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Key Observation

e Softmax/Sigmoid regression is biased when the label distribution is different
between training and testing (e.g., long-tailed datasets)
e \We propose an unbiased extension, Balanced Activation, to accommodate

the label distribution shift



Overview

1. Why is Softmax biased under long-tailed setup?
2. How to accommodate the label distribution shift?
3. Further discussions on the optimization process



What are we estimating with Softmax?

Softmax is the default choice for multi-class classification
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Softmax regression estimates the p(y|x) on the training set.



Long-tail from Bayesian Inference perspective

o) = 2t

o p(x]y): generative distribution
o p(y): label distribution
o p(x): sample distribution

e Under long-tailed setup:
o p(x]y) are the same on train & test Training Set Test Set
o p(y) and p(x) are different on train & test

e p(y|x) estimated on the long-tailed training
set is biased from p(y|x) on the balanced
test set!




Example of the Bias between Train & Test

Consider classifying cat/dog by genders: X={M, F}, Y={Cat, }.
Genders are uniformly distributed: p(M|Cat)=p(F|Cat)=p(M| )=p(F]| )=0.5
On balanced test set: Cat: {5M, 5F}, : {5M, 5F} => p(Cat|M) =5/10=0.5

On long-tailed training set: Cat: {9M, 9F}, : {1M, 1F} => p(Cat|M) =9/10 =0.9
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Extension to Class-Balanced Metrics

e For some long-tailed datasets, the test set is NOT balanced (e.g., LVIS)
However, a class-balanced metric (e.g., mAP) views all classes equally
important

e Class-Balanced Metric = on a balanced test set
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Link between Softmax & Bayesian Inference

Softmax: Exponential Family Bayesian Inference:
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Please refer to our technical report for the full derivation



Balanced Activation
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We derive Balanced Sigmoid similarly. Their combination is named Balanced

Activation.



Empirical Results on CIFAR-10/100-LT

Dataset CIFAR-10-LT CIFAR-100-LT
Imbalance Factor 200 100 10 200 100 10
Softmax 71.2+ 0.3 77.4 £ 0.8 90.0 £ 0.2 (41.0 £ 0.3 45.3 £ 0.3 61.9 £ 0.1
CBW 72.5+ 0.2 786 £ 0.6 90.1 +£0.2(36.7 £ 0.2 42.3 £ 0.8 61.4 £ 0.3
CBS 683+ 0.3 77.8 £2.2 90.2 £0.2|37.8 £0.1 42.6 + 0.4 61.2 + 0.3
Focal Loss [7] 71.8 £ 2.1 77.1 £ 0.2 90.3 £ 0.2(40.2 +£ 0.5 43.8 £0.1 60.0 £ 0.6
Class Balance Loss (3] 72.6 £ 1.8 78.2 £ 1.1 89.9 £ 0.3(39.9 £ 0.1 44.6 + 0.4 59.8 + 1.1
LDAM |2] 71.2+ 0.3 77.2 £ 0.2 90.2 £ 0.3(41.0 £ 0.3 454 £ 0.1 62.0 £ 0.3
Equalization Loss 8] | 72.8 £ 0.2 76.7 + 0.1 89.9 + 0.3|43.3 £ 0.1 47.3 £ 0.1 59.7 £ 0.3
Balanced Softmax 79.0 + 0.8 83.1 + 0.4 90.9 + 0.4|45.9+ 0.3 50.3 + 0.3 63.1 £+ 0.2

Table 1. Top 1 accuracy for CIFAR-10/100-LT. Softmax denotes the standard cross-
entropy loss with Softmax, CBW denotes class-balanced weighting, and CBS denotes
class-balanced sampling. Balanced Activation generally outperforms SOTA methods,
especially when the imbalance factor is high. Note that for other methods, we reproduce
a higher accuracy than the reported value in the original papers.



Marginal Likelihood of Labels in Prediction
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Fig. 1. Experiment on CIFAR-100-LT. the x-axis is the class labels with decreasing
training samples and the y-axis is the marginal likelihood p(y). Balanced Softmax is

more stable under a high imbalance factor compared to the Softmax baseline and SOTA
method, Equalization Loss (EQL).



Empirical Results on LVIS-1.0

Method Backbone APpask| APp| AP.| APr| APy, Split
Repeat Factor Samplingl ResNet-50 22.1 27.8 1 21.1 11.6 23.6 Val
cRT ResNet-50 23.2 27.8| 225| 14.7 24.8 Val
LWS ResNet-50 23.3 27.8| 225| 149 24.8 Val
Equalization Loss ResNet-50 24.2 27.5| 24.2| 16.5 25.8 Val
Balanced Sigmoid ResNet-50 25.1 29.3| 24.0| 18.3| 26.7 Val
Repeat Factor Samplingl] ResNet-101 23.2 28.8| 22.0 13.5 24.7 Val
cRT ResNet-101 23.9 28.7| 22.7| 15.8 25.6 Val
LWS ResNet-101 24.2 28.8| 23.1 16.5 24.7 Val
Equalization Loss ResNet-101 25.4 28.8| 25.3 18.5 27.3 Val
Balanced Sigmoid ResNet-101 26.4 30.2| 25.4| 20.1 28.4 Val
Balanced Sigmoid ResNet-101 26.1 304 25.0| 19.5 - test-dev

Table 2. Comparison of various methods using ResNet-50 and ResNet-101 on LVIS-
1.0. Balanced Activation generally outperforms SOTA methods by a healthy margin.



Overview

1. Why is Softmax biased under long-tailed setup?
2. How to accommodate the label distribution shift?
3. Further discussions on the optimization process



Improve Optimization with Meta Sampler

Standard importance sampling leads to an 'over-balance' issue with Balanced
Activation. We proposed Meta Sampler to help the optimization process. Checkout
our arxiv paper: Balanced Meta-Softmax for Long-Tailed Visual Recognition
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