
Dragon
NaturallySpeaking™

Creating Voice Commands

Dragon Systems®

Petitioner BB&T - Exhibit 1022 - Page 1

August 1998. Version 3.0

This publication may not include some last-minute technical changes and/or revisions to
the program. Changes are periodically made to the information described here. Future
editions of this manual will incorporate these changes. For last-minute changes that are not
incorporated in this edition, refer to the Readme file included in your program.

Dragon Systems® may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any license to these
patents. The software is subject to one or more of these U.S. patents: 4,783,803; 4,803,729;
4,805,218; 4,805,219; 4,829,576; 4,829,578; 4,837,831; 4,866,778; 4,903,305; 4,914,703;
5,027,406; 5,202,952; 5,428,707; 5,526,463.

© Copyright 1998 Dragon Systems, Inc. All rights reserved.

No part of this manual or software may be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage
and retrieval systems, without the express written consent of Dragon Systems, Inc.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and where Dragon Systems is aware of the trademark, the first occurrence of the
designation is printed with a trademark (™) or registered trademark (®) symbol.

Dragon Systems and the Dragon Systems logo are registered trademarks and BestMatch,
BestMatch 64K+, NaturallySpeaking, NaturalText, NaturalWord, NaturallyMobile,
MouseGrid, Select-and-Say, Vocabulary Builder, and Vocabulary Editor are trademarks of
Dragon Systems, Inc.

The Dragon Systems, Inc., Text-to-Speech utility uses the Elan Text-to-Speech engine,
which is licensed from Elan Informatique.

Corel and WordPerfect are registered trademarks of Corel Corporation.

Microsoft, Visual Basic, Windows, and Windows NT are registered trademarks of
Microsoft Corporation.

03-021-25-01

Petitioner BB&T - Exhibit 1022 - Page 2

■ iii

Contents

About This Guide vii

Supported Software..vii
Intended Audience ...vii
Document Conventions..vii
Related Online Documentation ...viii

Chapter 1 Introduction to Voice Commands 1

Voice Commands... 1
Scripting Language.. 3

Scripting Command Overview .. 4
Creating Voice Commands... 5

Chapter 2 Voice Command Fundamentals 7

Command Scope.. 7
Application-Specific Commands... 7
Global Commands .. 8

Basic Voice Command Elements.. 8
Guidelines for Creating and Naming Commands..................... 8
Lists.. 10
Written and Spoken Forms of Words..................................... 12
Key Names in Voice Commands.. 13
Scripting Language Rules and Conventions........................... 14

Developing and Deploying Voice Commands............................... 15
Voice Command Limitations... 15
Where Commands are Stored.. 15
Distributing Voice Commands... 16

Chapter 3 Writing Effective Voice Commands 19

Interacting with Windows and Applications 19
Sending Keystrokes... 19
Controlling the Mouse .. 20
Accessing and Selecting Windows, Menus, and Controls 21
Controlling Sounds... 21
Starting, Selecting, and Controlling Other Applications 22

Controlling Dragon NaturallySpeaking.. 22

Petitioner BB&T - Exhibit 1022 - Page 3

Dragon NaturallySpeaking: Creating Voice Commands

iv ■

Controlling Sleep Mode .. 23
Controlling the Microphone.. 23
Controlling Text-to-Speech ... 23
Controlling Script Execution... 23
Simulating Recognition... 24

Voice Command Programming Techniques.................................. 24
Using String Concatenation... 24
User-Defined Variables.. 25
Flow Control... 26

Writing Commands with Lists ... 26
List Command Names... 26
List Command Execution.. 27
List Command Scripts... 27
Using Written and Spoken Forms of Words in Lists.............. 28
Using HeardWord in Commands with Lists........................... 30
Using Lists to Construct Natural Commands......................... 30

Using Dynamic Data Exchange ... 31
DdeExecute Command.. 31
DdePoke Command .. 32

Chapter 4 Using the Global.dvc File 33

Introduction to the Global.dvc File.. 33
How Dragon NaturallySpeaking Uses the Global.dvc file............ 33
The .DVC File Format ... 34

MENU.. 35
State.. 35
COMMAND... 37
KEYS ... 38
SCRIPT .. 38
LIST ... 39

DVC File Rules and Conventions... 39
General DVC File Rules and Conventions............................. 39
KEYS Section Escape Sequences.. 41

DVC file Sample.. 42

Chapter 5 Scripting Language Reference 43

Expressions.. 43
Variables.. 44
Operators ... 46

Arithmetic Operators .. 47
Comparison Operators .. 48
Logical Operators ... 49
String Concatenation Operator .. 50

Petitioner BB&T - Exhibit 1022 - Page 4

Contents

■ v

Data Manipulation Functions... 51
CDbl ... 52
Chr$.. 53
CInt .. 54
CStr .. 55
Hex$... 56
Instr .. 57
LCase$.. 58
Len ... 59
Mid$... 60
Str$... 61
String$.. 62
UCase$... 63
Val .. 64

Flow Control Statements.. 65
IF THEN... 66
IF THEN ELSE... 67
Labels and GOTO ... 68
DO UNTIL ... 69
DO WHILE... 70
LOOP UNTIL... 71
LOOP WHILE .. 72
WHILE... 73

Scripting Commands.. 74
AppBringUp ... 76
AppSwapWith... 79
Beep ... 80
ButtonClick .. 81
ClearDesktop .. 82
ControlPick... 83
DdeExecute... 84
DdePoke ... 86
DllCall .. 87
DragToPoint.. 89
GoToSleep .. 90
HeardWord.. 91
MenuCancel.. 93
MenuPick.. 94
MouseGrid.. 95
MsgBoxConfirm ... 97
PlaySound... 99
RememberPoint .. 100
RunScriptFile.. 101
SendKeys.. 102

Petitioner BB&T - Exhibit 1022 - Page 5

Dragon NaturallySpeaking: Creating Voice Commands

vi ■

SendSystemKeys... 104
SetMicrophone.. 105
SetMousePosition ... 106
ShellExecute ... 108
TTSPlayString .. 110
Wait .. 112
WakeUp.. 113
WinHelp ... 114

Key Name List... 116

Glossary 119

Index 125

Petitioner BB&T - Exhibit 1022 - Page 6

■ vii

About This Guide

Supported Software

This guide describes how to create voice commands and use the
scripting language of Dragon NaturallySpeaking Deluxe 2.x or Dragon
NaturallySpeaking Professional 3.x. This manual applies to Dragon
NaturallySpeaking editions in all supported languages. If you have a
Dragon Systems® product released after August 1998, consult your
product’s documentation to determine whether this document also
applies to your product.

Intended Audience

This guide is for experienced Dragon NaturallySpeaking users. It
assumes that you are already familiar with Microsoft® Windows® 95,
Windows 98, or Windows NT®. It also assumes that you are familiar
with Dragon NaturallySpeaking and any applications that you are using.

This guide does not tell you how to use the New Command and Edit
Command wizards. It assumes that you are familiar with these tools.
The guide can be used either with these wizards or to edit command
definition (.dvc files) directly. Unless otherwise indicated, syntax and
examples in this manual are in the format used in the wizards.

Document Conventions

When you
see

It means

bold text In the glossary, a word that is defined elsewhere in
the glossary

italic text Emphasis
or
Variable name

constant width Syntax definition
or
Code example

Petitioner BB&T - Exhibit 1022 - Page 7

Dragon NaturallySpeaking: Creating Voice Commands

viii ■

Related Online Documentation

The Dragon NaturallySpeaking Help system contains reference
information on the scripting language. This document, however,
includes significant additional information and corrections not available
at the time the online documentation was created.

The Dragon NaturallySpeaking SDK Help system, part of the Dragon
NaturallySpeaking Developer Suite, provides information on using
scripting language commands in application programs.

Petitioner BB&T - Exhibit 1022 - Page 8

■ 1

Chapter 1 Introduction to Voice Commands

This chapter provides a description of voice commands and their
elements. It includes the following topics:

• Voice commands

• Scripting language

 Voice Commands

 A Dragon NaturallySpeaking voice command is a word or phrase that
causes Dragon NaturallySpeaking to take some action other than type
the text you just spoke. Voice commands that you create are sometimes
called macros. Each voice command has three elements:

• name

• action

• scope

 Voice Command Name

 The voice command name is the word or phrase that you say to run the
voice command, such as:

 What Can I Say

 You say the phrase “What Can I Say” to run the voice command.

 A voice command name can include the names of one or more lists of
words. Dragon NaturallySpeaking recognizes any command that
matches the words in the command name and a word (or phrase) from
each list. For example, when you use the command:

 Set Font <FontFace>

 you say the words “Set Font” followed by a word from the FontFace
list, such as “Arial”. The full spoken command can be “Set Font Arial”,
or “Set Font Times New Roman”, and so on.

 Voice command names should consist of two or more words. This
makes for a more natural command set and limits confusion with
dictation words.

Petitioner BB&T - Exhibit 1022 - Page 9

Dragon NaturallySpeaking: Creating Voice Commands

2 ■

 Voice Command Action

 The voice command must tell Dragon NaturallySpeaking what to do.
This command action can be either of the following:

• A set of keystrokes that performs a specific action, called a
keystroke command. You can write a keystroke command as a
shorthand for a commonly used phrase such as a return address or a
salutation. For example, you can create a Dictated With Dragon
voice command that types “This letter was written entirely by
speech using Dragon NaturallySpeaking™.”

 You can also use a keystroke command to control an application. For
example, the global Copy All to Clipboard command is a keystroke
command that generates the Ctrl+a and Ctrl+c key combinations,
which select all the text in an application and then copy the
selection to the clipboard.

 Each keystroke command can send only a single, fixed, keystroke
sequence.

• A script consisting of one or more commands in the Dragon
NaturallySpeaking scripting language. In this case, the voice
command is called a script command. Script commands provide
significantly more power and flexibility than keystroke commands.
The scripting language enables a script command to perform
operations that keystrokes cannot do, such as putting Dragon
NaturallySpeaking to sleep or activating a message box. Script
commands can use lists. They can also use programming constructs
such as variables and conditional processing. This book focuses on
using the scripting language.

 Voice Command Scope

 A voice command can be either global or application-specific. If it is
global, Dragon NaturallySpeaking recognizes it in all applications. If it
is application-specific, Dragon NaturallySpeaking only recognizes it
when a specific window or dialog box is active in a specific application.
For example, you can create a “Full Date” command that is only
recognized in the WordPad Date and Time dialog box.

 Simple Command Examples

 The following keystroke sequence inserts the text “Today’s date is: ”
followed by the current date at the insertion point location in WordPad:

 Today’s date is: {Alt+i}d{Down 7}{Enter}

Petitioner BB&T - Exhibit 1022 - Page 10

Chapter 1: Introduction to Voice commands

■ 3

 That is, it sends:

• The character keystrokes “Today’s date is: ”

• The Alt+i key combination to select the WordPad Insert menu

• d to select the date and time option

• Seven down-arrows to select the desired format from the date and
time control box

• Enter to complete the operation and close the dialog box

 The following voice command script has an action that consists of two
scripting language commands:

 MsgBoxConfirm "Take a break now?", 35, "Break Time"
GoToSleep

 The first command displays a message box with the message “Take a
break now?” and Yes and No buttons. If you press the No button, the
script exits. If you press the Yes button, the script runs the GotoSleep
command and puts Dragon NaturallySpeaking in sleep mode.

 Scripting Language

 The Dragon NaturallySpeaking scripting language is the programming
language for Dragon NaturallySpeaking voice commands. It provides a
set of commands that Dragon NaturallySpeaking can interpret and
execute. It also provides a set of standard program elements such as data
manipulation functions and flow control statements.

 A script is a sequence of scripting commands and program elements. A
script automates a task that controls Dragon NaturallySpeaking and
Windows. Many Dragon NaturallySpeaking commands run scripts.

 The scripting language supports the following elements:

• Expressions

• Variables

• Operators

• Data manipulation functions

• Flow control statements

• Scripting commands

 The scripting language expressions, variables, operators, data
manipulation functions, and flow control statements are modeled after

Petitioner BB&T - Exhibit 1022 - Page 11

Dragon NaturallySpeaking: Creating Voice Commands

4 ■

the BASIC computer language. They provide the programming
language framework for writing powerful voice command scripts. See
chapter 5 for detailed descriptions of all programming language
elements.

 The scripting commands let you control Dragon NaturallySpeaking and
use Dragon NaturallySpeaking to control applications. The remaining
scripting language elements, such as variables and flow control
statements, affect script execution.

 Scripting Command Overview

 Dragon NaturallySpeaking scripting commands provide you with a
powerful set of tools for controlling Dragon NaturallySpeaking, the
Windows environment, and your applications. With them, a voice
command script can:

• Launch and control applications on the desktop, including changing
the active application.

• Control applications by using DDE commands and DLL calls,
sending keystrokes to an application, selecting a window control,
and selecting a menu item.

• Control Dragon NaturallySpeaking by putting it into and out of
sleep mode and turning the microphone on and off.

• Control script execution by displaying a confirmation box, running
another voice command script, and making the script pause.

• Control the mouse, including clicking the mouse buttons, dragging
the mouse, controlling mouse motion, and controlling the
MouseGrid™.

• Tell Dragon NaturallySpeaking to behave as if it recognized a
specific word or set of words.

• Play beeps and .wav files.

• Control dictated text by sending keystrokes to the active window and
“pressing” modifier keys such as Shift, Alt, and Ctrl.

 You can build powerful voice commands by combining these
operations. For example, you can write a single voice command to copy
text from one application into the clipboard, bring up another
application, and paste the text into the application.

 Chapter 2 describes the fundamentals of voice commands, including
scripting language rules and conventions. Chapter 3 gives more

Petitioner BB&T - Exhibit 1022 - Page 12

Chapter 1: Introduction to Voice commands

■ 5

information on using scripting commands, and chapter 5 describes each
scripting command in detail.

Creating Voice Commands

 There are two ways to create a voice command:

• Use the Dragon NaturallySpeaking New Command wizard and Edit
Command wizard. The Dragon NaturallySpeaking online Help
documents how to use these wizards. Unless otherwise indicated,
syntax and examples in this manual are in the format used by these
wizards.

• Use a text editor or word processor to edit the Global.dvc file. The
Global.dvc file defines all voice commands; chapter 4 describes the
.dvc file structure and syntax in detail.

 Most Dragon NaturallySpeaking built-in commands are voice
commands, and many of them run scripts. You may want to look at
these commands in either the Edit Command wizard or the Global.dvc
file to better understand scripts and scripting commands.

 Note

 If running a script causes an error, Dragon NaturallySpeaking displays
an error message box and the script quits. You must fix the
programming error before you can run the script.

Petitioner BB&T - Exhibit 1022 - Page 13

Petitioner BB&T - Exhibit 1022 - Page 14

■ 7

Chapter 2 Voice Command Fundamentals

 This chapter describes some of the fundamentals of voice commands. It
includes the following topics:

• Command scope and how it affects the structure of your command
set

• Basic voice command elements and rules

• Voice command limitations, where the commands are stored, and
information on deploying the commands you create.

Command Scope

 The following sections describe how Dragon NaturallySpeaking
determines which voice commands it can recognize and how you can
control a command’s scope. It also describes what makes an effective
global command.

Application-Specific Commands

Dragon NaturallySpeaking uses the active application and window to
determine the valid application-specific commands.

When you create an application-specific command you specify the
application to which it applies. Dragon NaturallySpeaking only
recognizes the command when the application is active. (The
application corresponds to a menu in the Global.dvc file that contains
the command. See chapter 4 for more information on the Global.dvc
file structure.)

You must also specify the application-specific command’s target
window or dialog box title. The command will only work in windows or
dialog boxes whose title bars include the target title text. Target window
titles can contain up to 32 characters and are case sensitive. The target
title must uniquely identify the window and can consist of any part of
the text that appears in the window title bar. For example, if the window
title bar includes the words “Turbo TextEdIt, you could use “Turbo
TextEd” as the window title. (The target title corresponds to a state in
the Global.dvc file.)

Petitioner BB&T - Exhibit 1022 - Page 15

Dragon NaturallySpeaking: Creating Voice Commands

8 ■

If you want a command to work whenever the application window is
active, use the application window title, for example, “WordPad”.

If you want the command to work only when a particular document is
active, use the document name, for example, “WordPad - Report.txt” or
“Report.txt”.

If you want the command to work only when a particular dialog box is
active, select the dialog box title, for example, “Font”. See page 36 for
more examples of using window names.

 Global Commands

 Global commands are almost always active. They are not active in sleep
mode, and you can tell Dragon NaturallySpeaking to deactivate them in
specific application windows if you edit the Global.dvc file directly (see
chapter 4 for more details).

 Because they are nearly always active, you should not make a voice
command global unless you must have the command active at all times.
Also, your command’s action should have the same result everywhere.
For example, do not create a global command that sends a set of
keystrokes that may have different effects in different applications.

 In most cases, you only need to use your command at specific times,
such as when a particular application or window is active. In these
cases, create an application-specific command. By doing so, you ensure
that the command gets recognized only at the right times. You also save
processing time because Dragon NaturallySpeaking does not waste time
determining whether speech matches the voice command name each
time it recognizes a word.

Basic Voice Command Elements

Before you can write a voice command you must understand basic
elements of the commands, including the rules for voice command
names, how to specify words with different written and spoken forms,
how to specify lists and list contents, how to specify keystrokes in voice
commands, and the elements of a voice command script.

Guidelines for Creating and Naming Commands

You can use any word or phrase as a voice command name. You should
keep the following guidelines in mind whenever you create commands:

Petitioner BB&T - Exhibit 1022 - Page 16

 Chapter 2: Voice Command Fundamentals

■ 9

• Create commands sparingly. In particular, create global commands
only if they must be recognized in all applications.

• Enclose each list name in angle brackets (< >). For example, in the
command Format That <FontFace>, <FontFace> is the name of a
list.

• Use a small set of easily distinguished words at the start of the
command(s). For example, Change Color To <Color> instead of
Red Text, Blue Text, Green Text, etc.

• Make your commands imperative, for example, Move <Message>
To Outbox. Doing this improves the likelihood of Dragon
NaturallySpeaking recognizing the phrase as a command.

• Use a descriptive phrase as the voice command name. This helps
you remember what function it performs. For example, use Type My
Address for a voice command that types your address.

• Do not make a voice command name so long that it is hard for you
to say or remember. However, Dragon NaturallySpeaking usually
recognizes longer names more easily, so the name should not be too
short. For example, you should not have a Convert The Last Things I
Said From Standard to Outline Format command. You should also
not have a Fix It command.

• Do not include punctuation in voice command names. If you include
them, you will have to say the punctuation characters.

• If you use a word combination frequently in dictation, do not use it
as a command name. This will limit the likelihood that you will
accidentally run a command when you intend to dictate, or vice-
versa. (If you say the combination as a complete utterance, that is,
with a pause at the beginning and end but no pause in the middle,
Dragon NaturallySpeaking interprets it as a command. If you say the
combination as part of a larger utterance, Dragon NaturallySpeaking
interprets it as dictation.)

• As a general rule, you should follow the Dragon NaturallySpeaking
convention of capitalizing all words in the command name. This
ensures that command names are readily distinguished from
dictation words in the results box.

• All global voice commands must have different names. Each voice
command name must be unique for a particular window, but you can
use the same name for multiple application-specific commands for
different applications and windows. For example, if you have two
applications that use different keystroke combinations to copy a

Petitioner BB&T - Exhibit 1022 - Page 17

Dragon NaturallySpeaking: Creating Voice Commands

10 ■

table, you can create a separate Copy Table command for each
application that sends the keystrokes it requires.

• You can have a global command that has the same name as a
window-specific command. Dragon NaturallySpeaking will
recognize the application-specific command when its window is
active and will recognize the global command at all other times.

• Do not create voice command names for a window that differ only
in their capitalization. You cannot be sure which voice command
Dragon NaturallySpeaking will recognize.

• Do not create commands with the same name in different states that
are active at the same time. It is unpredictable which takes
precedence. (You cannot do this if you are using the command
wizards.)

Lists

 Each application and window can have one or more lists you can use in
creating commands for the window. Each list has a name, such as
FontFace, and consists of a number of entries that can be recognized
interchangeably in a command. Each entry can be a single word or a
phrase and must be on a separate line. Lists enable a single voice
command to handle multiple utterances, with results that can vary based
on the word recognized from the list.

 For example, the FontFace list for the Dragon NaturallySpeaking
window contains the following entries:

 “Times”
“Times New Roman”
“Courier”
“Courier New”
“Arial”

 Dragon NaturallySpeaking uses this list in many commands, such as Set
Font <FontFace> and Set Font <FontFace> <FontSize>. If you say “Set
Font Times New Roman” the Set Font <FontFace> command changes
the current font to Times New Roman; if you say “Set Font Arial” the
same command sets the font to Arial. The following scripting command
does this work:

SendKeys "{Alt+o}f{Alt+f}" + _arg1 + "{Enter}"

In the script, _arg1 represents the word recognized from the list. The
scripting command opens the Dragon NaturallySpeaking word

Petitioner BB&T - Exhibit 1022 - Page 18

 Chapter 2: Voice Command Fundamentals

■ 11

processor, selects the font name text box, enters the font name, and then
sends an Enter keystroke to complete the operation.

Petitioner BB&T - Exhibit 1022 - Page 19

Dragon NaturallySpeaking: Creating Voice Commands

12 ■

Guidelines for Lists

 Keep the following guidelines in mind whenever you create lists:

• Each (nonglobal) list is window-specific and is not available to
commands for other windows. However, you can define lists with
the same names for multiple windows, and each list can contain
either the same or different words.

• List names can include alphabetic characters, numbers, spaces,
hyphens, apostrophes, and underscores (_). You cannot include any
of the following characters: * + = | " [] { } < >. As a general rule it
is best to limit the name to numbers and letters. The name should
be easy to remember.

• The list name, including the angle brackets, counts toward the
maximum length of a command name (127 characters). Keeping
list names below 20 characters is a good rule.

• The list name is never spoken or recognized, only the words in the
list. Therefore, you can use words in the list name that are not in
the Dragon NaturallySpeaking backup dictionary.

• Each list entry can consist of one or more words (a phrase).

• Lists cannot contain other lists (that is, lists cannot be nested).

• Do not use a list’s name as one of its items.

• The case of list items is usually not important for recognition.
However, if you capitalize names of commands (which is
recommended), you should also capitalize list items for
consistency.

• List items can be in any order.

• Do not include punctuation in list entries. If you include them, you
will have to say the punctuation characters.

Written and Spoken Forms of Words

You can specify both the written and spoken forms of words in lists (and
in the argument to the HeardWord scripting command). To do so in the
New Command and Edit Command wizards use the form:

written-form\spoken-form

For example, all words in the ICAlphabet list that defines the letters in
the International Communications Alphabet are of the form “a\alpha”.

The Dragon NaturallySpeaking dictation commands, such as New-
Paragraph, which you can say without pause during dictation, are

Petitioner BB&T - Exhibit 1022 - Page 20

 Chapter 2: Voice Command Fundamentals

■ 13

actually dictation words with no written form. Therefore, in a command
script, you must precede them with a backslash.

In the Global.dvc file, use a double backslash (\\) instead of a single
backslash between the two forms. This format is required because the
backslash is the .dvc file format escape character.

Key Names in Voice Commands

Use the following syntax to specify key names in keystroke commands
and command scripts:

• Use printable keys exactly as they appear when typed. For example,
use a, A, &, and so on.

• Enclose the names of nonprintable keys and key combinations in
braces ({}).

• Use {{} to get an open brace character in cases where it could be
confused with the beginning of a key name. For example, use
{{}Shift} to send the characters “{Shift}” instead of pressing the
Shift key.

• Use the names that appear on most keyboards for special key names.
For example, use{Enter}, {Esc}, {F3}, {BackSpace}, {PgUp},
{Tab}, and so on. If you can get a function (such as Home and
PgDn) by pressing a key on the extended keypad or on the numeric
keypad, use the name that appears on the numeric keypad. The Key
Name List starting on page 116 lists all special key names.

• Use uppercase and lowercase if you wish, since special key names
are not case sensitive. For example, you can use {esc}, {Esc}, or
{ESC}.

• Identify a key if there is more than one key with the same name. Use
the “Right” prefix to refer to Shift keys that are to the right of the
spacebar. The “Ext” prefix means extended and refers to the keys
that are on the extended keypad between the main section of the
keyboard and the numeric keypad. For example, {RightShift}
specifies the Shift key to the right of the keyboard, and {ExtInsert}
specifies the Insert key between the main keyboard and the numeric
keypad.

• Spell the names of special keys that do not have names on them,
such as {Space}, {Up}, {Left}, {NumKey/}, and {NumKey+}.

• Use the modifier key name, a plus sign (+), and another key to
combine the Shift, Control, and Alt modifier keys with other keys.
For example, use {Shift+Enter}, {Ctrl+Left}, {Ctrl+Shift+@}, and

Petitioner BB&T - Exhibit 1022 - Page 21

Dragon NaturallySpeaking: Creating Voice Commands

14 ■

{RightAlt+a}. You can also generate uppercase letters with the Shift
key. For example, A and {Shift+a}are the same.

• Generate multiple keystrokes by following a key (or key
combination) name with a space and the number of keystrokes. For
example, {Right 5} generates five right arrow keystrokes and {@ 5}
generates “@@@@@”.

• Combine the Alt key with numeric keys in one operation to generate
symbolic characters. Use the Windows Character Map tool to find
the keystrokes for all characters in a font. For example, use
{Alt+0174} to generate the ® registered trademark symbol in
standard fonts.

Scripting Language Rules and Conventions

The scripting language follows the standard conventions of the BASIC
programming language:

• Use uppercase and lowercase, if you wish, since scripting language
commands are not case sensitive.

• Place arguments after the command name.

• Put a space between the command name and the first argument.

• Separate arguments with a comma (spaces are optional).

• Surround literal string arguments with quotation marks.

• Use two quotation marks ("") to include a quotation mark in a string
argument. (This only applies in scripts. Use \" elsewhere in .dvc
files.)

• Do not surround numeric literal arguments and variable names with
quotation marks.

• Do not start variable names with a digit.

• Use any combination of alphanumeric characters (A–Z, a–z, 0–9)
and underscores (_) within the variable name.

• Put multiple commands on a single line by putting a colon (:)
between commands.

• Start a comment with an apostrophe (’). The apostrophe must either
be the first non-whitespace character on a line or follow a colon
command separator. Dragon NaturallySpeaking ignores all text until
the beginning of the next line. (This comment character only applies
to text in scripts. Use the # character elsewhere in .dvc files, as
shown on page 42.)

Petitioner BB&T - Exhibit 1022 - Page 22

 Chapter 2: Voice Command Fundamentals

■ 15

Scripting Convention Examples

The following command opens a Windows message box. There are two
string arguments and one integer argument.

MsgBoxConfirm "Exit database?", 36, "Warning"

The following command opens the Microsoft Excel file AMORT.XLS.
The DdeExecute scripting language command has three string
arguments. The third argument is [open("amort.xls")] . There are
two quotation marks before and after amort.xls to include the quotes
in the argument.

DdeExecute "excel", "system", "[open(""amort.xls"")]"

Developing and Deploying Voice Commands

You can use the command wizards or a text editor to develop your voice
commands. In either case, you must understand the following
information to effectively develop and deploy your commands: system
limitations on the commands, where Dragon NaturallySpeaking keeps
voice commands, and how you can distribute the commands.

Voice Command Limitations

 Dragon NaturallySpeaking supports a maximum of 3,000 commands
per window, in addition to a maximum of 3,000 global commands. As a
result, up to 6,000 commands can be active at any time.

 Each command action is limited to 16,000 characters.

Where Commands are Stored

 Dragon NaturallySpeaking keeps voice commands in a file named
Global.dvc. It keeps a master Global.dvc file in the NatSpeak\Data
directory. It uses this copy for all users until they use a command wizard
to create or modify a command. You cannot use the wizards to edit this
copy of the file.

 When a user first creates or edits a command with a command wizard,
Dragon NaturallySpeaking copies the master Global.dvc file to
NatSpeak\Users\userName\Current\Global.dvc. From then on, Dragon
NaturallySpeaking uses this file for the user’s commands.

 Dragon NaturallySpeaking always looks for a user-specific Global.dvc
when it loads a user. If it does not find one, it loads the master
Global.dvc.

Petitioner BB&T - Exhibit 1022 - Page 23

Dragon NaturallySpeaking: Creating Voice Commands

16 ■

 You can copy new commands from one Global.dvc file to another. If
you do so, you must make sure that the file you are copying into is not
currently being used by Dragon NaturallySpeaking, which could
overwrite your changes. You should also back up any file before you
modify it.

Distributing Voice Commands

Use the following guidelines when distributing commands to users:

• Users must have Dragon NaturallySpeaking Deluxe or Professional
edition.

• You can copy and paste sections of one Global.dvc file into another
Global.dvc file. However, you must make sure that the resulting file
structure is valid, as described in chapter 4.

• If you replace a Global.dvc file, you must make sure the
replacement file is complete and has all the necessary commands
for the user. The contents of the Global.dvc file that Dragon
NaturallySpeaking installs on a system varies, depending on
whether the user installs NaturalWord for Microsoft Word, Corel®
WordPerfect®, or both.

• If a user has created his or her own commands, add your commands
to the user’s current Global.dvc file,
NatSpeak\Users\userName\Current\Global.dvc. Make sure not to
unintentionally delete existing user-specific commands.

• If a user has not created any commands, you can place your
Global.dvc file in the NatSpeak\Users\userName\Current\ directory.

• If you want newly created users to have your commands, replace
the Global.dvc file in \NatSpeak\Data with yours or copy your
commands into the existing file. Always save a clean copy of the
master Global.dvc file before you modify or replace it.

Petitioner BB&T - Exhibit 1022 - Page 24

Petitioner BB&T - Exhibit 1022 - Page 25

■ 19

Chapter 3 Writing Effective Voice Commands

This chapter describes how to write effective voice commands. It also
provides information on using Dynamic Data Exchange (DDE) with
Dragon NaturallySpeaking. This chapter includes the following topics:

• Interacting with Windows applications

• Controlling Dragon NaturallySpeaking

• Using voice command programming techniques

• Writing commands with lists

• Using Dynamic Data Exchange with Dragon NaturallySpeaking

Interacting with Windows and Applications

Windows lets you interact with applications by:

• Using the keyboard

• Using the mouse

• Selecting menus, menu items, buttons, and other controls directly

• Using DDE commands

• Calling functions in DLL files

 Dragon NaturallySpeaking lets you use all these methods of interacting
with Windows applications in your voice commands. In many cases,
you can use any of the several methods to interact with Windows. In
others, only some may be available.

 The rest of this section describes the various ways Dragon
NaturallySpeaking uses these methods to interact with Windows and
applications. The reference pages provide more details on each scripting
command, including any specific command limitations.

 Sending Keystrokes

 Keystroke commands can generate any possible keystroke or keystroke
combination, so you can create keyboard voice commands to move
around in windows and control Windows applications. Many Dragon
NaturallySpeaking speech commands are simply keystroke commands.

Petitioner BB&T - Exhibit 1022 - Page 26

Dragon NaturallySpeaking: Creating Voice Commands

20 ■

For example, the global Undo That command is a keystroke command
that types the Ctrl+z key combination.

 You can also incorporate key combinations in script commands by using
the SendKeys or SendSystemKeys scripting commands. Many Dragon
NaturallySpeaking commands use the SendKeys command to send
keystroke combinations. For example, the Set Font <FontFace> uses the
following scripting command:

 SendKeys "{Alt+o}f{Alt+f}" + _arg1 + "{Enter}"

 The following scripting commands send text to an application:

 Command Description

 SendKeys Sends keystrokes to the active window.

 SendSystemKeys Sends system keystrokes to Windows. Use
this command for short system keystrokes,
such as {Ctrl+Esc}, when SendKeys does not
work.

Note

If a command includes system keystrokes, such as {Alt+Tab} or
{Ctrl+Esc}, do not use a keystroke command. Instead, create a script
that uses a SendSystemKeys scripting command. Keystroke commands
work only for nonsystem keys.

 Controlling the Mouse

 The following scripting commands control mouse motion.

 Command Description

 SetMousePosition Places the mouse pointer at a specified
position.

 ButtonClick Clicks the specified mouse button.

 RememberPoint Records current mouse pointer position. Use
this command to specify the starting location
of a DragToPoint command.

 DragToPoint Drags the mouse from the point specified by
the RememberPoint command to the current
pointer location.

Petitioner BB&T - Exhibit 1022 - Page 27

Chapter 3: Writing Effective Voice Commands

■ 21

 Command Description

 SetMousePosition Places the mouse pointer at a specified
position.

 MouseGrid Uses the Dragon NaturallySpeaking
MouseGrid to position the mouse pointer.

 Accessing and Selecting Windows, Menus, and
Controls

 The scripting language lets you access and select windows, menus, and
controls in several ways:

• You can send shortcut keystrokes. For example, the global Copy All
to Clipboard command is a keystroke command that sends the
{Ctrl+a}{Ctrl+c} key combination to select the entire document and
copy it to the clipboard. However, global commands that use
shortcut keys may have unexpected results in applications that do
not follow standard Windows shortcut key conventions.

• You can send {Tab} keystrokes to tab through controls such as text
fields and buttons. This technique is useful for accessing controls
that do not have shortcut (accelerator) keys. You can also send the
{Space} or {Enter} keystroke to activate a control.

• If the application can function as a DDE server, you can use the
DdeExecute and DdePoke commands to send Windows DDE
requests directly to an application. You may prefer this method to
using keystrokes with applications, such as Microsoft Word, where
you can change key assignments.

• You can use the following scripting commands to interact directly
with the application:

 Command Description

 ControlPick Selects a control (a child window) of the
current window. Push buttons, check boxes, edit
fields, and radio buttons are types of controls.

 MenuPick Selects a currently visible menu or menu item.

 MenuCancel Cancels the current menu.

 Controlling Sounds

 The following scripting commands produce sounds:

Petitioner BB&T - Exhibit 1022 - Page 28

Dragon NaturallySpeaking: Creating Voice Commands

22 ■

 Command Description

 Beep Plays the default Windows beep sound.

 PlaySound Plays a .wav file.

 Starting, Selecting, and Controlling Other Applications

 Dragon NaturallySpeaking provides a number of scripting commands to
start applications, change the active application, and minimize
applications. It also provides commands to send Dynamic Data
Exchange (DDE) commands to other applications and call functions in
Dynamic Link Libraries (DLLs). These commands are as follows:

 Command Description

 AppBringUp Starts an application or switches to an
instance of the application that is already
running.

 AppSwapWith Swaps the current application with another.

 ShellExecute Loads an application. This command always
starts a new instance of an application.

 ClearDesktop Minimizes all applications.

 DdeExecute Sends a DDE request to another application.

 DdePoke Sets an item value in a DDE application.

 DllCall Calls a function in a DLL.

 Controlling Dragon NaturallySpeaking

 Dragon NaturallySpeaking provides you with a number of scripting
commands that let you control how it works. These commands let you:

• Turn Sleep mode on and off

• Turn the microphone on and off

• Use the text-to-speech engine to play text

• Control how scripts execute

• Tell Dragon NaturallySpeaking to recognize a word

Petitioner BB&T - Exhibit 1022 - Page 29

Chapter 3: Writing Effective Voice Commands

■ 23

 Controlling Sleep Mode

 In sleep mode Dragon NaturallySpeaking normally recognizes only the
wake-up command. The following scripting commands let you turn
sleep mode on and off. (For more information on sleep mode, see page
37.)

 Command Description

 GoToSleep Puts Dragon NaturallySpeaking in sleep
mode.

 WakeUp Resumes normal recognition when Dragon
NaturallySpeaking is in sleep mode.

 Controlling the Microphone

The SetMicrophone command lets you turn the microphone on and off.
This command lets you give other applications or commands access to
the I/O channel on systems with half-duplex sound cards. For example,
you should turn the microphone off before using the Beep command to
send a Windows default beep tone.

 Controlling Text-to-Speech

 The TTSPlayString command tells the Dragon NaturallySpeaking text-
to-speech engine to play text. The text-to-speech engine comes with
Dragon NaturallySpeaking Deluxe and Professional editions.

 Controlling Script Execution

 The following scripting commands control Dragon NaturallySpeaking
voice command scripts:

 Command Description

 MsgBoxConfirm Displays a Windows Message box. This box
displays a message and one or two buttons.
The script then continues or exits, depending
on which button you select. Use this
command to make a user confirm an action
before it happens.

 RunScriptFile Executes a specified script. This lets you run
one script from another script and reuse

Petitioner BB&T - Exhibit 1022 - Page 30

Dragon NaturallySpeaking: Creating Voice Commands

24 ■

 Command Description

common script code.

 Wait Makes the script pause for a specific amount
of time. This command is useful when one
action must finish before the next starts. For
example, use the Wait command between an
AppBringUp command that runs a slow-
starting application and a command that sends
keystrokes to that application.

 Simulating Recognition

 The HeardWord scripting command causes Dragon NaturallySpeaking
to act as if it recognized a specific word or words.

 The HeardWord command lets you create aliases for commands without
rewriting the entire voice command. For example, you could create a
Fix That voice command that has the following script:

HeardWord "Correct", "That"

 Whenever you say Fix That, Dragon NaturallySpeaking automatically
acts as if it heard “Correct That” and brings up the Correction dialog
box.

 HeardWord is also very useful in Commands that use lists, as described
in “Using HeardWord in Commands with Lists” on page 30.

 Voice Command Programming Techniques

 The following sections present information on string concatenation, user
defined variables, and flow control. These programming techniques are
particularly useful in writing advanced voice commands such as
commands that use lists (see page 26).

 Using String Concatenation

 The string concatenation operator (+) lets you combine strings. Use it to
combine variables with literal text to create a single argument string.

 For example, the Set Font <FontFace> command script for the Dragon
NaturallySpeaking word processor includes the following scripting
command with a string concatenation expression:

Petitioner BB&T - Exhibit 1022 - Page 31

Chapter 3: Writing Effective Voice Commands

■ 25

SendKeys "{Alt+o}f{Alt+f}"+arg_1+"{Enter}"

 The expression is made of:

• The string literal “{Alt+o}f{Alt+f}”

• The + concatenation operator

• The variable _arg1, which represents the string value of the
FontFace list item

• The + concatenation operator

• The string literal “{Enter}”

 Note that the two keystroke string literals are in quotation marks, but
the variable name is not. Also, the plus signs inside the first literal are
part of the literal and are not concatenation operators.

 If you say “Set Font Arial,” the SendKeys command gets the following
string as its argument:

{Alt+o}f{Alt+f}Arial{Enter}

 When you use string concatenation, make sure that the variables are
strings, not numeric values. If the variables are all numbers, Dragon
NaturallySpeaking interprets the plus (+) sign as the addition operator
and adds the values. If some variables are strings and some are
numbers, Dragon NaturallySpeaking displays an error message. If
necessary, use the Str$ function to convert numerical values to their
string representations.

 User-Defined Variables

 You can define your own variables. You can use your variables to store
temporary values including indexes for looping, conditionals, and
substrings that you generate with data manipulation functions. For
example, Dragon NaturallySpeaking commands often use statements
such as:

if _arg1 = "Cut" then key$ = "{Ctrl+x}"
if _arg1 = "Copy" then key$ = "{Ctrl+c}"

 The variable key$ depends on the word recognized from a list,
represented by _arg1. (Dragon NaturallySpeaking automatically
generates variables for lists.) The command script uses the variable in a
SendKeys command, which could be as simple as:

SendKeys key$

Petitioner BB&T - Exhibit 1022 - Page 32

Dragon NaturallySpeaking: Creating Voice Commands

26 ■

 All variables are local to the current instance of the voice command in
which they appear. If you use the same variable name in two voice
commands, they are two different variables. Similarly, there is no way
to retain a variable value after a voice command completes.

 Flow Control

 The Dragon NaturallySpeaking built-in commands use IF THEN and IF
THEN ELSE statements to control script execution. For example, these
conditionals can help a script handle motion in different directions.
Similarly, the Dragon NaturallySpeaking built-in commands use
WHILE and LOOP WHILE loops to repeat an operation several times.

 The following code uses a DO UNTIL loop to type the message “Hello
World.” ten times:

 I = 10
DO UNTIL I = 0
SendKeys "Hello World.{Enter}"
I = I-1
LOOP

 The examples of flow control statements in chapter 4 show their use in
greater detail.

Caution

 You can create an infinite loop where no condition ever causes the loop
to stop. If you run a command with an infinite loop, you may have to
use the Windows Close Program dialog to shut down Dragon
NaturallySpeaking.

 Writing Commands with Lists

 The following sections contain information to help you write commands
that use lists.

 List Command Names

 When a command uses lists, the command name must follow the
naming conventions described in the “Guidelines for Creating and
Naming Commands” section on page 8. In addition:

• The lists must be defined for the current application and window or
be global lists if this is a global command. (If you are using the New
Command wizard to create a command, you do not have to create
the list until after you have entered the command script.)

Petitioner BB&T - Exhibit 1022 - Page 33

Chapter 3: Writing Effective Voice Commands

■ 27

• Angle brackets (< >) must surround each list name in the command
name.

The list names identify the list from which Dragon NaturallySpeaking
recognizes the variable part of the command. You can only say words in
the specified list for the variable part of the voice command.

For example, the voice command Set Font <FontFace> consists of the
words Set and Font and the list name FontFace. You must say “Set Font”
followed by a valid font name from the FontFace list.

List Command Execution

When you say a word that corresponds to the variable part of a voice
command, Dragon NaturallySpeaking recognizes the word or phrase
from the list and sets the variable that corresponds to the list to the
recognized word or phrase. This variable is only active when the
command script runs.

 When Dragon NaturallySpeaking finishes recognizing all the words in
the command, it executes its voice command script using the values that
it assigned to the list variables in the script.

 List Command Scripts

 Voice commands that use lists almost always have scripts because
keystroke commands cannot use variables. (You can use a list for a
keystroke command if you want the user to be able to say several
different things to get the same result.) The specific script action
depends upon the values returned by Dragon NaturallySpeaking when it
recognizes each variable word.

 While a script can be a single statement, many scripts that control
applications can be complex. Conditional looping, data manipulation
functions, and operations on variables provide the power needed to
write effective command scripts.

 List Variables in Scripts

 When you write a script for a command that uses lists, you use variables
to represent the words that Dragon NaturallySpeaking recognizes from
the lists. Dragon NaturallySpeaking automatically creates the names for
these variables.

Petitioner BB&T - Exhibit 1022 - Page 34

Dragon NaturallySpeaking: Creating Voice Commands

28 ■

 The variable names are all of the form _argn, where n is the position of
the corresponding list in the command name. Therefore, if the
command (from the Word 97 commands) is:

 Print Pages <1To100> <toThrough> <1To100>

 and you say “Print pages 5 through 15”

_arg1 represents the first word recognized from the <1To100> list, in
this case “5”.

_arg2 represents the word “through” recognized from the toThrough
list.

_arg3 represents the second word recognized from the <1To100> list, in
this case “15”.

A Simple Command Using Lists

In the voice command Move <DirUpDown> <2To20> Lines, assume
you said “Move Back 3 lines”. This causes the following sequence of
actions:

1. The _arg1 variable gets the value “Back”, recognized from the
DirUpDown list.

2. The _arg2 variable gets the string value “3”, recognized from the
2To20 list.

3. The script for the Command action runs. In this case,:

 if _arg1 = "Back" then _arg1 = "Up"
if _arg1 = "Forward" then _arg1 = "Down"
SendKeys "{" + _arg1 + " " + _arg2 + "}"

 This script first changes the value of _arg1 from “Back” to “Up”, and
then executes the command SendKeys “{Up 3}”.

4. The command sends three up-arrow keystrokes.

This sample script also shows the use of variable substitution and the
string concatenation operator (+) to combine the string literal parts of
the argument with the variable name parts of the argument. (“Using
String Concatenation” on page 24 has more information on the +
operator.)

Using Written and Spoken Forms of Words in Lists

Lists can contain words whose written and spoken forms differ. For
example, the ICAlphabet list contains the International
Communications Alphabet in the form:

Petitioner BB&T - Exhibit 1022 - Page 35

Chapter 3: Writing Effective Voice Commands

■ 29

a\alpha
b\bravo

and so on, where “a” is the written form and “alpha “is the spoken form.

When Dragon NaturallySpeaking recognizes the spoken form of a list
word in a command, the command variable gets the entire
written\spoken form string, not just the written form. Therefore, the
script must extract the written form from the string. For example, the
<PressKey> <ICAlphabet> command lets users say “Press alpha” to
enter the letter “a” or “Type zulu” to get the letter “z”. The command
script is:

SendSystemKeys MID$(_arg2,0,1)

This command extracts the first character from the string in _arg2 (for
example the “a” in “a\alpha” and sends it to the system.

Your list may contain words with variable-length written parts, such as a
list of presidents who can be named by speaking their initials:

Franklin Delano Roosevelt\FDR
John Fitzgerald Kennedy\JFK
Lyndon Baines Johnson\LBJ

In this case you can use the Instr and Mid$ functions as follows to
locate the backslash character and extract the written form:

slash_posn = Instr (_arg1, "\")
word_val$ = Mid$ (_arg1, 0, slash_posn -1)

The “written form” part of a list word can contain any combination of
characters that is meaningful to your script. For example, the written
form of the list word can contain the keystrokes to be used in a
SendKeys command.

You can use this technique to eliminate the need for multiple IF THEN
statements. For example, you could rewrite the <PressKey>
<FunctionKey> command so that the <FunctionKey> list has the form:

{F1}\Function-1

and the command script is

slash_posn = Instr (_arg2, "\")
word_val$ = Mid$ (_arg1, 0, slash_posn -1)
SendSystemKeys word_val$

Petitioner BB&T - Exhibit 1022 - Page 36

Dragon NaturallySpeaking: Creating Voice Commands

30 ■

(If you do this as an exercise, remember that you will also have to
rewrite the <PressKey> <ShiftKey> <FunctionKey> command, which
also uses the FunctionKey list.)

Using HeardWord in Commands with Lists

You can use the HeardWord scripting command in your script to process
part of the input of your voice command. This enables you to build a set
of commands that use common parts.

For example, the script for the MouseGrid command Mouse
<Direction> <1To10> <MouseAction> lets you do any of several
actions that require positioning the mouse when the MouseGrid is
displayed. For example, it lets you move the mouse and then click
mouse buttons, or it marks the location (for a DragToPoint command).
The command script is:

HeardWord _arg1, _arg2
Wait 10
HeardWord "Mouse", _arg3

This command:

1. First “calls” the <Direction> <1To10> command to move the
mouse to the desired location.

2. Waits 10 milliseconds (to make sure the mouse gets to the
location).

3. Calls the Mouse <MouseAction> command, which does the
requested action, such as clicking a mouse button.

This script is efficient because it reuses existing code and eliminates the
need to provide duplicate functions in the vocabulary. If you are writing
a complex set of voice commands, determine whether you can use any
of the commands as modular building blocks for others.

You can nest commands that use lists by using HeardWord to call
another command that uses lists. However, all variables are local to the
script in which they appear, so the called script cannot use the calling
script’s variables.

Using Lists to Construct Natural Commands

You can use lists of similar words or phrases to give users a variety of
equivalent ways to say a command, providing a more natural grammar
for your commands. Such commands often have scripts that do not even
use the list variable. For example, the “Press Key” commands, such as

Petitioner BB&T - Exhibit 1022 - Page 37

Chapter 3: Writing Effective Voice Commands

■ 31

<PressKey> <Numeral>, do not use their first argument in their scripts.
The PressKey list contains:

Press
Press Key
Keystroke
Type

The <PressKey> <Numeral> command script is:

SendSystemKeys _arg2

The script never uses the value of _arg1, the word recognized from the
PressKey list. Users can start a command with any word in the Press
Key list and get the same result. Thus, the command types “3” whether
you say “Press 3”, “Type 3”, or “Keystroke 3”.

Using Dynamic Data Exchange

The DdeExecute and DdePoke commands send Windows Dynamic Data
Exchange (DDE) messages to communicate with and control other
applications. The following sections briefly describe these messages and
discuss issues that are specific to their use in Dragon NaturallySpeaking
scripts.

Your application’s technical documentation should provide information
on its supported DDE messages, including the required values and
formats for the DdeExecute and DdePoke command arguments.

DdeExecute Command

The scripting language DdeExecute command sends a command string
to a DDE application. The Dragon NaturallySpeaking vocabularies
often use this command to communicate with applications whose
accelerator key assignments are not fixed, such as most word
processors. The following scripting command will change the font size
in Microsoft Word (6.0 through 97):

DdeExecute "WinWord", "System", "[ShrinkFont]"

The Dragon NaturallySpeaking commands for Microsoft Word 97 (the
NaturalWord™ commands) use the DdeExecute command to run
custom macros. For example, the Select That command for Word 97
uses the following script:

DdeExecute "WinWord", "System", "[ToolsMacro
.Name=""WCSelectThat"", .Run]"

Petitioner BB&T - Exhibit 1022 - Page 38

Dragon NaturallySpeaking: Creating Voice Commands

32 ■

Note

The DdeExecute command can run synchronously (the default) or
asynchronously. It can be helpful to first use synchronous calls when
you develop your commands and to convert to asynchronous calls
(which return faster) if it is appropriate. See the DdeExecute reference
on page 84 for more information.

DdeExecute versus SendKeys

While the SendKeys scripting command is often simpler to use than
DdeExecute, there are good reasons to use DdeExecute.

Use DdeExecute in place of a SendKeys scripting command if you
cannot be sure that a key or keystroke sequence has predictable results.
Many applications let users redefine keys. Also, in some applications
the same keystrokes produce different results in different situations. For
example, when Microsoft Word 97 displays the Formatting toolbar, the
{Ctrl+Shift+F} key combination puts the focus on the font name text
box in the toolbar. When Word does not display the Formatting toolbar,
{Ctrl+Shift+F} makes it display the Fonts dialog box.

Also, you may be able to use a simple DdeExecute command instead of
a complex or confusing key sequence. For example:

DdeExecute "WinWord", "System", "[Grow Font]"

is easier to understand than:

SendKeys "{Ctrl+Shift+<}

DdePoke Command

The DdePoke command sets the value of a specific item in a DDE
application, even if the application is not currently active (that is, even
if it is minimized or does not have the focus). However, you get an error
message if the application is not running.

This command is useful when you must send information to an
application. For example, the following line sets to 10 the value of row
1, column 2 in the worksheet “sheet1” in Microsoft Excel, even if Excel
is not currently active:

DdePoke "excel", "sheet1", "r1c2", "10"

Petitioner BB&T - Exhibit 1022 - Page 39

■ 33

Chapter 4 Using the Global.dvc File

 This chapter describes the Global.dvc file. It includes the following
topics:

• An overview of the file’s function and how you can use it

• How Dragon NaturallySpeaking manages and uses the file

• The file format, including descriptions of all file elements

• Rules and conventions for file contents

 Introduction to the Global.dvc File

Dragon NaturallySpeaking keeps all voice commands in a file named
Global.dvc. In the Deluxe and Professional editions it is a plain (8-bit
ANSI) text file, and you can edit it manually. In all other editions it is
encrypted and you cannot modify it. The New Command and Edit
Command wizards only modify plain-text .dvc files.

You can create a large number of commands more quickly by editing
the Global.dvc file than by using the New Command wizard. However,
the command wizards check for common errors as you create and edit
your commands. Therefore, you should not use this method until you
are very familiar with creating commands.

Once you have created and tested your commands, you use the
Global.dvc file to deliver them to another Deluxe or Professional edition
user.

How Dragon NaturallySpeaking Uses the
Global.dvc file

When you open a user, Dragon NaturallySpeaking loads voice
commands from the Global.dvc file. (Dictation commands such as All
Caps and Correct That are hard-coded and are not in Global.dvc.) If
there is a Global.dvc file in the NatSpeak\Users\userName\Current
directory, Dragon NaturallySpeaking loads that file. Otherwise, it loads
the copy in the \NatSpeak\Data directory.

When you select Finish after using a command wizard to create or edit
a command, Dragon NaturallySpeaking writes the command to the

Petitioner BB&T - Exhibit 1022 - Page 40

Dragon NaturallySpeaking: Creating Voice Commands

34 ■

NatSpeak\Users\Username\Current\Global.dvc file. If the file does not
exist yet, it creates it with the contents of the master Global.dvc file
plus your changes. Even if you do not save your speech files, any
commands you add or change are saved.

Because Dragon NaturallySpeaking reads the Global.dvc file only when
it loads a user, and because it writes to the file when you use the
command wizards, you should always close Dragon NaturallySpeaking
or open a different user before you edit your Username\Current\
Global.dvc file. When you next start Dragon NaturallySpeaking or open
the user you edited, Dragon NaturallySpeaking will read your updated
file and you can use your new commands.

Dragon NaturallySpeaking checks for syntax errors in the Global.dvc
file as it loads the file. When it finds an error it displays a message
indicating the line that contains the error and does not load any voice
commands.

The .DVC File Format

The Global.dvc file has the following format:

MENU " appName" {
STATE " stateName" [stateType] {

COMMAND " commandName" {
SCRIPT | KEYS {

script or keystroke sequence
}

}
.
.
LIST " listName" {

" list entry"
.
.

}
.
.
}

.

.
}
.
.

Petitioner BB&T - Exhibit 1022 - Page 41

Chapter 4: Using the Global.dvc File

■ 35

The file consists of a number of hierarchically nested sections as
follows:

• Each section consists of a section type keyword identifier, a section
name, and the section contents, which is delimited by braces ({}).

• Each MENU section contains one or more STATE sections.

• Each STATE section contains one or more COMMAND definitions
followed by zero or more LIST definitions.

• Each COMMAND definition contains either a SCRIPT definition
or a KEYS definition.

The following sections document this structure in detail.

MENU

The MENU keyword specifies the beginning of a menu, which contains
the commands for a particular application (or global commands). Each
menu contains one or more states.

appName

The appName variable specifies the executable file name of the
application without the .exe suffix. The appName is not case sensitive,
but you should use all uppercase characters for consistency with names
generated by Dragon NaturallySpeaking. The menu containing the
standard Dragon NaturallySpeaking global commands has the appName
Global Commands. For more information on global menus and states,
see the stateType Keywords on page 36.

You do not always see the appName in the New and Edit Command
wizards. Instead, these wizards often use more descriptive names. The
Windows Registry \HKEY_LOCAL_MACHINE\Software\Dragon
Systems\NaturallySpeaking\Professional 3.0\Applications key contains
subkeys that associate the Command wizard descriptive names with the
names used in the Global.dvc file. You should not edit the Registry
entries, but you can view them for information about the mapping
between the names. Use the Change Descriptive Names button on the
New Command wizard to change the name that the wizard displays.

State

The STATE keyword specifies the beginning of a recognition state. The
state contains the commands that are recognized when the specified
window (of the menu application) is active. Each state contains one or
more commands and lists.

Petitioner BB&T - Exhibit 1022 - Page 42

Dragon NaturallySpeaking: Creating Voice Commands

36 ■

Note that Dragon NaturallySpeaking has a few special states, such as
the Asleep state and the Mouse Grid state that do not have
corresponding windows. Also, the stateType keyword can specify
special state behavior.

stateName

The stateName identifies the window and must appear somewhere in the
active window’s title bar. The name can have up to 32 characters and is
case sensitive. It can be any portion of the title bar text and need not
start or end with whole words. However, it should be detailed enough to
uniquely identify the target window. For example, if the target window
title bar looks like:

Turbo TextEdIt - C:\Proposals\NewWing.txt

you might use the following stateName values:

TextEdIt
If you want this state to apply to all members of the TextEdIt family of
applications. (However, they must all have the same executable name.)

Turbo TextEdIt
If you only want the commands to apply to this particular version.

NewWing.txt
If you want the commands to apply to any document named
NewWing.txt, independent of the file’s location or the editor version.

Turbo TextEdIt - C:\Proposals\NewWing.txt
If you want the commands to apply to the Turbo TextEdIt edition only
when the active window contains the NewWing.txt document from the
C:\Proposals folder.

The stateName corresponds to the information you specify in response
to the New Command wizard’s “select the title of the target window or
dialog box for this command” prompt.

stateType Keywords

The stateName can be followed by GLOBAL, NOGLOBALS, or
SLEEPING. These special keywords control how Dragon
NaturallySpeaking uses this state:

GLOBAL
This keyword specifies that the state is global and Dragon

Petitioner BB&T - Exhibit 1022 - Page 43

Chapter 4: Using the Global.dvc File

■ 37

NaturallySpeaking will recognize its commands in all applications and
windows.

The Dragon NaturallySpeaking Edit Command wizard and New
Command wizard display only one global state: the Global Commands
state in the Global Commands menu. However, Dragon
NaturallySpeaking recognizes commands from all global states.
Therefore, you can create your own global state if you want to create a
set of “hidden” global commands. You can use any unique menuName
and stateName combination; the names do not have to correspond to an
application or window.

In some cases you may have commands that you want to be global, but
are really only useful if you have a particular application. For example,
you might want to create a command that switches the focus to your
application and then sends it keystrokes. In this case, you can create a
state with an arbitrary stateName and a GLOBAL stateType, and put it
in your application’s menu. This state is truly global—its commands are
recognized in all applications, independent of the window title bar. It is
also hidden from the command wizards.

NOGLOBALS
Tells Dragon NaturallySpeaking not to recognize any global commands
when this state is active. The Dragon NaturallySpeaking Mouse Grid
state uses this keyword to ensure that only MouseGrid commands get
recognized while the MouseGrid is displayed.

SLEEPING
Tells Dragon NaturallySpeaking to recognize these commands in this
state only when it is in sleep mode. Sleep mode is designed as a mode
in which Dragon NaturallySpeaking will do nothing except wake up. As
a result, Dragon NaturallySpeaking does not send keystrokes to
applications in sleep mode.

The Global.dvc Asleep state uses this keyword. You should not create
your own SLEEPING state. You may add additional words to the Asleep
state if you wish to add your own aliases for the Wake Up command.

COMMAND

The COMMAND keyword identifies a voice command definition. This
definition consists of the voice command name and either a script or a
set of keystrokes, as identified by the SCRIPT or KEYS keyword. If the
command name contains any list names (in angle brackets) the lists
must be defined in the current state.

Petitioner BB&T - Exhibit 1022 - Page 44

Dragon NaturallySpeaking: Creating Voice Commands

38 ■

KEYS

The KEYS keyword identifies a keystroke command, which consists of
one or more keystrokes, and cannot include scripting commands. The
keystroke command must follow the rules for key definitions described
on page 13, the scripting language conventions described on page 14,
and the .dvc file conventions described starting on page 39.

For example, the following keystroke command is in the Dragon
NaturallySpeaking state of the NATSPEAK menu. It is active when the
Dragon NaturallySpeaking word processor window is active and lets
you select a paragraph by voice. Note that because this is a keystroke
command, the keystroke sequence is not in quotation marks.

COMMAND "Select Paragraph" {
 KEYS {
 {Ctrl+Down}{Shift+Ctrl+Up}
 }
}

SCRIPT

The SCRIPT keyword identifies a voice command script, which consists
of one or more scripting commands. The script must follow the
scripting command conventions described on page 14 and the .dvc file
conventions described on page 39.

The following script command is in the Global Commands state of the
Global Commands menu. It is active at all times and lets you change the
active window to the Dragon NaturallySpeaking word processor or
either the next or previous window in the Windows tab sequence.

COMMAND "Switch to <AppList>" {
 SCRIPT {
 if _arg1 = "NatSpeak" then AppBringUp "NatSpeak"
 if _arg1 = "NaturallySpeaking" then AppBringUp "NatSpeak"
 if _arg1 = "Next Window" then SendSystemKeys "{Shift+Alt+Tab}"
 if _arg1 = "Previous Window" then SendSystemKeys "{Alt+Tab}"
 }
}

Petitioner BB&T - Exhibit 1022 - Page 45

Chapter 4: Using the Global.dvc File

■ 39

LIST

The LIST keyword identifies a list of words or phrases for use in the
variable part of a command name. The list can include entries in the
written form\\spoken form format, such as a\\alpha. (Note that you must
use a double-backslash in the Global.dvc file.)

The list is local to the state. The list name can only be used by
commands in the current state. However, different states can have lists
with identical names; these lists can have different contents.

By convention, the standard Dragon NaturallySpeaking Global.dvc file
puts list definitions at the end of each state, following all command
definitions. However, this organization is not required. For example, you
could put a list that is used in a single command before or after that
command.

The following list is at the end of the Microsoft Word state of the
WINWORD 8.0 menu. It is used in several Natural Language
commands for Microsoft Word 97.

LIST "thatItFontSelection" {
"That"
"This"
"It"
"Them"
"Font"
"Selection"
"the Font"
"the Selection"

}

DVC File Rules and Conventions

 The following sections define the rules for writing DVC files.

General DVC File Rules and Conventions

The following rules apply to the overall structure and contents of the
DVC file.

• Enclose the body of each MENU, STATE, COMMAND, SCRIPT,
KEYS, or LIST section (following the name argument) in braces
({}).

Petitioner BB&T - Exhibit 1022 - Page 46

Dragon NaturallySpeaking: Creating Voice Commands

40 ■

• If a section consists of a single line you can enclose it in quotes
instead of braces, for example, SCRIPT “WakeUp”.

• An opening brace ({) must be on the same line as the section
keyword (such as SCRIPT).

• A closing brace (}) must be on a line by itself (preceded only by
tabs or spaces and followed only by a line break or return character).
This prevents ambiguity when key names of the form {key-name}
are present in the text.

• Delimit all string arguments, including list entries and the section
names that follow keywords, in quotation marks (").

• Do not put quotation marks around the keystrokes in a KEYS
section.

• Put each keystroke sequence or scripting command on one line.
However, you can continue a keystroke command onto subsequent
lines by using the escape character (\), as described in the next
section.

• White space and line breaks following an open brace ({) are
ignored, so you can start the text on the next line and indent it.

• White space (tabs and/or spaces) at the beginning of each line is
ignored.

• Trailing white space at the end of a line is retained.

• Remember that arguments are case sensitive. The keywords (MENU,
STATE, etc.) are not case sensitive, but you should use all uppercase
characters to ensure consistency.

• Use a double backslash (\\) to indicate a single backslash (\)
character in a list, for example, between the written and spoken form
of a word.

• Use \" to include a quotation mark in a list.

• Use the # character anywhere in a line to start a comment. You
cannot use this character as the comment character in scripts,
however. Use the ' character only for comments inside scripts.

• In HeardWord commands, use a single backslash before dictation
commands that do not have a written form. For example, use
HeardWord “\Caps”. To see a complete list of the words that require
this treatment, open the Vocabulary Editor and scroll up. The words
at the top of the list, which show a spoken form only, require a
leading \ character. For more information on using dictation
commands in HeardWord scripting commands, see page 91.

Petitioner BB&T - Exhibit 1022 - Page 47

Chapter 4: Using the Global.dvc File

■ 41

KEYS Section Escape Sequences

You can use the following C-standard escape sequences in keystroke
sequences following the KEYS keyword. You cannot use them
elsewhere in the .dvc file.

\t tab character (0x9)

\n newline character (0xa). The \n is equivalent to {Enter}, as is a line
break.

\r return (0xd)

\x followed by 1 or 2 hexadecimal digits will be written out as a single
byte containing the hexadecimal value. However, you should use
two digits (for example \x02, to avoid including a subsequent
character that happens to be a valid hexadecimal digit. For
example, “\x1Arthur” translates to “\1a” followed by “rthur”.

\\ literal \ (backslash)

\} literal } (close brace)

\" literal " (double-quote)

\ (backslash space) a literal space. You can use this to force a leading
space.

\ (backslash at end of line) discards the line break and wraps the
current line onto the next line. However, the leading white space on
the next line is still ignored, so you can indent as much as you like
for readability. Word wrapping allows you to enter as long a line as
you like and still have it readable in your text editor.

Petitioner BB&T - Exhibit 1022 - Page 48

Dragon NaturallySpeaking: Creating Voice Commands

42 ■

DVC file Sample

The following code illustrates sections of a customized Global.dvc file:

MENU "Global Commands" {
STATE "Global Commands" GLOBAL {

Note that the \n sequences are required to put the
text on three different lines.

COMMAND "Return Address" {
KEYS {

Dragon Systems \n
320 Nevada Street \n
Newton, MA 02460

}
}
COMMAND "Go to Sleep" {

SCRIPT "GoToSleep"
}

}
.
.
.

The Asleep state has only one command - Wake Up
STATE "Asleep" GLOBAL SLEEPING {

COMMAND "Wake Up" {
SCRIPT "WakeUp"

}
}

}
.
.
.
This is a comment outside a script
The following menu defines application-specific
commands for a system backup utility.

MENU "ARCSRV32" {
STATE "ARCserve Agent" {

COMMAND "Close Agent <NowOrLater>" {
SCRIPT {

If _arg1 = "Later" then Wait 2000
SendKeys "{Alt+F4}"

'This is a comment in a script.
SendKeys "{Enter}"

}
}
LIST "NowOrLater" {

"Now"
"Later"

}
}

}

Petitioner BB&T - Exhibit 1022 - Page 49

■ 43

Chapter 5 Scripting Language Reference

 This chapter describes the elements of the Dragon NaturallySpeaking
scripting language:

• Expressions

• Variables

• Operators

• Data manipulation functions

• Flow control statements

• Scripting commands

• Key names

 Expressions

 You can use expressions as arguments to scripting commands as long as
the expressions can be converted to the argument data types, which
must be strings or 16-bit integers (-32768–32767). The scripting
language interpreter converts the value of an expression to the expected
data type whenever possible and reports an error if it cannot do so.

 Many Dragon NaturallySpeaking command scripts use string
expressions. For example, the Set Font <FontFace> script contains the
following line:

 SendKeys "{Alt+o}f{Alt+f}"+_arg1+"{Enter}"

 This concatenates the keystrokes that open the Font dialog box and
selects the Font field with the FontFace variable and the Enter keystroke
that completes the operation.

 Example

Petitioner BB&T - Exhibit 1022 - Page 50

Dragon NaturallySpeaking: Creating Voice Commands

44 ■

 Variables

 The scripting language supports variables with the following BASIC
programming language data types:

 Ending
Character

 Type

 $ String

 % A 16-bit (positive or negative) integer

 & A 32-bit (positive or negative) integer

 # A double-precision (8-byte) floating-point

 (none) Variant; can be any of the above (default)

 Variable names conform to the name rules for Visual Basic®:

• Names are not case sensitive.

• The first character must be alphabetic (A–Z, a–z) or an underscore
(_).

• Remaining characters can be alphabetic, numeric (0–9), or an
underscore.

• The final character is an optional special type identifier character
($%&#). The variant type has no terminator.

 Dragon NaturallySpeaking defines variables dynamically, when they are
first referred to. If Dragon NaturallySpeaking uses a variable before it
has been assigned a value, the variable value is 0 or an empty string.

 You cannot use the same base variable name with multiple type
identifiers. For example, you cannot use both the variable name
“Color$” and the variable name “Color”, or partno% and partno&, in
one voice command.

 Dragon NaturallySpeaking automatically generates a variable name
“_argn”, for each list entry in a command that uses lists, where x
corresponds to the position of the list name in the command. For
example, the script for the Move <DirLeftRight> <2To20> Characters
must use _arg1 for the variable from the DirLeftRight list and _arg2 for
the variable from the 2To20 list.

 Notes

Petitioner BB&T - Exhibit 1022 - Page 51

 Chapter 5: Scripting Language Reference

■ 45

You cannot use a scripting language keyword (such as a scripting
command or a flow control statement) as a variable name.

 The scripting language does not have a Dim statement or Global
variables.

 Scripting language commands only take strings or 16-bit integers as
arguments. However, you can use other types in a script and explicitly
convert their values to a variable of the required type. You can also let
Dragon NaturallySpeaking automatically convert argument variables to
the required type if you are sure that the conversion results in a valid
value.

 “List Variables in Scripts” section on page 27. See Also

Petitioner BB&T - Exhibit 1022 - Page 52

Dragon NaturallySpeaking: Creating Voice Commands

46 ■

 Operators

 Dragon NaturallySpeaking supports these types of operators:

• Arithmetic

• Comparison

• Logical

• String concatenation

 When expressions contain operators from more than one class, the
arithmetic operators (and string concatenation) are evaluated first,
followed by comparison operators and then logical operators. As with
most programming languages, you can use parentheses to explicitly
control the order of evaluation.

 The following pages list operators in order of decreasing precedence.

Petitioner BB&T - Exhibit 1022 - Page 53

 Chapter 5: Scripting Language Reference

■ 47

 Arithmetic Operators

 Syntax Operation

 - a Negation

 a * b Multiplication

 a / b Division (same precedence as multiplication)

 a + b Addition (+ is also used for concatenating
strings)

 a - b Subtraction (same precedence as addition)

 The following expression increments a 16-bit word counter:

 Wordcount% = Wordcount% + 1

The following expression adds the Ones variable value to the product of
the Tens variable and 10.

Result = Ones + Tens * 10

 Examples

Petitioner BB&T - Exhibit 1022 - Page 54

Dragon NaturallySpeaking: Creating Voice Commands

48 ■

 Comparison Operators

 Syntax Operation

 a = b Equal to

 a <> b Not equal to

 a < b Less than

 a > b Greater than

 a <= b Less than or equal to

 a >= b Greater than or equal to

All comparison operators have the same precedence. They are evaluated
from left to right.

 The Delete <NextOrPrevious> Character command script compares the
value of a list variable with string values in the list to determine the
operation that is required:

 COMMAND "Delete <NextOrPrevious> Character" {
 SCRIPT {
 if _arg1 = "Previous" then SendKeys "{Backspace}"
 if _arg1 = "Next" then SendKeys "{Del}"
 if _arg1 = "Back" then SendKeys "{Backspace}"
 if _arg1 = "Forward" then SendKeys "{Del}"
 if _arg1 = "Last" then SendKeys "{Backspace}"
 }
}the

 Example

Petitioner BB&T - Exhibit 1022 - Page 55

 Chapter 5: Scripting Language Reference

■ 49

 Logical Operators

 Syntax Operation

 NOT a Logical NOT; performs negation

 a AND b Logical AND; true only if both are true

 a OR b Logical OR (inclusive OR); true if one or the other
is true, or if both are true

 a XOR b Logical XOR (exclusive OR); true if one or the
other is true, but not if both are true

 The following expression (from the <playPlaybackRead> <ReadText>
command) compares the _arg2 variable from the ReadText list with
both the string values “That” and “Selection”, and sends keystrokes if
either comparison is true.

 if _arg2 = "That" or _arg2 = "Selection" then
SendKeys "{Ctrl+"+key$+"+s}"

 Example

Petitioner BB&T - Exhibit 1022 - Page 56

Dragon NaturallySpeaking: Creating Voice Commands

50 ■

 String Concatenation Operator

 Syntax Operation

 “abc”+“def” string concatenation (result is “abcdef”)

 The following command uses concatenation to combine string literal
values and variables to create a single string.

 SendKeys "{"+Direction+" "+Digits+"}"

 The variables Direction and Digits are string variables. The
concatenation operator combines the values of these variables with the
string literals “{” , “ ” (space), and “}”. If the value of Direction is
“down” and the value of Digits is “3”, the concatenation result is
“{down 3}”.

 “Using String Concatenation” section on page 24.

 Example

 See Also

Petitioner BB&T - Exhibit 1022 - Page 57

 Chapter 5: Scripting Language Reference

■ 51

 Data Manipulation Functions

 The scripting language provides the following data manipulation
functions. These functions are compatible with most BASIC languages.

 Function Description

 CDbl Converts to a double-precision floating-point
number

 Chr$ Returns the character specified by an ANSI (ISO
8859-1) code

 CInt Converts to a 16-bit integer

 CStr Converts to a string

 Hex$ Converts to a string representation of a hexadecimal
value

 Instr Returns the position of a character in a string

 LCase$ Converts to all lowercase characters

 Len Returns the length of a string

 Mid$ Selects part of a string

 Str$ Converts an integer to a string

 String$ Returns a string that repeats one character

 UCase$ Converts to all uppercase characters

 Val Converts numbers in a string to an integer

Petitioner BB&T - Exhibit 1022 - Page 58

Dragon NaturallySpeaking: Creating Voice Commands

52 ■

 CDbl

 CDbl(expression)

 Converts any valid string or numeric expression into a double-precision
floating-point number. A string must represent a valid floating-point
number. If the conversion fails, the system displays an error message.

 The following expression explicitly converts the value of the 16-bit
variable sint% to a double-precision floating-point number and assigns
its value to the variable dfloat#:

 dfloat# = CDbl(sint%)

 CInt
 CStr

 Syntax

 Description

 Example

 See Also

Petitioner BB&T - Exhibit 1022 - Page 59

 Chapter 5: Scripting Language Reference

■ 53

 Chr$

 Chr$(integer%)

 Returns a string consisting of the character that corresponds to the
specified ANSI code. For example, Chr$(9) returns a Tab character.

 The following line assigns the value of the ANSI newline character to
the variable NL$. You can then use the NL$ variable to force new lines
in message strings.

 NL$ = Chr$(10)

 Hex$
 Str$
 String$

 Syntax

 Description

 Example

 See Also

Petitioner BB&T - Exhibit 1022 - Page 60

Dragon NaturallySpeaking: Creating Voice Commands

54 ■

 CInt

 CInt(expression)

 Converts any valid string or numeric expression into a 16-bit integer.
The string can only have digits (0–9), optionally preceded by a minus
sign
(-). You cannot use a plus sign or a decimal point. The function rounds
any floating-point number to the nearest integer. If the conversion fails,
it displays an error message.

 The following statement converts the string representation of the
number 123 into an integer:

 MyInt% = CInt("123")

 The following example converts the results of a floating-point
calculation into an integer (rounding to the nearest integer):

 Circum% = CInt(Diam# * 3.14)

 CDbl
 CStr

 Syntax

 Description

 Examples

 See Also

Petitioner BB&T - Exhibit 1022 - Page 61

 Chapter 5: Scripting Language Reference

■ 55

 CStr

 CStr(expression)

 Converts any valid expression (including numbers and strings) into a
string representation of its value. If the conversion fails, the system
displays an error message.

 The following expression converts the expression 3 + 27 to the string
“30”:

 Strval$ = CStr(3 + 27)

 The following script types 12.141:

 afloat# = 3.141
anint% = 7
SendKeys CStr(afloat# + 2 + anint%)

 CDbl
 CInt

 Syntax

 Description

 Examples

 See Also

Petitioner BB&T - Exhibit 1022 - Page 62

Dragon NaturallySpeaking: Creating Voice Commands

56 ■

 Hex$

 Hex$(expression)

 Converts a valid integer, string, or expression to a string representation
of its hexadecimal value. Any string or string expression must represent
a decimal integer. Therefore, the string must consist only of digits (0–9).
Any expression must be convertible to an integer.

 The following statement sets the string variable Hexnum$ to “1b”:

 intval% = 27
Hexnum$ = Hex$(intval%)

 The following script types the letter “c”, the hexadecimal representation
of 12:

 afloat# = 3.141
anint% = 7
SendKeys Hex$(afloat# + 2 + anint%)

 Chr$
 Str$
 String$

 Syntax

 Description

 Example

 See Also

Petitioner BB&T - Exhibit 1022 - Page 63

 Chapter 5: Scripting Language Reference

■ 57

 Instr

 Instr([start% ,] str1$, str2$)

 Returns an integer representing the position of the first occurrence of
string str2$ within string str1$. (It returns the position of the first
character of str2$.) The position of the first character in a string is 1. If
you include a start% numeric parameter, the function begins checking
at the startth character of str1$.

 The function Instr returns 0, indicating an error condition if:

• The start% value is greater than the length of str1$

• The str1$ variable is zero-length

• It cannot find str2$ in str$1

If str1$ is “Paragraph|Enter”, the following statement sets the variable I
to 10, which is the location of the “|” character in the string.

I = Instr(str1$, "|")

The scripts for the Dragon NaturallySpeaking “Press Key” commands
use Instr statements and lists whose entries contain variable number of
words to increase the flexibility of the grammar. For example, the
<PressKey> <ShiftKey> <Alphabet> command script is:

COMMAND "<PressKey> <ShiftKey> <Alphabet>" {
 SCRIPT {
 tstr = "{"
 if Instr(_arg2, "control-key") > 0 then tstr = tstr +

"Ctrl+"
 if Instr(_arg2, "alt-key") > 0 then tstr = tstr + "Alt+"
 if Instr(_arg2, "shift-key") > 0 then tstr = tstr +

"Shift+"
 tstr = tstr + MID$(_arg3,0,1) + "}"
 SendSystemKeys tstr
 }
 }

The ShiftKey list contains all 15 possible combinations of “shift-key”,
“alt-key”, and “control-key”. The use of Instr enables the script to cover
all these combinations with only three statements, one per key type.

Len
Mid$

 Syntax

 Description

Examples

See Also

Petitioner BB&T - Exhibit 1022 - Page 64

Dragon NaturallySpeaking: Creating Voice Commands

58 ■

LCase$

LCase$(s$)

Returns string s$ in all lowercase characters.

The following statement assigns the value “telephone” to the variable
Phone$:

Phone$ = LCase$("TELEphone")

UCase$

Syntax

Description

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 65

 Chapter 5: Scripting Language Reference

■ 59

Len

Len(s$)

Returns the number of characters in string s$.

If str1$ is “Paragraph|Enter”, the following statement sets the variable
strlen% to 15:

strlen% = Len(str1$)

Instr
Mid$
Val

Syntax

Description

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 66

Dragon NaturallySpeaking: Creating Voice Commands

60 ■

Mid$

Mid$(s$, start% [, len%])

Returns len% characters from string s$, starting with the character at the
start% position. A start% value of 0 specifies the first character of the
string. If you omit len%, the function returns all of the string from
start% to the end.

The following statement sets the value of the variable Midstring$ to
“is”:

Midstring$ = Mid$("This is a test", 5, 2)

The <PressKey> <ICAlphabet> command lets you say “Press alpha” to
type “a”. The ICAlphabet list contains entries such as “a\alpha”, which
includes both the written form (a) and spoken form (alpha) of each
word. The command script consists of the following line, which extracts
the first character from the returned list variable value and sends the
corresponding key to the system.

SendSystemKeys MID$(_arg2,0,1)

Instr
Len

Syntax

Description

Examples

See Also

Petitioner BB&T - Exhibit 1022 - Page 67

 Chapter 5: Scripting Language Reference

■ 61

Str$

Str$(numericexpression)

Returns a string representation of a numeric expression. This function is
useful when you do integer arithmetic on a spoken number and want to
use the result in a SendKeys command. Unlike the corresponding
Microsoft Visual Basic function, Str$ does not reserve a leading space
for the sign, so it does not put a space in front of an unsigned positive
number.

The following statement sets the variable Fifteen$ to “15”:

Fifteen$ = Str$(15)

A Solitaire program vocabulary could include a Turn Over <Pile>
command to let you say commands such as “Turn Over 7” to turn over
the card in the seventh pile. Its script could be:

P1=Str$(7-Val(_arg1))
SendKeys "{End}{Left "+P1+"}{Space}{Esc}"

The first line of the script:

1. Uses the Val function to convert the pile number that you say into
an integer value.

2. Subtracts the result from 7, to get the number of {Left} keystrokes
that are required.

3. Uses the Str$ function to convert the resulting integer into a string,
because the SendKeys command requires a string expression.

Chr$
Hex$
String$

Syntax

Description

Examples

See Also

Petitioner BB&T - Exhibit 1022 - Page 68

Dragon NaturallySpeaking: Creating Voice Commands

62 ■

String$

String$(count% , code%)

String$(count% , s$)

The first format returns a string of count% characters whose ANSI
numeric code is code%.

The second format returns a string of count% copies of the first
character in s$.

The following statement sets FiveNL$ to five newline characters:

FiveNL$ = String$(5, 10)

The following statement sets ThreeTs$ to “TTT”:

ThreeTs$ = String$(3, "Test")

Chr$
Hex$
Str$

Syntax

Description

Examples

See Also

Petitioner BB&T - Exhibit 1022 - Page 69

 Chapter 5: Scripting Language Reference

■ 63

UCase$

UCase$(s$)

Returns string s$ in all uppercase characters.

The following statement assigns the value “TELEPHONE” to the
variable Phone$:

Phone$ = UCase$("TELEphone")

LCase$

Syntax

Description

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 70

Dragon NaturallySpeaking: Creating Voice Commands

64 ■

Val

Val(s$)

Returns the numeric value of the string expression s$. The string
expression must represent a valid integer or floating-point number. The
function returns 0 if the expression does not start with a valid number.
This function is useful if you wish to do arithmetic using spoken
numbers.

The Scratch That <2To10> Times command has the following script,
which uses the value of the <2To10> list variable as an index in a While
loop. If you say “Scratch that 8 times”, Dragon NaturallySpeaking
recognizes the word “8” from the 2To10 list, and the Val statement
converts the string to an integer value. The While loop then runs 8
times.

loop& = Val(_arg1)
while (loop&)
 HeardWord "Scratch","That"
 loop& = loop& - 1
wend

Len

Syntax

Description

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 71

 Chapter 5: Scripting Language Reference

■ 65

Flow Control Statements

The scripting language provides the following flow control statements:

• IF THEN

• IF THEN ELSE

• Labels and GOTO Statements

• DO UNTIL

• DO WHILE

• LOOP UNTIL

• LOOP WHILE

• WHILE

Any code that causes an infinite loop will hang Dragon
NaturallySpeaking.

The scripting language does not have a FOR loop. However, you can
construct an equivalent by using the other looping commands and
GOTO commands.

“Flow Control” section on page 26.

CAUTION

Note

See Also

Petitioner BB&T - Exhibit 1022 - Page 72

Dragon NaturallySpeaking: Creating Voice Commands

66 ■

IF THEN

IF expression THEN statement

If expression is true, then Dragon NaturallySpeaking executes
statement. Otherwise, it skips to the next statement in the script.

In this simple version of the IF THEN statement you can put only one
statement after the THEN keyword, and you cannot have a newline
character before the end of the statement.

IF expression THEN
 statement
 .
 .
END IF

This multiline form of the IF THEN statement lets you include multiple
statements after the THEN keyword. In this form, the THEN keyword
ends the IF line. Each statement must be on a separate line and an END
IF keyword must be on its own line, after the last statement line. (Note
that there is a space between END and IF.)

Dragon NaturallySpeaking executes all the statements between the
THEN keyword and the END IF keywords when the expression is true.

The Move <DirLeftRight> <One> Character command moves the
insertion point one character to the left or right. It has the following
script. (Note that the IF and THEN keywords are in lower case.)

if _arg1 = "Back" then _arg1 = "Left"
if _arg1 = "Forward" then _arg1 = "Right"
SendKeys "{" + _arg1 + "}"

The following example uses the multiline form of the IF THEN
statement:

IF part1$ = "tele" THEN
part2$ = "phone"
Word = part1$+part2$
END IF

IF THEN ELSE statement

Syntax

Description

Syntax

Description

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 73

 Chapter 5: Scripting Language Reference

■ 67

IF THEN ELSE

IF expression THEN
 statement
 .
 .
 .
ELSE
 statement
 .
 .
 .
END IF

Each statement and the ELSE and END IF keywords must be on
separate lines. Also, the THEN keyword must be at the end of a line.

The following text from the Format That <Formatting> command for
Microsoft Word 97 contains two nested IF THEN ELSE statements.
Each IF statement compares the value of the Formatting list variable
with a specific string. The second IF statement gets evaluated only if the
first IF statement is false, that is, if you did not say “Format That With
Hyphens”. Note that in this code the IF, THEN, and ELSE keywords are
in lower case.

if _arg1 = "With Hyphens" then
 HeardWord "Hyphenate”, “That"
else
 if _arg1 = "Without Spaces" then
 HeardWord "Compound”, “That"
 else
 .
 .
 end if
end if

IF THEN statement

Syntax:

Description

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 74

Dragon NaturallySpeaking: Creating Voice Commands

68 ■

Labels and GOTO

label : [statement]

A label identifies a single line of code. It can be any combination of 40
or fewer characters that starts with a letter and ends with a colon. Any
text after the colon is interpreted as a statement. Labels are not case
sensitive and must be the first nonblank characters on a line.

A label serves as a potential target for a GOTO statement. GOTO
statements have the form:

GOTO label

This statement causes execution to continue from the first statement or
command following the matching label.

You cannot use a scripting language keyword (such as a scripting
command or a flow control statement) as a label.

The following Who <Results> command tells you who won or who lost,
but not both. The Results list has two words:

Won
Lost

The command script is:

IF _arg1 = "Lost" THEN GOTO Lost
SendKeys "Pete Won" + Chr$(10)
GOTO Endit
Lost: SendKeys "Ivan Lost" + Chr$(10)
Endit:
SendKeys "More scores will be available later."

Note that the Lost: label is on the same line as the code it labels, while
the Endit label precedes the code line. Also, note that End is not a valid
label name.

Syntax

Description

Syntax

Description

Note

Example

Petitioner BB&T - Exhibit 1022 - Page 75

 Chapter 5: Scripting Language Reference

■ 69

DO UNTIL

DO UNTIL expression
 statement
 .
 .
 .
LOOP

Dragon NaturallySpeaking evaluates expression first. If expression is
false, it performs the statement(s), including the LOOP back to the
expression evaluation. When expression is true, execution continues at
the command or statement that follows the LOOP keyword.

The voice command script for a Solitaire vocabulary Finish the Game
command could use two DO UNTIL loops. The outer loop repeats the
inner loop 10 times to account for all the cards that may be in a stack.
The inner loop double-clicks on a stack and selects the next stack to the
left. (In solitaire, the {End} key selects the rightmost stack of cards, and
the {Left} key selects the next stack to the left.)

I=10
DO UNTIL I=0

SendKeys "{End}"
j=6
DO UNTIL j=0

ButtonClick 1,2
SendKeys "{Left}"
j=j-1

LOOP
ButtonClick 1,2
I=I-1

LOOP

LOOP WHILE statement
LOOP UNTIL statement
DO WHILE statement

Syntax

Description

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 76

Dragon NaturallySpeaking: Creating Voice Commands

70 ■

DO WHILE

DO WHILE expression
 statement
 .
 .
 .
LOOP

Dragon NaturallySpeaking evaluates expression first. If expression is
true, it performs the statement(s), including the LOOP back to the
expression evaluation. When expression is false, execution continues at
the command or statement that follows the LOOP keyword.

The DO WHILE/LOOP form is logically identical to WHILE/WEND,
described on page 73.

The following script is a version of the Scratch That <2To10> Times
command (shown on page 73), rewritten to use DO WHILE instead of
WHILE. The command uses the value of the number recognized from
the 2To10 list as a loop counter.

loop& = Val(_arg1)
do while (loop&)
 HeardWord "Scratch","That"
 loop& = loop& - 1
loop

LOOP WHILE statement
LOOP UNTIL statement
DO UNTIL statement

Syntax

Description

Note

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 77

 Chapter 5: Scripting Language Reference

■ 71

LOOP UNTIL

DO
 statement
 .
 .
 .
LOOP UNTIL expression

Dragon NaturallySpeaking does the statement(s) at least once. It
evaluates the conditional expression at the end of the loop and looping
continues as long as expression remains false. When expression is true,
execution continues at the command or statement that follows
expression. This type of loop is useful when you know that the operation
must be done at least once.

The following code double-clicks the left mouse button and sends the
insertion point left by one unit. It repeats this operation 6 times. This
code has the same result as the code in the LOOP WHILE example.

j = 6
DO
 ButtonClick 1,2
 SendKeys "{left}"
 j=j-1
LOOP UNTIL j=0

LOOP WHILE statement
DO WHILE statement
DO UNTIL statement

Syntax

Description

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 78

Dragon NaturallySpeaking: Creating Voice Commands

72 ■

LOOP WHILE

DO
 statement
 .
 .
 .
LOOP WHILE expression

Dragon NaturallySpeaking performs the statement(s) at least once. It
evaluates the conditional expression at the end of the loop and looping
continues while expression remains true. When expression is false,
execution continues at the command or statement that follows
expression. This type of loop is useful when you know that the operation
must be done at least once.

The following code double-clicks the left mouse button and sends the
insertion point left by one unit. It repeats this operation 6 times. This
code has the same result as the code in the LOOP UNTIL example.

j = 6
DO
 ButtonClick 1,2
 SendKeys "{Left}"
 j=j-1
LOOP WHILE j>0

LOOP UNTIL statement
DO WHILE statement
DO UNTIL statement

Syntax

Description

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 79

 Chapter 5: Scripting Language Reference

■ 73

WHILE

WHILE expression
 statement
 .
 .
 .
WEND

Dragon NaturallySpeaking evaluates the expression. If it is true, Dragon
NaturallySpeaking performs the statement(s) down to WEND and
control loops back to the expression evaluation. When expression is
false, execution continues at the command or statement that follows
WEND.

This form is logically identical to DO WHILE/LOOP.

The Scratch That <2To10> Times command has the following script,
which uses the value of the number recognized from the 2To10 list as
the loop counter.

loop& = Val(_arg1)
while (loop&)
 HeardWord "Scratch","That"
 loop& = loop& - 1
wend

LOOP WHILE statement
LOOP UNTIL statement
DO WHILE statement
DO UNTIL statement

Syntax

Description

Note

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 80

Dragon NaturallySpeaking: Creating Voice Commands

74 ■

Scripting Commands

This table lists the scripting commands by functional area and provides
a brief description of each command. Full command descriptions
follow, in alphabetical order.

Command Description

Application Control

AppBringUp Starts or switches to an application.

AppSwapWith Swaps the current application with
another.

ClearDesktop Minimizes all applications.

DdeExecute Sends a DDE command.

DdePoke Sets an item value in a DDE application.

DllCall Calls a function in a DLL.

ShellExecute Loads an application.

WinHelp Runs Windows Help.

Dragon NaturallySpeaking Control

GoToSleep Puts Dragon NaturallySpeaking in sleep
mode.

SetMicrophone Turns the microphone on or off.

WakeUp Resumes normal recognition.

Mouse/Insertion Point Control

ButtonClick Clicks the specified mouse button.

DragToPoint Drags the mouse to the current point.

MouseGrid Uses MouseGrid to position the mouse
pointer.

RememberPoint Records the current mouse pointer
position.

SetMousePosition Places the mouse pointer at a specified
position.

(Continued)

Petitioner BB&T - Exhibit 1022 - Page 81

 Chapter 5: Scripting Language Reference

■ 75

(Continued)

Command Description

Recognition Control

HeardWord Invokes one or more word actions.

Sound Control

Beep Plays Windows beep sound.

PlaySound Plays a .wav file.

Script Execution Control

MsgBoxConfirm Asks a user to confirm an action.

RunScriptFile Executes a specified script.

Wait Makes the command script pause.

Text Entry Control

SendKeys Sends keystrokes to the active window.

SendSystemKeys Sends system keystrokes to Windows.

Text-to-Speech Control

TTSPlayString Sends a request to the text-to-speech utility
to play text.

Window Control

ControlPick Selects a control such as a button or
prompt.

MenuCancel Cancels the current menu.

MenuPick Selects a menu or menu item.

Petitioner BB&T - Exhibit 1022 - Page 82

Dragon NaturallySpeaking: Creating Voice Commands

76 ■

AppBringUp

AppBringUp " applicationName "[, " commandLine "[,
windowStyle [, " directory "]]]

Starts or makes active an application. The command operation depends
on the active applications and the command parameters, as follows:

1. If applicationName was used in a previous AppBringUp or
AppSwapWith command and a copy of the application is running,
the command tries to make that copy the active application. If
AppBringUp cannot activate it, the command starts a second copy.

2. If there is no commandLine argument, Dragon NaturallySpeaking
does the following:

a. If the applicationName is the executable name of an unnamed
instance of a program that is already loaded, Dragon
NaturallySpeaking brings up the instance and assigns it
applicationName. (Programs that are not started by
AppBringUp or AppSwapWith are unnamed.)

b. Otherwise, Dragon NaturallySpeaking runs any executable
named applicationName that it locates in your PATH, the
Windows directory, the Windows/System directory, or the
NatSpeak/Program directory.

3. If there is a commandLine argument, Dragon NaturallySpeaking
looks for a running copy of the program specified by this argument.

a. If it finds a running application that can support only one
instance, it brings up the existing instance and gives it the
name applicationName.

b. If it finds a running copy of the application that supports
multiple instances, it brings up a new copy and gives it the
name applicationName.

c. If it does not find a running copy of the program, it starts the
program specified by the commandLine argument and assigns it
applicationName.

Syntax

Description

Petitioner BB&T - Exhibit 1022 - Page 83

 Chapter 5: Scripting Language Reference

■ 77

The Dragon NaturallySpeaking Switch to <AppList> command uses
this scripting command.

applicationName The name by which Dragon NaturallySpeaking
identifies the program to bring up. The application is
assigned the name the first time you use it in this
command. This name is meaningful to Dragon
NaturallySpeaking only and does not affect the
application title bar.

commandLine The application program and any arguments such as
a document file or command switches. You do not
have to include the application’s .EXE extension. If
the commandLine does not specify a full file path,
the application must be in the current, Windows,
Windows\System, or Dragon NaturallySpeaking
directory, or in a directory listed in the PATH
variable. The default value for commandLine is the
same as the value specified in applicationName.

windowStyle A number specifying how the window appears when
you activate the application:

1, 5, or 9 Normal, active (default)

2 Minimized, active

3 Maximized, active

4 or 8 Normal, inactive

6 or 7 Minimized, inactive

If the application is already running, this value has
no effect.

directory Specifies the working directory for the application.
The default is the directory containing the program’s
executable file.

Example 1
This example starts or reactivates WordPad, opens the Dragon
NaturallySpeaking Readme file in a maximized window, and sets the
working folder to C:\My Documents.

AppBringUp "Readme", "WordPad C:\Natspeak\Help\
Readme.rtf", 3, "C:\My Documents"

Arguments

Examples

Petitioner BB&T - Exhibit 1022 - Page 84

Dragon NaturallySpeaking: Creating Voice Commands

78 ■

This second instruction reactivates the specified application (it must be
running) and file by using the same applicationName value.

AppBringUp "Readme"

Example 2
This example copies text from Dragon NaturallySpeaking to a different
application when you say “Copy All to Word” or “Copy All to
WordPad”, for example.

SendKeys "{Ctrl+a}{Ctrl+c}"
if arg1 = "Word" then AppBringUp "WinWord"
if arg1 = "WordPad" then AppBringUp "WordPad"
SendKeys "{Ctrl+v}"
SendSystemKeys "{Alt+Tab}"

AppSwapWith command
ShellExecute command

See Also

Petitioner BB&T - Exhibit 1022 - Page 85

 Chapter 5: Scripting Language Reference

■ 79

AppSwapWith

AppSwapWith " applicationName "

Switches the currently active application with applicationName.

1. If applicationName was used in a previous AppBringUp or
AppSwapWith command and a copy of the application is running,
the command tries to make that copy the active application. If
AppSwapWith cannot activate it, the command starts a second
copy.

2. Otherwise, If the applicationName is the executable name of an
unnamed instance of a program that is already loaded, Dragon
NaturallySpeaking brings up the instance and assigns it
applicationName.

3. Otherwise, Dragon NaturallySpeaking runs any executable named
applicationName that it locates in your PATH, the Windows
directory, the Windows/System directory, the Program
Files/Accessories directory, or the NatSpeak/Program directory.

applicationName Specifies the name of the application to run. Do not
include .EXE in the name.

The following command swaps the currently active application with
WordPad:

AppSwapWith "WordPad"

AppBringUp command

Syntax

Description

Argument

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 86

Dragon NaturallySpeaking: Creating Voice Commands

80 ■

Beep

Beep

Generates the Windows default beep sound by calling the Windows API
MessageBeep() function. The exact result of this call depends on both
the operating system and the system configuration. On some systems
with half-duplex sound systems, you must turn off the microphone
before using this command for users to hear the beep.

The following script turns off the microphone, plays the beep sound,
waits for ½ second to ensure that the sound finishes playing, and turns
the microphone back on:

SetMicrophone 0
Beep
Wait 500
SetMicrophone 1

PlaySound command

Syntax

Description

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 87

 Chapter 5: Scripting Language Reference

■ 81

ButtonClick

ButtonClick [button [, click]]

Clicks the specified mouse button at the current mouse location. The
command generates a single or double click. You can generate triple or
quadruple clicks by using two ButtonClick commands in a row.

The Dragon NaturallySpeaking global Mouse <MouseAction>
command uses this scripting command.

button A number that specifies which mouse button(s) to
click, as follows:

1 Left button (default)

2 Right button

4 Middle button

Add the above numbers to click multiple buttons
simultaneously.

click A number that specifies the number of clicks, as
follows:

1 Single click (default)

2 Double click

The following command double-clicks the left mouse button:

ButtonClick 1,2

MouseGrid command
RememberPoint command
SetMousePosition command

Syntax

Description

Arguments

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 88

Dragon NaturallySpeaking: Creating Voice Commands

82 ■

ClearDesktop

ClearDesktop

Minimizes all open applications.

AppBringUp command

Syntax

Description

See Also

Petitioner BB&T - Exhibit 1022 - Page 89

 Chapter 5: Scripting Language Reference

■ 83

ControlPick

ControlPick " caption "

Selects the control. Command buttons, option buttons, check boxes,
group boxes, list boxes, and text fields are examples of controls. Only
controls within the currently active window are available.

Generally, toolbar buttons, property sheet tabs, and taskbar buttons
cannot be selected using ControlPick.

Some Windows applications do not always use standard controls to
draw a seemingly ordinary prompt, push button, and so on. When this is
the case, Dragon NaturallySpeaking cannot find a control that matches
the caption, and ControlPick fails. If this happens, you may be able to
pick the control by using the SendKeys command to press an
accelerator key.

caption Identifies the selected control. The required value
depends on the control and application. For many
controls, the caption is the control’s label (for example,
the text on a button). This argument is case sensitive. If
the label includes an ampersand (&) character to identify
the control’s accelerator key, do not include the
ampersand in this argument.

If caption matches a “static” control, such as a prompt or
a list box, the control must have an accelerator key. (The
accelerator key is identified by an underlined character in
the caption.)

The ControlPick command does not work with some Microsoft Office
97 controls. If a control has an accelerator key, you can use the
SendKeys command to send the keystroke that selects the control.

The following command presses the OK button in the currently active
dialog box:

ControlPick "OK"

ButtonClick command
MenuPick command

Syntax

Description

Argument

Note

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 90

Dragon NaturallySpeaking: Creating Voice Commands

84 ■

DdeExecute

DdeExecute "app ", " topic ", " commandString "[,
async]

Sends a command or series of commands to the specified dynamic data
exchange (DDE) application. See the application’s documentation to
find the application name and topics to which the application responds.

app Specifies the application to which you are sending a
DDE command string. This value is normally the
name of the application’s .EXE file without the file
name extension. The application must be running.

topic Specifies the DDE topic. Many DDE applications
recognize a topic named “System”, which is always
available. Each open document may also be a
separate topic.

commandString Specifies the command or series of commands to
send to the DDE application. Most applications
require that each command be enclosed in square
brackets (for example, “[commandString]”). Do not
include spaces between bracketed commands.

async A number that indicates a synchronous or
asynchronous call, as follows:

0 Synchronous call (the default). DdeExecute
waits until the DDE application acknowledges
completion or a timeout occurs.

1 Asynchronous call. DdeExecute returns
immediately without waiting for the application
to acknowledge completion.

Syntax

Description

Arguments

Petitioner BB&T - Exhibit 1022 - Page 91

 Chapter 5: Scripting Language Reference

■ 85

Set async to 1 if you are calling a DDE command
that does not return immediately. For example, you
may request a command that opens a dialog box and
does not return until you close the dialog box. If you
set async to 0 (or omit the argument) and the DDE
command does not return quickly, DdeExecute fails
with a timeout error and Dragon NaturallySpeaking
displays a message box indicating a DdeExecute
error.

The following command tells Microsoft Excel to open the file
Amortize.xls. Note that the file name must be enclosed in two sets of
quotation marks:

DdeExecute "excel", "system",
"[open(""amortize.xls"")]"

DdePoke command
SendKeys command
“Using Dynamic Data Exchange” section on page 31

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 92

Dragon NaturallySpeaking: Creating Voice Commands

86 ■

DdePoke

DdePoke " app", " topic ", " item ", " value "

Sets the value of a specific item in a dynamic data exchange (DDE)
application. The application name, topic, and item name depend on the
application. See the documentation for that application.

app The name of the DDE application to which you are
sending a DDE poke command. The application must be
running.

topic Application topic to which you are sending a poke
command.

item The name of the item that you are changing.

value The new value for the item.

The following command sets to 10 the value of row 1, column 2 in the
worksheet “sheet1” in Microsoft Excel:

DdePoke "excel", "sheet1", "r1c2", "10"

DdeExecute command

Syntax

Description

Arguments

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 93

 Chapter 5: Scripting Language Reference

■ 87

DllCall

DllCall " lib ", " function ", "stringArg "

Calls a function in an application’s dynamic link library (DLL). The
function must be a PASCAL function that takes a single LPCSTR (long
pointer to a constant string) argument and has no return value. C or C++
functions must have prototypes equivalent to:

extern "C" __declspec(dllexport) void __stdcall
fn (LPCTSTR szParam);

This command is useful for adding your own extensions to the Dragon
NaturallySpeaking scripting language. The DllCall Script command
works even if the DLL file name extension is not “.dll”.

lib The name of the DLL file you are calling. The file
extension does not have to be .dll, and you must include
the extension name in the argument.

function Specifies either a string containing the function name or
the ordinal number of the entry point in the DLL. If you
are using an ordinal number, do not enclose it in
quotation marks. This argument must be a constant or a
variable. It cannot be an expression.

stringArg Use this argument to pass information to your function.
The stringArg argument has no meaning to Dragon
NaturallySpeaking. This argument can be a constant,
variable, or expression.

Do not use this command to call Windows system DLLs. However, you
can write a DLL with functions that convert the contents of the
stringArg from a single string into the appropriate arguments for a
Windows DLL call and then make the required Windows calls.

This command loads and releases the DLL each time you use it. If you
make frequent DLLCalls to the same DLL, you can have another
process load the DLL (and not unload it) to ensure that the DLL stays in
memory.

Syntax

Description

Arguments

Notes

Petitioner BB&T - Exhibit 1022 - Page 94

Dragon NaturallySpeaking: Creating Voice Commands

88 ■

The following command is equivalent to a PressButton(“bold”) C
function call, where the PressButton function is defined as void far
PASCAL PressButton (LPCSTR).

DllCall "wpx.dll", "PressButton", "bold"

RunScriptFile command

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 95

 Chapter 5: Scripting Language Reference

■ 89

DragToPoint

DragToPoint [buttons]

Performs a mouse drag. The drag starts at the location specified by the
last RememberPoint command and ends at the current mouse pointer
location. If you have not set the RememberPoint, an error message
appears. Shift keys that are in effect before this operation stay in effect
during the operation. The command does not work with applications
that do not support mouse dragging.

The Dragon NaturallySpeaking <MouseAction> command uses this
scripting command.

buttons A number that specifies which buttons to press and hold
while the drag takes effect:

1 Left mouse button (default)

2 Right mouse button

4 Middle mouse button

You can add the numbers together to press more than one
button at a time.

The following command presses the left and right mouse buttons and
drags the mouse from the location set by the last RememberPoint
command to the current mouse pointer location:

DragToPoint 3

ButtonClick command
MouseGrid command
RememberPoint command
SetMousePosition

Syntax

Description

Argument

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 96

Dragon NaturallySpeaking: Creating Voice Commands

90 ■

GoToSleep

GoToSleep

Puts Dragon NaturallySpeaking in sleep mode. In this mode
NaturallySpeaking normally recognizes only the words in the Asleep
state of the Global Commands Menu (which typically includes only the
Wake Up command).

The Dragon NaturallySpeaking Go to Sleep command uses this
scripting command.

WakeUp command

Syntax

Description

See Also

Petitioner BB&T - Exhibit 1022 - Page 97

 Chapter 5: Scripting Language Reference

■ 91

HeardWord

HeardWord " wordName"[, "wordName"]...

Causes the action associated with the wordName arguments to occur as
if you said these words to Dragon NaturallySpeaking as a phrase.
Dragon NaturallySpeaking resumes normal execution after the
wordName action completes.

wordName Specifies the word to recognize, as if you were
saying it to Dragon NaturallySpeaking. This
argument is case sensitive. You can specify up to
eight wordName arguments, separated by commas.
Each wordName must be a single word or list item
(which can be more than one word) in the active
vocabulary.

If any of the words specified in the command are not in the vocabulary,
Dragon NaturallySpeaking displays an error message.

If a word in a list has different written and spoken forms, use the entire
list entry, with both forms for the wordName argument. (You can use
either the written form or the written\spoken form for dictation words.)

Use a single backslash before dictation commands that do not have a
written form. For example, use HeardWord “\Caps”. To see a complete
list of the words that require this treatment, open the Vocabulary Editor
and scroll up. (The editor does not show the top of the list when it
opens.) The words at the top of the list that show a spoken form only
require a leading \ character. Note that Dragon NaturallySpeaking treats
these words as dictation words, not as commands. As a result they are
only available during dictation. They do not work, for example, if you
press the Ctrl key to force recognition of words as commands.

Some dictation vocabulary words, such as “Academy Awards”, consist
of more than one dictionary word. In these cases, put the complete
vocabulary word in a single argument.

The following example types a closing remark in Times New Roman
font at the end of a Dragon NaturallySpeaking document. Note that
“Times New Roman” is a single argument to the HeardWord command

Syntax

Description

Argument

Notes

Examples

Petitioner BB&T - Exhibit 1022 - Page 98

Dragon NaturallySpeaking: Creating Voice Commands

92 ■

because it is a list entry. Also, the Wait 100 command ensures that the
font gets set before Dragon NaturallySpeaking sends the keystrokes.

HeardWord "Go", "to", "Bottom"
HeardWord "Set", "Font", "Times New Roman"
Wait 100
SendKeys "{Enter 2}" + "This document was dictated
using Dragon NaturallySpeaking."

The following code from the NaturallySpeaking Global.dvc file enables
users to say commands such as “Scratch that 5 times” to delete the last
5 utterances. (An utterance is one or more words spoken as a single
unit, without pauses.)

COMMAND "Scratch That <2To10> Times" {
SCRIPT {

loop& = Val(_arg1)
while (loop&)
HeardWord "Scratch","That"
loop& = loop& - 1
wend

}
}

“Using HeardWord in Commands with Lists” section on page 30.See Also

Petitioner BB&T - Exhibit 1022 - Page 99

 Chapter 5: Scripting Language Reference

■ 93

MenuCancel

MenuCancel

Cancels the current menu and all parent menus used to reach it.

MenuPick command

Syntax

Description

See Also

Petitioner BB&T - Exhibit 1022 - Page 100

Dragon NaturallySpeaking: Creating Voice Commands

94 ■

MenuPick

MenuPick " menuItem "

Finds a currently visible menu or menu item labeled menuItem in the
active window and outputs the keystroke sequence to select it.

menuItem Specifies the desired menu or menu item. This
argument is case sensitive. If the menu name
contains an ellipsis (…), do not include it in the
menuItem argument.

The MenuPick command does not work with Microsoft Office 97 and
Microsoft Windows 98 menus. You can use the SendKeys command to
send keystrokes to select these menus.

You may need to insert a Wait command between consecutive
MenuPick commands to ensure that the first menu appears before the
next MenuPick command tries to select one of its entries.

The following script displays the current application’s File menu and
selects its Save As item.

MenuPick "File"
MenuPick "Save As"

MenuCancel command
ControlPick command

Syntax

Description

Argument

Notes

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 101

 Chapter 5: Scripting Language Reference

■ 95

MouseGrid

MouseGrid [state [, gridbox]]

Displays or shrinks the MouseGrid utility for positioning the mouse
pointer on the screen or active window.

state MouseGrid state:

0 Turns MouseGrid off or leaves it off.

1 (Default) If the grid is off and there is no gridbox
argument, fills the whole screen with the grid. If there
is a gridbox argument, the command also shrinks the
grid relative to the whole screen.

If the grid is on, the command shrinks the current grid
as specified by gridbox. If there is no gridbox
argument, the command:

• Expands the grid to its previous size

• Expands a grid that covers a window to cover the
screen

• Leaves a grid that already covers the full screen

2 If the grid is off and there is no gridbox argument, the
command fills the active window with the grid. If
there is a gridbox argument, the command also shrinks
the grid relative to the active window.

If the grid is on, the command shrinks the current grid
as specified by gridbox. If there is no gridbox
argument, the command expands the grid to its
previous size.

gridbox Indicates how the grid shrinks. If gridbox is 0, the
command undoes the most recent shrinkage. If gridbox is
1 through 9, it shrinks the grid in the indicated direction
based on:

1 2 3

4 5 6

7 8 9

Syntax

Description

Arguments

Petitioner BB&T - Exhibit 1022 - Page 102

Dragon NaturallySpeaking: Creating Voice Commands

96 ■

When the grid gets so small that it cannot display properly
if it gets smaller, it no longer shrinks. Instead, it moves in
the indicated direction.

If MouseGrid is off, the following command puts a grid in the upper-left
1/9th of the active window. If the MouseGrid is on, it shrinks the grid so
that it covers only the upper-left 1/9th of its initial area.

MouseGrid 2, 1

ButtonClick command
RememberPoint command
SetMousePosition command

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 103

 Chapter 5: Scripting Language Reference

■ 97

MsgBoxConfirm

MsgBoxConfirm " msg", type , " title "

Displays a standard Windows message dialog box with the appearance
defined by the arguments.

When the message box displays two buttons and you choose the second,
the script containing the MsgBoxConfirm command terminates.

msg Specifies the message to display in the dialog box. The
message is truncated after the 1024th character. Messages
longer than 255 characters with no intervening spaces are
truncated after the 255th character. Messages automatically
wrap from line to line to fit the box width.

type A number that specifies the buttons and icons to display in
the message box. This number is the sum of your choices
from each of the following three sections.

1. Select one number from this list:

0 Displays the OK button

1 Displays the OK and Cancel buttons

4 Displays the Yes and No buttons

5 Displays the Retry and Cancel buttons

2. Add it to one number from this list:

16 Displays the Critical Message icon (a stop sign)

32 Displays the Warning Query icon (a question
mark). The Microsoft Windows Interface
Guidelines for Software Design discourages using
this icon.

48 Displays the Warning Message icon (an
exclamation mark)

64 Displays the Information Message icon (a
lowercase i)

Syntax

Description

Arguments

Petitioner BB&T - Exhibit 1022 - Page 104

Dragon NaturallySpeaking: Creating Voice Commands

98 ■

3. Add that to one number from this list:

0 First button is the default

256 Second button is the default

title Specifies the caption for the dialog box

Dragon NaturallySpeaking editions through 3.01 do not support using
the second button as a default.

The following script displays a message box with Yes and No buttons.
The default is Yes, and there is a Warning query (?) icon. If you answer
Yes or press Enter the script sends the {Ctrl+s} key sequence. If you
choose No it terminates with no action.

To calculate the type value, add:

4 Displays the Yes and No buttons

+ 48 Displays the Warning Message icon

+ 0 Sets the first button as the default

52 Total

The script is:

MsgBoxConfirm "Keep your results?", 52, "Keep Results?"

SendKeys "{Ctrl+s}"

Note

Example

Petitioner BB&T - Exhibit 1022 - Page 105

 Chapter 5: Scripting Language Reference

■ 99

PlaySound

PlaySound "waveFile"

Plays the waveFile. This command turns the microphone off while the
file plays and then restores the microphone to its previous state. The
waveFile completes before continuing to the next command.

waveFile Specifies the sound input file. If you do not specify an
absolute path name, the command searches for the file in
the current, Windows, Windows system, and Dragon
NaturallySpeaking directories and all directories in your
PATH environment variable. You do not have to specify
the .wav file extension.

The following command plays the standard Windows 95 “Tada” sound:

PlaySound "C:\Windows\Media\Tada.wav"

Beep command

Syntax

Description

Argument

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 106

Dragon NaturallySpeaking: Creating Voice Commands

100 ■

RememberPoint

RememberPoint

Records the current position of the mouse pointer. Use this command to
specify the starting point of a DragToPoint mouse drag. The
remembered point is reset to the upper left corner of the screen when
Dragon NaturallySpeaking restarts.

The global Mouse <MouseAction> voice command uses this command
when you say “Mouse Mark”.

ButtonClick command
DragToPoint command
MouseGrid command
SetMousePosition command

Syntax

Description

See Also

Petitioner BB&T - Exhibit 1022 - Page 107

 Chapter 5: Scripting Language Reference

■ 101

RunScriptFile

RunScriptFile " fileName"

Runs a Dragon NaturallySpeaking script contained in the specified file.
The file must be in ANSI text format and must contain only valid
Dragon NaturallySpeaking scripting language commands. You can nest
RunScriptFile commands (that is, call one script file from another).

fileName Specifies the name of an ANSI text file to read.

Dragon NaturallySpeaking releases through Version 3.01 will only run a
script file that is in the NatSpeak/Program directory or is specified by an
absolute path name such as C:\Myapps\Myscript.txt.

The following command runs the script contained in the Commands.txt
file:

RunScriptFile " Commands.txt "

DllCall command
HeardWord command

Syntax

Description

Argument

Note

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 108

Dragon NaturallySpeaking: Creating Voice Commands

102 ■

SendKeys

SendKeys " keystroke text "

Sends keystrokes to the currently active window. Use this command for
most key sequences that you include inside voice commands. Use the
SendSystemKeys command in place of this command only where this
command does not work, such as in sending the {ctrl+esc}, {alt+esc},
and {alt+tab} key sequences to Windows 95.

keystroke text Specifies which keystrokes to send to the currently
active window. Send nonprinting keys by enclosing
their names in braces ({}). To repeat a key, enclose
the key name, a space, and the number of repetitions
in braces. Specify a shift-key combination by
enclosing the modifier key name (such as Alt), a
plus sign (+), and the shifted key in braces, without
any spaces.

Do not include spaces between the names of keys pressed
simultaneously, such as Alt+Tab.

Any modifier keys (Shift, Ctrl, Alt) pressed while the SendKeys
command executes do not affect the command action.

You should test the use of SendKeys under varying conditions to avoid
unpredictable results.

Use a DdeExecute instruction, rather than SendKeys, if you cannot be
sure a key sequence always produces the same result.

In Dragon NaturallySpeaking 3.x you can use 0 to indicate zero
repetitions of a key. This feature is useful for scripts where a keystroke
may be used 0 or more times, depending upon a variable value. This
feature is not supported in Dragon NaturallySpeaking 2.x.

Syntax

Description

Arguments

Notes

Petitioner BB&T - Exhibit 1022 - Page 109

 Chapter 5: Scripting Language Reference

■ 103

The following command sends three Ctrl+Right keystrokes to the
application. In most word-processing applications, this moves the text
insertion point right by three words:

SendKeys "{Ctrl+Right 3}"

The Dragon NaturallySpeaking word processor Set Font <FontFace>
command includes the following scripting command. It sends the
keystrokes needed to bring up the font change dialog box, followed by
the contents of the command’s _arg1 variable (the name of the
typeface), followed by the Enter key. The + signs preceding and
following the variable name concatenate the three parts of the argument
into a single text string.

SendKeys "{Alt+o}f{Alt+f}"+arg_1+"{Enter}"

SendSystemKeys command
DdeExecute command
Key Name List on page 116
“Key Names in Voice Commands” section on page 13
“Using Dynamic Data Exchange” section on page 31

Examples

See Also

Petitioner BB&T - Exhibit 1022 - Page 110

Dragon NaturallySpeaking: Creating Voice Commands

104 ■

SendSystemKeys

SendSystemKeys " keystroke text "[, speed]

Sends keystrokes such as {ctrl+esc} to the Windows operating system.
Only use this command for short system key sequences where the
SendKeys command does not work. It is particularly useful for sending
the {Ctrl+Esc}, {Alt+Esc}, and {Alt+Tab} key sequences and hot keys
(such as the key to bring up the Correction dialog box).

The keyboard Alt, Ctrl, and Shift keys affect this command. For
example, if you press the Shift key and run “SendSystemKeys
"{Alt+Esc}"”, Windows gets a Shift Alt Esc key sequence. The
command sends keystrokes more slowly than the SendKeys command.
Also, if the system responds slowly, it is possible to overflow the system
keyboard buffer by using a long string with this call.

keystroke text Specifies the system keystroke combination to send
to Windows, in standard keystroke string format. Do
not include spaces between the names of keys
pressed simultaneously.

speed Specifies the speed at which to generate the
keystroke events as a percentage of the default
speed. This argument must be a positive integer in
the range 1 through 32767, where 100 is the default
speed, 50 is half the default speed, and so on. In
general, you should only use this argument if you
have trouble getting the keystrokes to work correctly
with slow systems and applications. You can also
speed the keystrokes by setting this argument above
100, if experience proves it works reliably.

The following command sends the Alt+Esc key combination to the
Windows system:

SendSystemKeys "{alt+esc}"

SendKeys command
“Key Names in Voice Commands” section on page 13

Syntax

Description

Arguments

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 111

 Chapter 5: Scripting Language Reference

■ 105

SetMicrophone

SetMicrophone [onOff]

Turns the microphone on or off.

The Dragon NaturallySpeaking Microphone Off command uses this
scripting command.

onOff Specifies whether the microphone is on or off, as follows:

0 Off

nonzero On

If you do not specify onOff, the microphone setting
toggles.

The following command turns on the microphone:

SetMicrophone 1

GoToSleep command
WakeUp command

Syntax

Description

Arguments

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 112

Dragon NaturallySpeaking: Creating Voice Commands

106 ■

SetMousePosition

SetMousePosition relativeTo , xPos [, yPos]

Positions the mouse pointer using absolute or relative coordinates. This
command lets you put the pointer on items on the screen that are always
at the same location and do not have accelerator keys. You can follow
the SetMousePosition command with a ButtonClick 1,1 command to
single-click the item.

The Dragon NaturallySpeaking global Mouse <Direction> <1To10>
command uses this scripting command.

relativeTo Indicates the meaning of the xPos and yPos coordinate
arguments as follows:

0 Coordinates are relative to the top left of the screen.

1 Coordinates are relative to the top left of the active
window.

2 Coordinates are relative to the current pointer
position.

3 xPos is a map position relative to the screen.

4 xPos is a map position relative to the active window.

5 Coordinates are relative to the upper left corner of
the client area of the active window. (The client area
is the interior of the window that does not include the
title bar, menu, and borders.)

6 xPos is a map position relative to the client area of
the active window.

xPos, yPos The position of the mouse.

If relativeTo is 0, 1, 2, or 5, xPos and yPos specify a
positive or negative number of pixels, with xPos
increasing to the right and yPos values increasing
downward.

If relativeTo is 3, 4, or 6, xPos must be an integer from 0
through 8. Do not specify a yPos value, or the command
will cause an error message. The command puts the

Syntax

Description

Arguments

Petitioner BB&T - Exhibit 1022 - Page 113

 Chapter 5: Scripting Language Reference

■ 107

pointer in the location that corresponds to the number on
the following map:

8 1 5

4 0 2

7 3 6

If relativeTo is 3, the command puts the pointer just inside
the indicated screen corner or edge. The pointer is set back
from the edge so it remains visible. Therefore, if xPos is 5,
SetMousePosition puts the pointer just inside the upper
right corner of the screen.

If relativeTo is 4, the command puts the pointer over the
indicated edge of the active window, usually on a sizing
border. Therefore, if xPos is 3, the command puts the
pointer over the middle of the lower edge of the active
window.

If relativeTo is 6, the command puts the pointer over the
indicated edge of the client area of the active window.

If relativeTo is 0, 1, 2, or 5, the position is in pixels. You must know the
screen resolution to be sure of the command results. For example, if the
screen resolution is 640x480, and you specify coordinates of 680x200,
the coordinates are off screen.

If the requested coordinates are off screen, and relativeTo is 0, 1, or 5,
the system reports an error. In other cases, the command puts the
pointer as close to the requested position as the screen allows.

The following command positions the mouse pointer 300 pixels to the
right and 200 pixels down from the upper left corner of the active
window:

SetMousePosition 1, 300, 200

ButtonClick command
MouseGrid command

Notes

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 114

Dragon NaturallySpeaking: Creating Voice Commands

108 ■

ShellExecute

ShellExecute " commandLine "[, windowStyle [,
" directory " [" application name "]]]

Loads an application. If a copy of the application is already running, it
loads a new instance of the application.

commandLine Specifies the executable file to run and any
command line arguments. You do not have to
include the application’s .exe extension. If
commandLine does not specify a full file path, the
application must be in the current, Windows,
Windows\System, or NatSpeak\Program directory,
or in a directory that is listed in the PATH variable.
You cannot include spaces in the executable path. If
any directory name includes spaces, use its short
name.

windowStyle Controls how the window appears when you activate
the application. Must be one of the following:

1, 5, or 9 Normal (with focus, default)

2 Minimized (with focus)

3 Maximized (with focus)

4 or 8 Normal (without focus)

6 or 7 Minimized (without focus)

directory Assigns a working directory for the application. The
default is the directory that contains the executable
file.

applicationName Lets you name the application. This name is used by
the AppBringUp and AppSwapWith commands. The
application name must be unique. ShellExecute
reports an error if the name is already in use.

In Dragon NaturallySpeaking releases through Version 3.01 the
commandLine argument must contain only the executable name or path.

Syntax

Description

Arguments

Note

Petitioner BB&T - Exhibit 1022 - Page 115

 Chapter 5: Scripting Language Reference

■ 109

If you include any command line arguments, Dragon NaturallySpeaking
reports an error.

The following command starts an instance of WordPad with its window
maximized and sets the working directory to C:\DOCS. This instance of
WordPad has the name “letter,” and you can now use the AppBringUp
scripting command with the argument “letter” to activate the window
while it is open.

ShellExecute "WordPad", 3, "c:\docs", "letter"

AppBringUp command

Example

See Also

Petitioner BB&T - Exhibit 1022 - Page 116

Dragon NaturallySpeaking: Creating Voice Commands

110 ■

TTSPlayString

TTSPlayString [" text string "[, " switches "]]

Sends a request to the text-to-speech utility. If the microphone is on,
this command turns it off during playback. You can stop the text-to-
speech engine during playback by turning on the microphone by mouse
or by keyboard.

text string The text string to be read back by the text-to-speech
utility. If this string is empty or not specified, the
command uses the contents of the Windows clipboard.

switches A series of values specifying the text-to-speech output
characteristics. Switches are optional; if you omit a
switch, Dragon NaturallySpeaking uses the default text-
to-speech engine settings specified on the Options dialog
box Text-to-Speech tab. Switches can be used in any
order. The valid switches are:

/sXXX Sets the playback speed in arbitrary units in the
range 0–255. The default is 127.

/pXXX Sets the voice pitch on a low-to-high scale. The
value is in arbitrary units in the range 0–255.
The default is 127.

/lXX Sets the playback volume. This setting works in
relation to the speaker volume set by the Audio
Setup wizard. The value must be in the range 0–
255. The default is 255.

/e Tells the text-to-speech utility to ignore e-mail
headers and other common e-mail separators
(like a line of angle brackets (>) during
playback.

You can optionally install text-to-speech on Dragon NaturallySpeaking
Deluxe and Professional editions. If you run this command on an
edition that does not have text-to-speech installed, Dragon
NaturallySpeaking displays an error message. This message includes a
check box that lets you tell Dragon NaturallySpeaking not to display the
message in the future.

Syntax

Description

Arguments

Note

Petitioner BB&T - Exhibit 1022 - Page 117

 Chapter 5: Scripting Language Reference

■ 111

The following command uses the default settings of the text-to-speech
engine to read the string:

TTSPlayString "Click the microphone button to start."

The following command tells Dragon NaturallySpeaking to read the
string at a moderately slow pace with a lower-pitched voice and a
volume of about 2/3 of the current setting:

TTSPlayString "Your journey is about to begin.",
"/s100 /p50 /l170"

Examples

Petitioner BB&T - Exhibit 1022 - Page 118

Dragon NaturallySpeaking: Creating Voice Commands

112 ■

Wait

Wait milliseconds

Causes Dragon NaturallySpeaking to wait the specified time before it
runs the next script command (or exits the script, if Wait is the last or
only command in the script). The Wait command disables all user input
while it executes. You can use the Wait command to ensure that an
application has enough time to load before the script continues.

In many cases, this command stops recognition. However, it does enable
recognition as appropriate, for example, when the previous command is
a MsgBoxConfirm command (to allow spoken responses to the message
box).

milliseconds Specifies how long, in milliseconds, to pause before
running the next script command or exiting. This
number must be in the range 0–32767. If you need
to specify a wait longer than 32 seconds, use a loop
to repeat the Wait command.

The following command causes the script to pause100 milliseconds
(1/10 of a second) before it executes the next command:

Wait 100

Syntax

Description

Note

Argument

Example

Petitioner BB&T - Exhibit 1022 - Page 119

 Chapter 5: Scripting Language Reference

■ 113

WakeUp

WakeUp

Causes Dragon NaturallySpeaking to exit sleep mode and resume
normal recognition.

The Dragon NaturallySpeaking Wake Up command uses this scripting
command.

GoToSleep command

Syntax

Description

See Also

Petitioner BB&T - Exhibit 1022 - Page 120

Dragon NaturallySpeaking: Creating Voice Commands

114 ■

WinHelp

WinHelp " helpFile ", cmd[, topic]

Activates the Windows Help application and specified Help (.HLP) file,
and then displays the specified window or topic.

The Dragon NaturallySpeaking What Can I Say and Give Me Help
commands use this scripting command.

helpFile The name of the Help (.HLP) file to activate. If no path is
specified, Dragon NaturallySpeaking looks for the file in
the Natspeak\Help directory. The Help file name can be
followed by a window identifier in the following form:

>WindowName

cmd A value telling the Help engine what to do, as follows:

1 Display the Help topic identified by the topic
argument value.

2 Close the Windows Help application.

3 Display the default Help Contents topic. This topic is
defined either in the Help project (.hpj) file or by a
previous WinHelp command with a cmd value of 5. If
there is no Contents topic, WinHelp displays the first
topic in the Help file.

4 Display Help for Windows Help.

5 Set the specified topic as the Help Contents topic.
Does not display the Help file.

8 Display in a popup window the Help topic identified
by the topic argument value.

9 Switch to the specified Help file. Open it with the first
topic if the file is not already open. (This is useful if
another Help file has the focus.)

11 Display the Help Topics dialog box. The tab used
most recently is displayed.

Syntax

Description

Arguments

Petitioner BB&T - Exhibit 1022 - Page 121

 Chapter 5: Scripting Language Reference

■ 115

topic Identifies the Help topic to use. This value must be the
decimal number value of a Help context identifier defined
in the [MAP] section of the .HPJ file (that is, the numeric
value assigned to a specific topic ID). This value is
required if the cmd value is 1, 5, or 8.

This instruction opens Dragon.hlp in a window named “main” and
displays the topic with the context ID 1033096 (Hex 207E8). (In
Dragon NaturallySpeaking 3.0 this number corresponds to the
“Selecting the type of command action” topic.)

WinHelp "C:\Natspeak\Help\Dragon.hlp>main", 1,
1033096

Example

Petitioner BB&T - Exhibit 1022 - Page 122

Dragon NaturallySpeaking: Creating Voice Commands

116 ■

Key Name List

Dragon NaturallySpeaking supports both the base keys supported on all
keyboards and the extended keypad keys that may not be available on
some systems.

All PC keyboards have the following keys:

Esc Tab Num Key 0

F1 Caps Lock Num Key.

F2 Shift or LeftShift NumKey* or Asterisk or Mult

F3 Ctrl or LeftCtrl NumKey– or Minus

F4 Alt or LeftAlt NumKey+ or Plus

F5 Space Home

F6 BackSpace Up

F7 Enter PgUp

F8 RightShift Left

F9 NumKey7 Center

F10 NumKey8 Right

F11 NumKey9 End

F12 NumKey4 Down

SysReq NumKey5 PgDn

PrtSc NumKey6 Ins

ScrollLock NumKey1 Del

Pause NumKey2

Break NumKey3

Base Keys

Petitioner BB&T - Exhibit 1022 - Page 123

 Chapter 5: Scripting Language Reference

■ 117

The 101-key “Extended” keyboards used on most desktop computers
have the following additional keys.

On the right side of the main keyboard:

RightAlt
RightCtrl

Between the main keyboard and the numeric keypad:

ExtIns ExtHome ExtPgUp

ExtDel ExtEnd ExtPgDn

ExtUp

ExtLeft ExtDown ExtRight

On the numeric keypad:

NumLock
NumKey/ or Slash
NumKeyEnter or KeyPadEnter

Always precede the Break key with Ctrl.

The NumKey0–9 and NumKey. entries send the codes generated by
pressing the numeric pad keys with NumLock on. The Home, Up,
PgUp, and other such key names send the codes generated by pressing
the numeric pad keys with NumLock off.

Center is the non-NumLock version of NumKey5.

“Key Name in Voice Commands” section on page 13.

Extended Keypad
Keys

Notes

See Also

Petitioner BB&T - Exhibit 1022 - Page 124

Petitioner BB&T - Exhibit 1022 - Page 125

■ 119

Glossary

A keyboard key or key combination that invokes a particular application
command, such as Ctrl+s to save a file.

A numeric representation characterizing the basic sound units of a word
or phrase.

The application that currently has the Windows focus. The active
application receives any keystrokes. See active window.

The set of words that an application recognizes at any one time. See
resident vocabulary, total vocabulary.

The window in which you are currently working or directing input. Its
title bar is highlighted.

The process of improving existing speech models to better reflect your
speech. Dragon NaturallySpeaking adapts models when you use the
Correction dialog box to correct a recognition error. See training .

Using the words in the International Communication Alphabet to
represent letters and spell words.

The set of 8-bit western-language characters defined by the American
National Standards Institute. Also referred to as the ISO 8859-1 or
Latin-1 character set. The ANSI character set is a superset of the 7-bit
ASCII character set. For example, ANSI (decimal) code 153, the
Trademark symbol (™), is not in the ASCII character set.

A

accelerator key

acoustic model

active application

active vocabulary

active window

adaptation

alpha-bravo spelling

ANSI character set

Petitioner BB&T - Exhibit 1022 - Page 126

Dragon NaturallySpeaking: Creating Voice Commands

120 ■

A dictionary containing the total vocabulary, with the exception of
any user-defined words. This dictionary resides on disk, and its words
are used only during error correction and when adding new words and
phrases. The Dragon NaturallySpeaking backup dictionary contains
over 230,00 words.

A standard Dragon NaturallySpeaking command as opposed to user-
written voice commands. A built-in command can be either a dictation
command or a voice command written by Dragon Systems.

See insertion point.

To position the pointer over an object and then press and release a
mouse button. The act of clicking. See press.

An utterance (word or phrase) that causes Dragon NaturallySpeaking
to take some action other than type the spoken text. “Command” is
normally used for built-in commands, including dictation commands,
while “voice command” is used for user-written voice commands.

The use of speech to control a computer application, the computer
system environment, or equipment. Contrast with dictation.

Words that sound alike (or very similar) to a speech-recognition
system. Shorter words are generally more confusable than longer words.

Words spoken fluently and rapidly without pauses between individual
words, as in conversational speech. Contrast with discrete speech.

Recognition of continuous speech. Recognition where the recognizer
treats each utterance as a stream and breaks it into words recognized
individually.

A Microsoft Windows object that enables user interaction or input, often
to initiate an action, display information, or set values.

B

backup dictionary

built-in command

C

caret

click

command

command and control

confusable words

continuous speech

continuous speech
recognition

control

Petitioner BB&T - Exhibit 1022 - Page 127

Glossary

■ 121

A generic term used for the indicator on the computer screen that shows
where user interaction occurs. Often used for the insertion point or
pointer.

See Dynamic Data Exchange.

A secondary window that gathers additional information from a user.

Using speech to enter text into a document.

A command (such as Caps On) that you can say without pause during
dictation. Dictation commands are built into the Dragon
NaturallySpeaking system and cannot be added. Contrast with voice
command.

A word that Dragon NaturallySpeaking enters directly into an
application. Contrast with command.

The total vocabulary of a speech-recognition system. The file or files
that contain the spellings and phonetic information for all the words that
the system can recognize. See backup dictionary.

Speech where you must pause between words. Contrast with
continuous speech.

A set of routines that can be dynamically linked with an application
program.

A file that defines Dragon NaturallySpeaking voice commands.

A protocol for communicating between Windows applications.

cursor

D

DDE

dialog box

dictation

dictation command

dictation word

dictionary

discrete speech

Dynamic Link Library
(DLL)

.DVC file

Dynamic Data
Exchange (DDE)

Petitioner BB&T - Exhibit 1022 - Page 128

Dragon NaturallySpeaking: Creating Voice Commands

122 ■

An initial process intended specifically for making representative
speaker-dependent models for a recognizer. Also called training . See
adaptation.

Extraneous sounds that may be confused with speech. Environmental
sounds include noises, coughing, telephone rings, and other nonspeech
sounds.

The location where text or graphics are inserted (also referred to as the
cursor or caret).

Also called the alpha-bravo words. A set of words (such as “lima”) each
representing a single letter of the English alphabet. The ICA is less
likely to be recognized incorrectly than the sounds of the letter names.

A voice command that only generates keystrokes. Contrast with script
command.

Data about the use of words in a language, such as word-frequency
information. Dragon NaturallySpeaking uses language model
information to improve recognition accuracy.

A word, symbol, or number that defines itself; contrast with variable,
which represents some other value.

See voice command

E

enrollment

environmental sounds

I

insertion point

International
Communications
Alphabet (ICA)

K

keystroke command

L

language model

literal

M

Macro

Petitioner BB&T - Exhibit 1022 - Page 129

Glossary

■ 123

(1) The section of a Global.dvc file that defines the commands that
apply to a particular application. There is also a Global commands
menu.
(2) A list of commands that you can choose in a Windows user
interface. For example, most Windows programs have a File menu.

A description or representation of observed behavior. Dragon
NaturallySpeaking has acoustic models for speech sounds and
language models for word use.

An input (pointing) device with one or more buttons. The mouse
typically moves the pointer.

A mechanism in Dragon NaturallySpeaking that lets you position the
pointer by speech.

See Pointer

Moving between or within elements of a graphical user environment
such as Microsoft Windows.

A word not in the active vocabulary, so it cannot be recognized
immediately.

A multiple-word utterance.

A graphic screen representation of the pointing device location. Often
referred to as the mouse pointer or cursor. See mouse, insertion point.

To press and release a keyboard key. Also used for activating a visual
representation of a button. See click.

menu

model

mouse

MouseGrid

mouse pointer

N

navigation

O

out-of-vocabulary word

P

phrase

pointer

press

Petitioner BB&T - Exhibit 1022 - Page 130

Dragon NaturallySpeaking: Creating Voice Commands

124 ■

A representation of how a word is pronounced. A word can have more
than one pronunciation.

The process of identifying the contents of spoken material.

A software component that takes speech as input and determines what is
spoken.

The set of words that are in computer memory. The resident vocabulary
can have user-defined words that are not in the backup dictionary. See
active vocabulary, total vocabulary.

Speech Application Programming Interface, a programming interface
defined by Microsoft, Inc., for the interaction between application
programs and speech recognition software.

A Dragon NaturallySpeaking scripting language program.

A voice command that runs one or more scripting commands (a
script). Contrast with keystroke command.

A command in the Dragon NaturallySpeaking scripting language.
Scripting commands control Dragon NaturallySpeaking, applications,
and the Windows environment.

The programming language for Dragon NaturallySpeaking voice
commands.

To identify one or more objects on which to perform an operation.

See accelerator key.

pronunciation

R

recognition

recognizer

resident vocabulary

S

SAPI

script

script command

scripting command

scripting language

select

Short-cut key

Petitioner BB&T - Exhibit 1022 - Page 131

Glossary

■ 125

A special mode in which Dragon NaturallySpeaking only responds to
words in Asleep state in the Global Commands menu, which typically
contains only the Wake Up command.

An application specifically designed to respond to speech. Dragon
NaturallySpeaking can work with almost any application that is not
itself speech-aware.

(1) The condition of a system, such as an executing computer program,
with regard to phase, form, or structure. (2) The section of a Global.dvc
file that defines the commands that can be recognized when a particular
window is active. (3) The condition of a speech recognizer that
corresponds to the state(s) from which it can recognize. Synonymous
with mode.

(1) A sequence of spoken words or phrases, such as a zip code or a
telephone number, intended as single, useful input to a recognizer.
(2) A one-dimensional array of characters delimited by quotation marks
(") in the Dragon NaturallySpeaking voice command language.

The structure of strings (sentences) in a language. The rules defining
the valid sequence of elements in a language.

The set of all words that a recognizer can understand, usually used to
mean the resident vocabulary plus all words in the backup dictionary.
See active vocabulary.

The process of making representative acoustic models for a recognizer.
You typically go through a training procedure when you first use a
speech-recognition product. Also called enrollment. See adaptation.

A file that contains the acoustic model information for a particular user.

One or more words spoken as a single unit, without pauses.

sleep mode

speech-aware
application

state

string

syntax

T

total vocabulary

training

U

user file (USR)

utterance

Petitioner BB&T - Exhibit 1022 - Page 132

Dragon NaturallySpeaking: Creating Voice Commands

126 ■

Words and phrases that the recognizer can understand. See resident
vocabulary, active vocabulary, total vocabulary.

A Dragon NaturallySpeaking file that defines a vocabulary. The VOC
file includes word spellings, pronunciations, and other information.

A Dragon NaturallySpeaking command consisting of a voice
command name and a voice command action. Types of voice
commands include built-in command, keystroke command, and
script command. Contrast with dictation command.

The action that results when you say a voice command name. Defined
by a keystroke sequence or one or more scripting language commands.

The command that you say to run a voice command.

The scripting language commands that define a voice command action.

The basic unit of speech that a recognizer acknowledges. May be
smaller or larger than a word in a language. For example, in Dragon
NaturallySpeaking,“Wake Up” is a word. See dictation word, dictation
phrase, phrase.

V

vocabulary

vocabulary file (VOC)

voice command

voice command action

voice command name

voice command script

W

word

Petitioner BB&T - Exhibit 1022 - Page 133

■ 125

Index

Symbols

- arithmetic operator 45
' in Global.dvc 38
"

in Global.dvc 38
in scripts 13

#
data type 42
in Global.dvc 38

$ data type 42
% data type 42
& data type 42
* operator 45
/ operator 45
: in scripts 13
\

for dictation commands 11, 38
in Global.dvc 12, 38, 39

\\ in Global.dvc 12, 38, 39
\" in Global.dvc 38, 39
{

for key names 12
in Global.dvc 37

}
for key names 12
in Global.dvc 37, 39

’ in scripts 13
+

arithmetic operator 45
for string concatenation 22
in keystroke combinations 12
string operator 48

<
comparison operator 46
for list names 9

<= comparison operator 46
<> comparison operator 46
= comparison operator 46
>

comparison operator 46
for list names 9

>= comparison operator 46

A

action, described 2
actions, confirming 95
activating applications 74, 77
aliases, creating 22
AND operator 47
angle brackets, in Sentence

Commands 24
ANSI characters, specifying 51
AppBringUp 74
applications

activating 74, 77
changing descriptive names 33
controlling 82, 84
interacting with 17
minimizing 80
selecting 74
specifying commands for 7
specifying in Global.dvc 33
starting 74, 106
starting and selecting 20
swapping 77

application-specific commands
described 2
specifying in Global.dvc 33
specifying window for 7
suggestions for using 8

appName in Global.dvc 33
AppSwapWith 77
argument data types 43
arithmetic operators 45
Asleep state 34, 35

B

backslash
for dictation commands 11, 38
in Global.dvc 12, 38, 39

base key names 114
BASIC, and scripting language 4
Beep 78

Petitioner BB&T - Exhibit 1022 - Page 134

Dragon NaturallySpeaking: Creating Voice Commands

126 ■

braces
for key names 12
in Global.dvc 37, 39

brackets, angle 9
ButtonClick 79
buttons, displaying 95

C

calling voice commands from
voice commands 28

Cancel button 95
capitalization, command name 9
case, converting 56, 61
CDbl 50
characters, converting case 56, 61
Chr$ 51
Cint 52
ClearDesktop 80
code, limiting duplicate 28
COMMAND Global.dvc keyword

35
commands

DDE 82, 84
See also voice commands

comments
in Global.dvc 38
in scripts 13

comparison operators 46
concatenation 22

operator 48
conditional statements 63
confirming actions 95
ControlPick 81
controls, selecting 19, 81
conventions

.DVC file 37
Global.dvc file 37
key name 12
KEYS section 39
lists 11
scripting language 13
variable name 42
voice command name 8

Critical Message Icon 95
CStr 53

D

data manipulation functions 49
data types 42
DDE

commands, sending 82
messages to applications 29
selecting controls and menus 19
sending commands 84

DdeExecute
and SendKeys 30
Scripting Command 82
using 29

DdePoke
Scripting Command 84
using 30

dictation comands
described 11

dictation commands
in Global.dvc 38
specifying in HeardWord 89

DllCall 85
DO UNTIL 67

example 24
DO WHILE loops 68
Dragon NaturallySpeaking

controlling 20
use of Global.dvc 32

DragToPoint 87
duplication, eliminating 28
DVC files

rules and conventions 37
See also Global.dvc file

E

Edit Command Wizard 5
e-mail, and text-to-speech 108
errors

in loops 24
looping 63
script 5

escape sequences, Global.dvc
KEYS section 39

escape sequences, KEYS section
39

execution, pausing 110
Expressions 41
extended keypad key names 115

Petitioner BB&T - Exhibit 1022 - Page 135

Index

■ 127

F

file format, Global.dvc 32
files, Global.dvc 14

See also Global.dvc 14
floating point

converting to 50
data types 42

flow control
statements 63
using 24

functions
calling external 85
CDbl 50
Chr$ 51
Cint 52
CStr 53
data manipulation 49
Hex$ 54
Instr 55
LCase$ 56
Len 57
Mid$ 58
See also individual function

names
Str$ 59
String$ 60
Ucase$ 61
Val 62

G

global commands
described 2, 8
hidden 35
preventing running 35
specifying in Global.dvc 34

GLOBAL Global.dvc keyword 34
Global.dvc

backslash in 39
braces in 37, 39
COMMAND keyword 35
comment characters 38
dictation commands 38
file format 32
GLOBAL keyword 34
hexadecimal characters in 39
introduction 5, 31
KEYS escape sequences 39

KEYS keyword 36
LIST keyword 37
MENU keyword 33
modifying 15
newline characters in 39
NOGLOBALS keyword 35
quotes in 38, 39
return characters in 39
sample 39
SCRIPT keyword 36
SLEEPING keyword 35
space characters in 39
STATE keyword 33
tab characters in 39
use of 31
use of backslash character 12,

38, 39
user-specific files 14
whitespace characters 38
wrapping text in 39

GOTO statements 66
GoToSleep 88
guidelines

Global.dvc file 37
key name 12
KEYS sectuib 39
lists 11
scripting language 13
variable name 42
voice command name 8

H

HeardWord 89
and dictation commands 38
in list commands 27
using 22

Help, displaying 112
Hex$ 54
hexadecimal characters in

Global.dvc 39
hexadecimal representation 54

Petitioner BB&T - Exhibit 1022 - Page 136

Dragon NaturallySpeaking: Creating Voice Commands

128 ■

I

icons, message box 95
IF THEN ELSE statements 65
IF THEN statements 64

eliminating 27
Information Message icon 95
Instr 55

extracting written word forms 27
integer data types 42
integers

converting to 52
converting to strings 59

K

key names 114
specifying 12

KEYS
escape sequences 39
Global.dvc keyword 36

keystroke commands 2
and system keys 18
example 2
Global.dvc escape sequences 39
Global.dvc file entries 36
using lists with 25

keystrokes
generating multiple 13
in script commands 18
sending 100, 102
sending to applications 17

L

Labels 66
LCase$ 56
Len 57
LIST Global.dvc keyword 37
lists

and keystroke commands 25
command execution 25
command names 24
guidelines for entries 11
guidelines for names 11
overview 10
punctuation in names 11
scripts using 25
simple command example 26

specifying in Global.dvc 37
using for natural commands 28
variable names 25, 42
written and spoken words 26

literals, combining with variables
22

logical operators 47
LOOP UNTIL 69
LOOP WHILE 70
loops

DO UNTIL 67
DO WHILE 68
errors in 24
infinite 63
LOOP UNTIL 69
LOOP WHILE 70

M

macros, defined 1
MENU Global.dvc keyword 33
MenuCancel 91
MenuPick 92
menus

canceling 91
selecting 19, 92
specifying 33

message box 95
messages, displaying 95
microphone

and Beep command 78
controlling 21, 103

Mid$ 58
extracting written word forms 27

minimizing applications 80
mouse

clicking 79
controlling 18, 98
dragging 87
positioning 93, 104

MouseGrid 93
state 34

MsgBoxDisplay 95

Petitioner BB&T - Exhibit 1022 - Page 137

Index

■ 129

N

names
key 12
list 11
list variables 25
of commands with lists 24
special key 12
variable 13, 42
voice command 1, 8

naming conventions, voice
command 8

navigating windows 19
New Command wizard 5
new users, Global.dvc file for 15
newline characters in Global.dvc

39
No button 95
NOGLOBALS Global.dvc

keyword 35
NOT operator 47

O

OK button 95
operators

arithmetic 45
comparison 46
logical 47
precedence 44
string 48

OR operator 47

P

pitch, setting text-to-speech 108
playback, setting text-to-speech

108
PlaySound 97
point, setting 98
Press Key commands 28
punctuation

in command names 9
in list names 11

Q

querying users 95

quotes
for literal strings 13
in Global.dvc 38
in Global.dvc KEYS section 39
in string arguments 13

R

recognition
resuming 111
simulating 22, 89

recognition state See states
registry, application names in 33
RememberPoint 98
Retry button 95
return characters in Global.dvc 39
rules See guidelines
RunScriptFile 99

S

script commands 2
example 3
Global.dvc file entries 36
See also scripts

SCRIPT Global.dvc keyword 36
scripting commands

combining on a line 13
functional list 72
overview 4

scripting language
data types 43
expressions 41
introduction 2
overview 3
relation to BASIC 3
rules and conventions 13
variables 42

scripts
calling 99
comments in 13
controlling execution 21
creating 5
defined 3
errors in 5
pausing 22, 110
rules and conventions 13
using lists in 25

Petitioner BB&T - Exhibit 1022 - Page 138

Dragon NaturallySpeaking: Creating Voice Commands

130 ■

SendKeys 100
and DdeExecute 30

SendSystemKeys 102
SetMicrophone 103
SetMousePosition 104
ShellExecute 106
shortcut keys 19
sleep mode

and Global.dvc 35
controlling 21
ending 111
setting 88

SLEEPING Global.dvc keyword
35

sounds
controlling 19
generating 78
playing 97

space characters in Global.dvc 38,
39

special key names 12, 114
spoken forms of words 11
spoken words See words
STATE Global.dvc keyword 33
statements

conditional 63
DO UNTIL 67
DO WHILE 68
GOTO 66
IF THEN 64
IF THEN ELSE 65
LOOP UNTIL 69
LOOP WHILE 70

stateName in Global.dvc 34
states

command name limits 10
names 34
special types 34
specifying 33

Str$ 59
string

concatenation operator 48
data type 42
expressions 41

String$ 60
strings

concatenating 22
converting case 56, 61
converting hexadecimal to 54

converting integers to 59
converting to 53
converting to integers 62
generating substrings 58
in Global.dvc 38
locating substrings 55
repeating characters 60
returning length 57

swapping applications 77
symbols, generating 13
syntax checking 32
system keys

and keystroke commands 18
sending 102

T

tab characters in Global.dvc 38, 39
Tab key, for selecting controls 19
text

scripting commands for 18
speaking 108

text-to-speech, playing 21, 108
title bar

and commands 7
specifying 34

TTSPlayString 108
type conversion functions 49

U

Ucase$ 61
users

and voice commands 14
Global.dvc files for 15
querying 95

utterance, defined 90

V

Val 62
variables 42

combining with literals 22
for lists 25, 42
names 42
names in scripts 13
user defined 23

variant data type 42

Petitioner BB&T - Exhibit 1022 - Page 139

Index

■ 131

voice commands
action 2
and users 14
application-specific 7
calling from voice commands 28
capitalizing names 9
defining in Global.dvc 35
described 1
development techniques 29
distributing 15
global 8
HeardWord in 27
key names in 12
keystroke 2
keystroke command 2
limitations 14
location of 14
name 1
naming guidelines 8
nesting 28
scope 2, 7
script, described 2
specifying global 34
window-specific 7
See also lists, script commands

volume, setting text-to-speech 108

W

Wait 110
WakeUp 111
Warning Message icon 95

WAV files, playing 97
white space, in Global.dvc 38
windows

accessing and selecting 19
interacting with 17
specifying commands for 7, 34

Windows 95 system keys 102
WinHelp 112
wizards

and Global.dvc files 31
application names in 33
using 5

words
in lists 11
invoking action 89
written and spoken forms 11
written and spoken in lists 26

written forms of words 11
written\spoken format

in Global.dvc lists 37, 38
in HeardWord 89
in lists 26

X

XOR operator 47

Y

Yes button 95

Petitioner BB&T - Exhibit 1022 - Page 140

CORPORATE HEADQUARTERS

Dragon Systems, Inc.
320 Nevada Street
Newton, Massachusetts 02460
USA

Tel: +1 (617) 965-5200
Fax: +1 (617) 527-0372
E-mail: info@dragonsys.com

www.naturalspeech.com

DRAGON SYSTEMS UK Ltd.

Dragon Systems UK Ltd.
Millbank, Stoke Road
Bishops Cleeve
Cheltenham, Glos. GL52 4RW
UK

Tel: +44 (0)1242 678575
Fax: +33 (0)1242 678301
E-mail: info@dragon.co.uk

DRAGON SYSTEMS GmbH

Dragon Systems GmbH
Messerschmittstrasse 4
D-80992 Munich
Germany

Tel: +49 (0) 89-1430-5062
Fax: +49 (0) 89-1430-5536
E-mail: deutsch@dragonsys.com

Petitioner BB&T - Exhibit 1022 - Page 141

	About This Guide
	Supported Software
	Intended Audience
	Document Conventions
	Related Online Documentation

	Introduction to Voice Commands
	Voice Commands
	Scripting Language
	Creating Voice Commands

	Voice Command Fundamentals
	Command Scope
	Basic Voice Command Elements
	Developing and Deploying Voice Commands

	Writing Effective Voice Commands
	Interacting with Windows and Applications
	Controlling Dragon NaturallySpeaking
	Voice Command Programming Techniques
	Writing Commands with Lists
	Using Dynamic Data Exchange

	Using the Global.dvc File
	Introduction to the Global.dvc File
	How Dragon NaturallySpeaking Uses the Global.dvc file
	The .DVC File Format
	DVC File Rules and Conventions
	DVC file Sample

	Scripting Language Reference
	Expressions
	Variables
	Operators
	Arithmetic Operators
	Comparison Operators
	Logical Operators
	String Concatenation Operator

	Data Manipulation Functions
	CDbl
	Chr$
	CInt
	CStr
	Hex$
	Instr
	LCase$
	Len
	Mid$
	Str$
	String$
	UCase$
	Val

	Flow Control Statements
	IF THEN
	IF THEN ELSE
	Labels and GOTO
	DO UNTIL
	DO WHILE
	LOOP UNTIL
	LOOP WHILE
	WHILE

	Scripting Commands
	AppBringUp
	AppSwapWith
	Beep
	ButtonClick
	ClearDesktop
	ControlPick
	DdeExecute
	DdePoke
	DllCall
	DragToPoint
	GoToSleep
	HeardWord
	MenuCancel
	MenuPick
	MouseGrid
	MsgBoxConfirm
	PlaySound
	RememberPoint
	RunScriptFile
	SendKeys
	SendSystemKeys
	SetMicrophone
	SetMousePosition
	ShellExecute
	TTSPlayString
	Wait
	WakeUp
	WinHelp

	Key Name List

	Glossary
	Index

