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The invention relates, among other things, to methods and
non-transitory computer-readable medium that include input-
ting data representing consumption levels into the memory,
wherein a value of the consumption levels represents required
consumption C,, inputting data representing returns of each
asset class into the memory, performing stochastic dynamic
programming in the processors using the data representing
the returns of each asset class and values of a utility function
U based on the consumption levels to compute values of
aggregate utility of wealth, storing the values of the aggregate
utility of wealth in the memory, computing local searches in
the processors of the values of aggregate utility of wealth over
an asset allocation and consumption space to compute opti-
mal asset allocation and optimal consumption, storing the
optimal asset allocation and optimal consumption in the
memory, and outputting the optimal asset allocation and the
optimal consumption value for an initial age and wealth.

Computer Implementing Methods of the Invention
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Computer Implementing Methods of the Invention

Processor
137/

16

Processor

CPU-Memory Bus

First Host |

Memory /1 >

722 |18

24
N

Bus Adapter |

Data
Storage
Subsystem
11/

Interface Bus

17 /1 Network Adapter |

____________ L — —

Second ya 29

Host

207

Nth

/28

W 31

Computer Network

_— e

Host

26

Data
Storage

\
30

Subsystem

FIGURE 1

/27



Patent Application Publication = Mar. 24, 2016 Sheet 2 of 15 US 2016/0086277 A1

Effect of Gamma on Consumption Utility
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Two Part Consumption Utility Function Without Transition Region
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Two Part Utility Function With Transition Region
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Asset Allocation and Consumption Planning via Stochastic
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Flowchart for Asset Allocation and Consumption Planning via Stochastic

Dynamic Programming

[ Upt(Wiet1) .. UstWasq ) 1 [ As1Wisr 1) .. Apr(Weerw) 1,110
[ Cor1(Wist,1) ... Cir1(Wwim) 1, &, r, U

113 — 116 119~

Ci(Wh 1), Ur(Wi,1)

set p=1, 1=t set n=2, t=t
T Vs 122
compute Ay(W; ), compute AW, >),

Ci(Wi2), U(Wi2)

l_1

| /125_-_ 128\ T

set p=M, 1=t

compute AW n),
C(Wim), U(Wim)

/131

J LUWe1) - UWin) ], AW ) . AdWem) 1, |,
[ C(Wi1) ... C{Wim) ], &, r, U

US 2016/0086277 Al

<

l f1 34 l /1 37 l J 140
set u=1, t=t-14 set p=2, v=t-1 146 149 set u=M, =t-1
l /1 43 l f [ B | \ i
compute Ap1(Wr.11), | | compute Aqq(Wi12), compute Ap1(We1m),
Ce1(We1), Ua(Wer 1) [Cra(Wia 2), Ura(What 2) Ci1(Wem), Uri(Wiam)
W | —

L—t

JLUei(Wer) o Us(Weam) 1 [ Acs(Wera) o Act(Weam) 1,
[ Cta(Wi11) ... Cea(Wham) ], a1, U

152/ .

v /1 55 v f1 58 v 1161
set p=1, t=1 set u=2, 1=1 set u=M, 1=1
764 T A6 007
compute A1(W, 1), compute A(Ws2), compute A4(Wi ),
C1(Wi1,1), Ut(W11) C1(W12), Uy(Wy2) C1(Wim), Ur(Wq )
— 1 I

|_l

[Ui(W11) ... Us(Wim) ] [A1(W11) .. Ai(Wam) ],

[ C1(W14) ... C4(Wim)]

173/

FIGURE 6




Patent Application Publication  Mar. 24, 2016 Sheet 7 of 15 US 2016/0086277 A1

Flowchart for Asset Allocation and Consumption Planning via Stochastic
Dynamic Programming
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Flowchart for Computation of U (W, )
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Computation of U,(C)
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Monte Carlo Simulation
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Stock/Bond Allocation versus Portfolio Size
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Confidence Bounds on Consumption versus Investor Age
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Probability Distribution of Annual Change in Portfolio Size
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Utility Slope versus Consumption
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Confidence Bounds on Consumption versus Investor Age
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STOCHASTIC DYNAMIC PROGRAMMING
IN A COMPUTER USING A MULTI-PART
UTILITY FUNCTION AND LOCAL SEARCH
TO EFFICIENTLY COMPUTE ASSET
ALLOCATION AND CONSUMPTION

BACKGROUND
[0001] The invention relates to improvements in computer
technology.
[0002] Asset allocation is the division of financial

resources between asset classes (e.g., stocks/bonds) in order
to meet financial goals. Consumption is the amount of money
spent. The asset allocation and consumption problem is
deciding how much wealth to consume annually and how and
how much to invest for the future in order to meet goals.
[0003] The Retirement Industry Investment Association
(RIIA) recommends a floor plus upside approach to retire-
ment investing. First, an income floor should be established
using Single Premium Immediate Annuities (SP1As), a TIPS
bond ladder, or other low risk assets to cover non-discretion-
ary expenses. Then riskier assets such as equities should be
added to cover discretionary expenses. The adoption of the
floor plus upside approach, in a sense, puts the solution before
the problem. The problem should be how to maximize retire-
ment well-being when consumption utility is split into sepa-
rate floor and upside utility functions.

SUMMARY OF THE INVENTION

[0004] The invention relates in a feature to a method in a
computer including processor(s) coupled to a memory,
including the steps of:

[0005] inputting data representing consumption level(s)
into the memory, wherein a value of the consumption
level(s) represents required consumption C,;

[0006] inputting data representing returns of each asset
class into the memory;

[0007] performing one or more step(s) of stochastic
dynamic programming (SDP) in the processor(s) using
the data representing the returns of each asset class and
values of a utility function U based on the consumption
levels to compute values of aggregate utility of wealth,
wherein the SDP step(s) includes the following sub-
steps:

[0008] reading data representing an aggregate utility
of wealth U,,, for wealth levels W, | through W,
M, and a description of single time period utility U;

[0009] computing local searches in the processor(s) an
optimal asset allocation vector A,, an optimal con-
sumption C,, and an optimal aggregate utility of
wealth U, for a wealth level W, ;

[0010] computing local searches in the processor(s)
the optimal asset allocation vector A,, the optimal
consumption C,, and the optimal aggregate utility of
wealth U, for a wealth level W, ;

[0011] computing local searches in the processor(s)
the optimal asset allocation vector A,, the optimal
consumption C,, and the optimal aggregate utility of
wealth U, for additional wealth levels up to at least
wealth level W, , .

[0012] storing the values of the aggregate utility of
wealth U, for wealth levels W, , through W, ,,in the
memory; and
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[0013] outputting the optimal asset allocation vector Az
and the optimal consumption Cy at an initial age B and
wealth W

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 illustrates a computer for implementing the
methods of the invention.

[0015] FIG. 2A illustrates utility as a function of consump-
tion.

[0016] FIG. 2B illustrates the derivative of the utility curves
of FIG. 2A.

[0017] FIG. 3A illustrates a two part utility function with-

out a transition region.

[0018] FIG. 3B illustrates the derivative of the two part
utility function without a transition region of FIG. 3A.
[0019] FIG. 4A illustrates a two part utility function with a
transition region.

[0020] FIG. 4B illustrates the derivative of the two part
utility function with a transition region of FIG. 4A.

[0021] FIGS. 5A-5D illustrates stochastic dynamic pro-
gramming for asset allocation and consumption.

[0022] FIG. 6 is a flow chart that illustrates a method of
stochastic dynamic programming to plan asset allocation and
consumption.

[0023] FIG. 7 is a flow chart that illustrates additional steps
of'the method of stochastic dynamic programming illustrated
in FIG. 6.

[0024] FIG. 8 is a flow chart that illustrates additional steps
of'the method of stochastic dynamic programming illustrated
in FIG. 7.

[0025] FIG. 9 illustrates the computation of U (C).

[0026] FIG. 10 illustrates the computation of utility U as a
function of consumption C.

[0027] FIG. 11 illustrates a Monte Carlo simulation of the
portfolio size as a function of investor’s age.

[0028] FIG. 12 illustrates optimal percent stock allocation
vs. investor age and portfolio size.

[0029] FIG. 13 illustrates stock/bond allocation vs. portfo-
lio size at a particular investor age.

[0030] FIG. 14 illustrates consumption paths vs. investor
age obtained by Monte Carlo simulation.

[0031] FIG. 15 illustrates confidence bounds on consump-
tion vs. investor age.

[0032] FIG. 16 illustrates probability distribution of change
in annual consumption.

[0033] FIG. 17 illustrates probability distribution of annual
change in portfolio size.

[0034] FIG. 18 illustrates confidence bounds on portfolio
size vs. investor age.

[0035] FIG. 19 illustrates a utility slope vs. consumption
curve.

[0036] FIG. 20 illustrates an absolute risk aversion vs. con-
sumption.

[0037] FIG. 21 illustrates confidence bounds on consump-

tion vs. investor age for an upside discount rate of 15%.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0038] The following description includes the best mode of
carrying out the invention. The detailed description illustrates
the principles of the invention and should not be taken in a
limiting sense. The scope of the invention is determined by
reference to the claims. Each part (or step) is assigned its own



US 2016/0086277 Al

part (or step) number throughout the specification and draw-
ings. The punctuation mark ‘and apostrophe ’ mean prime
wherever they appear in the drawings and specification.
[0039] FIG. 1 illustrates a cluster of hosts that can execute
the methods in software as described below. Each host is a
computer that can communicate with data storage subsystems
11 and 26 (e.g., a disk array and/or solid state memory) and
with each other. Hennessy and Patterson, Computer Architec-
ture: A Quantitative Approach (2012), and Patterson and
Hennessy, Computer Organization and Design: The Hard-
ware/Software Interface (2013) describe computer hardware
and software, storage systems, caching, and networks and are
incorporated by reference.

[0040] As shown in FIG. 1, a first host 18, which is repre-
sentative of the second host 19 through Nth host 20, includes
a motherboard with a CPU-memory bus 14 that communi-
cates with dual processors 13 and 16. The processor used is
not essential to the invention and could be any suitable pro-
cessor such as the Intel Pentium processor. A processor could
be any suitable general purpose processor running software,
an ASIC dedicated to perform the operations described herein
or a field programmable gate array (FPGA). Also, one could
implement the invention using a single processor in each host
or more than two processors to meet various performance
requirements. The arrangement of the processors is not essen-
tial to the invention. Data is defined as including user data,
instructions, and metadata. Inputting data is defined as the
input of parameters and data from user input, computer
memory, and/or storage device(s). The processor reads and
writes data to memory 15 and/or data storage subsystem 11
and 26. Each host includes a bus adapter 22 between the
CPU-memory bus 14 and an interface bus 24. A non-transi-
tory computer-readable medium (e.g., storage device, CD,
DVD, floppy disk, USB storage device) can beused to encode
the software program instructions described in the methods
below.

[0041] Each host runs an operating system such as the
Apple OS, Linux, UNIX, a Windows OS, or another suitable
operating system. Tanenbaum et al., Modern Operating Sys-
tems (2014) describes operating systems in detail and is incor-
porated by reference herein. Bovet and Cesati, Understand-
ing the Linux Kernel (2005), describe operating systems in
detail and is incorporated by reference herein.

[0042] The firsthost 18 communicates through the network
adapter 17 over a link 28 with a computer network 31 with
other hosts. Similarly, the second host 19 communicates over
link 29 with the computer network 31, and the Nth host 20
communicates over link 30 with the computer network 31. In
sum, the hosts 18, 19 and 20 communicate with each other
and with the computer network 31. A data storage subsystem
26 communicates over link 27 with computer network 31.
Thelink 27, the link 29, the link 30, and the computer network
31 can be implemented using a bus, SAN, LAN, or WAN
technology such as Fibre Channel, SCSI, InfiniBand, or Eth-
ernet.

[0043] Utility is a number that represents the value of con-
sumption (i.e., spending) to an individual. For example, the
utility of consuming $100K per year might be represented by
100,000 and $1M per year might be 400,000. Thus, utility is
usually not a linear function of consumption. The utility for
one individual to consume another increment of money may
be different than another individual.

[0044] Inanembodiment, the method uses constant relative
risk aversion (CRRA) utility functions of the form U=(1/(1-
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))*C'~Y where C=consumption, U=utility, and y is the coef-
ficient of relative risk aversion. When y=1, U=log(C).
[0045] With a CRRA utility function, an individual is neu-
tral to a 50/50 chance of 100% consumption or 200% con-
sumption, or a guaranteed ((1+2'77)/2)" " consumption. A
y of 4 corresponds to a neutral trade-off of a 50/50 chance for
100% or 200% consumption and a guaranteed 121% con-
sumption. An incremental dollar at 50% consumption would
be worth giving up 2Y incremental dollars at 100% consump-
tion. With a y of 4, a dollar at 50% consumption would be
worth giving up 16 incremental dollars at 100% consumption.
[0046] Dohmen, Individual rvisk attitudes: new evidence
from a large, representative, experimentally-validated sur-
vey, IZA Discussion Papers, No. 1730 (2005) presents experi-
mental evidence that the median value fory lies somewhere in
the range of 3-5.

[0047] A low y will favor stocks, and a high y will favor
bonds.
[0048] Constant relative risk aversion (CRRA) is one pos-

sible curve of utility vs. consumption. FIG. 2A illustrates the
utility (U) of consumption (C) (e.g., US dollars spent) for
CRRA utility functions with different coefficients of relative
risk aversion. A coefficient of relative risk aversion (y) having
a high value indicates less willingness to take risks for invest-
ment gains. Solid line curve 40 has a lower coefficient of
relative risk aversion (e.g., y=1), while the dotted line curve
43 has a higher coefficient of relative risk aversion (e.g., y=4).
Initially, utility curve 43 increases faster than utility curve 40,
then it increases more slowly at higher levels of consumption.
Thus, in both curves, the utility increases but is not linear (i.e.,
flattens) as consumption increases. The coefficient of relative
risk aversion will affect the utility of consumption.

[0049] FIG. 2B illustrates the derivative of the utility (U") of
consumption curve shown in FIG. 2A. U' indicates the mar-
ginal benefit of an incremental unit of consumption. The
marginal benefit of consuming one dollar might be 0.5 when
C=$100K. Solid line curve 46 has a lower coefficient of
relative risk aversion (e.g., y=1), while the dotted line curve
49 has a higher coefficient of relative risk aversion (e.g., y=4).
[0050] FIG. 3A illustrates a two part utility function with-
out a transition region. In an embodiment, the utility function
is composed of two parts. Required spending forms the first
part, and in an embodiment corresponds to non-discretionary
spending (e.g., food, clothes, shelter). Extra spending forms
the second part, and in an embodiment corresponds to discre-
tionary spending (e.g., luxury goods and services, entertain-
ment, vacations, charitable gifts). In another aspect of FIG.
3A, the dotted line 53 is the upper limit of the required
spending region and the lower limit of the extra spending
region. In the required spending region, a risk averse utility
function 50 is the first part and determines the utility of
consumption. In an embodiment, the risk averse utility func-
tion is based on a higher coefficient of relative risk aversion
(e.g., v=4). In an alternative embodiment, the risk averse
utility function is based on exponential utility function such
as 1-e"*“/a.. The variable a. is a constant that represents the
degree of risk aversion. In the extra spending region, a higher
risk utility function 52 is the second part and determines the
utility of consumption. In an embodiment, the higher risk
utility function is based on a lower CRRA (e.g., y=1). In an
alternative embodiment, the higher risk utility function is
based on exponential utility function such as 1-e~*“/a.
[0051] FIG. 3B illustrates the derivative of the two part
utility function without a transition region of FIG. 3A. As



US 2016/0086277 Al

shown, the curve 56 is the derivative of utility curve 50, and
rapidly decreases as consumption increases until it reaches
the required spending level 53 where it is discontinuous and
shifts to a slowly decreasing derivative curve 59.

[0052] FIG. 4A illustrates a two part utility function with a
transition region. In another embodiment, the utility function
is composed of two parts and a transition region. Required
spending forms the first part, and in an embodiment corre-
sponds to non-discretionary spending (e.g., food, clothes, and
shelter). Desired spending forms the transition region, and in
an embodiment corresponds to discretionary spending where
there is a direct benefit (e.g., luxury goods and services,
entertainment, vacations). Extra spending forms the second
part of the utility function, and in an embodiment corresponds
to discretionary spending where there is no direct benefit
(e.g., charitable gifts). In another aspect of FIG. 4 A, the utility
curve has three segments. The first segment is a utility curve
60 in the required spending region. Utility increases rapidly
with respect to consumption in the required spending range
ending at consumption level C, . In an embodiment, the utility
curve 60 has y=4. The second segment is a utility curve 63
which encompasses the transition region covering desired
spending (e.g., spending on going out to eat or to a movie)
between consumption levels C, and C,. The transition region
isn’t a CRRA utility function, and so it doesn’t have a vy.
Instead, in an embodiment, it is defined as a cubic polynomial
curve that joins the two regions in utility slope space. In an
embodiment, a factor of 20 is defined as the ratio between the
slope of the required and extra spending region utility func-
tions at the start of the transition region. This indicates that
required spending is considered far more important than extra
spending. FIG. 9 illustrates a method of computing the sec-
ond segment of the utility curve. Referring to FIG. 4A, the
third segment is utility curve 66 in the extra spending region
(e.g., charitable donations) above consumption level C,. Inan
embodiment utility curve 66 has y=1 and slowly increases
with increase in consumption.

[0053] Referring to FIGS. 3A and 4A, it should be recog-
nized that even though a particular spending level may be
described as required, there is no guarantee that the spending
level will be attained (e.g., the initial portfolio is too small to
support the required spending level).

[0054] FIG. 4B illustrates the derivative of a two part utility
function with the transition region shown in FIG. 4A. In an
embodiment, the method computes a utility curve 72 that
smoothly connects utility curves 69 and 75.

[0055] In a feature, the methods use stochastic dynamic
programming (SDP) to concurrently solve the asset alloca-
tion and consumption problem. For example, the method may
determine the optimal stock/bond asset allocation and con-
sumption decisions for a two-part utility function that is rep-
resentative of a retired couple’s need for an income floor and
desire for upside potential without using annuities.

[0056] SDP is a technique that can compute optimal asset
allocation and consumption strategies. SDP is a form of back-
wards induction. In an embodiment, a simplifying assump-
tion is that asset class returns are independent over time. For
details on SDP, see Bellman, Bottleneck problems and
dynamic programming, Proceedings of the National Acad-
emy of Sciences of the USA, 39(9), pages 947-951 (1953),
Mulvey et al., Stochastic network optimization models for
investment planning, Annals of Operations Research, 20(1),
pages 187-217 (1989), and Wikipedia Stochastic Program-
ming (2014), which are all incorporated by reference.
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[0057] Inanembodiment, the invention seeks to maximize
the expected value of Uz(Wjy) where:

[0058] B is the initial age

[0059] W, is wealth (portfolio size) at age t

[0060] U/(W, represents the aggregate utility of wealth W,
ataget

U (W )=a ACOV) I+ +E[U,, (W,,)] for <N
Un(Wy)=0

Wert=W= G DA )-(1+X)

[0061] U(C.W,)) represents the single time period utility
of consumption C(W,), described by a two part utility func-
tion or otherwise

[0062] C,(W, is the consumption amount for level W, at
aget

[0063] r represents the discount rate

[0064] a, represents the unconditional probability of being
alive at age t

[0065] E, is the conditional expectation operator at age t

(conditional on the realized values X, . . . X,)

[0066] N is an upper bound on age

[0067] A[(W,) is the asset allocation vector for level W, at
aget

[0068] - is the vector dot product operator

[0069] 1 is the vector of 1’s

[0070] X, is the stochastic term describing returns on the

asset classes at age t

[0071] If X, is time-wise independent, E, becomes the
unconditional expectation operator at age t, and through a
process of backwards induction SDP yields the optimal asset
allocation and consumption maps A(W,) and C(W,).

[0072] The process of backwards induction involves for a
given age and wealth level, at least notionally, trying each
asset allocation and consumption possibility and finding the
expected value of U,, ;(W,,;) evaluated over each returns
possibility.

[0073] The term a,U(C(W,))/(14r) can be generalized by
using different utility functions or discount rates over time, so
that the whole term is a function of age and consumption or
even wealth. An example of this is to split U into multiple
parts and use different discount rates over time and as a
function of consumption. Splitting U into two parts at con-
sumption level L, a floor utility, U, with discount rate r, and
an upside utility, U, with a discount rate rp, gives:

atUF(Ct(wt))/(1+rF)t+atUP(Ct(wt))/(1 +rP)t
[0074]
Ur(C)=U(C) for C<L

where:

Ux(C)=U(L) for C>L
Up(C)=0 for C<L

Up(O)=U(C)-U(L) for C>L

[0075] If U is split into multiple parts defined by polyno-
mial join points or spline knots it will be appreciated that the
consumption levels defining these parts may, but need not,
correspond to the polynomial join points or spline knots of U'.
[0076] Using Epstein-Zin or recursive utility is another
possibility. For this case we have separate risk and time aggre-
gator functions, R, and T, and we have:

U(W)=T(W, Rt+171(Et[Rt+l(Ut+l(VVH»I))]))
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[0077] Commonly with recursive utility the first parameter
of T, is given as consumption rather than wealth. In the origi-
nal scenario:

R, (u)y=u

T(W, wy=a U(C(W))(1+#)+u

[0078] With recursive utility, setting:
T (W, u)=u for t<retirement age
[0079] allows us to compute the optimal pre and post retire-

ment strategy when all that matters is retirement consump-
tion.

[0080] More generally W, evolves according to:
Wt+l:St(I/th Xt)
[0081] for wealth transition function S,
[0082] Moditying the original scenario and setting W, ;=

(W-C,(W))A,(W) (14X )+], where I, is the exogenous
change in the portfolio size at age t, allows us to handle
non-consumption portfolio contributions and withdrawals,
such as pre-retirement retirement savings contributions.
[0083] Inthe general case W, may be avector and there may
be additional elements to X,. This makes it possible to handle
other forms of wealth, such as IRAs, nominal or inflation
indexed annuities, or human capital.

[0084] Itis impossible to compute the optimal asset alloca-
tion and consumption for every possible wealth value. Instead
the method computes at a fixed set of values, and interpolates
between the points. In an embodiment, the method uses cubic
spline interpolation. Also, the method can interpolate on an
exponentially increasing set of values which gives better per-
formance than on a linear scale.

[0085] To get a handle on the impact of a stochastic
lifespan, the method follows the approach of Finke et al.,
Spending flexibility and safe withdrawal rates, Journal of
Financial Planning, 25(3), 44-51 (2012), which is incorpo-
rated by reference, and uses actuarial data directly. The prob-
abilities of being alive are combined with the year-by-year
utility values to compute the overall utility. This weighted
average is calculated without the use of randomly drawn ages
of death or other Monte Carlo techniques.

[0086] FIGS.5A-5D illustrates the overall flow of stochas-
tic dynamic programming (SDP) for asset allocation and
consumption. FIGS. 5A-5D illustrate that SDP is imple-
mented using portfolio size (e.g., US dollars) as a function of
a person’s age (e.g., years).

[0087] FIG. 5A shows computation of the optimal asset
allocation, consumption, and aggregate utility of wealth val-
ues for wealth level W,,_, . This is performed by calculating
the results for a number of asset allocation and consumption
possibilities (e.g., 30/70 stock/bond and $50K consumption)
and determining the best values. When determining the best
values for age N-1, the method uses the best values computed
for age N. When computing the optimal strategy for wealth
level Wy, ., the method will compute the performance of
the portfolio under a variety of different return possibilities as
shown by path 86 and path 89. Also referring to FIG. 5D, box
L shows the value at point 101 for the path 86 that falls
between previously computed points 98 and 104. The method
interpolates the value at point 101 using the relative distance
between point 101 and points 98 and 104.

[0088] FIG. 5B shows that after computing the optimal
strategy for wealth level W in FIG. 5A, the method can

—1,m
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similarly compute the optimal strategy for a sequence of
portfolio sizes represented by the points in a vertical line at
age N-1.

[0089] FIG. 5C shows that the method then steps back a
year (e.g., N-2) and starts to compute the optimal strategy for
the wealth level Wy, .

[0090] The method computes the optimal strategy of FIGS.
5A-5D by stepping back an increment of time (e.g., a year) to
an initial age B.

[0091] FIG. 6 illustrates certain details of the method to
determine optimal asset allocation and consumption. At step
110, the method receives input values for the aggregate utility
of'wealth U,, |, asset allocation vector A,, ,, and consumption
amount C,,, for wealth levels W, , , through W, , ,, as well
as a probability of being alive a,, a discount rate r, and a
description of single time period utility U. At step 113, the
method sets u=1 andt=tand at step 122 (FIG. 7) computes the
optimal asset allocation vector A,, the consumption amount
C,, and the aggregate utility of wealth U, for the wealth level
W, . At step 116, the method sets u=2 and t=t and at step 125
(FIG. 7) computes the optimal asset allocation vector A, the
consumption amount C,, and the aggregate utility of wealth
U, for the wealth level W, ,. This computation is repeated until
atstep 119, the method sets i=M and t=t and at step 128 (FIG.
7) computes the optimal asset allocation vector A,, the con-
sumption amount C,, and the aggregate utility of wealth U, for
the wealth level W, ,,. At step 131, the method stores the

results from steps 122, 125 . . . 128 in a computer memory
(FIG.1).
[0092] Atsteps 134,137, and 140, the method sets =1, u=2

.. . u=M, respectively, while T=t-1, then proceeds to steps
143, 146 . . . 149 (FIG. 7), respectively, where the method
computes the optimal asset allocation vector A, ,, the con-
sumption amount C,_,, and the aggregate utility of wealth
U,_, for the wealth levels W,_, ,, W, , ... W_, ,, respec-
tively. At step 152, the method stores the results from steps
143, 146 . . . 149 in a computer memory (FIG. 1).

[0093] The method is repeated for each value of ti until the
method proceeds to steps 155, 158, and 161, the method sets
p=1, p=2 . . . p=M, respectively, while T=t, then proceeds to
steps 164, 167 . . . 170 (FIG. 7), respectively, where the
method computes the optimal asset allocation vector A |, the
consumption amount C,, and the aggregate utility of wealth
U, for the wealth levels W, |, W, ... W, ,.,respectively. At
step 173, the method stores the results from steps 164,167 . .
. 170 in a computer memory (FIG. 1).

[0094] FIG. 7 is a flow chart that illustrates additional steps
of'the method of stochastic dynamic programming illustrated
in FIG. 6. At step 180, the method receives input values for pL
and T. At step 183, the method receives input values for the
aggregate utility of wealth U_,, for wealth levels W__, |
through W__, ,,, as well as a probability of being alive a,, a
discount rate r, and a description of single time period utility
U. At step 186, the method reads from computer memory
values for optimal asset allocation vector A, (W, ). At step
189, the method reads from computer memory values for
consumption amount C_,, (W, ). At steps 192 and 195, the
method uses the values obtained at steps 186 and 189, respec-
tively, as hint locations. At step 198, the method computes
U,(W_,,) at the hint locations (FIG. 8 gives further details of
the method of step 198). At step 201, the method receives an
input value for W_ . At step 204, the method performs the
local search (e.g., hill climbing) over asset allocation and
consumption values for a higher value of U (W, ) (FIG. 8
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illustrates how to determine the height of the hill at a given
location). At step 207, the method outputs the values of the
optimal asset allocation vector A, the consumption amount
C,, and the aggregate utility of wealth U_ for the wealth level
W_ .- which are the input values for steps 131,152 ... 173 as
shown in FIG. 6.

[0095] In Patterson and Hennessy, Computer organization
and Design: The Hardware/Sofiware Interface (2013) com-
puter performance on a desktop computer is primarily defined
as 1 divided by the response time (i.e., execution time), while
in a data center, throughput, defined as the number of tasks
completed per unit of time, is an important measure of com-
puter performance.

[0096] The method generates optimal asset allocation and
consumption values. One way of doing this is to perform an
exhaustive search of all asset allocation and consumption
values for each age and wealth level. This would require
assessing the performance of a large number of asset alloca-
tion and consumption possibilities (e.g., for 2 asset classes:
100 asset allocationsx1,000 consumption possibilitiesx50
agesx200 wealth levels=1 billion possibilities), each of which
has to be evaluated against a number of return possibilities
(e.g., for 1927-2013=87 yearly returns). Evaluating each
return possibility requires executing a number of machine
instructions (e.g., 2,000 instructions per return possibility).
Thus, using an exhaustive search would take many machine
instructions (e.g., 174 trillion), which would take a long time
even on a fast computer (e.g., 18 minutes for a 32-core
machine executing 5 billion instruction per second per core).
Computer performance would thus be low, both for a desktop
computer with a single user and in a data center computing the
optimal strategy for many investors. For more than 2 asset
classes, performance would be very low (e.g., the 32-core
computer taking 30 hours to compute 3 asset classes, and 125
days for 4 asset classes).

[0097] The method solves the problem of inefficient com-
puter performance by making use of local search (e.g. hill
climbing, simulated annealing). Local search is more com-
plicated to implement, but reduces the number of possibilities
to be evaluated significantly (e.g. from 1 billion or more down
to 500,000). The Wikipedia articles, Hill Climbing (2014),
and Local Search (optimization) (2014) which are both incor-
porated by reference herein, describe hill climbing search and
local search in detail. One part of the difficulty in implement-
ing hill climbing is that asset allocation is a vector while
consumption is a scalar quantity. In an embodiment they are
combined into a single vector quantity to be searched over. A
second difficulty stems from the constraint that the sums of
the asset allocations must always equal 100%. This prevents
independently walking along a given asset allocation dimen-
sion. In an embodiment, the other asset allocation dimensions
are proportionately scaled back when one asset allocation
dimension is increased. A third difficulty is in implementing
the differing bounds on asset allocation and consumption. In
an embodiment the range of possible valid consumption val-
ues is mapped onto the interval 0 to 100%, so that all dimen-
sions may be treated equally. A fourth difficulty lies in the size
of steps and the termination condition, in which a small step
for asset allocation, may not be of the same size as a small step
for consumption. In an embodiment, separate step sizes are
maintained for each dimension.

[0098] In an embodiment, the computer executes a round
robin one dimension in turn hill climbing search. This gives
good performance (e.g. 1 second on a 32 core machine),
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however, as the number of asset classes increases it may get
stuck on ridges. When hill climbing, a hint is used to try and
start the search in the vicinity of the solution. For the hint an
embodiment uses the optimal asset allocation and consump-
tion found for the same portfolio size and one time period
older. This reduces the time taken by hill climbing.

[0099] Getting stuck on ridges is a known problem of hill
climbing. In an embodiment the method uses a local search
that is able to walk on ridges, such as described in Yuret, D.,
How to Walk on Ridges, From Genetic Algorithms 1o Efficient
Optimization, Massachusetts Institute of Technology: Artifi-
cial Intelligence Laboratory, A.I. Technical Report No. 1569
(1994), which is incorporated by reference. In an alternative
embodiment, the method reduces the asset allocation dimen-
sions being searched down to a single dimension by pre-
computing an asset allocation frontier using mean-variance
optimization as described in Markowitz, Portfolio Selection,
The Journal of Finance, 7:1, 77-91 (1952), which is incorpo-
rated by reference, or full scale optimization, then performs
local search (e.g., hill climbing) on the single asset allocation
frontier dimension and consumption dimension. The efficient
frontier produced using mean-variance optimization is
known to be optimal if the returns are normally distributed.
Full scale optimization involves considering the results of
each possible asset allocation, and from that determining the
asset allocation frontier. Full scale optimization is more com-
putationally intensive, but does not require the returns be
normally distributed.

[0100] After reducing the number of asset allocation
dimensions (e.g., mean-variance optimization, full scale opti-
mization), the use of local search (e.g., hill climbing, or alocal
search that is able to walk on ridges) improves the perfor-
mance of the computer significantly (e.g., by a factor of
2,000).

[0101] FIG. 8 is a flow chart that illustrates additional steps
of'the method of stochastic dynamic programming illustrated
in FIG. 7. At step 210, the method receives as input y, T, and
candidate values for A (W, ), C,(W, ). At step 213, the
method computes the asset level vector: V. =(W, ~C (W,
AW, ). At step 216, the method receives as an input a
stochasticterm X_ , describing possible asset class returns. At
step 219, the method computes W_,, =V, -(1+X, ). At
step 222, the method receives as an input, a stochastic term
X, » describing possible asset class returns. At step 225, the
method computes W, , .=V, (14X, ,). In the equations
computed in steps 219 and 225, the non-subscripted symbol
“1” denotes a vector of 1’s and the symbol “-” denotes the
vector dot product operator.

[0102] As shown, the method repeats for additional sto-
chastic terms as indicated by . ... At step 228, the method
receives input values for the aggregate utility of wealth U_,
for wealth levels W_,, , through W__, ,,. At step 231, the
method interpolates the value of U, , atwealthlevel W_,, ;.
At step 234, the method interpolates the value of U_,, at
wealthlevel W_,, . The method repeats for additional terms
as indicated by .. .”. At step 237, the method computes the
mean of U_, . At step 240, the method receives as inputs a
probability of being alive a_, a discount rate r, and a descrip-
tion of single time period utility U. At step 243, the method

computes the aggregate utility of wealth: U(W_ )=E U,
(Wt+1 ,p.)] +a1:U(C1:(W1:,p))( L+r _1:'
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[0103] FIG. 9 illustrates the computation of U,(C). For
consumption join points C, and C,, to construct a cubic poly-
nomial U that joins the two utility functions U, and U, in U'
space, we have:

U (Cy=wC3+xC24yCz

U(Cy=3wC2+2xC+y

[0104] At step 253, the method uses the following join
constraints:

U/ (Cp=U,'(Cy)
U (C)=U,(Cy)
U/ (Cp=U,"(C)

U/ (C)=Ur"(Cy)

[0105] This produces a system of four linear equations in
four unknowns, w, X, y, and z, and can be solved using stan-
dard linear algebra techniques. Thus, at step 256, the method
solves for w, x, y, and z, which are the coefficients of the
polynomial that will define the curve in the transition region.
[0106] At step 250, the method will receive as an input
consumption C. At step 259, the method will compute U ,:

UAC)y=YawCHYaxC34 Yoy CPazC

[0107] FIG. 10 illustrates computing a utility U(C) that is
continuous at C, and C,. At step 260, the method receives C,
C,,and C, as inputs. At step 263, the method checks if C=C,.
If'so, atstep 266, the method computes U(C)=U,(C). If not, at
step 269, the method checks if C=C,. If so, at step 272, the
method computes U(C)=U(C)-U (C,)+U,(C,). If not, at
step 275, the method computes U(C)=U,(C)-U,(C,)+U(C,).
[0108] Having constructed a utility function U containing a
single joining region, it is also possible to approximate an
arbitrary curve in U' space by forming a utility function U as
an arbitrary piecewise sequence of any number of joining
regions using known spline construction techniques.

[0109] FIG. 11 illustrates a Monte Carlo simulation of the
portfolio size as a function of investor’s age. The analysis here
involves two distinct procedures. First, SDP is used to com-
pute asset allocation/consumption maps as a function of age
and portfolio size. An “asset allocation/consumption map” is
derived using SDP by working backwards from the terminal
age. The “map” displays the asset allocation and consumption
amounts for each age and portfolio size. Second, Monte Carlo
simulations are run to see how well a particular asset alloca-
tion/consumption map performs using returns sequences
derived from the historical record. The Monte Carlo simula-
tion rebalances annually to the target asset allocation, and
withdrawals are taken at the start of the year. No transaction
costs are assumed for rebalancing, sales, or purchases. All
calculations and results are in real, inflation-adjusted terms.
In an embodiment, the simulation starts at investor age B and
follows randomly drawn paths 280, 283, and 286, which
illustrate thousands of computed paths. The same code base is
used for performing both simulation and SDP. Where SDP
performs a single forward time-step, an enclosing loop is used
in the case of simulation to perform multiple time steps, until
the upper bound on age is reached.

[0110] SDP is so good at finding the optimal solution that it
can cause a false sense of confidence when run on the same
data set as to be used for simulation. Even if the returns
distribution is the same in the past as the future there is the
issue that the past and the future are separate samples from
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this distribution and will have their own sample statistics such
as means and standard deviations. I would like to simulate
SDP on out-of-sample data, but there is a paucity of data.
[0111] The solution I use isn’t perfect, but it works. In an
embodiment, the computer performs SDP on the adjusted
historical periodic returns. In an alternative embodiment, the
computer performs SDP on sample returns generated from
summary statistics. Simulation is more complex and involves
computing the sample statistics for the adjusted historical
record, generating a prototype returns sequence from those
statistics, computing the prototype sequence summary statis-
tics for the prototype sequence, generating a sample return
from the prototype summary statistics, and using that sample
return for simulation. Relevant summary statistics are means,
standard deviations, and correlations between asset classes.
Time based correlations are not respected. As a performance
optimization a single Cholesky decomposition is used to
drive the correlations. This is not found to alter the results
appreciably. The Cholesky generator outputs returns that are
normally distributed and respect the prototype mean and stan-
dard deviation. This is projected onto a log normal distribu-
tion because respecting the geometric mean is important in
financial applications.
[0112] The two stage approach to generating a sample is
necessary because it is likely that the historical record does
not reflect the population from which it was selected. A two
stage process allows us to generate a returns sequence that is
consistently bad or good, reflecting the possibility that the
adjusted historical record was an anomaly. Experimentation
shows that without a two stage sample generation process the
results appear 2-5% higher than they actually are.
[0113] Inanembodiment, the starting point in establishing
stock and bond market data to use in the asset allocator and
simulator are returns provided by Shiller, /rrational Exuber-
ance (2005), which is incorporated by reference herein. They
are for U.S. large cap stocks and constant maturity 10-year
U.S. Treasury notes for the period 1927-2013. Stock market
returns are adjusted to include dividends, and bond market
returns are adjusted to include changes in market price.
[0114] Inanembodiment, the invention seeks to model not
10 year Treasuries, but bonds indicative of the U.S. invest-
ment grade bond universe. This is done by increasing the
geometric mean real return of 10 year Treasuries by 0.7% and
the volatility by 10%.
[0115] Pfau, Choosing a retirement income strategy. a new
evaluation framework (2012), which is incorporated by ref-
erence, reports that over the period 1900-2010 for a GDP
weighted portfolio of 19 developed market countries the
equity risk premium relative to long term government bonds
had an arithmetic mean value of 4.8%. With geometric mean
real 10 year Treasury returns of 2.0% from the data described
in Shiller, Irrational Exuberance (2005), this arithmetic
equity risk premium can be reproduced by adjusting the
equity returns to a 5.2% real geometric mean. The difference
in returns between using U.S. Treasury 10 year notes and long
term 30 year bonds is insignificant. This adjustment is also
intended to reflect the widely held belief that U.S. stock
market returns will be lower in the future than in the past as
described Hammond Jr. et al., Rethinking the Equity Risk
Premium: An Overview and Some New Ideas (2011).
[0116] FIGS. 12-21 illustrate the results obtained by the
method for a particular embodiment having the following
facts and assumptions:

[0117] Marital status: male/female couple.

[0118] Consumption change on death: no change if a

spouse dies.
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[0119] Age: Both age 65 in 2014.
[0120] Status: Retired.
[0121] Life span: Stochastic based on Social Security

Administration projections. The U.S. Social Security
Administration produces period and cohort life tables as
described in Bell et al., 2005 Life Tables for the United
States Social Security Area 1900-2100, Actuarial Study
No. 120, U.S. Social Security Administration, which is
incorporated by reference, that report the probability of
death by age. The cohort tables are forward looking and
build in projected mortality improvements, so these
tables are used to project future mortality for a same-age
couple. No change in guaranteed lifetime income is
assumed to occur upon the death of a single member of
the couple. By the same measure consumption utility
also doesn’t get reduced, perhaps partially offsetting
things.

[0122] Investment portfolio size: $500,000.

[0123] Guaranteed lifetime income: Social Security
starting at retirement of $30,000/year inflation adjusted.
The average Social Security payment is currently $15,
500/year per person.

[0124] Required income: $0-$40,000. $40,000 is just
slightly below the average income of retired households
according to the Bureau of Labor Statistics Consumer
Expenditure Surveys.

[0125] Desired income: $40,000-$60,000.

[0126] Relative risk aversion required spending region:
v=4.0. This represents a moderate degree of risk aver-
sion.

[0127] Relative risk aversion extra spending region: y=1.

0. This represents a very low degree of risk aversion.

[0128] Utility slope ratio at start of transition region:
0.05. Extra spending is far less valuable than desired
spending.

[0129] Transition region: cubic polynomial in utility
slope space.

[0130] Discount rate: 3.0%/year. This is the rate at which
present consumption is favored over future consump-
tion. The chosen value is used by Medicare and Social
Security Payroll Taxes and Benefits for People in Differ-
ent Birth Cohorts, Congressional Budget Office (2013),
which is incorporated by reference, to discount Social
Security payments, and is derived from future projec-
tions for long term bonds on the assumption that bonds
rates denote a societal expression of the preference for
present over future consumption.

[0131] Market returns: derived from Shiller historical
data 1927-2013.

[0132] Real stock market returns: geometric: 5.2%;
arithmetic: 7.1%, standard deviation: 19.4%.

[0133] Real bond market returns: geometric: 2.7%;
arithmetic: 3.1%, standard deviation: 9.1%.

[0134] Management expense: 0.1%. This value is rela-
tively low, and assumes a low cost provider such as
Vanguard.

[0135] Taxes: None.
[0136] Bequest motive: None.
[0137] FIG. 12 illustrates optimal percent stock allocation

vs. investor age and portfolio size. There is a banding pattern
running across the asset allocation plot. Taking a vertical slice
through the Figure and starting from a portfolio size of zero,
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we observe with little money y=4 and the overall asset allo-
cation would be balanced. However the zero risk nature of
defined benefit income resembles bonds, and since more than
the requisite amount of bonds are present, the actual asset
allocation will be 100% stock to compensate. As portfolio
increases the asset allocation corresponds to y=4, and the
asset allocation of stocks/bonds becomes 40/60. As the port-
folio increases further, y=1 and the asset allocation becomes
100% stock. Some assume that if an investor has reached his
or her financial objective it is time to become more conser-
vative, because there isn’t any point in taking the risk in
investing in stocks. FIG. 12 show that this assumption is false.
The lower degree of risk aversion at high consumption levels
means the investor can afford to take a higher degree of risk on
stocks.

[0138] FIG. 13 illustrates stock/bond allocation vs. portfo-
lio size at a particular investor age. When we consider the
absolute value of assets in stocks (e.g. curve 320), there is
almost a plateau when the portfolio is from $0.2M to $0.4M,
and in bonds (e.g. curve 323) a hill centered at about $0.5M.
Atfirst new assets are allocated exclusively to stocks, but then
things slow, and we almost plateau with few new assets allo-
cated to stocks. Then more new assets are allocated to stocks,
until eventually even old assets get reallocated to stocks. At
first there are no bond holdings until portfolio size is about
$0.1M, then bonds ramp up, reach a peak at about $0.5M, and
then decline to zero when the portfolio size increases above
$1M. The bond hill functions as a buffer that attempts to stop
consumption dipping into the required space. Beyond the
crest of the hill the method indicates it is advantageous to
invest heavily in stocks, because the bond bufter will re-
emerge if needed and can be fallen back on should thing turn
out poorly.

[0139] Before the top of the hill asset allocation is balanced
or stock heavy in accordance with the dictates of the required
spending region utility function and guaranteed lifetime
income.

[0140] FIG. 14 illustrates consumption paths vs. investor
age obtained by Monte Carlo simulation. Annual consump-
tion shows considerable upside variability (e.g., curve 333)
but little downside variation (e.g., curve 330). This is consis-
tent with the investor taking risk only when they can afford to
do so.

[0141] FIG. 15 illustrates confidence bounds on consump-
tion vs. investor age. FIG. 15 shows the median (e.g., curve
340), the 2.5th percentile (e.g., curve 346), and 97.5th per-
centile (e.g., curve 343) distribution of consumption as a
function of an investor’s age. Once again there a solid floor
with considerable upside potential.

[0142] FIG. 16 illustrates probability distribution of change
in annual consumption. The probability of a change in con-
sumption is illustrated (e.g., curve 350). A change in con-
sumption of less than -5% is rare.

[0143] FIG. 17 illustrates probability distribution of annual
change in portfolio size. FIGS. 16-17 indicate that the port-
folio size can vary substantially while consumption varies
less.

[0144] FIG. 18 illustrates confidence bounds on portfolio
size vs. investor age. FIG. 18 shows the median (e.g., curve
370), the 2.5th percentile (e.g., curve 376), and 97.5th per-
centile (e.g., curve 373) distribution of portfolio size as a
function of an investor’s age. SDP isn’t leaving money on the
table, but gradually decreasing the size of the portfolio as the
couple ages.
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[0145] FIG. 19 illustrates a utility slope vs. consumption
curve. There is a nice smooth curve in U' space (e.g., curve
380).

[0146] FIG. 20 illustrates an absolute risk aversion vs. con-
sumption. Absolute risk aversion (ARA) is defined as —-U"/U".
As shown, there is an anomaly in ARA space as illustrated by
curve 390 from $40K-$60K. This may be unavoidable. For
the transition region the method prefers to specify U and U' at
the start of the transition region, U' at the end of the transition
region, and either U" or ARA at the start and end of the
transition region. That is five constraints. A polynomial with
five terms is likely to be non-monotone. Using a spline would
have the same problem. Once U' is fully specified, U" and
ARA are determined. Getting a smooth curve in U' space is
preferred since the slope of the utility function determines the
incremental value of a dollar of consumption.

[0147] In an embodiment, SDP provides a framework for
making asset allocation and consumption decisions. One of
the concerns about the consumption outcomes for the default
portfolio is that upside consumption is back-loaded. The
return on stocks after expenses is 5.1%, while the discount
rate is 3.0%, so it makes sense to defer upside consumption
until the risk of dying becomes too large. Many retirees might
prefer to make upside consumption expenditures earlier, so
long as it doesn’t significantly impact the risk of suffering
later. This can be readily achieved by specifying a discount
rate for upside consumption that is different and higher than
that for floor consumption. Preferably, the method doesn’t
increase the discount rate for floor consumption, because that
would mean caring less about well-being at old ages.

[0148] FIG. 21 illustrates a confidence bounds on con-
sumption vs. investor age for an upside discount rate of 15%.
FIG. 21 shows the median (e.g., curve 400), the 2.5th percen-
tile (e.g., curve 406), and 97.5th percentile (e.g., curve 403)
distribution of consumption as a function of an investor’s age.
Consumption may grow more rapidly, and gradually decline.
Until very old ages consumption typically stays at or above
the floor level.

What is claimed:
1. A method in a computer including processor(s) coupled
to a memory, comprising:
inputting data representing consumption level(s) into the
memory, wherein a value of the consumption level(s)
represents required consumption Cy;
inputting data representing returns of each asset class into
the memory;
performing one or more step(s) of stochastic dynamic pro-
gramming (SDP) in the processor(s) using the data rep-
resenting the returns of each asset class and values of a
utility function U based on the consumption levels to
compute values of aggregate utility of wealth, wherein
the SDP step(s) includes the following sub-steps:
reading data representing an aggregate utility of wealth
Uy,,, for wealth levels W, ; through W,,, ,,, and a
description of single time period utility U;
computing local searches in the processor(s) an optimal
assetallocation vector A, an optimal consumption C,,
and an optimal aggregate utility of wealth U, for a
wealth level W,
computing local searches in the processor(s) the optimal
asset allocation vector A,, the optimal consumption
C,, and the optimal aggregate utility of wealth U, for a
wealth level W, 5;
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computing local searches in the processor(s) the optimal
asset allocation vector A,, the optimal consumption
C,, and the optimal aggregate utility of wealth U, for
additional wealth levels up to at least wealth level
Wers

storing the values of the aggregate utility of wealth U, for
wealth levels W, | through W, in the memory; and

outputting the optimal asset allocation vector Az and the

optimal consumption Cy at an initial age B and wealth

W

2. The method of claim 1, wherein another value of the
consumption level(s) represents extra consumption C,.

3. The method of claim 1, wherein the utility function U
includes a required consumption region and an extra con-
sumption region.

4. The method of claim 3, wherein the utility function U
further includes a desired consumption region.

5. The method of claim 4, wherein U in the desired con-
sumption region is a polynomial of the fourth power U,,
wherein U, joins the utility function U, in the required con-
sumption region and utility function U, in the extra consump-
tion region, the first derivatives of U, and U, to U}, and the
second derivatives of U, and U, to U".

6. The method of claim 4, wherein U in the desired con-
sumption region equals U, wherein U is defined by the
following equations:

U (C)=wC3+xC?4+yCrz
U (CH=U(C)

U7 (C)=U5(Cs)

Uy (Cp=U,"(Cy)

U/ (C)=U5"(C).

7. The method of claim 2, wherein utility function U
includes utility functions U, and U, joined by U ;, wherein U
is defined by the following equations:

U(C)=U,(C) for C=C,
U(O)=U,C)-UAC)+U(Cy) for €, <C=C,

U(O)=U5(C)-Ux(Co)+U(Cy) for Cy<C.

8. The method of claim 1, wherein the stochastic dynamic
programming includes computing U (W )=TAW,, R,,, "' (E,
R, (U, (W, ))]D), wherein U (W,) represents the utility of
wealth at time t, T, is the time aggregator, W, is wealth at time
t, R,,, is the risk aggregator, and E, is the expected value
operator.

9. The method of claim 1, wherein the stochastic dynamic
programming step includes computing U, (W,)=a,U(C(W,))/
(1+0)+E,[U,, ,(W,,,)], wherein U,(W,) represents the utility
ofwealth W, at timet, a, represents the probability of an entity
being alive at time t, U(C(W,)) represents the single time
period utility of consumption C,(W,), r represents the dis-
count rate, C,(W,) is the consumption amount for wealth W, at
time t, and E, is the expectation operator at time t.

10. The method of claim 1, further comprising inputting
data into the memory that represents the probability of an
entity being alive in the future and further performing sto-
chastic dynamic programming to compute an asset allocation
and a consumption based on the probability ofthe entity being
alive.
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11. The method of claim 1, further comprising inputting
data representing the correlations of each asset class and
performing stochastic dynamic programming to compute the
asset allocation and the consumption based on the correla-
tions.

12. The method of claim 1, wherein the data representing
the returns is based on periodic returns or summary statistics.

13. The method of claim 1, further comprising inputting
data into the memory that represents discount rates to adjust
the utility function U.

14. The method of claim 13, wherein the discount rates
represent the floor and/or upside utility discount rates.

15. The method of claim 14, wherein the range of the floor
utility discount rate does not match a required consumption
region.

16. A non-transitory computer-readable medium storing
program instructions that cause a computer to perform the
following steps, comprising:

inputting data representing consumption level(s) into the

memory, wherein a value of the consumption level(s)
represents required consumption Cy;

inputting data representing returns of each asset class into

the memory;

performing one or more step(s) of stochastic dynamic pro-

gramming in the processor(s) using the data represent-
ing the returns of each asset class and values of a utility
function U based on the consumption levels to compute
values of aggregate utility of wealth;

storing the values of the aggregate utility of wealth in the

memory;
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computing local searches in the processor(s) of the values
of aggregate utility of wealth over an asset allocation and
consumption space to compute optimal asset allocation
and optimal consumption; and

outputting the optimal asset allocation and the optimal

consumption value for an initial age and wealth.

17. The non-transitory computer-readable medium of
claim 16, wherein the utility function U includes a required
consumption region and an extra consumption region.

18. The non-transitory computer-readable medium of
claim 17, wherein the utility function U includes a desired
consumption region.

19. The non-transitory computer-readable medium of
claim 16, wherein the stochastic dynamic programming step
includes computing U (W ,)=a,U(C, (W ,))/(1+r)+E[U,, ,(W,,
1)], wherein U (W ) represents the utility of wealth W, at time
t, a, represents the probability of an entity being alive at time
t, U(C/(W,)) represents the single time period utility of con-
sumption C,(W,), r represents the discount rate, C,(W,) is the
consumption amount for wealth W, at time t, and E, is the
expectation operator at time t.

20. The non-transitory computer-readable medium of
claim 16, further comprising inputting data representing the
probability of an entity being alive in the future into the
memory and further performing stochastic dynamic program-
ming to compute an asset allocation and a consumption based
on the probability of the entity being alive.

21. The non-transitory computer-readable medium of
claim 16, further comprising inputting data representing dis-
count rates to adjust the utility function U into the memory.
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