Balanced Activation for Long-tailed Visual Recognition Team Innova Jiawei Ren*, Cunjun Yu*, Zhongang Cai*, Haiyu Zhao #### **Key Observation** - Softmax/Sigmoid regression is biased when the label distribution is different between training and testing (e.g., long-tailed datasets) - We propose an unbiased extension, Balanced Activation, to accommodate the label distribution shift #### Overview - 1. Why is Softmax biased under long-tailed setup? - 2. How to accommodate the label distribution shift? - 3. Further discussions on the optimization process # What are we estimating with Softmax? Softmax is the default choice for multi-class classification Shape: (3,) Shape: (3,) Softmax regression estimates the p(y|x) on the training set. Shape: (3, 32, 32) # Long-tail from Bayesian Inference perspective $$p(y|x) = rac{p(x|y)p(y)}{p(x)}$$ - p(x|y): generative distribution - o p(y): label distribution - o p(x): sample distribution - Under long-tailed setup: - o p(x|y) are the same on train & test - o p(y) and p(x) are different on train & test - p(y|x) estimated on the long-tailed training set is biased from p(y|x) on the balanced test set! #### Example of the Bias between Train & Test Consider classifying cat/dog by genders: X={M, F}, Y={Cat, Dog}. Genders are uniformly distributed: p(M|Cat)=p(F|Cat)=p(M|Dog)=p(F|Dog)=0.5 On balanced test set: Cat: $\{5M, 5F\}$, Dog: $\{5M, 5F\} = p(Cat|M) = 5/10 = 0.5$ On long-tailed training set: Cat: $\{9M, 9F\}$, Dog: $\{1M, 1F\} \Rightarrow p(Cat|M) = 9/10 = 0.9$ #### **Extension to Class-Balanced Metrics** - For some long-tailed datasets, the test set is NOT balanced (e.g., LVIS) - However, a class-balanced metric (e.g., mAP) views all classes equally important - Class-Balanced Metric = Standard Metric on a balanced test set $$\frac{1}{n}\sum p(y|x)=\frac{1}{n}\sum \frac{p(y|x)}{p(y)}\cdot \underline{p(y)}$$ Standard Metric when p(y) = 1/k $\frac{1}{k}\frac{1}{n}\sum \frac{p(y|x)}{p(y)}$ Class-Balanced Metric #### Overview - 1. Why is Softmax biased under long-tailed setup? - 2. How to accommodate the label distribution shift? - 3. Further discussions on the optimization process # Link between Softmax & Bayesian Inference Softmax: Exponential Family $$\eta_j = \log rac{\phi_j}{\phi_k}$$ Canonical Link Function $$\hat{\phi}_j = rac{n_j e^{\eta_j}}{\sum_{i=1}^k n_i e^{\eta_i}}$$ Bayesian Inference: $$\frac{\phi_j}{\hat{\phi}_j} = \frac{n}{kn_j} \cdot \frac{\hat{p}(x)}{p(x)}$$ **Balanced Softmax (Ours)** Please refer to our technical report for the full derivation #### **Balanced Activation** $$\hat{\phi}_j = rac{n_j e^{\eta_j}}{\sum_{i=1}^k n_i e^{\eta_i}}$$ Balanced Softmax $\hat{\phi}_j = rac{e^{\eta_j - \log(rac{n/k}{n_j} \cdot rac{n-n_j}{n-n/k})}}{1 + e^{\eta_j - \log(rac{n/k}{n_j} \cdot rac{n-n_j}{n-n/k})}}$ Balanced Sigmoid Balanced Sigmoid We derive Balanced Sigmoid similarly. Their combination is named **Balanced Activation**. #### Empirical Results on CIFAR-10/100-LT | Dataset | | CIFAR-10-L | Γ | CIFAR-100-LT | | | | |------------------------|------------------|-----------------------|----------------|----------------|----------------|----------------|--| | Imbalance Factor | 200 | 100 | 10 | 200 | 100 | 10 | | | Softmax | 71.2 ± 0.3 | 77.4 ± 0.8 | 90.0 ± 0.2 | 41.0 ± 0.3 | 45.3 ± 0.3 | 61.9 ± 0.1 | | | CBW | 72.5 ± 0.2 | 78.6 ± 0.6 | 90.1 ± 0.2 | 36.7 ± 0.2 | 42.3 ± 0.8 | 61.4 ± 0.3 | | | CBS | 68.3 ± 0.3 | 77.8 ± 2.2 | 90.2 ± 0.2 | 37.8 ± 0.1 | 42.6 ± 0.4 | 61.2 ± 0.3 | | | Focal Loss [7] | 71.8 ± 2.1 | 77.1 ± 0.2 | 90.3 ± 0.2 | 40.2 ± 0.5 | 43.8 ± 0.1 | 60.0 ± 0.6 | | | Class Balance Loss [3] | 72.6 ± 1.8 | 78.2 ± 1.1 | 89.9 ± 0.3 | 39.9 ± 0.1 | 44.6 ± 0.4 | 59.8 ± 1.1 | | | LDAM [2] | 71.2 ± 0.3 | 77.2 ± 0.2 | 90.2 ± 0.3 | 41.0 ± 0.3 | 45.4 ± 0.1 | 62.0 ± 0.3 | | | Equalization Loss [8] | $ 72.8 \pm 0.2 $ | 76.7 ± 0.1 | 89.9 ± 0.3 | 43.3 ± 0.1 | 47.3 ± 0.1 | 59.7 ± 0.3 | | | Balanced Softmax | $ 79.0 \pm 0.8 $ | $\textbf{83.1}\pm0.4$ | 90.9 ± 0.4 | 45.9 ± 0.3 | 50.3 ± 0.3 | 63.1 ± 0.2 | | **Table 1.** Top 1 accuracy for CIFAR-10/100-LT. Softmax denotes the standard cross-entropy loss with Softmax, CBW denotes class-balanced weighting, and CBS denotes class-balanced sampling. Balanced Activation generally outperforms SOTA methods, especially when the imbalance factor is high. Note that for other methods, we reproduce a higher accuracy than the reported value in the original papers. #### Marginal Likelihood of Labels in Prediction **Fig. 1.** Experiment on CIFAR-100-LT. the x-axis is the class labels with decreasing training samples and the y-axis is the marginal likelihood p(y). Balanced Softmax is more stable under a high imbalance factor compared to the Softmax baseline and SOTA method, Equalization Loss (EQL). # Empirical Results on LVIS-1.0 | Method | Backbone | AP_{mask} | AP_f | AP_c | AP_r | AP_{box} | Split | |------------------------|------------|-------------|--------|-------------|--------|------------|----------| | Repeat Factor Sampling | ResNet-50 | 22.1 | 27.8 | 21.1 | 11.6 | 23.6 | Val | | cRT | ResNet-50 | 23.2 | 27.8 | 22.5 | 14.7 | 24.8 | Val | | LWS | ResNet-50 | 23.3 | 27.8 | 22.5 | 14.9 | 24.8 | Val | | Equalization Loss | ResNet-50 | 24.2 | 27.5 | 24.2 | 16.5 | 25.8 | Val | | Balanced Sigmoid | ResNet-50 | 25.1 | 29.3 | 24.0 | 18.3 | 26.7 | Val | | Repeat Factor Sampling | ResNet-101 | 23.2 | 28.8 | 22.0 | 13.5 | 24.7 | Val | | cRT | ResNet-101 | 23.9 | 28.7 | 22.7 | 15.8 | 25.6 | Val | | LWS | ResNet-101 | 24.2 | 28.8 | 23.1 | 16.5 | 24.7 | Val | | Equalization Loss | ResNet-101 | 25.4 | 28.8 | 25.3 | 18.5 | 27.3 | Val | | Balanced Sigmoid | ResNet-101 | 26.4 | 30.2 | 25.4 | 20.1 | 28.4 | Val | | Balanced Sigmoid | ResNet-101 | 26.1 | 30.4 | 25.0 | 19.5 | - | test-dev | **Table 2.** Comparison of various methods using ResNet-50 and ResNet-101 on LVIS-1.0. Balanced Activation generally outperforms SOTA methods by a healthy margin. #### Overview - 1. Why is Softmax biased under long-tailed setup? - 2. How to accommodate the label distribution shift? - 3. Further discussions on the optimization process # Improve Optimization with Meta Sampler Standard importance sampling leads to an 'over-balance' issue with Balanced Activation. We proposed Meta Sampler to help the optimization process. Checkout our arxiv paper: Balanced Meta-Softmax for Long-Tailed Visual Recognition # Thank you