Balanced Activation for Long-tailed Visual Recognition

Team Innova

Jiawei Ren*, Cunjun Yu*, Zhongang Cai*, Haiyu Zhao

Key Observation

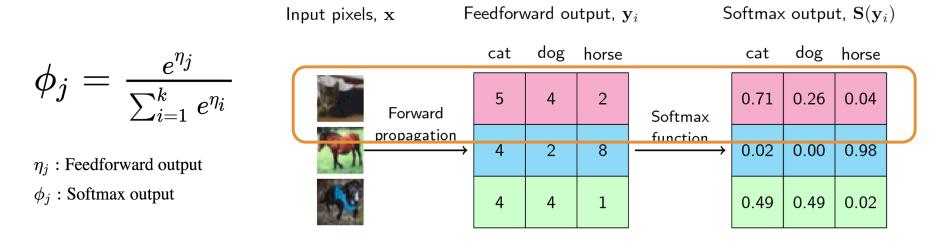
- Softmax/Sigmoid regression is biased when the label distribution is different between training and testing (e.g., long-tailed datasets)
- We propose an unbiased extension, Balanced Activation, to accommodate the label distribution shift

Overview

- 1. Why is Softmax biased under long-tailed setup?
- 2. How to accommodate the label distribution shift?
- 3. Further discussions on the optimization process

What are we estimating with Softmax?

Softmax is the default choice for multi-class classification



Shape: (3,)

Shape: (3,)

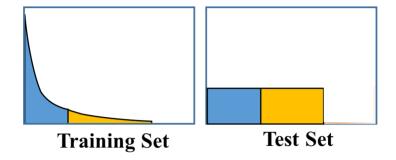
Softmax regression estimates the p(y|x) on the training set.

Shape: (3, 32, 32)

Long-tail from Bayesian Inference perspective

$$p(y|x) = rac{p(x|y)p(y)}{p(x)}$$

- p(x|y): generative distribution
- o p(y): label distribution
- o p(x): sample distribution
- Under long-tailed setup:
 - o p(x|y) are the same on train & test
 - o p(y) and p(x) are different on train & test
- p(y|x) estimated on the long-tailed training set is biased from p(y|x) on the balanced test set!



Example of the Bias between Train & Test

Consider classifying cat/dog by genders: X={M, F}, Y={Cat, Dog}.

Genders are uniformly distributed: p(M|Cat)=p(F|Cat)=p(M|Dog)=p(F|Dog)=0.5

On balanced test set: Cat: $\{5M, 5F\}$, Dog: $\{5M, 5F\} = p(Cat|M) = 5/10 = 0.5$

On long-tailed training set: Cat: $\{9M, 9F\}$, Dog: $\{1M, 1F\} \Rightarrow p(Cat|M) = 9/10 = 0.9$



Extension to Class-Balanced Metrics

- For some long-tailed datasets, the test set is NOT balanced (e.g., LVIS)
- However, a class-balanced metric (e.g., mAP) views all classes equally important
- Class-Balanced Metric = Standard Metric on a balanced test set

$$\frac{1}{n}\sum p(y|x)=\frac{1}{n}\sum \frac{p(y|x)}{p(y)}\cdot \underline{p(y)}$$
 Standard Metric when p(y) = 1/k $\frac{1}{k}\frac{1}{n}\sum \frac{p(y|x)}{p(y)}$ Class-Balanced Metric

Overview

- 1. Why is Softmax biased under long-tailed setup?
- 2. How to accommodate the label distribution shift?
- 3. Further discussions on the optimization process

Link between Softmax & Bayesian Inference

Softmax: Exponential Family

$$\eta_j = \log rac{\phi_j}{\phi_k}$$

Canonical Link Function

$$\hat{\phi}_j = rac{n_j e^{\eta_j}}{\sum_{i=1}^k n_i e^{\eta_i}}$$

Bayesian Inference:

$$\frac{\phi_j}{\hat{\phi}_j} = \frac{n}{kn_j} \cdot \frac{\hat{p}(x)}{p(x)}$$

Balanced Softmax (Ours)

Please refer to our technical report for the full derivation

Balanced Activation

$$\hat{\phi}_j = rac{n_j e^{\eta_j}}{\sum_{i=1}^k n_i e^{\eta_i}}$$
 Balanced Softmax $\hat{\phi}_j = rac{e^{\eta_j - \log(rac{n/k}{n_j} \cdot rac{n-n_j}{n-n/k})}}{1 + e^{\eta_j - \log(rac{n/k}{n_j} \cdot rac{n-n_j}{n-n/k})}}$ Balanced Sigmoid Balanced Sigmoid

We derive Balanced Sigmoid similarly. Their combination is named **Balanced Activation**.

Empirical Results on CIFAR-10/100-LT

Dataset		CIFAR-10-L	Γ	CIFAR-100-LT			
Imbalance Factor	200	100	10	200	100	10	
Softmax	71.2 ± 0.3	77.4 ± 0.8	90.0 ± 0.2	41.0 ± 0.3	45.3 ± 0.3	61.9 ± 0.1	
CBW	72.5 ± 0.2	78.6 ± 0.6	90.1 ± 0.2	36.7 ± 0.2	42.3 ± 0.8	61.4 ± 0.3	
CBS	68.3 ± 0.3	77.8 ± 2.2	90.2 ± 0.2	37.8 ± 0.1	42.6 ± 0.4	61.2 ± 0.3	
Focal Loss [7]	71.8 ± 2.1	77.1 ± 0.2	90.3 ± 0.2	40.2 ± 0.5	43.8 ± 0.1	60.0 ± 0.6	
Class Balance Loss [3]	72.6 ± 1.8	78.2 ± 1.1	89.9 ± 0.3	39.9 ± 0.1	44.6 ± 0.4	59.8 ± 1.1	
LDAM [2]	71.2 ± 0.3	77.2 ± 0.2	90.2 ± 0.3	41.0 ± 0.3	45.4 ± 0.1	62.0 ± 0.3	
Equalization Loss [8]	$ 72.8 \pm 0.2 $	76.7 ± 0.1	89.9 ± 0.3	43.3 ± 0.1	47.3 ± 0.1	59.7 ± 0.3	
Balanced Softmax	$ 79.0 \pm 0.8 $	$\textbf{83.1}\pm0.4$	90.9 ± 0.4	45.9 ± 0.3	50.3 ± 0.3	63.1 ± 0.2	

Table 1. Top 1 accuracy for CIFAR-10/100-LT. Softmax denotes the standard cross-entropy loss with Softmax, CBW denotes class-balanced weighting, and CBS denotes class-balanced sampling. Balanced Activation generally outperforms SOTA methods, especially when the imbalance factor is high. Note that for other methods, we reproduce a higher accuracy than the reported value in the original papers.

Marginal Likelihood of Labels in Prediction

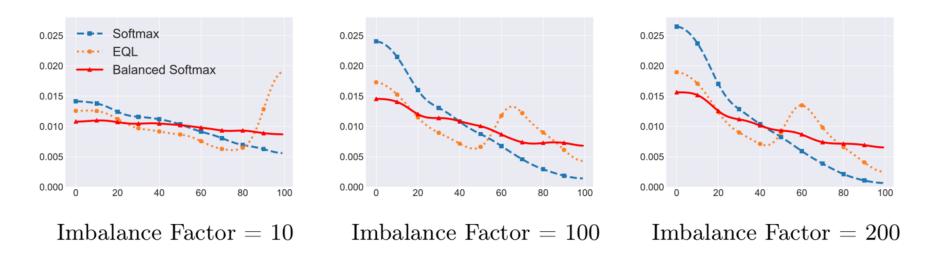


Fig. 1. Experiment on CIFAR-100-LT. the x-axis is the class labels with decreasing training samples and the y-axis is the marginal likelihood p(y). Balanced Softmax is more stable under a high imbalance factor compared to the Softmax baseline and SOTA method, Equalization Loss (EQL).

Empirical Results on LVIS-1.0

Method	Backbone	AP_{mask}	AP_f	AP_c	AP_r	AP_{box}	Split
Repeat Factor Sampling	ResNet-50	22.1	27.8	21.1	11.6	23.6	Val
cRT	ResNet-50	23.2	27.8	22.5	14.7	24.8	Val
LWS	ResNet-50	23.3	27.8	22.5	14.9	24.8	Val
Equalization Loss	ResNet-50	24.2	27.5	24.2	16.5	25.8	Val
Balanced Sigmoid	ResNet-50	25.1	29.3	24.0	18.3	26.7	Val
Repeat Factor Sampling	ResNet-101	23.2	28.8	22.0	13.5	24.7	Val
cRT	ResNet-101	23.9	28.7	22.7	15.8	25.6	Val
LWS	ResNet-101	24.2	28.8	23.1	16.5	24.7	Val
Equalization Loss	ResNet-101	25.4	28.8	25.3	18.5	27.3	Val
Balanced Sigmoid	ResNet-101	26.4	30.2	25.4	20.1	28.4	Val
Balanced Sigmoid	ResNet-101	26.1	30.4	25.0	19.5	-	test-dev

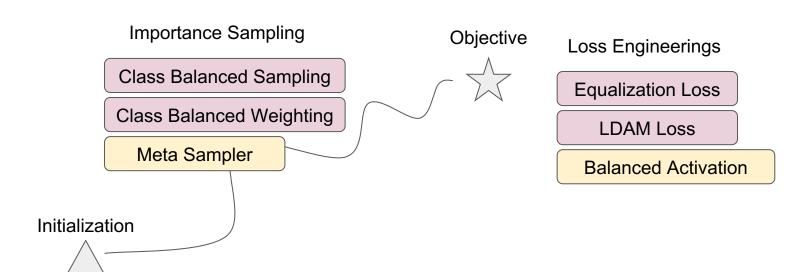
Table 2. Comparison of various methods using ResNet-50 and ResNet-101 on LVIS-1.0. Balanced Activation generally outperforms SOTA methods by a healthy margin.

Overview

- 1. Why is Softmax biased under long-tailed setup?
- 2. How to accommodate the label distribution shift?
- 3. Further discussions on the optimization process

Improve Optimization with Meta Sampler

Standard importance sampling leads to an 'over-balance' issue with Balanced Activation. We proposed Meta Sampler to help the optimization process. Checkout our arxiv paper: Balanced Meta-Softmax for Long-Tailed Visual Recognition



Thank you