700.
It may be appreciated that in many cases the application
running on a processor is the only entity that knows the real
response time needs at all times, and Dart applications may
advantageously be designed and generated in a manner that
makes it easy for the DartPlayer 500 to receive this infor-
mation and make use of it for greatly reducing the power and
energy consumption needs of devices without greatly
degrading the performance of dynamic applications.

Event Processing Queuing Mechanism

The Event processing queuing mechanism, carried out
during the EngineEventProcessing (FIG. 15 8002, FIG. 16
5000) processing may also keep track of or monitor response
time needs for asynchronous processes (FI1G. 16 the contents
of the dashed box) that are not part of the Gizmo.Process
(EventInfo *) calling hierarchy. In this way, the minimum

20

25

30

35

40

45

50

55

60

65

166

response time needs reported by active Darts reflects the
combined needs of the mainstream synchronous Dart appli-
cation processing being performed by the Linear Tasking of
the Gizmo tree, and the asynchronous processes handled by
the Event processing portions of the DartEngine 600.
Security and Integrity—Execution Checks Performed Dur-
ing Instruction Decoding

Security, integrity and robustness of the DartPlatform 50
may be at least partially assured through the use of execution
checks performed while decoding the instructions of the
DartlInstructionSet. The addresses of data and source fields
of the instructions are tested by the engine to make sure that
they refer to data within the range of the executing Darts
legally accessible data regions according to the DartContext
it is running in. Similarly, Dart applications and the Dart-
InstructionSet instructions that the procedures of the appli-
cations are made up of, are limited to accessing only
physical storage that belongs to the running Dart. This is to
prevent malicious or malfunctioning Darts from having the
power to access private data or storage resources that should
not be accessible by the running Darts.

The Hardware Abstraction Layer (HAL) file system nam-
ing conventions assure that Dart applications have no way to
specify a file outside of its legal domain (but see optional
deliberate exception). When specifying a file for an opera-
tion such as open or delete, the Dart application cannot
specify full file paths but merely a locationld and number, or
locationld and terminal name string as shown in 5010 FIG.
28. In this way the physical storage accessible is limited in
the HAL to the Locations appearing in 5020 FIG. 28. It is up
to the HAL to perform the open, close, read, write, position,
rename and get-position operations based only on these
parameters to specity files. The one intentional but optional
exception to the no access outside the HAL enforced sand-
box, is that a locationld corresponding to a USER_SPECI-
FIED_LOCATION may optionally be supported in the HAL
for providing access to files outside of the Darts Context
limits. It is up to the HAL when opening, deleting or
renaming files to explicitly prompt the user for a file
selection. This allows applications to import and export files,
albeit only with the implicit permission granted by the
involvement of the user.

While the present inventive structure, method, apparatus,
computer programs, and computer program products have
been described with reference to a few specific embodi-
ments, the description is illustrative of the invention and is
not to be construed as limiting the invention. Various modi-
fications may occur to those skilled in the art without
departing from the true spirit and scope of the invention as
defined by the appended claims. All references cited herein
are hereby incorporated by reference.

What is claimed is:

1. A method for maintaining synchronization of resources
and synchronization information across one or more
dynamically created teams of homogeneous or heteroge-
neous interoperability devices, wherein the interoperability
devices run an interoperability engine, wherein the interop-
erability engine supports self-distribution and execution of
threads of an interoperability application across a team of
interoperability devices, then synchronizes events across the
threads as part of one event-driven application run-time
established across the team of devices, which are intermit-
tently or continuously directly connected or indirectly con-
nected through a sequence of a subset of the team of devices,
wherein all such connected devices are part of the team,
comprising:

US 9,436,525 B2

167

(1) running on an interoperability device, an initiating
interoperability application, wherein the interoperabil-
ity application is a single compiled and linked multi-
threaded executable image with a single address space
and a single data space shared across all its threads and
wherein all of the code threads needed to run the
interoperability application across a team of interoper-
ability devices are initially contained in the single
compiled and linked multi-threaded executable image;
and

(2) teaming of other interoperability devices by the initi-

ating interoperability application, wherein an intermit-
tent or continuous connection is made to other devices
and the initiating application spreads synchronization
IDs and other synchronization information to the newly
teamed devices, wherein the synchronization method
further includes (a) initiating a communication session
between any two teamed devices, (b) comparing the
IDs on one device with the IDs on the other device, (c)
running the interoperability application threads associ-
ated with every matching ID on each device that has the
matching ID indicating it has data or resources or
control functions to be synchronized, (d) spreading the
event driven run time execution of the interoperability
application across the two devices’ threads, and (e)
performing, by the interoperability application which
has its operations spread across the two devices, the
synchronization events via the threads, wherein the
synchronization events are executed identically across
the threads, which share the single data address space
and single code address space of the single initiating
interoperability application, wherein only the initiating
interoperability application or any of its distributed
threads, having no logical master, sends over a serial-
ized channel synchronized events in an exact same
order to be placed onto queues of its directly connected
devices or its devices indirectly connected through a
sequence of a subset of the team of devices.

2. The method of claim 1, wherein the method further
includes (3) the repetition of the teaming of other devices,
wherein the interoperability application running on any one
or more of the teamed devices acts as the initiating interop-
erability application so the team of devices can continue to
Zrow.

3. The method of claim 2, wherein the method further
includes (4) synchronizing resources among and between
the devices.

4. The method of claim 1, wherein the interoperability
information includes: (i) one or more IDs to be used to
signify that devices are coupled for a particular synchroni-
zation purpose; (ii) one or more interoperability application
threads associated with the IDs which can be executed to
carry out the synchronization purpose; and (iii) access
rights.

5. The method of claim 4, wherein the access rights are
established based on human relationships.

6. The method of claim 5, wherein the human relation-
ships are transitive.

7. The method of claim 6, wherein the transitive human
relationships are based on being a friend of a friend, a
member of the same family, or an individual owner or
possessor of the devices.

8. The method of claim 4, wherein the access rights are
established using a social security method.

9. The method of claim 1, wherein the interoperability
engine synchronizes resources across the team of interop-
erability devices is carried out by selectively executing

20

25

30

35

40

45

50

55

60

65

168

threads across a team of the interoperability devices after
matching of IDs previously distributed across devices by
interoperability applications, manually, or another program.

10. The method of claim 1, wherein the matching of IDs
is triggered by one or more of the following, a communi-
cations link established or reestablished between interoper-
ability devices, the interoperability application explicitly
requests a synchronization across the team of devices, or an
external input to any of the devices in the team.

11. The method of claim 4, wherein the interoperability
information includes: (i) one or more IDs to be used to
signify that devices are teamed for a particular synchroni-
zation purpose; and (ii) one or more interoperability appli-
cation threads associated with the IDs which can be
executed to carry out the synchronization purpose.

12. The method of claim 1, wherein one or more of the
following are true in any combination: (1) the teams are
formed at least in part using a device recruitment procedure
or Dart Recruitment; (2) one or more of the interoperability
devices is a DartDevice; (3) the interoperability application
program image conforms to the Interoperability Format or
conforms to the DartFormat and/or is a Dart; (4) the execut-
able threads are Renditions or are Dart Renditions; (5) the
resources are one or more of the types of resources by the
Interoperability Source; (6) the interoperability IDs are
created using the social security method; and (7) the one or
more Renditions are generated using one or both of the
recruitment method and the creationism method.

13. The method of claim 1, wherein synchronization
comprises one or more of the following in any combination:
(1) maintaining independent instances and/or semantics of
identified database instances and/or any data that can be
represented by a database or element contained in a database
in such a manner that changes made independently to the
separate instances are resolved to maintain one or more of:
(a) the integrity of the database; (b) the elements of the
database, (c) the semantics of the database and/or interrela-
tionships of elements of the database, and (d) the common
identity of the instances of the database; (2) tracking the
adding, deleting or modification of elements in a list of items
independently stored and/or modified on devices; (3) the
collecting and/or processing and/or collating of information
by a team of devices; (4) maintaining list of IDs, shared
secrets and security settings in order to control and limit
access to resources or capabilities of devices; (5) cross-
device management of settings effecting the operation of
devices or the team of devices; (6) configuration manage-
ment across the devices; (7) installation of software or
content across devices; (8) taking inventory of devices
and/or the resources of the devices or reachable by the
devices or for which information is stored and/or maintained
by one or more of the devices; and/or (9) software or content
distribution or updating across devices.

14. The method of claim 1, wherein the synchronization
is done at least in part by the execution of software proce-
dures so that synchronization is done in a way specific to
each device and/or subsets of devices and/or the environ-
ment thereof.

15. The method of claim 1, wherein the growing of a
group of teamed devices in a limited or unlimited manner is
carried out using one or more of the following: (1) limiting
by a set fanout value so that each device or application is
only allowed to bring a predetermined limited number of
other devices or applications into the team equal to or within
some predetermined magnitude relationship to the fanout
value; (2) limiting by a set generation limit procedure
comprising the following: (a) incrementing a generation

US 9,436,525 B2

169

tracking value carried by each application package that
sends application packages to teamed devices so that each
application package sent to newly teamed devices has a
tracking value one greater than the sending application
package, and (b) limiting by a set generation stop value so
that application packages with a generation tracking value
equal to the set generation stop value are not allowed to
bring new devices or applications into the team; (3) limiting
according the capabilities or resources of the devices; (4)
limiting according to the rules as embodied in the code, data
and content of the independently executing images; and (5)
limiting according to the level of security of teamed devices
or applications and/or any other required credentials.

16. The method of claim 1, wherein the purposes are one
or more of the purposes selected from the list of purposes
comprising: (1) maintaining independent instances and/or
semantics of commonly identified database instances and/or
anything that can be held by a database or element contained
in a database in such a manner that changes made indepen-
dently to the separate instances are resolved to maintain one
or more of: (a) the integrity of the database as encapsulating
the intended data and purpose associated with the common
identification, (b) the elements of the database, (c) the
semantics of the database and/or interrelationships of ele-
ments of the database, and (d) the common identity of the
instances of the databases; (2) tracking the adding, deleting,
or modifying elements on lists of items independently stored
and/or modified on independent devices; (3) collecting and/
or processing and/or collating of information by a team of
devices; (4) maintaining lists of IDs, shared secrets and
security settings in order to control and limit access to
resources or capabilities of devices; (5) inter-device man-
aging of settings effecting the operation of devices or the set
of devices; (6) configuration managing across devices; (7)
installation of software or content across any of the devices;
(8) inventorying of devices and/or the resources of the
devices and/or resources reachable by the devices and/or for
which information is stored and/or maintained by one or
more of the devices; and/or (9) distributing software or
content and/or updating software or content across devices.

17. The method of claim 1, wherein the method is used as
an alternative to other synchronization methods because less
human administration is necessary and/or the sophistication
of the humans who do the administration is not required to
be as high as conventional approaches.

18. The method of claim 1, wherein one or more of the
teamed devices are reachable on the Internet as servers
running an interoperability engine.

19. The method of claim 1, wherein one or more of the
teamed devices are reachable on a network as servers
running an interoperability engine.

20. A computer program product for use in conjunction
with a computer system or information appliance, the com-
puter program product comprising a non-transitory com-
puter readable storage medium and a computer program
mechanism embedded therein, the computer program
mechanism comprising: a program module that directs the
computer system or information appliance to function in a
specified manner for maintaining synchronization of
resources across one or more dynamically created teams of
homogeneous or heterogeneous devices which are intermit-
tently or continuously directly connected or indirectly con-
nected through a sequence of a subset of the team of devices,
wherein all such connected devices are part of the team, the
program module including instructions for: (1) running on
an interoperability device, an initiating interoperability
application, wherein the interoperability application is a

20

25

30

35

40

45

50

55

60

65

170

single compiled and linked multi-threaded executable image
with a single address space and a single data space shared
across all its threads and wherein all of the code threads
needed to run the interoperability application across a team
of interoperability devices are initially contained in the
single compiled and linked multi-threaded executable
image; and (2) teaming of other interoperability devices by
the initiating interoperability application, wherein an inter-
mittent or continuous connection is made to other devices
and the initiating application spreads synchronization 1Ds
and other synchronization information to the newly teamed
devices, wherein the synchronization method further
includes (a) initiating a communication session between any
two teamed devices, (b) comparing the IDs on one device
with the IDs on the other device, (¢) running the interoper-
ability application threads associated with every matching
ID on each device that has the matching ID indicating it has
data or resources or control functions to be synchronized, (d)
spreading the event driven run time execution of the interop-
erability application across the two devices’ threads, and (e)
performing, by the interoperability application which has its
operations spread across the two devices, the synchroniza-
tion events via the threads; wherein the synchronization
events are executed identically across the threads, which
share the single data address space and single code address
space of the single initiating interoperability application,
wherein only the initiating interoperability application or
any of its distributed threads, having no logical master, sends
over a serialized channel synchronized events in an exact
same order to be placed onto queues of its directly connected
devices or its devices indirectly connected through a
sequence of a subset of the team of devices.

21. The computer program product of claim 18, further
including instructions for (3) the repetition of the teaming of
other devices where the interoperability application pack-
ages running on any one or more of the teamed devices acts
as the initiating interoperability application program pack-
age so that the team of devices can continue to grow.

22. The computer program product of claim 21, further
including instructions for (4) synchronizing resources
among and between the devices.

23. An interoperability device running an interoperability
engine maintaining synchronization of resources across one
or more dynamically created teams of homogeneous or
heterogeneous devices which are intermittently or continu-
ously directly connected or indirectly connected through a
sequence of a subset of the team of devices, wherein all such
connected devices are part of the team, the device compris-
ing: (1) running on the interoperability device, an initiating
interoperability application, wherein the interoperability
application is a single compiled and linked multi-threaded
executable image with a single address space and a single
data space shared across all its threads and wherein all of the
code threads needed to run the interoperability application
across a team of interoperability devices are initially con-
tained in the single compiled and linked multi-threaded
executable image; and (2) teaming of other interoperability
devices by the initiating interoperability application,
wherein an intermittent or continuous connection is made to
other devices and the initiating application spreads synchro-
nization 1Ds and other synchronization information to the
newly teamed devices, wherein the synchronization method
further includes (a) initiating a communication session
between any two teamed devices, (b) comparing the IDs on
one device with the IDs on the other device, (¢) running the
interoperability application threads associated with every
matching ID on each device that has the matching ID

US 9,436,525 B2

171

indicating it has data or resources or control functions to be
synchronized, (d) spreading the event driven run time execu-
tion of the interoperability application across the two
devices’ threads; and (e) performing, by the interoperability
application which has its operations spread across the two
devices, the synchronization events via the threads, wherein
the synchronization events are executed identically across
the threads, which share the single data address space and
single code address space of the single initiating interoper-
ability application, and wherein only the initiating interop-
erability application or any of its distributed threads, having
no logical master, sends over a serialized channel synchro-
nized events in an exact same order to be placed onto queues
of its directly connected devices or its devices indirectly

connected through a sequence of a subset of the team of 15

devices.

172

