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Blackmail, fraud and the stealing of commercial secrets are examples of crimes 
using information as the medium. There was a time, not many years ago, when 
it was necessary to alter the account books in order to cover up a fraud; now 
the same effect can sometimes be produced at a computer terminal. The 
widespread introduction of information technology into business inevitably leads 
to its misuse for crime, which data security aims to prevent. 

Essentially, security means controlling access to data, depriving the blackmailer 
of his information, protecting commercial secrets and preventing the falsifying 
of records. The need to control access in computers first became serious when 
'time~sharing' began to operate. Undergraduates regarded the security features 
of these systems as a challenge and soon found that the existing methods of con­
trol were defective. This taught designers a useful lesson: that data security needs 
care and attention. 

In 1983 the film War Games, and the publicity it created, introduced people to 
a new and surprising cult, the 'computer hackers' who spend their time obsess­
ively trying to break into computer systems. Their devotion to a basically tedious 
pastime is extraordinary, and it shows up one advantage of an amateur attacker 
over the professional defenders. The attacker's time is apparently unlimited and 
uncosted; the defender's time is expensive. The systems that hackers have broken 
into were protected only by weak password schemes, but the hackers' success 
and the excitement it generated prepares the way for more advanced attacks when 
simple hacking fails to satisfy them. A special feature of illegal attacks on com­
puter systems is that there is no tradition of associated guilt-feelings. The law, 
in most countries, has not begun to define the new kinds of crime. With no 
likelihood of punishment, the probing of the defences of computer systems is 
considered to be a game. It could become the tool of organized crime. 

Cryptography is a long-established way to keep information secret. Now that 
the majority of information systems transport data from place to place (as well 
as processing and storing it) the place of cryptography in data security is assured. 
It is beginning to be accepted that cryptography is the basic tool for achieving 
data security. This book is about the use of cryptography to protect data in 
teleprocessing systems, not only keeping data secret but also authenticating it, 
preventing alteration and proving its origin. These go beyond the classical uses 
of cryptography. Some of the main concerns of data security in banking and other 
commercial information systms are those of authentication. 

After the introduction in Chapter 1, ciphers are described in Chapter 2 and then 
the Data Encryption Standard in Chapter 3. This standard is used as one of the 
principal tools of data security in what follows. The first step is to define a number 
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to control 
Chapter 7. 

A breakthrough in encipherment technique occurred in 1976 with the discovery 
of the 'public key ciphers' by Diffie and Hellman. The properties of these ciphers 
make them specially useful for access control and they have unique virtues for 
key distribution and for a strong form of authentication called a 'digital signature'. 
Chapter 8 describes public key ciphers and Chapter 9 describes digital signatures. 

The largest commercial use of cryptography and other data security techniques 
is in banking and the payment systems operated by banks. Chapter 10 describes 
how data security measures can be applied to 'electronic funds transfer' in its 
various forms, leading us to some new concepts for future payment systems. 

Finally, the wide use of these methods will only be possible if systems can in­
terwork and a range of compatible equipment can be manufactured. Chapter 11 
describes the progress made towards standards for data security. 

We have tried to make the approach pragmatic, illustrating the principles with 
examples. At present the subject is essentially pragmatic in that only the insecurity 
of systems can be demonstrated, by breaking them, but their security is 
demonstrated only by the absence of demonstrated flaws. 

The information in this book represents the best practice known to us but it 
cannot carry any guarantee of security- nothing can. When a cipher, or another 
part of a security scheme, resists attacks for a long time, this gives the users con­
fidence, but there is no absolute or provable basis for that confidence. The possibili­
ty of provable security (in some sense yet to be defined) still exists but, with a 
few exceptions, proofs elude us. In this respect there has been no big change 
as a result of new technology - the security of ciphers has always been tenuous 
and this is still true of nearly all aspects of data security. 

Mathematical notation is often the clearest way to describe unambiguously how 
a cipher operates, or how it is used. Some ciphers, notably public key ciphers, 
cannot be described in any other way. Whenever possible in this book, intuitive 
arguments have been given as well. We aim in this book to help those people 
who will actually put security schemes into practice. More formal and complete 
treatments will sometimes be found in the original papers listed in references at 
the end of each chapter. 
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without 
a set of for authentication, associ2,ted with the names of Fiat 
are described in this new edition. 

Because this book is mainly concerned with the application of new technology 
to information security and deals with basic methods rather than specific 
implementations, the ideas it describes are remarkably stable. 

The second edition has allowed us to make worthwhiie changes and additions 
to the text while the main shape of the book and the concepts it introduces have 
remained unchanged. 

Finally, we have received no solutions for the cryptogram given at the end of 
the preface to the first edition and reproduced here. 

ZSYTT IFXVJ NVWRS OHTTR ESUIJ VGEJB DDO.A TZMKV 
QUYVS QTMVX NGDVX .A WIP TKVTZ KMMSG DVITF NKXRF 
BDYDL HHRDK DNTQE AKJDK HGFST DU.MO CCNXY 
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1.1. THE NEED FOR DATA SECURITY 

Each major advance in information technology changes our ideas about data 
security. Consider the use of written mesages to replace those carried· in the 
memory of a messenger. Written messages are less prone to error, and since the 
courier need not know the message, but can destroy it in an emergency, there 
could be better security. Yet written messages can be concrete evidence of con­
spiracy or spying, whereas a carrier of a spoken message might escape 
unsuspected. The need to hide the content of a written message must therefore 
have been realized very soon, and there is evidence that codes and ciphers 
appeared almost with the beginning of writing. 

When telegraphy began, Wheatstone and others thought that ciphers would 
be needed by the senders of telegrams and there was a flurry of new ideas for 
cryptography. But the need did not show itself. Cryptography has traditionally 
been used by kings, popes, armies, lovers and diarists and has moved into 
business and commerce only recently. Now that information is processed, stored 
and transmitted in large quantity, the need for data security is greater and more 
varied. We shall be dealing with the secrecy of transmitted information, using 
encipherment, and also with authentication of information, verifying the iden­
tity of people, preventing the stealing of stored information and controlling access 
to both data and software. Such varied data security problems arise from the more 
recent advances in information technology - large stores and microprocessors 
which give us processing wherever we need it. The microprocessor and the floppy 
disc create a new and urgent problem of safeguarding software. The requirements 
summed up by the phrase 'data security' do not stay the same; they change as 
the technology changes. 

Nowadays, almost everything we do with information is assisted by some new 
invention. The fundamental operations of storage, processing and transmission 
seem to be undergoing a relentless and rapid improvement, so fast that the 
application of the technology cannot keep up with the rate of advance. The intro­
duction of teleprocessing into all aspects of business, commerce and industry 
brings new data security problems to the fore. Undoubtedly, electronic banking 
has experienced the first impact, with spectacular frauds in the shape of falsified 
money transfers. Banks have been the first to apply modern methods to make 
their systems secure. The rest of commerce and industry is well behind banking 
in its attention to data security. 

In order to avoid repeating the same phrases we will use conventional names 
for the actors in the security drama. The bad guys who are trying to do something 
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operanng systerns,. beca:..1se 
o£ the effort 'chat went 

into 'phone freaking' was motivated in this way. ]\Tone the it is potentially 
dangerous because the techniques in innocent attacks can be exploited 
by criminals. 

New methods of payment and transfer of funds using communication networks 
and intelligent tokens are developing fast and are usually called 'electronic funds 
transfer'. These are an obvious target for fraudulent manipulation of data. As 
electronic message systems of all kinds come into wider use, carrying data which 
has already been captured in the 'electronic office', there must inevitably be a 
proportion of sensitive information carried as 'electronic mail'. This is another 
area which needs attention to security, both for secrecy of information and to 
preserve its authenticity. 

The advance of information technology has sparked off a public debate on the 
subject of individual privacy. Like many public debates it expresses both rational 
and irrational fears. Everyone is now alerted to the real dangers of inaccurate per­
sonal information and uncontrolled access to files. Most advanced countries have 
introduced laws to enforce a reasonable degree of individual data privacy and 
others have such laws in preparation. If we think of privacy as the legal concept, 
then security of data is one of the means by which the privacy can be obtained. 
The implementation of these new laws is likely to produce applications for data 
security techniques. 

Of the three main operations carried out in information systems, storage, pro­
cessing and transmission, it is undoubtedly data transmission that carries the 
greatest of security risks. A communication network consists of numbers of cables, 
radio links, switches and multiplexers in a variety of locations, all of these parts 
of the system being potential targets for 'line taps' or 'bugs'. It is impossible to 
make a widespread network physically secure, therefore security measures depend 
on information processing techniques such as cryptography. 

Storage of data is next on the list of vulnerabilities because data spends much 
more time in storage than in processing. The protection of stored data can use 
the same techniques of cryptography but with different twists. For most purposes, 
processing is the least vulnerable part but it may be worth attacking. Perhaps 
an enemy can gain more by discovering which parts of a file are active than by 
stealing a whole file. For example a police file of intelligence about crime activities 
contains a lot of data about dormant criminals and perhaps even more about 
dubious suspects. A team contemplating a big crime could learn more from the 
data being accessed than by searching the whole data base. 

No data system can be made secure without physical protection of some sort 
of the equipment. The effect of good design is to concentrate the need for physical 
security, not to circumvent it entirely. In particular, processing of data usually 
(perhaps always) requires those data to be in clear form, not enciphered, therefore 
processors themselves must be protected from intrusion, such as the attachment 
of radio bugs. In many systems the data and operations needing the greater degree 



-- 21 --
MasterCard, Exh. 1004, p. 21

describ2. 

c:Pr'nritv of the systen1 s11ch as 
graphic which enable. there is a ,.,.,·v·,,rl,,,."' 
formed inside the module and this a small processor. The mteriace 
between the module and the rest of system must be designed carefully to 
avoid any compromise of secret data and this interface is also controlled by the 
processor within. The software employed within the module must be trusted­
software integrity is discussed in the next section. The module is protected by 
being enclosed in a strong box but usually the strength of this box cannot ensure 
that it will never be broken into. Consequently, the module is provided with a 
number of sensing devices which will detect various forms of tampering. These 
are sensitive to vibration, penetration of the protective box, tilting or temperature, 
for example. When the sensors detect an attack, at a certain level of severity all 
the important data contained within the enclosure are destroyed by over-writing. 
By this technique of 'tamper-responding' the secret data can be protected without 
an exceptionally strong outer case. Details of the techniques for making tamper­
responding modules are best kept confidential because knowledge of the sens­
ing devices helps an attacker to overcome them and this increases the cost for 
future generations of tamper-resisting modules. 

1.2. ASSESSMENT OF SECURITY 

Security is a complex property and difficult to design or optimize. Designing a 
system to be efficient, convenient or cheap is an optimization problem which, 
though complex in practice, has a mathematical structure which is easy to under­
stand. The problem is to choose the design parameters in order to maximize a 
figure of merit. Designing a system for security means analysing an adversary prob­
lem where the designer and the opponents are each independently thinking out 
their strategies. The outcome of the contest is a result of their combined choices. 
The mathematical theory for such problems is the 'theory of games'. The kind 
of game which fits the situation is a 'two-person, non-zero-sum game with im­
perfect information'. The 'non-zero-sum' condition appears because the system 
attacked may lose more than the attacker gains. 'Two-person' means that we con­
sider one attacker at a time, to simplify the problems as much as possible. Games 
theory, beyond the most trivial cases, is extremely difficult and there seems to 
be no way in which the theory of games can actually be useful in analysing security 
- it merely serves to illustrate the underlying complexity of the problem and the 
inadequacy of a naive 'risk analysis' approach. 

Every kind of threat to a system should be assessed, yet it is very difficult to 
enumerate the complete range of attacks. First of all, the motives and intentions 
of the attackers have to be guessed. Stolen information can be used for fraud, 
espionage, commercial advantage, blackmail, and probably in many other ways. 
Enciphering information on a magnetic tape can make the tape useless to an enemy 
as information, but, if there are no other copies of this tape and the information 
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ten to up similar forms in the banking halt which 
were not encoded. At first of according to the magnetic 
characters, uncoded forms were rejected, then operators inserted the account 
number of the payee along with the other details that had been written on the 
form. An ingenious fraud was devised by distributing coded paying-in forms 
among the forms in the banking hall. Customers did not notice the presence of 
the coding and unwittingly paid their money into the fraudster's account. 

The existence of so many methods of attack makes the protection of an infor­
mation system very difficult indeed. It is doubtful that a systematic method to 
analyse the problem will ever be found, though checklists can be a help. It is 
unusual to have an information system described in sufficient detail that all the 
potential weaknesses can be identified. Therefore, a good investigator works from 
observation and by discussion with those who know the system well, not from 
paper designs and specifications. The ability to find security flaws depends on 
an attitude of mind which takes nothing on trust. 

Security is essentially a negative attribute. We judge a system to be secure if 
we have not been able to devise a method of misusing it which gives some 
advantage to the attacker. But we might just have failed to identify the nature 
of the enemy or missed out a method of attack. 

A security investigation should never be based on the designer's concept of 
the system. He has thought about the security and convinced himself that every 
aspect has been covered. Probably, he has a good theoretical reason for believing 
that the security goals have been achieved. What is then required is 'lateral think­
ing' which questions his assumptions and finds different approaches. The 
designers may have concentrated their attention on some parts of the system and 
forgotten others. On the other hand, systems can be so complex that only those 
who implemented them can fully understand their details. With a complete change 
of attitude, the implementers can be valuable allies in a security study. They must 
first be convinced that there are flaws and persuaded to search for them .. 

The security measures applied to a system always cost something and in an 
extensive network the total expense may be very large. Before embarking on a 
programme of installing security features, managements will want to know that 
the expense is justified. For this purpose elaborate procedures have been 
developed, called risk assessment. A number of different threats are tabulated, 
together with measures of the probability that each will happen and the likely 
losses that would arise from a successful attack. From these data, in an obvious 
way, the 'annual loss expectancy' associated with each type of threat can be 
evaluated. The idea behind this assessment is that a comparison of the loss 
expectancy with the cost of proyiding protection will be a guide for the managers 
in deciding what security features to install. 

The data which enter into a risk assessment are known only with very low 
accuracy, rarely better than an order of magnitude and sometimes even less preci-
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recess. Someone built an attractive looking plate which covered the recess and 
presented to the user a dummy slot from which the money would never emerge. 
He fitted this plate to an automatic teller outside a bank, when the bank was open, 
stood back and watched what happened. The user went through the correct pro­
cedure but received no money, then went into the bank to complain. The crook 
took away his plate and the money which was concealed behind it. This is a variant 
of an old trick which has been used with returned-coin chutes since vending 
machines and public telephones began; it pays off better with automatic teller 
machines. Some of the earliest attacks on automatic teller machines were to pull 
them out of the bank wall, illustrating that the security of a system may have 
nothing to do with its data handling. 

When all the precautions have been taken against illegal access to data in com­
munications and storage, there remains an indefinite number of other threats. 
There are two areas of sufficient importance for special mention, system software 
and the people operating the system. 

Software integrity 

The complexity of an information system is built mainly into its software, in order 
that the hardware can be simpler and composed mainly of standard units such 
as microprocessors and stores. The virtue of software is that it can be changed 
both during development and subsequently to give the system new properties. 
This flexibility is a severe threat to system security. 

The first difficulty with software is understanding it sufficiently to be sure that 
it functions correctly in the first place. Where equipment is built with several pro­
cessors, each handling a restricted range of functions and interacting with others 
according to carefully devised rules or protocols, the verification of software may 
be a tractable problem. At the other extreme, mainframes with their complex 
operating systems are never fully understood. If the security requirements are 
strict, it must be assumed that any normal operating system has weaknesses. In 
particular these flaws could be exploited by the software designers, who know 
the details well enough to find the flaws. In this respect, large operating systems 
have improved a little and the provision of special hardware to assist access con­
trol has made them proof against attacks which were common in the early days 
but no complex system can be regarded as entirely secure, even if the designers 
and builderjl were all trustworthy and had only that aim in mind. 

A dishonest designer could provide 'hooks' in the software ready for the 
attachment of modifications to undermine its security. The auditing of software 
by independent software designers should look for unnecessary features which 
might be used in this way. 

During software design, special tools are provided to help the implementers 
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is planned in design process, hence of trustworthy 
system designers. There may be a need to keep one or two highly instrumented 
versions of the system for software testing and updating but those systems which 
go outside a secure environment should be made as difficult to modify as possible. 

If the software of a system is entirely reliable and trustworthy, the next prob­
lem for the designer is how to keep it that way. Some software can be physically 
protected, for example by storing it in a read only memory (ROM) or in a store 
which, though it could be overwritten is protected by a physical 'write protect' 
device. Preventing the over-writing of software by a programmed feature (such 
as an access control mechanism in the operating system) is no real protection 
because that can be altered. The more ingenious attacks on software integrity 
employ the operating system. This is not only the most powerful part of the soft­
ware but also the least understood and therefore the most difficult place for the 
discovery and prevention of attacks. 

Dedicated processors, carrying out a single task with a fixed program, can be 
reasonably secure if they are protected against physical attack. 

The least secure program environment today is the microcomputer because the 
philosophy of designing these systems is to make them highly adaptable, with 
the greatest ease for changing their programs. Users of microcomputers can obtain 
free software from a number of sources. If they accept and run it they can endanger 
their entire system, for example doing irreparable damage to the contents of their 
fixed disc. This attack by a program which appears innocent and does something 
useful but contains a hidden enemy is called the Trojan horse attack. 

Even more insidious is the software virus. This is designed to infect other pro­
grams so that the treacherous ;program is replicated and, in some cases, moves 
from one computer to anothe{. 

Just before Christmas 1987, in West Germany, a Christmas greeting message 
was sent into an electronic mail system on a European Academic Research Net­
work. The message produced a pretty display and invited the user to run the 
program. When this was done, the program accessed the standard files contain­
ing the names of the user's correspondents in the mail system and sent out a 
copy to all of these people. Though basically a harmless type of virus, it spread 
through at least three networks and the quantity of electronic mail it produced 
swamped the networks' capacity. 

More insidious viruses can spread in the same way and remain dormant until 
some criterion is met (such as time and date) when they begin a destructive phase, 
such as over-writing storage. In order to remain dormant and yet spread from 
program to program, they can be hidden in the operating system or in parts of 
files which are employed by the operating system but invisible to the user. 

Maintaining the integrity of software is not technically difficult but it can con­
flict with the way in which computer systems are used and with the freedom 
to make changes or adopt software from any source. It is not orrl.y the software 
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is never a secure enviromnent. 

The owners of a system depend for its security in the first place on the integrity 
of the supplier, which itself depends on the people who design, build and main­
tain the system. When it is in operation, keys and passwords are introduced which 
protect it from enemies outside, including enemies in the ranks of the suppliers, 
unless software changes have subverted the protection. With good design, the 
security then depends on the people who operate the system and carry out its 
security-related procedures. 

Some operators will be in positions of very great trust, such as those who load 
the system with master keys and those who transport keys from one part of the 
system to another. Improved design can reduce the need for some of this trust, 
up to a point. For example, the transport of cryptographic keys can use hard­
ware modules which make the keys inaccessible to the couriers. With these means, 
it requires a much more elaborate attack to obtain the keys illegally, though it 
is never impossible. Some kinds of privileged operation cannot be avoided. 
Someone has to write into the system the rules of access control at the top level, 
giving special privilege to certain people, such as database managers or security 
controllers. Careful design can reduce the residual threat from these directions. 
For example, a security controller may be responsible for enforcing the correct 
procedure in using the system but he need not know the values of any crypto­
graphic keys. In this way, though some trust is placed in a number of people, 
there are few opportunities for individuals to subvert the whole system. Where 
there is a particularly sensitive requirement, such as a top-level master key, the 
responsibility can be split between several individuals, with the effect that it would 
require a conspiracy of all of them to undo the security of the system as a whole. 
In a well-designed system it should be clear who is being trusted and to what 
extent, but there is no way to make the system proof against unlimited deceit. 

1.3. THE EFFECTS OF TECHNOLOGY 

As information technology becomes more complex, the opportunities for its misuse 
are greater. Complexity of design is not a protection against interference with 
data systems. At first sight it might seem that a complex protocol makes it more 
difficult to extract information from a communication link or change data in tran­
sit. In practice, increased complexity is made workable by greater standardiza­
tion and then standard software and hardware becomes available to unravel the 
complexities. For example, it is now possible to buy instrJ-lmentation which will 
interpret the binary pattern on a communication line, enabling a specialist to deter­
mine the link layer protocol and extract the contents of frames, also to interpret 
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In fact, the variety of new technologies increases the possibilities of attack. If 
a local ring or Ethernet is used, all of the data passing between terminals and 
computing resources in this local area can be made accessible from a single line 
tap. The Ethernet broadcasts all messages to all terminals. In most designs of ring, 
all the data pass completely round the loop and return to the sender. A line tap 
attached to an Ethernet or ring network gives access to all the information it car­
ries. For example, some large organizations employ a set of interconnected 
Ethernets carrying information of many different levels of sensitivity. The sta­
tion logic attached to the Ethernet tap filters out messages addressed to each 
destination, but a small change to that logic can make it extract information for 
other destinations, giving access up to the highest level of sensitivity for the 
information in that network. Without additional precautions such as encipher­
ment, today' s local area networks make a very insecure environment. 

Microwave radio and satellite systems similarly expose large quantities of data 
to easy access. Together with the increasing use of electronic mail in the future, 
this provides good opportunities for large-scale tapping of traffic. 

In the past, the mere quantity of data would protect most of the secrets because 
the target of the enemy would be buried in uninteresting information. But since 
the source and destination of packets and messages travels with them in their 
headers, extracting information travelling to or from a target is not difficult. This 
target may be a terminal, a person or a computer process or port, depending on 
the level of addressing. Furthermore, unprotected messages can be selected 
according to their content, extracting messages which contain certain words or 
bit patterns for review by the enemy. It can be seen that modern technology 
increases rather than decreases the opportunities. 

Improved technology of information processing has aided the protection of 
information by making good ciphers available in the form of single-chip devices 
and by allowing complex systems to be made more compact and thus given ade­
quate physical protection. But the same technology is available to the enemy who 
can buy low-cost processing and storage in order to investigate systems and exploit 
their weaknesses. 

1.4. THE NOTATION FOR ENCIPHERMENT 

Codes and ciphers are part of the subject of cryptography which is the art of hiding 
information in a secret way so as to preserve its confidentiality. We shall only 
be concerned with ciphers so the operations that are carried out are called 
encipherment and decipherment. 

The original purpose of ciphers is to conceal information while it is being 
transmitted. Stored information can be concealed in a similar way. But the security 
of information systems is much wider in scope than merely concealment and 
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algorithm - a systematic procedure for calculating the result when the 
of the variables are given. 

The plaintext mentioned in the figure is the set of data before encipherment. 
The result of encipherment is the ciphertext. The result of applying decipherment 
to the ciphertext is to restore the plaintext. These words 'plaintext' and 'ciphertext' 
are relative to a particular encipherment - it could easily happen that the plaintext 
shown here is the result of a previous enciphermeilt but for our purpose, since 
it enters into the encipherment function, it is called the plaintext. The capital let­
ters D and E are reserved for the decipherment and encipherment functions 
respectively. In the mathematical notation we shall use, if xis the plaintext then 

y = Ek(x) 

the result of encipherment, and the inverse function 

x = Dk(y) 

expresses decipherment of the ciphertext to produce the plaintext. In both func­
tions, the other variable k is the key. 

The key is an essential feature of a cipher. In principle, if the function y = E(x), 
without a key, were kept secret, this might serve to conceal the value of x but, 
if the secret of the function E is lost, nothing can be done to restore the usefulness 
of the cipher. An entirely new cipher is needed. Since the design and testing 
of a cipher is a very big task, its loss in this way would be expensive. Further­
more, all those who took part in the design and testing or who wrote programs 
for the encipherment and decipherment procedures would have to be trusted 
indefinitely. These secrecy problems are made much easier by employing a key, 
a parameter which, in effect, allows a large class of ciphers y = Ek(x) to be defined. 
If a key is compromised (discovered by an enemy, or by someone untrustworthy) 
it can be changed and the cipher function can remain in use. 

Key k Key k 

Plaint ext 
0 

Plaintext 
X 

Encipher ment Decipherment 

Fig. 1.1 Notation for encipherment and decipherment 
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it started with k as a suffix Ek(x) to denote that k is a parameter, which 
is kept constant for a number of encipherments. In the pictorial form of the nota­
tion it is necessary to distinguish between the two inputs to the boxes which 
denote the functions E and D. Therefore we use the small circle shown in Figure 
1.1 to show which is the key input. 

Other notations for encipherment have their uses. If complex expressions or 
lists are enciphered and when the procedure of decipherment is not shown 
explicitly, the notation ( ... ] k is often used, where the data or text in the curly 
brackets is enciphered with key k. This is the notation that has been used widely 
in discussions of authentication. We have preferred to keep a uniform notation 
throughout this work andy = Ek(x) is our choice. If there are several keys in 
use these could be shown with suffices as kab' k5 etc, but in this book we put 
these symbols on the same line. Thus Ekab(x) means that xis enciphered, using 
as key the value kab. This kab is similar to the 'identifier' in a programming 
language- it does not, in this context, mean that k, a and bare separate variables. 
All our key identifiers will begin with the letter k. 

The domain of values from which the key k is taken is called the key space. In 
a typical cipher, the key might be 20 decimal digits, for example, which gives 
a key space of size 1020

. Alternatively the key might be expressed as a binary 
number of 50 digits with a size of key space 250

. In other ciphers, the key is a 
permutation such as the letters A, B ... Z in some sequence, consequently the 
key space has size 26! 

The notation y = Ek (x) treats x and y also as single variables, which have values 
in a finite domain. Since x represents, in general, a block of text, a cipher of this 
kind is called a block cipher. For example, eight characters in ISO 7-bit code with 
parity make up a block of 64 bits. The cipher could be designed for a 64-bit block, 
but the redundancy of the ISO code makes the information content much less. 
If the characters are taken from text in a natural language such as English, the 
true information content of x is smaller still. 

We also need a notation for the encipherment of messages of indefinite length. 
The single variable x is replaced by a string of variables. For this situation we 
write the cipher text as: 

Ek(x0, X1, ... X;, ... ) 

where x0, x1 ... is a string of variables whose size is given by the context. They 
could be parts of the message or its header, such as the source identifier or a 
sequence number. The simplest case is the one in which each variable x; is a 
character with its value taken from a finite set of values known as the alphabet. 
For example the alphabet might be, literally, A, B, ... Z or it might contain the 
256 different values of the octet (i.e. an 8-bit character). Ciphers which are designed 
to encipher a string of such characters with no theoretical limit to the length of 
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When encryption is used to make data secure in communications, there must 
be prior agreement between the communicating parties about all aspects of the 
procedure. A cipher algorithm, and the method of using it and initializing it, must 
be agreed. The most difficult requirement is that a key must be chosen and made 
available at both ends of the communication path. Before the enciphered data 
flow over the line, the value of the key must make a similar journey. Keys can 
be enciphered using other keys but in the end at least one key has to be distributed 
by some other means. The cipher can therefore be regarded not as a creator of 
secrecy but as a means of extending the secrecy applied to the distribution of 
the key into the transport of a much larger volume of data enciphered with that 
key. 

When encipherment is used for proteCting stored data, key handling is easier 
because the encipherment and decipherment are carried out at the same loca­
tion, so the key need not travel, but secrecy of the stored key is still important. 

Choosing the key in the first place and making it available only to authorized 
users are aspects of key management. After encipherment methods have been 
decided, key management becomes a major task for system designers because 
the security of the whole system has then been concentrated on the keys. Chapter 
6 is devoted to key management. 

1.5. SOME USES FOR ENCIPHERMENT 

Encipherment conceals the content of a message, except for those intended to 
receive it who, knowing the key, can decipher it. Thus it controls access to the 
message content, making it readable to those who know the key. If the ciphertext 
is made public and the cipher algorithm is well known, knowledge of the key 
is the equivalent of access to the message. Knowing the key also allows a person 
to construct another message so, under the right circumstances, a message can 
both be read and written. By using a 'public key cipher' it is possible to have 
separate control of reading and writing, as we shall see in chapter 8. 

Without a knowledge of the key an enemy cannot usefully alter a message. 
He can probably alter the ciphertext but when that is deciphered it will read as 
a random pattern, because lack of the key prevents the enemy having control 
of its deciphered form. Assuming that the message has some redundancy, the 
authentic message produced with the aid of the key can easily be distinguished 
from the random pattern. In this way its authenticity can be proved to whoever 
knows the secret key. We discuss authentication in more detail in chapter 5. It 
is one of the principal uses of encipherment methods. These operations of access 
control and authentication can be applied to transmitted messages or stored files. 
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In chapter 8 we describe a novel kind of cipher in which both sender and 
receiver have secret keys but neither sends his key to the other (page 224). This 
was first described in the context of 'Mental Poker' - a game of poker played 
between people who are all in different places and joined only by telecommunica­
tion channels. This is a vivid illustration of a use of encipherment in which secrecy 
and authentication are not the whole story. We can illustrate this by a simpler 
case, the tossing of a coin by two people at a distance, using only messages to 
link them. 

The two people are Ann and Bill. Deliberate bias in their coin-tossing can be 
avoided by a convention in which Ann announces her call Ca with its value 
'heads' or 'tails' and Bill similarly announces Cb then the outcome of the pro­
cedure is a head if the two calls coincide and a tail if they differ. The simple analysis 
of this 'game' shows that both Ann and Bill will choose between head and tail 
at random. If either shows a bias the other can improve their chance of winning. 

If Ann announces her call first then Bill can arrange to win, and vice versa. 
If no trusted third person is available to receive the calls and adjudicate, the two 
parties can use encipherment in the following way. 

Ann chooses one of two highly redundant statements such as 'My call for this 
game is heads' or 'My call for this game is tails', enciphers whichever phrase 
she chooses and keeps the key secret. Because of the redundancy she cannot find 
two keys that will generate either message from the same ciphertext. Of course 
there must be no other dues such as the length of the mesage. Ann and Bill 
exchange their enciphered calls. When Ann has received Bill's call she reveals 
her key and vice versa. If each finds the deciphered message to be one of the 
two phrases, the calls stand and the outcome is as defined. The use of encipher­
ment authenticates the calls after they have been exchanged and ensures that 
they cannot be modified after learning the other's call. 

A large part of the practice of data security consists of procedures (or protocols) 
using encipherment of which the coin-tossing procedure is just a simple exam­
ple. The procedures range from the very simple to rather complex schemes such 
as those of key management described in chapter 6. 

1.6. GENERAL PROPERTIES OF CIPHER FUNCTIONS 

The most useful ciphers are those which do not expand the text. A block cipher 
for an n-bit block maps the 2n different plaintext values onto the 2n different 
ciphertext values. In effect, it is a permutation of these 2n values, one which 
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also ranges over all its values. On the other hand if xis held constant 
and k ranges over all its key space, the y values generated can be regarded as 
random choices. Some y values may not occur at all, others may occur more than 
once. 

When there is no data expansion the identity x = Dk[Ek(x)] implies another 
identity x = Ek[Dk(x)]. In other words, the encipherment and decipherment can 
be interchanged. This is illustrated in Figure 1.2 and it is not a trivial result. If 
there is data expansion then Dk(x) reduces the size of the text and the second iden­
tity cannot be true. Bear in mind that, when encipherment and decipherment 
are exchanged, though they have all the formal properties of a decipherment/ 
encipherment pair, some of their useful properties may disappear. Figure 1.2 is 
a trivial example based on a 3-bit character. 

The type of function shown in Figure 1.2 is called a bijection. This kind of func­
tion maps a set of values into a set of equal size. Each value maps into just one 
corresponding value, both for the function and its inverse. This is a one-to-one 
mapping. 

There is a special kind of cipher which is an involution, that is a function f(x) 
which has the property that f[f(x)] = x. In the case of a cipher function which 
is an involution, 

Ek[Ek(x)] = x 

implies that Ek(x) = Dk(x), encipherment and decipherment are identical. In the 
days when ciphers were produced by mechanisms a 'self-inverse' cipher was an 
advantage because the mechanism needed no adjustment between sending and 
receiving. Many examples exist of involutions as cipher functions. 

The product of two involutions is not necessarily an involution, as Figure 1.3 

E 0 0 E 

X E(x) O(E(x)) O(x) E(O(x) l 
: X :X 

Fig. 1. 2 Exchange of cipher and decipher functions 
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Fig. 1.3 The product of two involutions 

illustrates. The inverse of such a product can easily be found if its components 
are known. If encipherment is 

y = E2[E1(x)] 

and both E1 and E2 are involutions, the decipherment is 

X = El[E2(y)] 

A series of involution transformations can produce a secure cipher which is easily 
inverted, and this principle underlies the construction of the Data Encryption Stan­
dard described in chapter 3. 
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2.1. INTRODUCTION 

The known history of codes and ciphers is long and fascinating, dating back almost 
4 000 years to the time when the Egyptians, possibly out of respect for the dead, 
used a hieroglyphic code for inscriptions on tombs. It is likely that the art of con­
cealment of meaning of written communication goes back even further, though 
the Egyptian funerary inscriptions are amongst the earliest known examples. Many 
and various have been the techniques employed over the centuries. By today most 
of the 'classical' techniques are thought to be too weak for serious application; 
however, many of their basic principles can still be identified as forming part of 
modem techniques and therefore it is worth examining how some of them 
worked. This chapter aims to give a flavour of classical techniques without 
attempting to be exhaustive. For a comprehensive treatment readers should con­
sult David Kahn's book The Codebreakers.1 Another useful reference on classical 
techniques is the book Cryptanalysis by Helen Fouche Gaines.2 

Concealment may take two forms, either the message is hidden in such a way 
that the very fact of its existence is obscured or the message is transformed so 
as to be unintelligible even though its existence is apparent. The first of these 
techniques has been called 'steganography' (literally: covered writing), whilst the 
second is known as 'cryptography' (literally: hidden writing); the literal distinc­
tion between these terms seems very fine, but their technical significance makes 
a rather useful distinction. 

A steganographic method said to have been popular in classical times involved 
shaving the head of a slave, writing the message on the shaven head, waiting 
till the hair grew again and then despatching the slave to have his head shaved 
by the intended message recipient. This technique has little to commend it, least 
of all the slow rate of communication (unless early Greek hair grew much faster 
than does ours). Another method used pictures to carry hidden messages; Figure 
2.1 illustrates an example. At first glance this seems to be just another drawing 
of a shrub; however, a concealed message is contained within the picture. H.eading 
clockwise around the outline of the shrub (beginning at the trunk) and recording 
a '1' for each twig bearing a fruit and a '0' for each empty twig, we obtain a binary 
message. Enclosed regions are ignored- they only add to the pictorial effect­
but in a more elaborate 'tree-structured' reading of the figure they could be used, 
adding 16 bits to its message. 

Lord Bacon's method of steganography used two type founts, differing slightly 
in appearance. Effectively one fount stood for binary 0 and the other for binary 
1, permitting encoding of letters of the secret message within a totally unrelated 
text. Much effort has gone into attempts to prove that Bacon was the true author 
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0110 
1100 
1101 
0110 
0011 
1100 
1111 
1000 
1101 
0010 
0101 
1101 
1100 
0011 
1001 

Fig. 2.1 A picture containing a hidden message - steganography 

of the plays attributed to Shakespeare; one approach was to scan the first folios 
of these plays for messages hidden by Bacon's method. The famous American 
cryptologist, William Friedman, began his cryptographic career in a fruitless search 
for these messages at the Riverbank Laboratories, Geneva, Illinois. Under 
Friedman's leadership the Riverbank Laboratories became highly respected in 
cryptology but their owner, George Fabyan, never gave up his belief that the 
Baconian ciphers could be found in Shakespeare. 

In yet again another steganographic method, messages have been expressed 
by patterns of goods in shop windows. Writing a message in invisible ink could 
be said to use steganography. The variations on the steganographic theme are 
endless. However, the nearest thing to a steganographic technique that is useful 
for modern data protection is that of filling the spaces between encrypted messages 
with meaningless garble when these messages are transmitted over communica­
tion links. The intention is to present the appearance of a link busy at all times 
and thus conceal the passage of messages; unlike real steganography, the existence 
of a communication link is evident, only the traffic level is concealed. 

We shall find cryptography of far greater significance than steganography as 
we consider methods of achieving security of data. Here the important thing is 
so to change the message that its meaning is completely concealed from anyone 
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Keplcl_cem<ont of th'2 com-
their code constitutes the entire pro-

cess of encoding. To an encoded message efficiently a second, matching 
code book is required, this time indexed according to the code elements. A brief 
example, based on the international radio code, is given in Figure 2.2. Codes 
are often applied today in ordinary commercial correspondence in order to achieve 
message compression and economize on transmission costs, by using single-word 
equivalents to represent plaintext word groups. Many such codes have been 
devised and offered for sale; company letter headings often carry a list of codes 
used; such codes are public knowledge and can therefore not be used for message 
concealment. 

Secret codes have held an honourable place in the techniques of general-purpose 
cryptography. They can be made more effective for this purpose by ensuring that 
multiple equivalents are listed in the code books, so that the code element used 
for a particular word or word group is not always the same, but is chosen at ran­
dom among the alternatives. In this way an important word which frequently 
occurs does not leave a tell-tale frequency in the coded text. For the protection 
of computer data, codes are far from ideal, because the equivalent of a code book 
would make bulky storage demands and the process of look-up might be time 
consuming. The generation of an adequate code book is itself a formidable task. 
Protection of stored code tables, vital for security, could itself be difficult to achieve. 
The secure and rapid transport of bulky code tables to the locations where they 
are required is potentially a difficult problem, especially if frequent change of code 
is required in order to maintain security. 

Unlike cryptographic codes, ciphers are not concerned with whole words or 
groups of words. In the past they have operated, generally speaking, at the level 
of the individual letter; modern cipher techniques applied in a computer context 
operate sometimes with big units of many characters, sometimes at the character 
or letter level, and sometimes at the level of the individual binary digit. Some 
of the classical techniques which have operated at the letter level are considered 
in the next section. 

Before leaving the subject of codes, the important class of secrecy systems known 
as nomenclators 1 must be mentioned. These had their origin round about the year 
1380 and at first consisted simply of code substitutions for important elements 

Are you busy? QRL QRH Does my frequency vary? 

Does my frequency vary? QRH QRL Are you busy? 

Is my keying correct? QSD QRO Shall I increase power? 

Shall I increase power? QRO QRZ Who is calling me? 

What is the exact time? QTR QSD Is my keying correct? 

Who is calling me? QRZ QTR What is the exact time? 

Fig. 2.2 Brief extract from a two-part code book 
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lists. Ii: is that of this combination of 
were sufficiently aware of the possibility of cryptanalysis by counts 
that they included multiple equivalents (known as 'homophones') in their 
substitution cipher. 

Nomenclators survived in popular use until the middle of the nineteenth cen­
tury, when commercial codes were developed in order to economize on message 
lengths in telegraph transmission and improved understanding of cipher crypt­
analysis led to the development of ciphers that were stronger than simple 
substitution. 

The two basic components of classical cipher techniques are substitution and 
transposition. In substitution, letters are replaced by other letters, whilst in 
transposition letters are arranged in a different order. 

2.2. SUBSTITUTION CIPHERS 

The Caesar cipher 

If we wish to replace letters of a message by other letters in a systematic fashion, 
then one of the simplest ways is to express the alphabet in cyclic form (Figure 
2.3) and then select letters shifted by a specified number of places in a particular 
direction from each plaintext letter. An example of an enciphered message is given 
in the figure. Here the letter displacement is by three places to the right and the 
cipher corresponds to one credited to Julius Caesar. Another classical cipher of 
this kind is said to have been due to Caesar Augustus, Julius' nephew, who chose 
a letter displacement of one position. Such a cipher is extremely easy to operate; 

® 
~z A 8 

c w 
D 

E 

T v@ s 
I 

M l2] 
Plaintext I F WE W I S H T 0 R E P L A C E L E T T E R S 0 F A 
Ciphertext I Z H Z L V K W R U H S 0 0 F H 0 H WW H U V R I 0 

Fig. 2.3 Caesar's cipher, c p + 3 modulo 26 
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HEVDVHRGSNQOOKZBDKDSS0QR 
IF~EWISHTOREPLACELETTERS 

JGXFXJTIUPSFQMBDFMFUUFST 
KHYGYKUJVQTGRNCEGNGVVGTO 

Cipher ~~ LI ZHZLVI\\'7RUI-ISODFHOH'i1TJ'7HUV 
MJAIAMWLXSVITPEGIPIXXIVW 
NKBJBNXMYTWJUQFHJQJYYJWX 

Fig. 2.4 Breaking a cipher of the Caesar type by searching tzcenty-six keys 

the alphabet written on two concentric discs displaced by the required amount 
makes a useful tool for encipherment and decipherment. The cryptologist may 
even attempt to make things more difficult for the cryptanalyst by changing the 
amount of the displacement from time to time. If, in Julius Caesar's cipher, the 
letters A, B C ... are given numbers 0, 1, 2 ... the process of encipherment can 
be expressed as c = p + 3 (modulo 26), where the addition requires 26 to be sub~ 
tracted if the result exceeds 25. 

Unfortunately such a cipher, which must surely have been re-invented by 
countless schoolboys, is ridiculously weak. If the amount of the displacement 
is known, then there is no secret and the plaintext is readily retrievable; even 
if the displacement is not known, then it can be discovered very easily. All one 
need do is to write out the ciphered message followed by all its possible 
displacements by from one to twenty-five letters. One of the transformed messages 
will correspond to the plaintext and will be obvious to the reader from the mean­
ing conveyed, assuming that there is adequate redundancy in the message (a 
plaintext message consisting entirely of arbitrary characters would present a pro­
blem). In Figure 2.4 we give an example of what is involved; the displacement 
here is of three letters, as in the Caesar cipher. In Figure 2.4, and indeed in all 
subsequent figures in this chapter, spaces between words are omitted; they are 
ignored in the cipher operation. This convention is customary when simple ciphers 
are used. They could have been treated as a twenty-seventh letter and enciphered 
like all the others, but their high frequency weakens any simple cipher. 

The technique of trying all possible displacements to solve a Caesar-type cipher 
is effectively a key search; the displacement is the key and possible values are 
tested until the right one is found by inspecting the 'plaintext' produced in each 
case. 

Monoalphabetic substitution 

Somewhat greater security may be obtained if the letter substitution is carried 
out with a 'jumbled alphabet'. In Figure 2.5 we show the message of Figure 2.3 

Plain ABCDEFGHIJKLMNOPQRSTUVWXYZ 

Cipher DKVQFIBJWPESCXHTMYAUOLRGZN 

Plaintext IFWEWISHTOREPLACELETTERS 

Ciphertext WIRFRWAJOHYFTSDVFSFOOFYA 

Fig. 2.5 A monoalphabetic substitution 
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cur-'llo."uc'" is 26! number of 
po,ssJ"biliti<::s nlorloatlpl:talJetic substitution is a very 
Sadly its apparent strength is a delusion. Two reasons can be found the 
weakness: the statistical clues given to the cryptanalyst are very strong and the 
alphabet can be discovered piece by piece. Even if the alphabet used has many 
wrong letters, the cipher can be read, like a badly transmitted telegram, and the 
wrong letters can be corrected. In a good cipher, getting the key nearly right 
reveals nothing of the plaintext. 

The monoalphabetic substitution illustrates the fallacy of relying on double 
encipherment for increased strength. Double encipherment with different 
alphabets is equivalent to single encipherment with an alphabet formed by apply­
ing the second substitution to the first alphabet. 

Cryptanalysis of a message enciphered with a monoalphabetic substitution 
depends on the fact that each plaintext letter is always transformed into the same 
ciphertext equivalent. In natural language, letter frequency tables can be set up 
which show the relative order of use of letters of the alphabet. For English text 
the order is generally that shown in Figure 2.6 (after Gaines). Depending on the 
text from which the frequency tables are created we may find small variations 

% % % 
E 13.1 D 4.1 G 1.4 
T 9.0 L 3.6 B 1.3 
0 8.2 c 2.9 v 1.0 
A 7. 8 F 2.9 K 0.4 
N 7.3 u 2.8 X 0.3 
I 6.8 M 2.6 J 0.2 
R 6.6 p 2.2 Q 0.1 
s 6.5 y 1.5 z 0.1 
H 5.9 w 1.5 

Letter frequencies in English text 

TH THE 
HE AND 
AN THA 
IN ENT 
ER ION 
RE TIO 
ES FOR 
ON NDE 
EA HAS 
TI NCE 

The ten most frequent digrams and trigrams 
in English text 

Fig. 2. 6 Frequencies of letters, digrams and trigrams in English text 
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will show what letters are most likely to be adjacent in text. Figure 2.6 also shows 
a few of the most frequent English digraphs and trigraphs. If the cryptanalyst 
is not even sure that he is dealing with an English enciphered message, then the 
frequency count, if the ciphertext is long enough, may give him a clue. For example 
the letter 'Q' ranks very low in English and German, but rather higher in French 
and Italian; the vowel '0' ranks relatively high in English, Italian, Spanish and 
Portuguese, but rather lower in French and particularly low in German. Figure 
2.7 shows letter frequency profiles for the more frequent letters of English, Ger­
man and Italian (the spot values are joined together to assist in reading the 
profiles). For the four most frequent letters in each language the profile is very 
distinctive; beyond this the profiles rapidly become indistinguishable. From such 

15 

Frequency ranked letters 

Fig. 2.7 Letter frequency profiles for English, German and Italian 
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Realizing this weakness of monoalphabetic the went one 
better - they created polyalphabetic ciphers. Here there is not one jumbled 
alphabet for use as a substitution table, but a number of them which are used 
in succession on the successive plaintext letters. When the last alphabet has been 
used, we start again with the first. Because each letter of the plaintext is no longer 
always represented by the same letter in the ciphertext, it is not possible to take 
a simple frequency count and deduce the shape of the substitution- more subtlety 
is required. It is of great help to the cryptanalyst to find out how many alphabets 
are in use; for this there are various techniques available. One of them depends 
on the frequent repetition of letter groups in text; the letters the are very com­
mon in English. In a sufficiently long text there is a very good chance that cor­
responding repeated letter groups may be found in the ciphertext, and they will 
sometimes be located at intervals of some multiple of the number of alphabets 
in use. These can be found by scanning the ciphertext and, from their spacing, 
intelligent guesses made as to the number of alphabets. A short text enciphered 
with five different alphabets is shown in Figure 2.8; note the repeated letter groups 
in the ciphertext occurring at a multiple of five letters. This method of determin­
ing the number of alphabets in use was made public in 1863 and is due to 
Kasiski. 1 Once the number of different alphabets is known, the cryptanalysis is 
simple if the text is long enough. All one does is to take frequency counts of the 
ciphered letters enciphered under each individual alphabet. The process then pro­
ceeds by trial and error as in the case of monoalphabetic substitution. 

In both monoalphabetic and polyalphabetic substitution the common secret 
information that must be shared by sender and receiver of an enciphered message 
is the mixed alphabet or alphabets. This information forms the cryptographic key, 
which has to be distributed to both sender and receiver. A compact form of key 
is more convenient. For this purpose the alphabet can be generated from a key 
word as demonstrated in Figure 2.9. A key word of ten or twelve letters, in which 
each letter occurs once, might be suitable. In creating the mixed alphabet the key 

Plaintext THEREISNOOTHERMATTER 

Cipher MBJSRBMSPBMBJSZTNYFE 

10 letters 

Fig. 2. 8 A polyalphabetic substitution with five alphabets 

Plain ABCDEFGHIJKLMNOPQRSTUVWXYZ 

Cipher EXHAUSTINGBCDFJKLMOPQRVWYZ 

Fig. 2.9 Method of generating a substitution alphabet using a key word 
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in someone' s memory. Note that at the end of the sequence some of letters 
of the cipher alphabet are unchanged from the plain alphabet. This is sometirnes 
avoided by an additional cyclic shift of the alphabet, as in the Caesar cipher. 

The Vi~;enere cipher 

Key words play an important part in a particular form of polyalphabetic cipher 
known as the Vigenere after its inventor and first published in 1586.1 Here the 
multiple alphabets are not jumbled but displaced from the normal with a cyclic 
shift (compare the construction of the Caesar cipher). Application of the Vigenere 
cipher is facilitated by using a tableau, in which all the possible displaced alphabets 
are tabulated. Figure 2.10 shows such a tableau. 

In a Vigenere encipherment the key word determines which displaced alphabet 
is used to encipher each successive letter of the plaintext message. This process 
can also be expressed as a modulo 26 addition of the letters of the key word 
(repeated as many times as necessary) into the plaintext letters. In Figure 2.11 
we show a short section of plaintext enciphered with the key word 'cipher'. The 
process of modulo 26 addition can be carried out conveniently by means of a device 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 

A ABCDEFGHIJKLMNOPQRSTUVWXYZ 
B BCDEFGHIJKLMNOPQRSTUVWXYZA 
c CDEFGHIJKLMNOPQRSTUVWXYZAB 
D DEFGHIJKLMNOPQRSTUVWXYZABC 
E EFGHIJKLMNOPQRSTUVWXYZABCD 
F FGHIJKLMNOPQRSTUVWXYZABCDE 
G GHIJKLMNOPQRSTUVWXYZABCDEF 
H HIJKLMNOPQRSTUVWXYZABCDEFG 
I IJKLMNOPQRSTUVWXYZABCDEFGH 
J JKLMNOPQRSTUVWXYZABCDEFGHI 
K KLMNOPQRSTUVWXYZABCDEFGHIJ 
L LMNOPQRSTUVWXYZABCDEFGHIJK 
M MNOPQRSTUVWXYZABCDEFGHIJKL 
N NOPQRSTUVWXYZABCDEFGHIJKLM 
0 OPQRSTUVWXYZABCDEFGHIJKLMN 
p PQRSTUVWXYZABCDEFGHIJKLMNO 
Q QRSTUVWXYZABCDEFGHIJKLMNOP 
R RSTUVWXYZABCDEFGHIJKLMNOPQ 
s STUVWXYZABCDEFGHIJKLMNOPQR 
T TUVWXYZABCDEFGHIJKLMNOPQRS 
u UVWXYZABCDEFGHIJKLMNOPQRST 
v VWXYZABCDEFGHIJKLMNOPQRSTU 
w WXYZABCDEFGHIJKLMNOPQRSTUV 
X XYZABCDEFGHIJKLMNOPQRSTUVW 
y YZABCDEFGHIJKLMNOPQRSTUVWX 
z ZABCDEFGHIJKLMNOPQRSTUVWXY 

Fig. 2.10 A Vigenere tableau 
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Keyword CIP3ERCIPHERCIPHERCIP6ERCIPHE 

Ciphertext VPXZTIQKTZWTCVPSWFDMTETIGAHLH 

Fig. 2.11 A Vigen ere encipherment 

called a slide Kerckhoffs and named after the French 
military academy), rather like a slide rule (Figure 2.12). The same device carries 
out the modulo 26 subtraction needed for decipherment. 

An attack on a Vigenere-enciphered message can be carried out by many of 
the methods applicable to polyalphabetic ciphers in general. One method of attack 
is particularly powerful against the Vigenere cipher- the 'probable word' attack. 
The cryptanalyst chooses a word which he considers is likely to be in the plaintext 
message and then carries out modulo 26 subtraction of that word from the 
ciphertext in all possible locations, i.e. a scan is made of the entire ciphertext. 
If at any position the result of the subtraction yields a word of natural language 
or a fragment of such a word, then it is very likely that the key word or part of 
it has been discovered. The whole message can then be deciphered easily. In 
Figure 2.13 we take the ciphertext of Figure 2.11 and show how the key word 
'cipher' is revealed by guessing that the word 'process' is in the plaintext. Only 
when 'process' is subtracted from the ciphertext in the right position do we see 
fragments making up a plausible key word. A procedure like this employs the 
strong redundancy of natural language texts. · · 

A particular form of Vigenere cipher uses a 'running key'. For this purpose 
a text is chosen by the sender and notified secretly to the receiver; the text must 
be something that is readily available, for example, part of a standard work of 
reference or a well-known novel. To encipher the message it is combined letter 
by letter by modulo 26 addition with the chosen text; decipherment is carried 

ABCDEFGHI JKLMNOPQRSTUVWXYZABCDEFGHI JKLMNOPQRSJUVWXYZ 

ABCDEFGHI JKLMNOPQRSTUVWXYZ 

Fig. 2.12 The Saint-Cyr slide 

Ciphertext VPXZTIQKTZWTCVPSWFDMTETIGAHLH 

PROCESS 
Result GY JXPQY 

PROCESS 
Result AGLREYS 

PROCESS 
Result IOFGMSB 

PROCESS 
Result KCUOGBH 

PROCESS 
Result ERCIPHE <--Key word revealed 

Fig. 2.13 A probable word attack on a Vigenere ciphertext 
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communicators is to the same random series at both ends of the com-· 
munication channeL The channel which carries i:he key must carry as much data 
as the enciphered channel. The use of a pseudo-random generator at the two 
ends may be an acceptable alternative, providing that the pseudo-random 
is very long indeed. This point is considered again in the context of the Vernam 
cipher. 

It is generally recommended that a running key be used only once for encipher­
ment, because certain cryptanalytic attacks can take advantage of its repeated use. 
Where two cipher texts are enciphered with the same key and are in phase, they 
are said to be enciphered 'in depth'. If the start points are not known it is pos­
sible to make use of a property known as the 'index of coincidence' in order, 
when shifting one ciphertext against the other, to determine when the two 
ciphertexts are in depth. The index of coincidence is a concept due to William 
Friedman, who defined it in connection with solutions3 of the Vogel and 
Schneider ciphers. The concept makes use of letter frequency distribution in 
natural language. If two streams of letters are made up of totally random sequences 
(with equal probability for all letters), then the probability of any two correspon­
ding letters being the same is~ or about 0.0385. It on the other hand, the let­
ters in the two streams obey the natural language letter frequency distribution 
(e.g. if they are meaningful plaintext streams), then the probability of coincidence 
in any letter pair from the two streams is about 0.0667 (for English text). If two 
ciphertexts are examined for coincident letter pairs, then the probability of coin­
cidence will be about 0.0385, as for the random streams, unless they are enciphered 
with the same running key and are in phase, when the probability of coincident 
letters will be about 0.0667. Given amounts of ciphertext sufficient to establish 
the index of coincidence reasonably accurately, the difference in the two measures 
is sufficiently pronounced for the condition of encipherment in depth to be 
detected. 

2.3. TRANSPOSITION CIPHERS 

Transposition ciphers aim to hide the contents of a message by taking the 
individual characters or bits and rearranging their order. For decipherment an 
inverse process of unscrambling takes place. The word 'transposition' is com­
monly used for this kind of operation, though 'permutation' might be better. 

A very early cipher based on transposition was the Greek 'scytale' (literally: 
staff). To operate this a narrow strip of writing materiat such as parchment, was 
wrapped spirally around the staff. The message was then written in rows of 
characters longitudinally along the staff. Unwrapped, the strip appeared to carry 
meaningless sequences of characters. Only by carefully wrapping the strip around 
a staff of equal diameter would the plaintext message be apparent. The method 
is neat but not secure because the relation between strip width and staff diameter 
allows only a small key space. 
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2.1'1 shows a rnessage in this vJay. 
trequency count taken on such a message should show letters in 
their normal places in the ranking, suggesting that a transposition and not a 
substitution has taken place. Solution of a transposition cipher of this kind is on 
a par with the kind of anagramming which is carried out by crossword enthusiasts. 

A convenient way to express the permutation in easily memorable form is by 
a key word. This operation is illustrated in Figure 2.15 where the key word is 
'computer'. The letters of the key word are numbered according to their 
alphabetical order- 14358726. The plaintext letters are then written in rows of 
eight letters beneath the keyword, filling in the final row, if that is incomplete, 
with null characters. As a general rule, the user of a transposition cipher based 
on a letter array would be well advised to use garble rather than unusual letters 
standing as nulls. The use of a string of unusual letters helps cryptanalysis, 
because the cryptanalyst can find column and row arrangements bringing together 
these unusual letters. To create the ciphertext, each row is read out in succession 
in the order of the letters of the key word. Given that a message has been trans-

Plaintext THESIMPLESTPOSSIBLETRANSPOSITIONSXX 

Key 4 1 5 3 2 

s T I E H 
E M s L p 
s T s 0 p 
E I T L B 
s R p N A 
T 0 I I s 
X 0 X s N 

Ciphertext STIEHEMSLPSTSOPEITLBSRPNATOIISXOXSN 

Fig. 2.14 A simple transposition cipher 

Plaintext ACONVENIENTWAYTOEXPRESSTHEPERMUTATION 

Key word c 0 M p u T E R 

1 4 3 5 8 7 2 6 

A N 0 v I N c E 
E w T A 0 T N y 
E R p E T s X s 
H E p R T u E M 
A 0 I N z z T z 

Ciphertext ANOVINCEEWTAOTNYERPETSXSHEPRTUEMAOINZZTZ ----------- -
Fig. 2.15 Transposition based on a key word 
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its letters do not get distributed very far and can be found 
the or of it. If the vvorcl is tncm~;nt 
the underlined letters are found. The same transposition in PER and ION 
establishes which E to use and the size of the permuted arrays. 

The Nihilist cipher 

Slightly more complex is the operation of the 'Nihilist' cipher which is a com­
bination of columnar and row transposition. The plaintext is again written in rows 
under a key word, but this time the key word is also written vertically at the side 
of the columns (Figure 2.16). Ciphertext readout takes place row by row as in 
the previous example, but with the order of row selection being determined by 
the key word written vertically alongside; the effect of this process is to spread 
the mixture of plaintext letters over a domain equivalent in size to the square 
of the size of the key word. The key word is repeated as many times as necessary 
in the vertical dimension, the transposition process being taken separately for 
each key word repetition. 

A cryptanalytic attack on a Nihilist cipher depends on column and row 
rearrangement, with much trial and error in seeking to build up words, aided 
by intuition. To program this kind of attack, use can be made of digraph and 
trigraph letter frequencies when testing trial rearrangements. 

An alternative method of operating this kind of cipher is to write in the plaintext 
according to the sequence controlled by the key word and to read out the 
ciphertext according to some complex order, such as diagonally and in opposite 
directions for alternative diagonals, as also shown in Figure 2.16. 

Plaintext NOWISTHETIMEFORALLGOODMEN 

L E M 0 N 

2 1 3 5 4 

L 2 0 N w s I 

E 1 H T E T 

M 3 E M F R 0 

0 5 L A L 0 G 

N 4 D 0 M N E 

Nihilist Ciphertext HTEITONWSIEMFRODOMNELALOG 

Diagonal Ciphertext ONHETWSEMLDAFIITRLOMOOGNE 

Fig. 2.16 A Nihilist transposition and variant read-out 
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tre~qu"ency counts and on the to rearrange letter 
patterns of How much more would task of cryptanalysis 

be if substitution and transposition techniques were used in combination? Because 
of the substitution, it would no longer be possible to rearrange the rows and col­
umns of a matrix by inspection. Because of the transposition, digraph and trigraph 
counts would be broken up. 

Attractive though a product cipher might be from the point of view of crypto­
graphic strength, it is too complex for human effort, unaided by a machine. The 
risk of making a mistake is too high and the encipherment and decipherment 
processes are slow. To use ciphers of this complexity requires cipher machines. 

2.5. CIPHER MACHINES 

Cryptographers have used mechanical aids of one kind or another for centuries; 
these began with simple devices like the Saint-Cyr slide and developed into very 
complex electromechanical systems by the time of the Second World War, before 
electronics took over. 

The Jefferson cylinder 

An interesting cipher device is credited to the American president, Thomas 
Jefferson, who in the 1790s developed a mechanism for applying polyalphabetic 
substitution. This consisted of thirty-six discs, each of which carried a jumbled 
alphabet on its periphery, which could be mounted on a common axis (Figure 
2.17). The discs were numbered so that their order on the axis could be specified 
and agreed between communicators. The disc order constitutes the key; the 
number of different ways in which thirty-six discs can be arranged is of the order 
104

\ therefore the key space is very large. In operation a message would be set 
up on the device by rotating the discs until the message letters stood on the same 
row against an index bar. To read out the ciphertext the bar could be moved to 
any of the other twenty-five positions around the cylinder; the row indicated 
would then be read out as the ciphertext. It is immaterial which row is chosen, 

Fig. 2,17 The Jefferson wheel cipher device 



-- 47 --
MasterCard, Exh. 1004, p. 47

Of slightly later date was the concentric disc type of cryptograph, 
invented by Wadsworth in 1817, but developed by Wheatstone in the 1860s. This 
type of device is effectively a polyalphabetic substitution cipher, but the way in 
which the various alphabets are used depends on the plaintext letter sequence. 
Two concentric discs carry the letters of the alphabet around their peripheries. 
Wheatstone's outer disc had twenty-six letters in alphabetical order plus space, 
whilst the inner disc had just twenty-six letters in random order (Figure 2.18). 
Two pointers were provided, geared together in such a way that when the outer 
had traversed twenty-seven letters so had the inner on its scale of twenty-six; 
if the pointers were coincident at the outset, after one complete revolution of the 
outer pointers the inner had moved by one revolution plus one letter, thus 
separating the pointers by one letter position. For encipherment the outer pointer 
was moved successively to the letters of the plaintext (moving always clockwise 
and including space as a character), whilst the ciphertext letters were indicated 

Fig. 2.18 The Wheatstone disc cipher device 
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A very important class of cipher machines is based on various rotor designs in 
which rotors with internal cross-connections are used to achieve substitution with 
a continually changing alphabet. The internal links have been expressed both by 
pneumatic and electrical connections. Fibre optics came too late for the rotor 
machines. 

One of the most famous polyalphabetic substitution machines was the Enigma 
(wiring shown schematically in Figure 2.19), a development from a Dutch inven­
tion dating from about 1920 and used by the German forces in the Second World 
War. This was a machine in which three, or in later machines four, rotors turned 
on a common shaft. Each rotor had twenty-six positions. The mode of rotation 
was similar to the action of an odometer with the rightmost rotor, R1, moving 
by one position for each letter enciphered and each rotor stepping the one to its 
left as it passed a certain position. Unlike a standard odometer the rotor, R2, in 
the middle stepped on itself by one additional position as it communicated a step­
ping action to the next rotor. Rotor R2 rested for only one character on its 'step­
ping' position and the effect was to give a three-rotor machine a cycle of 
26 x 25 x 26 characters. The four-rotor machine had the same cycle because its left­
hand rotor did not move - no messages were long enough to make this matter. 

+ 

R3 R2 Rl Lamp 
A 

Key A 

r 

+ 

~ 
Lamp 

H 

Key H 

Fig. 2.19 Schematic of the Enif(ma cipher machine 
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plugboard was added to it. This had and a 
number of double-ended cables were to join them in pairs. For most 
of the time ten cables were used, leaving six sockets unplugged. The plugboard 
was wired between the set of rotors and the set of keys and lamps. As shown 
in the figure for the two sockets A and F, the effect of a cable and its two plugs 
was to transpose one pair of connections that otherwise went straight through. 

The figure shows only eight connections to represent the twenty-six connec­
tions of the actual machine. Depression of key H is shown, which disconnects 
that key from the lamp H and connects it, via the plugboard, to pin H on the 
fixed-entry commutator EN, since socket His not used in this case. 

Lamp A is connected through its key (undepressed) to socket A which is plugged 
to socket D. The effect of the cable is to transpose connections A and D. In the 
position of the rotors shown it happens that D and H are joined together so the 
connection to the negative supply at key H results in lighting lamp A. The 
plugboard permutes the connections from lamps/keys to EN and the permuta­
tion happens to be an involution (A to D implies D to A, as the figure shows). 
There is no logical reason why it should be an involution and late in the war a 
twenty-six position switch, the Enigma Uhr, was introduced which removed this 
restriction and allowed the plugboard setting to be changed each hour. 

The figure shows the eight connections laid in a row instead of a ring of twenty­
six. Rotation of any rotor completely changed the permutation of the twenty-six 
wires. The machine provided a sequence of 26 x 25 x 26 substitutions before it 
repeated. In the fixed commutator, RE, on the left are thirteen connections. Since 
the key H operates lamp A it follows that, at the same rotor position, key A would 
operate lamp H, therefore each substitution is an involution- and this does not 
depend on how the plugboard is wired. It is a consequence of the thirteen wires 
in RE which themselves define an involution that is transformed by the rest of 
the equipment. It is also clear that no letter can be enciphered into itself because 
the electrical connections prevent that happening. 

It was possible to replace Enigma rotors on the shaft from a collection or 'basket' 
of several different rotors. The initial setting of the machine required the selec­
tion and installation of rotors with their ring settings and then setting up the plug 
board. These operations constituted the current encipherment key. For each 
message, the initial rotor positions were chosen by the operator and transmitted 
in the message header. This 'indicator' was the weak point exploited in crypt­
analysis. The German forces changed the method twice. 

Operationally the Enigma machine was inconvenient. It needed at least two 
people, one to type the text on the keyboard and the other to read the lamps 
and write down the enciphered message. A printer attachment was developed 
but not widely used. There was also an extension attachment for the lamps so 
that only one person need see the plaintext. 

It is now well known that, during the Second World War, messages enciphered 
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V\fith the invention of the in the latter of the nineteenth 
it seems natural that efforts should be made to develop cipher machines in 
the plaintext could be typed on a keyboard and the ciphertext produced directly 
by a printing mechanism in the machine. The first known machine of this type 
was due to De Viaris in the 1880s. Many other machines with this property 
followed, some of which were also able to transmit ciphertext directly onto a com­
munication link. A notable example of a printing cipher machine was the 
celebrated M-209 machine of Boris Hagelin, used in large numbers during the 
Second World War. A full description of the M-209 is given by Beker and Piper.5 

The M-209 was only one of the very many different cipher machines invented 
by Hagelin. 

On-line cipher machines take the automatic handling of text one stage further 
than the printer. In these, the plaintext is typed on a machine which enciphers 
it and transmits the ciphertext (via a telegraph circuit or a radio-telegraph chan­
nel) to the receiver. Here, the same type of machine deciphers the received text 
and prints it in clear form. No human handling of the ciphertext is needed. 

One of the most highly developed of the on-line telegraph cipher machines was 
produced by Siemens and Halske from the early 1930s to 1945. The machine was 
called type T52 and was built around a standard electric teleprinter. It was prob­
ably also called the Geheimfernschreiber or Geheimschreiber. It was used very 
effectively, mainly on telegraph circuits, in the Second World War. In its simplest 
form this machine used 10 wheels, each wheel stepped on by one place for each 
letter sent. The sizes of wheels were 47, 53, 59, 61, 64, 65, 69, 71 and 73, relative­
ly prime, potentially giving a repeating cycle of length about 9 x 1017

. 

The wheels produced letter substitution on the 5-bit Baudot code by a com­
bination of running-key addition from five wheels and permutation of the five 
code elements by five other wheels. The key setting of the machine was at first 
a plug and jack field for permuting the ten channels from the cams on their way 
to the encipher/decipher circuits. Later versions of the T52 produced an irregular 
movement of the ten wheels by stepping the wheels according to logical func­
tions (derived by magnet circuits) of the outputs of the cams, taken from a dif­
ferent place on the cam. A further complication was that the ten binary encipher­
ment channels, after permutation according to the key, were subjected to linear 
logical operations (XOR) so that each channel to the encipher/decipher circuits 
depended on four cam outputs. A detailed study of the development of the T52 
machine has been made by Davies.6 

Modern cipher machines 

A wide range of cipher machines is currently available from many manufacturers. 
These machines are mostly communications oriented, provided with appropriate 
interfaces for connection to modems and communication lines. Their design details 
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details of the algorithm. It is realistic to assume that an intruder may be 
steal a machine and study it. Any machine 'Northy of consideration can be 
expected to possess a large key domain from which a secret key can be chosen; 
this is the other component in attaining adequate strength. As we saw in con­
nection with monoalphabetic substitution ciphers, the size of the potential key 
domain is not necessarily a good indication of cryptographic strength. 

Substitution in modem ciphers 

A substitution can replace a 'word' of n bits by another word either as a 
mathematical (logical or arithmetical) function or using an arbitrary function 
expressed in a table of values. 

We shall later meet examples of mathematical functions, such as those based 
on modular arithmetic. Addition, modulo 26, provides the Vigenere substitution. 
In chapters 8 and 9 exponential functions with very large moduli are used. 
However, the simplest mechanism for a cipher is an arbitrary table of values. 

As an example consider an 8-bit substitution. There are 256 different values 
of the independent variable and for each value the 8-bit output must be specified. 
This can be done in 256 bytes of memory, which is a small expenditure in a micro­
based encipherment device. In a programmed form, it usually requires two or 
three instructions and of the order of 1 f.J-S of time in a cheap 8-bit microprocessor. 
This is an excellent component for a simple cipher, though 8-bit substitutions alone 
are not very secure. 

If we are willing to employ more of the address space of a microprocessor in 
a substitution table, then large substitution tables are possible. In an 8-bit machine 
with 16-bit addressing it is unlikely that more than 16 Kbytes could be given over 
to a substitution table. This puts the practical limit at 14 bits. If the table has to 
be loaded using the key, the time to do this is also important. 

Building a 64-bit cipher (for example) out of 8-bit substitutions requires some 
way of mixing together the outputs of several substitutions. This illustrates the 
importance of permuting bits or characters, the so-called 'transposition cipher'. 

Keyed substitution 

A fixed substitution, for example one built into a read-only memory (ROM), can 
be a powerful component of a cipher, but a substitution that is unknown to the 
enemy because it is derived from the key can be even better. Fortunately it can 
be shown7 that almost all 8-to-8 bit substitutions are acceptable ones, free of the 
flaws of linearity or insensitivity to certain input bits. 

Often the requirement is for an invertible substitution or bijection, which means 
that the set of 256 byte values (for example) are a permutation of the set of numbers 
0, 1, ... 255. Efficient methods of generating such permutations exist8

, but 
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i = 0, 1, 255 where 0 ::::; = R(i) ::::; 256. These random are used in 
turn to S(i) with S[R(i)]. In this way each element of S(x) is permuted 
with a chosen other element of the array. If desired, the permutation 
process can be continued, to ensure a random result. 

_rransposit:i.on in modern ..__._~__._ .. o_._" 

We have seen how substitution can be provided by table look-up, which is a fast 
operation either in a programmed microprocessor or purpose-built hardware. 
Transposition of bits in purpose-built hardware need be no more than a crossing 
over of connecting wires on a chip or board. In a serially operated device, it 
requires a number of delays. and feedback paths and becomes complex. 

Frequently the effect of transposition is provided by shiffregisters and by loading 
a set of 8-bit 'registers' in one sequence and reading them in another. The carry 
propagation in arithmetic operations can exploit the functions available in a pro­
cessor to produce the effect of transposition, but the average length of a carry 
sequence is smalC about log n bits for an n-bit number. 

Variable or key-dependent transpositions of the classical form (bit or letter 
transposition) can be difficult to arrange in hardware. If all the permutations are 
to be available, a device like a miniature-scale telephone switch is required. In 
programmed form it is a little easier to do, but bit transpositions always tend to 
be inefficient and slow, hence the value of hybrid methods based on shifting, 
adding and XORing whole words. 9 

2.6. ATTACKS AGAINST ENCIPHERED DATA 

Until the advent of digital computers the task of decipherment of cryptograms 
depended entirely on human skill; it was an esoteric art requiring considerable 
intuition on the part of the practitioner and a great deal of tedious work. Digital 
computers have changed this. For all the classical methods, analysis of enciphered 
text to identify the type of cipher can be carried out rapidly; once the cipher 
mechanism is known, the processing speed of computers allows quite crude 
methods to be used to break these classical ciphers. 

Nevertheless, someone receiving a radio signal from outer space has a very con­
siderable problem in interpretation - the modulation system of the signal may 
be complex, the 'plaintext' language is unknown, the message may be enciphered 
in an unknown cipher algorithm and the encipherment may be controlled by an 
unknown key. The message may not be intelligible, even with immense com­
puting power and unlimited time. 

The cryptanalyst trying to obtain the meaning of a message couched in an 
unknown cipher with an unknown key faces a task which is nearly as daunting. 
Unless a ve~y elementary cipher has been used, identification of the encipher­
ment algorithm itself can present a severe problem. When the cipher is known, 
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Classes of attack 

than the crack-
that a ~vvhole stream of messages has been 
whole stream becomes intelligible. 

In assessing the strength of a cipher system it is prudent to assume that the 
algorithm ·is known to the cryptanalyst and that the attempt to crack the 
enciphered message consists of trying to find the key. The cryptanalyst's task 
is most difficult when all he has to go on is ciphertext, with no knowledge what­
soever of the plaintext; this is the ciphertext-only attack. If there is no redundancy 
in the plaintext (for example, an arbitrary string of numbers) then it is impossible 
to find a key. For a given ciphertext, each key value gives for its plaintext an 
arbitrary string and all these strings are possible. Some known plaintext could 
resolve this problem, for example if the arbitrary message has a preamble in stan­
dard format. Keys can be tested until an instance of the preamble appears in the 
deciphered text; if the preamble is long enough then this may allow the key to 
be identified with confidence, since the preamble only appears for one key value. 
Otherwise it may be necessary to collect all possible candidate decipherments, 
thus identifying a set of possible keys. A knowledge of the representational code 
of a plaintext with, say, even parity, can give the cryptanalyst something to work 
on. 

More favourable to the cryptanalyst is the situation where some plaintext and 
its matching ciphertext are available - the known-plaintext attack. The task is then 
to find a key corresponding to this match. If the length of the available text is 
sufficient, then the key can be identified with absolute confidence. Circumstances 
in which a plaintext-ciphertext pair is known are more common than one might 
imagine. For example, market changes may lead to predictable instructions being 
sent out to bankers or brokers. Sending enciphered press releases from a coun­
try to its embassy is another case in point. This is discouraged because of the 
working material it might afford a cryptanalyst seeking to break the diplomatic 
cipher. The remedy here is to ensure that the press releases are paraphrased before 
release. 

The most favourable situation for the cryptanalyst arises from a chosen-plaintext 
attack. Here the cryptanalyst has somehow managed to introduce a plaintext of 
his own choosing into the encipherment process. The plaintext may be chosen 
to ease the task of key finding; for example, it may be helpful if the chosen plaintext 
could be 'all zeros'. The 'probable word' is an example of known plaintext, though 
its position in the text is unknown to the cryptanalyst. Sometimes the probable 
word is actually 'chosen plaintext'. An example of forcing a word into a cipher 
system occurred in the breaking of Enigma, where a bombing attack was made 
on a lightbuoy with the certainty that the comparatively rare word 'leuchttonne' 
would turn up in Enigma enciphered messages. 10 

In order to ensure the strength of a cipher it is best to make the most adverse 
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cipher should resist all these attacks. 

If the method of attack is to be exhaustive search using a computer, 
given a known plaintext-ciphertext pair, then we can estimate the mean time 
it will take to find a key based on assumed times to test each key and the number 
of possible different keys. We assume for the sake of illustration key testing times 
of 1 p,s and 1 ms. These times approximate to the performance one might expect 
from special-purpose, large-scale integration (LSI) hardware and a microprocessor 
system, respectively. We assume key domains of 24, 32, 40, 48, 56 and 64 bits. 
In the left-hand part of Figure 2.20 we show the times taken to find correct keys, 
assuming that one key is tested at a time and that on average the correct key 
is found after working through half the key space. Any results above and to the 
right of the thick line represent conditions where the cipher is very weak. Results 
expressed in days may indicate conditions to be avoided for very important 
messages, whilst results expressed in years may be strong enough for most pur­
poses. The results for times greater than 100 years are not shown, being beyond 
the normal expectation of human life. 

Imagine, however, that a cryptanalyst has at his disposal a more powerful 
machine which is able to test many keys in parallel at the same time. Our 
imaginary machine contains many distinct units, each of which is programmed 
to explore a particular part of the key domain; eventually one of the units iden­
tifies the key and the machine signals success in its key search. For the sake of 
illustration we shall assume that such a machine can be built and that it is capable 
of testing 1 million keys simultaneously. This changes the situation completely. 
The fight•hand part of Figure 2.20 shows the times now achieved in key sear-

Single test 106 tests in parallel 
Key size 

bits 1 ms 1 JlS 1 ms 1 J.!S 

24 2.33 h 8.4 s 8.4 ms 8.4 vs 

32 24.9 d 35.8 m 2.15 s 2.15 ms 

40 17.4 y 6.4 d 9.2 m 550 ms 

48 >100y 4.46y 1.63 d 2.35 m 

56 > 100 y 1.14 y 10.0 h 

64 > 100 y 107 d 

Fig. 2.20 Times for exhaustive key search 
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\Vhe1e a communication systerH needs handle characters in a st1eam, as, for 
example, when a simple terminal without is connected, this 
tain constraints upon the choice of cipher system may be used. Each chara,ctE:r 
must be accepted as it becomes available, enciphered and then transmitted. 
some form of substitution cipher could be used, but not a cipher which transposes 
characters. 

Plaintext data arriving in this fashion is normally handled by what is known 
as a 'stream cipher'. A stream cipher may be synchronous, when encipherment 
depends on the current plaintext character and its position in the stream (in 
addition to the encipherment key) and the ciphertext is not influenced by the 
particular plaintext characters which have gone before. Enigma produces this kind 
of cipher. If the positional information becomes inaccurate, then the result may 
be completely unintelligible. Other types of stream ciphers are self-synchronizing; 
decipherment then depends on the current plaintext character and on a limited 
number of previous ciphertext characters; synchronism may be lost temporarily, 
but recovered as more text is processed. Because of the dependence of the cur­
rent ciphertext on the immediately recent ciphertext, each ciphertext character 
depends on the current plaintext character, its position in the plaintext stream 
and also on the whole of the preceding plaintext stream. 

The Vigenere cipher is an example of a synchronous stream cipher. The modulo 
26 addition of a key text into a plaintext naturally takes place character by character 
and depends on relative position of current plaintext and key text; correct registra­
tion of plaintext and key text is essential. In that context we pointed out that a 
truly random stream of characters used as key material would yield an uncrackable 
ciphertext. The idea of adding a random stream into a plaintext arose as a result 
of an important invention by Vernam in 1917. 

The V ernam cipher 

At that time Vernam was working with other employees of the American 
Telephone and Telegraph Company on methods of encipherment for the print­
ing telegraph. Vernam' s important contribution was the bit-by-bit combination 
of random characters with characters of the plaintext, the combination being car­
ried out by modulo-2 addition (the XOR function); the principle is illustrated in 
Figure 2.21. Random characters, chosen by picking numbers out of a hat, were 
punched on paper tape; this tape was fed through one reader in synchronism 
with the plaintext tape fed through another reader. A new tape was punched 
in a tape punch, enciphered in this neat and elegant operation. The encipher­
ment key was the random number stream punched on the key tape, sometimes 
called the 'key stream'. 

Decipherment was equally simple; all that was necessary was to take the re­
ceived enciphered tape and feed this through a tape reader, combining it by bit­
by-bit modulo-2 addition with a copy of the random key stream. In other words, 



-- 56 --
MasterCard, Exh. 1004, p. 56

Fig. 2.21 The flow of data in the Vemam cipher 

the process of decipherment used exactly the same mechanism and exactly the 
same key data as the process of encipherment. Figure 2.21 shows the data flows 
in the Vern am encipherment and decipherment. The modulo 2, or 'exclusive­
OR', operation, used in the Vernam encipherment, has acquired great import­
ance in designing modern cipher procedures. There is close similarity between 
Vernam' s and Vigenere' s methods except that one works with bits and the other 
with characters. 

To operate Vernam' s cipher it was necessary to provide sender and receiver 
with identical sequences of random numbers. Vernam' s original idea was to use 
loops of tape, so that the random number stream was used over again as many 
times as necessary to encode a complete message. In order to generate longer 
number streams, two random number tape loops (with different random number 
streams) were used together, the tapes differing in length by one character. The 
two tape loops were run in synchronism and combined in an exclusive-OR opera­
tion, the result being combined with the plaintext. Thus, if one loop were 1000 
characters long and the other 999, the number of combinations which would be 
produced before a repeat would be 999 000, but this is not a true indication of 
its complexity. 

If tapes of truly random numbers can be provided at the two ends of a com­
munication system using a Vernam cipher system, then the cipher is completely 
uncrackable. This is because, for any ciphertext with an unknown random key, 
all possible plaintexts of the same length are equally valid as decipherments. For 
very important communication channels it is worth going to the trouble of securely 
providing such random number tapes. Since the key is as long as the message, 
it is not generally usefut but there are situations needing great security in which 
the amount communicated is small but it is urgent and carrying bulk data as key 
is not difficult. This method, known as the 1 one-time tape', has been used to pro­
tect channels such as the Washington-Moscow 'hot line'. 

A similar method, operated by hand, is the I one-time pad' which has been in 
the news more than once in connection with the unmasking of spies. Here the 
random number series is printed on tear-off pads, each sheet being used only 
once and then destroyed. Matching pads are held at sender and receiver locations. 

As was pointed out in connection with the Vigenere cipher, so, with the Vernam 
cipher, it is important to avoid using the same key for more than one message, 
hence the use of the term 'one-time'. Use of the same key in encipherment for 
a number of plaintexts allows attacks either by a Kerckhoffs' superimposition or 
by elimination of the key by an exclusive-OR combination of the two ciphertexts. 
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Fig. 2.22 Stream cipher with pswdo-random generators 

Pseudo-random key streams 

According to the Vernam principle the same random key stream is used for 
encipherment and decipherment. If a repetitive key stream is insecure and a com­
pletely random key stream is impractical, the compromise which is normally used 
is to employ a pseudo-random key stream generated by a finite state device at 
each end of the line as shown in Figure 2.22. Much of the ingenuity of cryp­
tographers has gone into the development of these key stream generators. The 
key stream generator employs a secret key, the main cryptographic key, sometimes 
known in this context as the base key. 

In order to synchronize the two ends of the line, the two pseudo-random key 
stream generators must begin with the same stored data, that is to say the same 
state of the machine. The number used to establish this state may be considered 
as part of the key, sometimes called the message key and it can be exchanged by 
a preamble to the main communication. Many systems allow the synchronizing 
data to be sent in clear through the network. Because synchronization can be lost 
due to a fault in the system or a bad communication line, practical systems which 
run automatically must be able to recover synchronism without human interven­
tion. Effectively, this means that a portion of the channel capacity has to be given 
over to synchronizing information. 

In some systems, the data being transmitted has considerable redundancy, 
perhaps because it is multiplexing a number of data streams. In this case, a loss 
of synchronism can be detected and both key stream generators stop their nor­
mal operation and enter into a resynchronizing sequence. In other systems, par­
ticularly those working at high speed or over networks with delay such as satellite 
links, the synchronizing information is sent continually and the two units resyn­
chronize at a moment defined by a secret criterion based on the structure of the 
data being transmitted. 

An example of this kind of key stream is given in chapter 4, section 4.4 - a 
method called output feedback. 

2.8. THE BLOCK CIPHER 

Block ciphers handle plaintext characters in blocks, operating on each block 
separately. The block size depends on the particular encipherment device in use; 
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if a block happens to occur more than once in a then co:rresp<Jn,:lirtg 
repeated ciphertext blocks will occur in the ciphertext, giving away information 
to an eavesdropper; this characteristic is very like that of material that has been 
encoded, as distinct from enciphered, when repeats may also be evident (indeed 
the simple block mode of using the Data Encryption Standard is usually known 
as' electronic code book'). Even more seriously, an active line-tapper may be able 
to change the order of ciphertext blocks, delete selected blocks or duplicate par­
ticular blocks without risk of discovery. 

Since the block cipher is effectively a substitution cipher acting on blocks in­
stead of characters, if such a system is to be used with anything like adequate 
security, it is essential to use blocks of appreciable size in order to prevent a crypt­
analysis based on frequency counts of block types. 

Methods have been devised for using block ciphers as a basis for constructing 
stream ciphers. We shall see in chapter 4 how this has been done for the Data 
Encryption Standard. 

2.9. MEASUREMENT OF CIPHER STRENGTH 

Shannon's theory of secrecy systems 

A most important contribution to the theory of encipherment systems was made 
by Claude Shannon, when he published his paper 'Communication theory of 
secrecy systems',11 which followed soon after his better-known paper on the 
mathematical theory of communication. Shannon assumed that the cryptanalyst 
had only ciphertext to work on, which, from the point ofview of cryptanalysis, 
is a more stringent assumption than the known or chosen plaintext assumption. 

Shannon identified two significant classes of encipherment system- those that 
are unconditionally secure and those that are computationally secure. An un­
conditionally secure system is defined as one which defies cryptanalysis even though 
the cryptanalyst has unlimited computing power available to him. The only un­
conditionally secure cipher that is in common use is the one-time tape system, 
mentioned earlier, if used with a truly random key tape. As we have already seen 
all plain texts with length equal to the ciphertext are decipherment candidates and 
there is no way of choosing between them, computational resources 
notwithstanding. 

A particular cryptogram may be unconditionally secure if it is so short as not 
to contain sufficient material to lead to a unique solution. Even a monoalphabetic 
substitution ciphertext may fall into this class. Shannon defined the minimum 
length of text required to yield a unique solution as the 'unicity distance'. Stated 
simply, Shannon's criterion was that the redundancy in the plaintext must exceed 
the information contained in the key. For example, the key size for a 
monoalphabetic substitution cipher is 26! and log2 26! is 88. If the redundancy 
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A ciphertext which cm:~tains sufficient information for cryptanalysis is said to 
be computationally secure if the task of solution is so as to be impossible of 
execution with the largest conceivable computational power. The 'one-way' func­
tions that we shall meet in chapter 8 are of the class that are easy to compute 
in one 'direction', but are required to be computationally infeasible in the other. 

There is no accepted definition of what is computationally infeasible, bearing 
in mind that extremes of parallel processing can be used, that time-memmy trade­
offs are possible and that some notion of the acceptable time for a solution must 
be obtained. Furthermore, processing and storage technology continually improve. 
It would generally be agreed that a calculation employing more than 1025 steps 
is not feasible today. Perhaps 'step' should be defined as 'that which an LSI chip 
can do in 1 fLS'. To get a more absolute limit, going beyond our present technology, 
it is possible to set a thermodynamic limit. 

Limit§ of computation 

A reasonable assumption is that each logical step consumes energy kT, where 
k is Boltzmann's constant and T the absolute temperature. From a calculation of 
the amount of heat falling on the earth from the sun and assuming that the crypt­
analytic computation must take place at a temperature of 100 K, it can be 
shown12 that the number of elementary operations obtainable in 1000 years is 
about 3 x 1048 . The other significant consideration in a time-memory trade-off is 
the amount of available store for the computation. Let us assume that somehow 
a store can be constructed in which each bit requires 10 atoms of silicon; this store 
shall be 1 km high and cover all the land mass of the earth (or shall be placed 
in orbit as a new moon of equivalent mass). The number of bits that can be stored 
is about 1045 . 

Being cautious in placing our limits of computational infeasibility, let us define 
these as 1050 operations in 1000 years and a store of 1050 bits. Any computations 
requiring more than this amount of computing power can be said to be totally 
impossible in the time scale stated. In practical terms, computations requiring 
very much less power than this are also likely to be impossible. A feel for the 
scale of the problem can be gained by looking at cryptanalysis of the Lucifer 
system13 with its key of 128 bits; if this can only be attacked by exhaustive search 
for the key, given a known plaintext-ciphertext pair, then the number of keys 
that must be tested is about 3 X 1038 . If one Lucifer key can be tested every 
picosecond, then the time taken to find a solution is about 1019 years. 

Key size and its effect on the time for exhaustive search set an upper limit on 
the strength of a cipher, but it is a great mistake to judge the strength of a cipher 
in this way. The history of ciphers is full of 'unbreakable ciphers' with large key 
spaces. Key search is no more than the universal method on which to fall back 
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The possibility of improved computational methods make breaking feasible 
cannot be ruled out. 

Looked at from the point of view of the theory of computational complexity, 
some systems can be proved to be unconditionally secure, but computational in­
feasibility of any cryptanalytic problem cannot be demonstrated. For this reason 
it is usual, when assessing the strength of a cipher, to postulate an attack under 
conditions which favour the cryptanalyst. This departs from Shannon's assump­
tion of a ciphertext-only attack and makes the assumption of a known-ciphertext 
or chosen-ciphertext attack. It is on such assumptions that the strength of a modern 
cipher system is judged. 

An application of Shannon's theory 

An interesting application of Shannon's theory is to the solution of messages 
formed by adding two English texts. The operation can be modulo 2 addition 
of bits (Vernam) or modulo 26 addition of a letter code (Vigenere) - it makes 
little difference. From one point of view, each text is enciphering the other. Each 
text has a redundancy of about 80 per cent. The amount of key needed to solve 
it is provided by the other's redundancy. In other words, the 20 per cent equivoca­
tion in each text still leaves enough redundancy (60 per cent) to solve the prob­
lem. This, even if it were an exact argument, would not show that it could be 
done in practice because our knowledge of the structure of English is not perfect 
and long messages would be needed, with correspondingly long computation, 
to exploit all the redundancy which Shannon has estimated. In practice, by guess­
ing first at one message and then the other the problem can often be solved. For 
a starting point, a probable word or phrase in one or other text is needed. 

The same method of solution can be applied to an equivalent problem- solu­
tion where two texts have been additively enciphered with the same key stream. 
Such a solution gives both the texts and a sample of keystream for further analysis. 

2.10. THREATS AGAINST A SECURE SYSTEM 

Threats against any protected system, be it a communications system or a data 
storage system, can be classified conveniently into two categories - the passive 
and the active threat. A passive attack against a system is merely an attempt to 
get round the protective barriers and read what is being transferred or stored, 
but without attempting to alter it. This type of attack has been perpetrated against 
communication systems ever since the invention of the electric telegraph. In the 
days before multiplexing it was very simple indeed to introduce a wire tap onto 
a transmission line (Figure 2.23). Telephone tapping of a local connection is all 
too easy to achieve. The various forms of multiplexing now in operation and the 
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complex protocols in data networks demand greater sophistication of the intruding 
line-tapper, but this is well within the compass of the technologist criminal. It 
is often thought that multiplexing provides in itself a kind of safeguard against 
the intruder, but this is a dangerous and fallacious belief. It is well known that 
in the USA a foreign power made a practice of listening-in to microwave links 
(no physical line tap then being necessary) and selecting interesting telephone 
calls by recognition of the in-band dialling tones used to set up the calls. 

A passive line tap need not break into the protocol controlling the flow of data. 
This simplifies the task of the passive line tapper enormously. 

Detection of a passive line tap is feasible where a physical communication link 
is involved, based on precise measurements of line characteristics, but clearly this 
is impossible where a microwave link is tapped. Defence against passive line­
tapping intrusion must therefore be based on protecting by encryption the data 
transmitted; it cannot hope to succeed by protecting the transmission line itself, 
except where the line is totally protected physically, an unusual state of affairs. 

Active line taps 

The active threat is potentially far more serious. Here the intruder seeks to alter 
the stored or transmitted data, and will hope to do this without discovery by the 
legitimate data owner or user. Alteration of stored data may take place either 
through misuse of the normal access channels or by re-writing data on 
exchangeable storage media. We are not so much concerned here with the access 
rules, though this is an important subject, but rather with the techniques for pro­
tecting data against attack via clandestine means. Use of encryption can protect 
against undetected alteration of the data by arranging that the encrypted data 
is structured in such a way that meaningful alteration cannot take place without 
cryptanalysis; we shall discuss this at greater length when we consider secure 
data formats using encryption. Where an intruder has illegal access to data­
recording media, deletion of data cannot be prevented. Clearly this is a very 
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serious matter and demands the creation of a secure physical environment for 
storage of tapes and discs, together with back-up copies at a different storage 
location. 

An active line tap on a communication link is almost as difficult to prevent as 
is a passive line tap except in radio channels. Detection is much easier and may 
even be possible without encipherment or similar logical schemes. Successful 
alteration of data requires time to carry out and precise measurements of transmis­
sion times may indicate the presence of intrusion. Whereas a microwave link was 
easily tapped in passive mode, this type of link would present a severe challenge 
to an active line tap. If a physical communication link is under constant 
surveillance by its owner, with traffic constantly flowing and being monitored, 
then it may be almost impossible for the intruder to introduce his tapping con­
nections without detection. The type of configuration that a line tapper would 
require is shown in Figure 2.24. 

To operate an active line tap successfully is not a simple task. In Figure 2.24 
communication between source and sink is controlled by a protocol, called in the 
figure 'true protocol'. The line tapper must interrupt this protocol and conduct 
a separate 'false protocol' with source and with sink, thereby deceiving each that 
they are still in direct communication. The true information flows from the source 
to the active line tap; false information flows from the tap to the information sink. 
The task of the line tapper is probably simplest when source and sink are allowed 
first to establish a genuine communication channel, to be taken over later by the 
line tapper. With some added complication the active tap takes part in the pro­
cess of setting up the channel. 

Methods of prot!ction 

Protection of transmitted data against an active line tap is based on the same prin­
ciples as those mentioned earlier in connection with the protection of stored data. 
It is essential to prevent undetected alteration, addition, deletion and replay. In 
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is the attack in vvhich the intruder records an enciphered transmission 
and later sends it again from his line-tapping transmitter. For example, the aim 
might be to make money transfers to a bank account appear to take place more 
than once. Replay cannot be prevented, but it can be detected by including in 
the plaintext sufficient block identification data, a block number (either unique 
or cyclic with a large range) and, possibly, a time-stamp. The receiver would ignore 
any enciphered message whose decrypted plaintext did not contain valid iden­
tification. Detection of unauthorized changes is part of the subject called authenti­
cation and is treated in chapter 5. 

2.11. THE ENCIPHERMENT KEY 

In all but the most elementary of the systems we have discussed in this chapter, 
the role of the encipherment key is most significant; key-less encipherment 
algorithms, which always behave in a predictable manner, are only of academic 
interest; the security of such systems depends on keeping the design details secret 
and when the secret is lost a new design is needed to replace the lost cipher. 

In keyed algorithms the encipherment process is carried out under the control 
of the key, which influences the behaviour of the encipherment algorithm. This 
property applies equally to substitution, transposition and product ciphers; it is 
particularly important when we come to machine ciphers. In the latter, capture 
of a machine may expose the detailed construction of a secret encipherment 
algorithm to an opponent. However, if the opponent does not know the relevant 
encipherment key, then knowledge of the algorithm alone should be totally 
insufficient to permit cryptanalysis of an enciphered message. It is a sound prin­
ciple, much followed in modern practice, that security of a cipher system should 
not depend on the secrecy of the algorithm, but on the secrecy of the encipher­
ment keys. 

This principle places a considerable responsibility on the designer of the system 
under which keys are generated, distributed, used and destroyed after use. In 
the past the key material has been sent to encipherment users by human courier, 
but this is too slow and inconvenient for many of today' s applications. Therefore, 
means must be devised for transporting keys more rapidly and efficiently. Often 
this implies sending the keys via the communication channel which is itself the 
subject of encipherment protection. Here we need an hierarchy of keys which 
distinguishes those keys which are used for data protection (and which may 
therefore be much in use) from those used solely for the protection of keys in 
transit. Keys used for encipherment of keys are used far less frequently and may 
be transported by less efficient means, such as a physical visit; the very fact that 
they are used less frequently means that they are less exposed to cryptanalytic 
attack. 
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3.1. HISTORY OF THE DES 

Why do we need a data encryption standard, since proprietary encipherment 
systems are available from many manufacturers? Users wishing to protect com­
munication on a line need only purchase a pair of matching encipherment devices, 
install them, enter matching keys and they are ready to communicate securely. 
Whenever communication is internal to a particular group, protection of transmis­
sion by encipherment presents little in the way of organizational problems, such 
as reaching agreement on a particular method of encipherment. Until recently 
most data communication has been within single organizations, often carried on 
a private network of leased lines. In these conditions a standard is not needed. 

When protected communication is required between users who belong to dif­
ferent organizations, this may not be so easy to arrange. The organization may 
have chosen encipherment devices from different manufacturers, in which case 
the devices are likely to be totally incompatible and unable to communicate either 
securely or otherwise. Furthermore encipherment must often be introduced in 
the context of standard communication protocols; this may place new restrictions 
on the means of encipherment. This kind of interworking is becoming increas­
ingly common. Therefore, there is a case for considering standard encipherment 
algorithms for widespread use. Of necessity any standard encipherment algorithm 
must be public knowledge and this is a departure from previous cryptographic 
practice where users attempted to keep the nature of the encipherment algorithms 
in use a secret. The entire security of a system based on a public standard must 
rest on the strength of the algorithm and the secrecy of the encipherment key. 

The initial move towards a public encipherment standard came from the US 
Federal Government, which, if it chose, could have dictated to its agencies 
involved in data processing what existing proprietary algorithm they should use. 
Encipherment had, of course, been in use by the US Government before this 
initiative; such encipherment was designed to protect data covered by the US 
National Security Act of 1947 or the Atomic Energy Act of 1954 and similar legisla­
tion. The new initiative was aimed at areas where the responsible authority 
deemed that the data in question, though not covered by legislation demanding 
encipherment (that is to say, not 'classified'), yet merited cryptographic protec­
tion; in general the application was, therefore, outside the military, diplomatic 
and other areas of national security. 
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NBS had the setting Federal Standards for the effective and 
efficient use of computer systems; the relevant clause of PL 89-306 reads: 'The 
Secretary of Commerce is authorized ... (2) to make appropriate recommenda­
tions to the President relating to the establishment of uniform Federal automated 
data processing standards.' The standards which have been produced as a result 
of this legislation are expressed in a substantial series of publications under the 
general title of Federal Information Processing Standards; they cover hardware, 
software, data, ADP operations, etc. _ 

Under this general remit NBS initiated a study programme on computer security. 
One of the early actions in this programme was to express the need for a stan­
dard for data encryption. The Bureau took the view1 that purchase of encipher­
ment devices from commercial suppliers must be subject to the principle of 'caveat 
emptor' or 'buyer beware'. An NBS statement averred that 'the intricacies of 
relating key variations and working principles to the real strength of the encryp­
tion/decryption equipment were, and are, virtually unknown to almost all buyers, 
and informed decisions as to the right type of on-line, off-line, key generation, 
etc., which will meet buyers' security needs have been most difficult to make'. 

The NBS's responsibility extended primarily to the protection of data as pro­
cessed and transmitted by Federal agencies; however an important secondary 
area of responsibility as part of the Department of Commerce was to the general 
buyer of encipherment equipment. An interesting sidelight is thrown by the NBS's . 
view that much of the proprietary (i.e. non-standard) encipherment equipment 
available came from outside the USA. Therefore the preparation of a standard 
for data encipherment would not damage the trade of US manufacturers to a 
serious degree. 

In 1974 the US Congress passed a Privacy Act, which, strangely, did not address 
directly the question of data security. However, data security is an important tool 
in attaining in a satisfactory manner the requirements of legislation of this type, 
and the Office of Management and Budget assigned to NBS the responsibility 
of developing computer and data standards to meet the needs of this Act. 

The NBS study programme got under way effectively in 1972. A search was 
begun for an appropriate encipherment algorithm which could form the basis 
of a Federal Information Processing Standard. The requirements for this were 
as follows: 2 

1. It must provide a high level of security. 
2. It must be completely specified and easy to understand. 
3. The security provided by the algorithm must not be based on the secrecy of 

the algorithm. 
4. It must be available to all users and suppliers. 
5. It must be adequate for use in diverse applications. 
6. It must be economical to implement in electronic devices and be efficient to use. 
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eight points listed, the NBS team was not looking for ideas needing a lot of fur­
ther development, only methods which were already well developed were sought. 

In May 1973, NBS issued a call for ideas fitting these needs. The response was 
disappointing; many mathematicians sent them outlines of algorithms which 
needed development. One suggestion received was virtually a restatement of the 
'one-time tape' method, based on the Vernam invention. None of the offerings 
came anywhere near filling the stated requirements. In August 1974 a second call 
for ideas was issued. In response, several algorithms were sent in; some of these 
were too specialized, some were not strong enough. However, one algorithm 
submitted showed great promise in meeting the requirements. This submission 
came from International Business Machines (IBM). 

The IBM Lucifer cipher 

The IBM submission to NBS was a development from an encipherment scheme 
invented in the early 1970s; this was the IBM 'Lucifer' encipherment algorithm, 
a 'product' cipher, one of the early applications of which is understood to have 
been in a bank automatic-teller terminal. As the eventual Data Encryption Stan­
dard (DES) was more or less directly developed from the Lucifer design it is worth 
examining Lucifer in a little detail. Lucifer certainly met the NBS requirement 
that the algorithm should be made fully public; it had been the subject of several 
articles quite freely available in various journals and reports. 3

•
4 

In chapter 2 we met various substitution and transposition ciphers and we saw 
that, used alone, many of these are very weak. However, as was pointed out 
by Shannon, 5 cipher operations which are weak in themselves can be combined 
together to form something much stronger; this is the concept of the product 
cipher. A product cipher may take a block of plaintext and transpose the order 
of its binary bits (called' diffusion' by Shannon), following this with a systematic 
substitution of bit patterns with others according to look-up or substitution tables 
(called 'confusion' by Shannon). These two steps may be repeated a number of 
times. Figure 3.1 illustrates the process. 

In Figure 3.1 the first logical step is a substitution, in which the bits of the 
plaintext block are taken in groups and replaced by other bit patterns of the same 
size according to substitution tables (S-boxes), with no expansion of data. The 
second step is a transposition, or re-ordering, of the bits of the whole output from 
the first step. The third step is a substitution, similar to the first step. This is fol­
lowed by a further transposition and so forth. Thus transposition and substitu­
tion alternate until the ciphertext produced as a result of the total process is 
unpredictable from the plaintext without knowledge of the intervening trans­
formations (the actual number of steps employed is set by the designer of the 
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Fig. 3.1 A product cipher with transposition and substitution 

encipherment). Decipherment by the possessor of this knowledge is carried out 
by running the ciphertext data back through the process, using the inverse of 
each S-box and transposition; without this knowledge a plaintext block should 
not be deducible from the ciphertext. Greatest strength of encipherment is 
achieved if the S-boxes used at each stage are different. If we say that the S-boxes 
are to carry out transformations on groups of 4 bits, then the total number of 
different S-boxes that can be specified is (24)! or about 2 x 1013

, so there appears 
to be plenty of choice, although few of the choices are actually suitable. 

The description of the transformations can be expressed in terms of a key, which 
should be shared knowledge between communicating parties and must, therefore, 
be readily transportable. The size of this key can be calculated precisely on cer­
tain assumptions. We have already postulated 4-bit S-boxes- now suppose that 
the transposition should be the same at all steps, and, therefore, need not be 
specified in the key. Take a plaintext block of 128 bits, the Lucifer block size, then 
at every stage thirty-two S-boxes will be required. An S-box usually comprises 
a read-only-memory (ROM) and in this case it stores sixteen words of 4 bits, but 
the information required to specify an invertible transformation of 4 bits is 
log2(16!) = 44.2 approximately. If there are 16 stages of transposition/substitu­
tion, then the total size of the specification of the transformations, i.e. the key 
size, will be 32 x 45 x 16 ( = 23 040) bits. This is clearly an inconveniently large key. 

In the Lucifer cipher only two different S-boxes were specified; the selection 
of the S-boxes to be used at each substitution step was based on the digits of 
the encipherment key; the S-box specifications themselves were part of the 
algorithm and not affected by the encipherment key. 
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tion, diffusion. The details of the Lucifer operation 
were the specifications of the and S-boxes. 
strength depended on the series of substitutions, with interposed 
transpositions, and on the secrecy of the encipherment key. 

The Lucifer block size was 128 bits, with no data expansion in the encipher­
ment process, and the key size was also 128 bits. Thus the number of different 
mappings of plaintext onto ciphertext under control of the encipherment key was 
2128

, compared with the total number of ways of mapping 128 bits onto a 128-bit 
field with is (2128)!, a very much larger number. 

The process of establishing the DES 

The IBM reply to the second NBS solicitation for candidate encipherment stan­
dards was based on an algorithm of this type. During the months that followed 
the submission of the algorithm the proposal underwent government scrutiny 
to determine its suitability as a Federal standard. The National Security Agency 
(NSA) was called in by NBS to carry out an exhaustive technical analysis of the 
algorithm. During this time NBS and IBM negotiated the terms under which this 
piece of IBM intellectual property might be made available to others for manufac­
ture, implementation and use. IBM agreed to grant non-exclusive, royalty-free 
licences for the manufacture or sale in the USA of DES devices where otherwise 
this would infringe IBM patents. The agreement was eventually recorded in the 
13 May 1975 and 31 August 1976 issues of the Official Gazette of the United States 
Patent and Trademark Office. In March 1975 the description of the algorithm was 
issued for general public comment and in August 1975 a draft of the proposed 
standard was published. 

The comments received showed a wide range of views. Many comments con­
cerned the ways in which encipherment should be implemented in various com­
puter architectures. The recommended modes of use of the standard algorithm 
are examined in chapter 4. Others were directed at the cryptographic strength 
of the algorithm. We shall return to this subject in the present chapter. 

The process of comment, discussion and reply occupied about 18 months, 
following which the data encipherment algorithm was adopted as a Federal stan­
dard on 23 November 1976. It was published as FIPS Publication 46, entitled Data 
Encryption Standard, on 15 January 1977,6 becoming mandatory 6 months later on 
15 July 1977. After that date Federal agencies were expected to comply with its 
provisions, or show an acceptable reason for not doing so. 

The abbreviation DES has achieved very wide currency for the Data Encryp­
tion Standard. The algorithm has also been adopted by the American National 
Standards Institute, where it is known as the Data Encryption Algorithm (DEA). 
We will now describe the way in which the algorithm carries out the encipherment. 
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output, the (or transforms into 
ciphertext or vice versa, depending on the mode in which it operates. Of the 64 
bits in the encipherment key block, only 56 enter directly into the algorithm. In 
the Federal standard the eight remaining bits take the values for odd parity in 
each 8-bit byte of the key block. 

The building blocks of the algorithm are permutations, substitutions and modulo 
2 additions (XOR) .. Permutations in the DES are of three kinds, straight permuta­
tions, an expanded permutation and permuted choices. Figures 3.3 (a), (b) and 
(c) illustrate the nature of these operations (the permutations actually used are 
defined in later figures). In a straight permutation bits are simply reordered. In 
the expanded permutation some bits are duplicated and the whole resulting field 
reordered. In permuted choices some bits are ignored and the remainder 
reordered. 

Substitutions in the DES are known as S-boxes and are specified by eight dif­
ferent tables. In Lucifer the input and output of the S-boxes were each of 4-bits. 
In the DES the S-boxes have 6-bit inputs and 4-bit outputs. 

The first operation to which the input data is subjected is the Initial Permuta­
tion, which has a highly regular character. The effect of this may be seen as an 
acceptance of data, an octet at a time, in eight shift registers (one bit to each 
register). As the successive input octets are accepted, their bits are distributed 

Fig. 3.2 The logical structure of the DES 

Key 
genera tor 
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Output 
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Input 

Output 

b 

Input 

Output 

c 

Fig. 3.3 Three types of permutation, a a straight permutation, ban expanded permutatio1z, 
c a permuted choice 

to the eight shift registers. When the input is complete and all 64 bits accepted, 
the contents of the shift registers are placed in sequence. The exact way in which 
the bits are permuted is shown in Figure 3.4. In this permutation input bit 1 
emerges as output bit 40, input bit 2 emerges as output bit 8, etc.; output bit 1 
corresponds to input bit 58, output bit 2 corresponds to input bit 50, etc. 

One result of this permutation is that for a code such as American Standard 
Code for Information Interchange (ASCII), with every eighth bit representing 
parity, all the eight parity bits of the input block will be collected together into 
one octet at the beginning of the block, before transposition and substitution 
begins. There is, however, no evidence that this initial regularity introduces any 
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57 L!-9 41 33 25 17 9 

59 51 43 35 27 19 11 

61 53 45 37 29 21 13 

63 55 47 39 31 23 15 7 

Fig. 3.4 The Initial Pennutation of the DES 

weakness into the encipherment operations; this is because of the powerful dif­
fusion properties of the algorithm. It is understood that the algorithm includes 
this permutation for reasons of convenience in implementation; it has no 
cryptographic value. 

Before. the permuted and substituted data is available for reading from the out­
put register at the end of the complete encipherment operation, it is subjected 
to the exact inverse .of the Initial Permutation. 

After the Initial Permutation, the 64-bit data field is split into two 32-bit fields 
which are sent to registers Land R, part of the main loop of the algorithm logic. 
Then the action of the main loop of the algorithm begins. 

From register R the 32 bits are passed to the Expansion Permutation E, which 
is a regular transformation in which half the bits are replicated, so that the out­
put of the permutation consists of 48 bits. For each of the four octets the first, 
fourth, fifth and eighth bits are replicated. The full permutation is expressed in 
Figure 3.5. In this permutation output bit 1 corresponds to input bit 32, output 
bit 2 corresponds to input bit 1, etc. The other output from register R is a direct 
32-bit transfer to register L. We shall see later what happens to the displaced con­
tents of register L. 

The 48-bit output from the Expansion Permutation is next passed to an exclusive­
OR operation in which it is combined with a selection of bits from the encipher­
ment key. The 48-bit output from the exclusive-OR operation is split into eight 
sextets for input to the set of eightS-boxes, thus each S-box receives a 6-bit input, 
but produces only 4 bits as output. The individual S-box look-up tables are as 
shown in Figure 3.6. The layout of these tables requires further explanation. The 

32 2 3 4 

4 5 6 7 8 9 

8 9 10 11 12 13 

12 13 14 15 16 17 

16 17 18 19 20 21 

20 21 22 23 24 25 

24 25 26 27 28 29 

28 29 30 31 32 

Fig. 3.5 Tlze Expansion Permutation (E) of the DES 
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S3 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8 
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1 
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7 
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12 

S4 7 13 14 3 0 6 9 10 1 2 5 11 12 4 15 
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9 
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4 
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 12 

S5 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9 
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6 
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14 

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3 

S6 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11 
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8 
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6 
4 3 2 12 9 5· 15 10 11 14 1 7 6 0 8 13 

S7 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1 
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6 
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2 
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12 

S8 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7 
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2 
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8 
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11 

Fig. 3.6 The S-box tables for the DES 

input to each consists of 16 bits, of which the first and the last are taken together 
as a 2-bit number which has the effect of selecting the row in the S-box table; 
bits 2 to 5 of the input to each S-box, together giving values in the range 0 to 
15, select the table element in the appropriate row (the left bit is most signifi-
cant); each row of an S-box table represents a bijection from bits 2 to 5 of the 
S-box input. We shall return to the question of the structure of the S-boxes. 

The 4-bit outputs from all the S-boxes are collected together as a 32-bit field 
for input to the permutation P, which is a rather irregular permutation, quite unlike 
the regular structures of IP and E. The details of the permutation Pare as shown 
in Figure 3.7; this permutation neither replicates nor removes bits and therefore 
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Fig. 3.7 Permutation P of the DES 

has a 32-bit output. In this permutation bit 1 of the output corresponds to bit 
16 of the input, bit 2 of the output corresponds to bit 7 of the input, etc. 

To complete the main loop of the algorithm the output from permutation P is 
combined with the erstwhile contents of register L in an exclusive-OR operation 
and the result moved into register R. In order to achieve this operation without 
a clash on register allocation, a temporary register TEMP is shown in Figure 3.2 
between the exclusive-OR and register R. 

The cycle of the main loop we have described here is repeated sixteen times 
before the contents of registers R and L are assembled in a 64-bit block in the 
sequence K L, then subjected to the inverse of the Initial Permutation already men­
tioned and transferred to the output register. Note the final swap of registers R 
and L before the inverse Initial Permutation. The reason will appear shortly. Each 
cycle of the main loop is usually known as a 'round'. 

It now remains to describe how the encipherment key participates in the pro­
cess. We mentioned that the 48-bit output from the Expansion Permutation E is 
combined with selected bits from the encipherment key before input to the S­
boxes. The selected bits are different for each of the sixteen rounds. At the right­
hand side of Figure 3.2 the method of generating these bits is shown. After input 
of the key to the key register, the key is read into the Permuted Choice 1 (PC1) 
where every eighth bit is eliminated, otherwise the structure of this permuted 
choice is very similar to that of the Initial Permutation, probably signifying a similar 
kind of implementation; the structure of PC1 is given in Figure 3.8. Here bit 1 
of the input to register C corresponds to bit 57 of the encipherment key and bit 

cr 49 41 33 25 17 9 

58 50 42 34 26 18 

10 2 59 51 43 35 27 

19 11 3 60 52 44 36 

Dr 
55 47 39 31 23 15 

62 54 46 38 30 22 

14 6 61 53 45 37 29 

21 13 5 28 20 12 4 

Fig. 3.8 Permuted Choice 1 of the DES 
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pr<::Jd1XE the selection of 48 bits for combination with the 
in the main of the algorithm/ the combined contents of C and D are sent 
to a further Permuted Choice (PC2). This has a rather irregular structure, expressed 
in Figure 3.10. Bit 1 of the output corresponds to input bit 14 (of the combined 
C and D)

1 
output 2 corresponds to input 171 etc. The output from PC2 consists 

of 48 bits. For each round of the algorithm the output of PC2 forms the I sub-key' 
used in the main loop. 
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Fig. 3.9 Schedule of left shifts for encipherment 
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Fig. 3.10 Permuted Choice 2 of the DES 
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K1 0 
2 K, 1 
3 K, 2 
4 K, 2 
5 K, 2 
6 K, 2 
7 K, 2 
8 K, 2 
9 K. 1 

10 K1o 2 
11 K11 2 
12 K1, 2 
13 K1, 2 
14 K1, 2 
15 K1, 2 
16 K1, 1 

Fig. 3.11 Schedule of right shifts for decipherment 

This description of the structure of the encipherment algorithm is now com­
plete. Decipherment is carried out very conveniently by a similar process, the 
only difference being in the generation of the sub-keys. For decipherment the 
cyclic shifting registers C and D are cycled to the right, the opposite sense from 
that used in encipherment. The schedule of right shifts for decryption is given 
in Figure 3.11. Note that in encipherment a shift takes place before the first sub­
key emerges but not in decipherment. The result is that in decipherment the 
same set of sixteen sub-keys is produced, but in the opposite sequence. 

The ladder diagram 

The method of operation of the algorithm can be understood more easily if we 
consider the ladder diagram shown in Figure 3.12. This illustrates the relation­
ship between the successive rounds of the algorithm. We see how the exchanges 
between registers Rand L are made under the influence of the sub-keys, k1 to 
lc16; the latter are the 48-bit patterns produced by operating on the main encipher­
rrient key; the action of the permutation E, the S-boxes and the permutation P 
are subsumed in the function Fin this diagram. For the sake of economy of space 
only three of the sixteen rounds are shown. 

The ladder diagram also enables us to illustrate quite neatly the relationship 
between encipherment and decipherment. In Figure 3.13 we show the process 
of encipherment followed immediately by the process of decipherment. The lad­
der has been 'untwisted' to make its nature more clear. The symbols R and L 
refer to the contents of the respective registers at each stage in the process. Note 
that the sub-keys are presented for decipherment in the opposite order from that 
in which they were used for encipherment. At each point in the ladder for 
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Fig. 3.12 Ladder diagram representation of the DES . 

Encipherment Decipherment 

Fig. 3.13 Enciphennent and decipherment mirrored in a ladder diagram 
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This result may also be in algebraic form. IN e shall refer to the various 
rounds by the subscript j, and we shall call P the output of the permutation P. 
F has the same significance as in the ladder diagram. R and L refer to the con­
tents of their respective registers and R1, L1 to the contents after the jth round. 
The sub-key at the jth round is k1. 

During encipherment the following relationships are true 

L1 = R1_1 

Ri = Lj-1+2 Pi 

P1 = F(Rj_1,kJ) 

(1) 

(2) 

(3) 

where the operator + 2 has the significance of exclusive-OR. The second and 
third of these equations may be combined 

(4) 

With equations (1) and (4) we now have a complete description of the jth state 
in terms of the (j -1)th state. 

By simple rearrangement of equations (1) and (4) we can also write: 

Rj-1 = LJ 

Li-1 = R1+2 F(Rj-1,kj) 

Substituting from (5) in (6) we get 

Li_1 = R1+ 2 F(Li,ki). 

(5) 

(6) 

(7) 

Thus from equations (5) and (7) we have a complete description of the (j -1)th 
state in terms of the jth state. These equations can be understood as describing 
decipherment from L16,R16 to L0,R0, using the sub-keys in the sequence k16,k15, 

... k1. Note that L and Rare interchanged- this is the reason for the swap of 
L and R at the end of the sixteen rounds of encipherment or decipherment. 

Each distinct round constitutes an involution. In decipherment the inverse 
operation is achieved by taking the same set of involutions in reverse order. 

3.3. THE EFFECT OF THE DES ALGORITHM ON DATA 

It is the aim of the designers of the DES algorithm that plaintext data processed 
by the algorithm shall be transformed in such a complicated way that it is not 
possible to find any correlation between ciphertext and plaintext, nor is it pos­
sible to show any systematic relationship between ciphertext and encipherment 
key. The effect of a change of one bit in an input plaintext block should ideally 
be to change the value of each individual bit in the output ciphertext block with 
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hexadecin<al notation. In 3.14 a plaintext block is shown at the head of 
the table, with, later in the table, other selected blocks which each differ from 
the first by 1 bit only. All these blocks have then been enciphered under the same 
key (0123456789ABCDEF). A glance at the corresponding ciphertexts shows that 
the changes caused by the 1-bit differences in plaintext are large and random. 
To obtain some measure of the change the Hamming distance is listed of each 
of the subsequent ciphertext blocks from the first in the table; the mean Hamming 
distance from the first block measured over all the blocks is 31.06. This is very 
close to the expected value of 32. 

In Figure 3.15 shows the result of enciphering the same plaintext block 
(ABCDEFABCDEFABCD) with a succession of different keys. At the top of the 
table we have encipherment with a chosen key, followed by encipherment with 
keys each of which differs from the first by 1 bit (parity correction has been 
included, so the appearance is given of a 2-bit difference). Against each subsequent 
ciphertext the Hamming distance from the first in the table is listed. Once again 
the mean Hamming distance of 32.88 is very close to expectation. 

The DES transformation is thus seen to be efficient in obscuring similarities be­
tween plaintext. This can be illustrated even more graphically by examining the 
progression of the transformation within the algorithm. Figure 3.16 shows the 
result of encipherment of two plaintexts, which differ by 1 bit, under the same 
key (08192A3B4C5D6E7F). The contents of the Land R registers at the beginning 
of each of the sixteen rounds are listed (these quantities are called 'intermediate 
results'); the overall result of the encipherment transformation is also shown. 
The progression of the Hamming distance between the intermediate results at 
each stage can be traced (taking the combined L and R states within each 
encipherment process). For the first and second intermediate results the Hamming 
distance is low, but an appreciable distance soon develops and is maintained. 
By the completion of the fifth internal cycle there is very little correlation between 
the inputs and the intermediate results. There are many ways to examine this 
property and they all lead to the conclusion that five rounds would have been 
just sufficient to remove obvious regularities from the function. It seems that six­
teen rounds are more than adequate. 

3.4. KNOWN REGULARITIES IN THE DES ALGORITHM 

Complementation 

A notable feature of the DES algorithm is the property of complementation. If 
the complement of a plaintext block is taken and the complement of an encipher­
ment key, then the result of a DES encipherment with these values is the 
complement of the original ciphertext. 
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10 

11 

12 

13 

14 

15 

16 

17 

Key 0 1 2 3 4 5 6 7 8 9 A B C D E F 

Plaintext 

A B C D E F A B C D E F A B C D 

B C D E F A B C D E F A B C D 

A C D E F A B C D E F A B C D 

A B D D E F A B C D E F A B C D 

A B C F E F A B C D E F A B C D 

A B C D F A B C D E F A B C D 

A B C D E B A B C D E F A B C D 

A B C D F F D B C D E F A B C D 

A B C D E F A C D E F A B C D 

A B C D E F A B E D E F A B C D 

A B C D E F A B C C E F A B C D 

A B C D E F A B C D 6 F A B C D 

A B C D E F A B C D E 7 A B C D 

A B C D E F A B C D E F B C D 

A B C D E F A B C D E F A F C D 

A B C D E F A B C D E F A B D D 

A B C D E F A B C D E F A B C 

Ciphertext 

C D E D 4 A F 

C D D A A 4 C 4 B A 

1 F 8 A B C 

D c 7 D D D B A F 

A F 4 c 

c 9 F F 

F 8 C 8 F A D C E A 

D A B B F 

D B 8 B C D C E 

F E E E A C 

B E 4 D E F A D 

4 F B 3 5 B 

A B C 6 0 B 

B D A F D 7 B D 

c E D E 

A A 9 F 4 B 

B E C c B E 

Hamming 
distance 

29 

38 

36 

26 

30 

-33 

34 

30 

25 

29 

28 

35 

30 

34 

34 

26 

Mean Hamming distance 31.06 

Fig. 3.14 DES enciphermenl of a series of data blocks each differing by 1 bit from a chosen block 
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Plaintext A B C D E F A B C D E F A B C D 

Key Ciphertext Hamming 

A B C D E F C D E 8 7 2 D 4 A 4 7 1 3 4 6 F 
distance 

A B C D E F 1 B 7 3 F E 8 B C 0 B 8 8 6 0 6 35 

A B C D E F 0 F 9 2 F 6 0 D 2 F D 4 D 8 B 7 32 

A B C D E F 3 1 A F D 8 C 5 4 F B F 4 B C D 37 

1 2 6 4 5 6 7 8 9 A B C D E F C 7 9 F 5 9 6 3 D 4 6 5 A 7 E E 29 

A B C D E F 3 6 5 2 9 C C 1 0 7 1 7 A 3 8 9 39 

A B C D E F 7 F 3 5 F 7 E 6 C E C 5 7 E E 3 30 

4 6 8 9 A B C D E F C 9 F 3 F D 9 2 6 0 C 6 8 1 8 A 27 

5 6 4 8 9 A B C D E F E 6 9 2 8 3 2 2 E E 8 B 9 A 6 9 36 

10 0 1 2 3 4 5 6 7 A 8 A B C D E F 0 9 9 7 A 5 A F 6 E 4 E 1 4 6 0 37 

11 0 1 2 3 4 5 6 7 8 A A B C D E F C 7 B 4 1 C 4 F 3 8 D 9 A F 7 A 31 

12 0 1 2 3 4 5 6 7 8 9 E A C D E F 4 B 4 A A 2 0 A B 2 1 4 4 D D D 30 

13 0 1 2 3 4 5 6 7 8 9 A 8 C D E F 1 2 9 9 7 E E 8 0 0 1 B D 2 7 C 32 

14 0 1 2 3 4 5 6 7 8 9 A B 4 C E F 4 2 D 1 7 B 7 D F 5 3 4 3 B 7 9 28 

15 0 1 2 3 4 5 6 7 8 9 A B C E E F 8 7 F 6 4 9 3 C 4 C 8 9 8 3 2 7 33 

16 0 1 2 3 4 5 6 7 8 9 A B C D 6 E F C 3 0 F 6 F 7 6 B D 4 2 5 9 2 31 

17 0 1 2 3 4 5 6 7 8 9 A B C D E C 1 C B D E C 4 B 7 9 B C A 7 A 1 39 

Mean Hamming distance 32.88 

Fig. 3.15 DES encipherment of a data block with a series of keys each differing by 1 bit from 
a chosen key 
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00000000 00000000 00000080 00000000 

00000000 AFOD68FD 00000000 AFOD687D 1 

AFOD68FD CEOA36EA AFOD687D CE3A32E2 

4 CEOA36EA 0BDCC5FE CE3}\32E2 81BDED5F 15 

OBDCC5FE 5D181CC3 81BDED5F F8CA39B2 26 

5D181CC3 1744B978 F8CA39B2 A994B918 26 

17448978 9B1CBOD8 A994B918 3E9D05D8 22 

9B1CBOD8 7AE8C7EO 3E9D05D8 23F48DFF 26 

7AE8C7EO A2AC7B3F 23F48DFF 9D58DCFB 34 

10 A2AC7B3F 580E51EF 9D58DCFB 3F076303 34 

11 580E51EF 2865DBD4 3F076303 97AE4AE3 35 

12 2865DBD4 BF68F77C 97AE4AE3 68ABB612 37 

13 BF68F77C 8F57F629 68ABB612 09D9C398 32 

14 8F57F629 0827B240 09D9C398 44B0435C 31 

15 0827B240 F2DEBFAC 44B0435C 319FD4B8 29 

16 F2DEBFAC 16CDOEB8 319FD4B8 42684FF9 24 

Ciphertext 1 25DDAC3E96176467 Ciphertext 2 1BDD183F1626FB43 22 

Fig. 3.16 DES decipherment of a block with two keys differing by 1 bit, showing the intermediate results 
before each round of the algorithm 

y = Ek(x), 

then 
:y = Ek(x). 

This result may seem surprising, especially when the non-linearity introduced 
by the S-box transformations is considered. The effect is entirely due to the 
presence of two exclusive-OR operations, one of which precedes the S-boxes in 
the logical flow of the algorithm and the other follows the permutation P. If the 
two input fields to an exclusive-OR operation are complemented, then the 
resulting output is exactly the same as that obtained for the uncomplemented 
inputs. Complementation of the plaintext and key inputs to the DES algorithm 
results respectively in complementation of the output of the expansion permuta­
tion E and the output from the sub-key selection procedure (following PC2); these 
two data fields are the inputs to the exclusive-OR before the S-boxes, so the S­
boxes received unchanged data. Their unchanged output enters the exclusive­
OR gate which transfers the (complemented) L register to the (complemented) 
R register. 

The complementation property of the DES algorithm does not represent a 
serious weakness in the security of systems using the DES; there is no reduction 
in the time taken for an exhaustive key search, given a known plaintext-ciphertext 
pair. If a chosen plaintext attack can be mounted, then, by exploiting the com­
plementation property, the time taken to exhaust the key domain by exhaustive 
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Fig. 17 The wenk keys of 1/zc DES 

search may be reduced by a factor of two, given the plaintext x and the values 
of y1 = Ek(x) and ih = Ek(x), so that y2 = El((x). If all values of x are searched 
to find if the Ek(x) value equals either y1 or y2, then each test covers the two key 
values k and k. If this is a matter for serious concern it might be said that steps 
should be taken to frustrate a chosen plaintext attack, probably by controlling 
access to the DES function. A system should not enable an opponent to discover 
both Ek(x) and Ek(x). From another point of view, it does not appear that any 
attempt has been made to exploit the complementation property in the design 
of applications of the DES. 

The weak keys 

A further regularity in the operation of the DES algorithm is due to the way in 
which bits are selected from the encipherment key to form the individual sub­
keys, k1 to k16 . Clearly, if the encipherment key bits are either all ones or all 
zeros, then the output from PC2 at each cycle will be the same for all rounds. 
Therefore, presentation of the sub-keys in the order k1 to k16 will be identical with 
the order k16 to k1. This means that encipherment and decipherment are exactly 
equivalent. Thus the effect of the algorithm on a plaintext block with a key of 
all zeros or all ones will be the same whether encipherment or decipherment is 
invoked. The result of this is that if a block is enciphered with either of these 
keys and then re-ciphered with the same key, the original plaintext will be 
restored; the function is an involution for these values of key. Futhermore, because 
of the way in which the C and D registers are segregated, having zeros in C and 
ones in D (or vice versa) will also produce a set of constant sub-keys. For this 
reason four encipherment keys which have this property can be specified. These 
are known as 'weak' keys7 and are listed in Figure 3.17. They should be avoided 
when encipherment keys are being selected for critical situations, like master keys. 

The semi-weak keys 

In addition to the weak keys it can be shown that a further set of encipherment 
keys have a somewhat analogous property. These are the 'semi-weak' keys8 

which occur in pairs. For each pair of semi-weak keys the sets of sub-keys are 
identical but in the reverse sequence. Thus k1 for the one encipherment key is 
equal to k16 for the other key of the pair, and so on. The result of encipherment 
with one key of a pair, followed by encipherment with the other key of the pair, 
is to restore the original plaintext. There are six pairs of semi-weak keys, which 
are listed in Figure 3.18. In the semi-weak keys, one or other of the C and D 
registers contains a pattern of alternate ones and zeros ... 0101 ... Their pro­
perty is due to the symmetry of the shift patterns shown in Figures 3.10 and 3.11. 
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Fig. 3.18 The semi-weak keys of the DES 

The semi-weak keys should also be avoided when selecting encipherment keys, 
though it is unlikely that they represent such a security risk as do the weak keys. 
Note that NBS uses the term 'dual keys' to embrace both weak and semi-weak 
keys. 2 

Further regularities in cycle keys are possible, in which some sub-keys are 
repeated in the sequence. In 1983 an accoune was published in the journal 
Science of an alleged analysis claiming to show that patterns arising in the cycle 
keys led to serious deficiency in the strength of the DES algorithm. Here the term 
'weak' was extended to include the keys we have called weak and semi-weak, 
together with other keys exhibiting regularity of cycle key pattern. It was asserted 
that cryptanalysis of the algorithm with any key was possible in 8 hours and that 
with the strongest of a general class of weak keys cryptanalysis should be pos­
sible in 4 hours (the 'worst-case' from the cryptanalyst's point of view). The 8-hour 
assertion is not dissimilar to that made by Diffie and Hellman and referred to 
later in section 3.5; note that this assertion demands the existence of a very large 
and powerful cryptanalytic machine. The size of the general class of weak keys 
was not defined in the published article, but it was said to include 25 different 
categories. Claims such as were made in the Science article would certainly be 
very damaging to any confidence that users might have in the security of the 
DES algorithm. We have seen no evidence to suggest that the claims made can 
be substantiated. In section 3.6 we discuss some of the academic studies that have 
been applied to the DES; none of the reported results makes claims remotely like 
those of the Science article. Indeed the paper by Moore and Simmons, discussed 
in section 3.6, gives an account of a detailed analysis of the significance of 
regularities in the cycle keys. 

Hamiltonian cycles in the DES 

There remains to be described a regular feature in the permutations of the DES 
algorithm. 8 We have seen how the strength of the whole algorithm depends on 
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and R is unJmportaTi 
E that are significant but their the P followed by E (taken in 
this order because the path from S-box back to S-box takes them in this order). 

The identification of the inputs and outputs of an individual S-box is also mostly 
insignificant. All the outputs are of equivalent status. The inputs, due to the nature 
of E, divide naturally into three classes. Let us denote the six input bits of an 
S-box as ABCDEF. The EF values of one S-box equal the AB of its neighbour to 
the right, for example in the case of S-boxes 1 and 2, E1 = A2 and F1 = B2. For 
our purpose, input bits A and B are not distinguishable because a permutation 
of the bits of the L and R registers could interchange any pair of these, inter­
changing also the corresponding EF pair. 

The significant feature of the product of the P and E permutations is therefore 
not the bits they interconnect but the groups AB, CD and EF which they join. 
These can be tabulated as in Figure 3.19, showing for each of the S-box outputs 
which S-box input it affects, by way of the PE permutation. For example S-box 
output bit 1 of S1 affects F2 and B3 on boxes S2 and S3 respectively . 
. The way in which the outputs have been arranged in the DES obscured the 

pattern which is already evident, namely that of the four S-box output bits, two 
go round the loop to CorD inputs and two go to A, B, E or F inputs. The pattern 
can be shown best as a graph with directed arcs pointing from S-box output to 
S-box input. Figure 3.20 shows graphs separately for the CD and EF inputs. The 
nodes of the graphs are the eight S-boxes. 

The graph in Figure 3.20 for CD can be expressed as two Hamiltonian cycles 
(87654321) and (84725163). The graph for EF has an identical form reflected about 
a vertical line. Both are very regular graphs which seem likely to have been a 
design intention. The apparent randomness of the permutation Pis due only to 
the way that S-box inputs and outputs have been identified. 

If the corresponding graph for the AB inputs is drawn on a pattern similar to 
those for CD and EF, then Figure 3.21(a) is produced which is much less regular 
than Figure 3.20. It can, however, be redrawn to show (Figure 3.21(b)), a less­
confused structure. 

The permutations in DES are a fixed feature, not subject to the key, and their 
purpose is to diffuse the effect of the substitutions so that a single bit change, 
if it expands to four potential bit changes after the first round, will (potentially) 

SJ S2 S3 S4 

f2 f4 d6 d8 f3 e7 cl c5 e6 e4 c8 c2 c7 e5 c3 f8 

b3 b5 b4 a8 a7 a5 a6 bl 

S5 S6 S7 S8 

e2 c4 f6 dl el f7 d3 d5 e8 e3 c6 d2 fJ d7 d4 f5 

a3 b7 a2 b8 a! a3 b2 b6 

Fig. 3.19 Interconnections between S-box outputs and inputs 
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Fig. 3.20 Directed arcs for 5-box CD inputs a11d EF i11puts 

affect the inputs to fourS-boxes in the next round. We say (potentially) because 
it would be wrong to expect all the S-box outputs to change value- approximately 
half of them should do so. Also, some bit changes in the S-box outputs will affect 
two S-boxes on the next round, due to the expansion permutation. The aim of 
the permutation design (as reflected in our graphs) should be to spread the bit 
changes as rapidly as possible to all boxes. In this respect the CD and EF graphs 
are excellent, the AB graph less so. We can speculate that such considerations 
as these led to the remarkable regularity of two of the graphs and that the third 
graph is an unavoidable consequence of the first. Since they represent' spreading' 
processes which operate in parallel, the good structure of two of the graphs is 
not impaired in any way by the third one. We understand that these permutating 
structures, though they were the consequence of a quest for good spreading, were 
not designed as regular structures except perhaps for the outer Hamiltonian cycles 
which are fairly obvious. Note also that our principle of ignoring the identity of 
S-box inputs and outputs, though it cannot be questioned for outputs, does cut 
across the stated design of the S-boxes as four separate bijections. 

Fig. 3.21a Directed arcs for 5-box AB inputs 
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B 

Fig. 3.2lb Figure 3.2la re-drawn 

3.5. ARGUMENT OVER THE SECURITY OF THE DES 

When the DES algorithm was first published in the spring of 1975, a considerable 
amount of criticism was rapidly generated.9 This was based on two premises­
the length of the encipherment key was considered by some to be inadequate 
and it was alleged that 'trapdoors' or deliberate weaknesses might have been built 
into the S-box structures. These two criticisms are considered in turn. 

Exhaustive search for a DES key 

The length of the encipherment key is important when the security of the system 
against exhaustive search for the key is evaluated. For exhaustive search the crypt­
analyst needs corresponding pairs of plaintext and ciphertext blocks; these may 
have been obtained by some breach of security in handling legitimate texts (a 
known-plaintext attack) or by deliberate introduction of text into the encipher­
ment device by the opponent (a chosen-plaintext attack). If partial knowledge 
of the plaintext is all that is available to the cryptanalyst, perhaps in the form 
of knowing that the plaintext characters enciphered have odd or even parity, then 
his task is greater. In this case the search must list all the keys which yield pos­
sible plaintexts obeying the parity constraints; it is then necessary to repeat the 



-- 88 --
MasterCard, Exh. 1004, p. 88

" 1-r'h·"'""'.""'+· the piOcess is k.novvn as a a match is 
obtained between the and known then the current value 
is that which is being sought. Clearly the time taken to exhaust the whole of the 
key domain will depend on the time taken to carry out the DES encipherment. 
If we assume that the time taken for the encipherment is 100 ms (the speed of 
the slowest microprocessor implementation known to us), that other processing 
times may be neglected, and that only one device is used, then we can calculate 
the time required to test all possible keys to be 7.2 x 1015 s, or about 228 million 
years. If we assume that the encipherment device is somewhat faster, with an 
operation time of 5 JkS (a fraction slower than the fastest LSI implementation widely 
available), then the total time required to exhaust the key domain is just over 
11 000 years. Clearly these times are totally impracticable for a cryptanalyst. 

The exhaustive search times only become practicable when we postulate key 
searching which uses many DES devices in parallel, each of which is searching 
a different part of the key domain. Diffie and Hellman 10 have considered in some 
detail the design of a hypothetical machine constructed for this purpose. They 
assume that the operation time for each DES device is as low as 1 JlS; this is 
justified on the dual grounds of advancing technology and economy of input/out­
put. Since each special--purpose DES device need only be loaded once with the 
known matching pair of plaintext and ciphertext and with the encipherment key, 
then the overheads normally associated with input/output operations need not 
be taken into account. The only output from the device occurs when the required 
key has been found, when the fact of its recovery and its value will need to be 
output. Diffie and Hellman further assume that 1 million such DES devices can 
be assembled into one machine. 

On these assumptions the time taken to exhaust the key domain can be 
recalculated; the time is reduced to about 72 000 s or just over 20 h. On average 
a key is found after testing half of the key domain, so the average time to find 
a key should be about 10 h. Evidently this time is low enough for users of the 
DES to be worried about the security of their data. We must, therefore, consider 
whether the assumptions made in arriving at this figure were reasonable. 

Concern about the suggestion that an exhaustive key search machine was pos­
sible led NBS to hold a workshop 'on estimation of significant advances in com­
puter technology' in August 1976. 11 This brought together experts who produced · 
a range of estimates for the cost of the machine. The outcome from this meeting 
gave it a cost of $72 million and an expected availability date of 1990. 

It was alleged that the mean time between failure of LSI devices is such that 
one could not run the machine without failure for more than a very few hours. 
Diffie and Hellman counter this by proposing a system of self-checking with an 
automatic switch-over to a reserve machine segment when failure is discovered. 
The cost of the machine has been estimated by Diffie and Hellman to be about 
$20 million, based on a unit cost for each DES device of about $10; IBM have 
put the cost at more like $200 million, based on a different unit cost. Diffie and 
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the reason that chosen was no more than 56 bits was in order that 
the key search machine should be viable. If the key length were 64 bits, an increase 
in key search times of a factor of 256 would be obtained; the parity bits do not 
seem to serve a particularly useful purpose. Against this it has been argued that 
excessive security is unnecessary for the intended field of application (unclassified, 
commerciat etc.) and that an increase in key length would increase the cost of 
the DES chips. 

Multiple DES endpherment 

It has at various times been suggested13 that multiple-block encipherment under 
different keys would increase the security of enciphered data. It might be thought 
that an effective key length of 112 bits could be obtained by enciphering twice 
with different keys. However, a time-memory trade-off reduces the effective key 
length to 57 bits. 14 This is based on the assumption of a known plaintext attack 
in which the known plaintext is enciphered under all possible keys, then the 
known ciphertext is deciphered under all possible keys, giving two sets of data. 
These data are sorted to order and then compared one against the other, so that 
candidate key pairs can be identified. Note that the data unit for the sorting pro­
cess consists of two elements - the result of the DES operation ( encipherment 
or decipherment) and the key with which the result was obtained; this amounts 
to 120 bits per item. Since it is likely that a large number of candidate key pairs 
will be found (the theoretical number is 248 false key pairs), it is necessary to 
check the candidate pairs against other pairs of plaintext and ciphertext blocks. 
Given a second known plaintext block and its ciphertext, the probability of find­
ing a wrong key pair in addition to the correct pair is theoretically 2- 16 . This 
attack has been called 'meet in the middle'. 

Successive use of two encipherment keys can be made more secure by apply­
ing them in a more complex way. IBM use encipherment with key l followed 
by decipherment with key 2, followed by encipherment with key 1.15 This is very 
much stronger and is used by IBM for protection of master keys in some of their 
cryptographic systems. A convenient feature of this system is that compatibility 
with single-key encipherment can be achieved by making the two keys have the 
same value. Even the degree of protection given by this triple operation has its 
critics, 14 Merkle suggests that a chosen plaintext attack will yield the two keys 
with about 256 operations and 256 words of memory. Note that this attack 
requires a chosen plaintext, whereas the attack on simple double encipherment 
with two keys requires only a known plaintext. Indeed the amount of chosen 
plaintext material required corresponds to 256 DES operations; availability of this 
amount of material is so unlikely that the method is not practical. 

Merkle suggests that a worthwhile increase in security can be obtained by tri­
ple use of the algorithm with three different keys (triple encipherment was put 
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The criticism of the DES algorithm has also concerned the choice of S-boxes. 
Hellman and others16 have investigated the S-box structure and have shown that 
the security of a DES-like algorithm can be reduced by careful choice of S-boxes. 
By replacing the DES S-boxes by others of their own design, they have shown 
that it is possible to weaken the security of the encipherment while concealing 
the weak S-box structure to some extent. The assertion is then made that the actual 
DES S-boxes may themselves contain deliberate weaknesses put there in order 
to make the algorithm subject to a 'trap-door' attack by those in possession of 
the design information. On the other hand Hellman and his colleagues have 
not been able to demonstrate weaknesses in the DES S-boxes, though they point 
to certain unexplained systematic structure. 

The permutation regularity which we discussed in the previous section of this 
chapter is one of construction. It does not, to our knowledge, result in any regular­
ity of the DES function. The purpose of the permutations is to spread any change 
among the S-boxes in as few rounds as possible. For this purpose the EF and 
CD graphs are well chosen. For example a change in the input of S 1 spreads to 
6 and 8, and, from then on, the S-boxes affected in successive rounds are 3457, 
then 12345678, by which time all S-box inputs have been affected - on three 
rounds only. Since only half of the 64 bits circulating in the L and R. registers 
are changed at each round, in practice six rounds are needed to spread a single 
bit change completely. The chosen graphs CD and EF are very efficient in this 
respect. Reference to Figure 3.16 where the intermediate data are shown for each 
round confirms this effect. 

If the DES designers at IBM and NBS were able to set out their design crih:;ria, 
then the kind of criticism which has been outlined in this section might well be 
allayed. However, at the request of NSA the design criteria have been withheld 
on the grounds that the designers came across principles of cryptographic design 
which were considered to be of importance to national security. The same ban 
on publication has been applied to the results of an IBM study of cryptanalysis 
of the DES, said to have occupied seventeen man-years. 

Senate investigation of the DES 

Because of these bans on publication, the controversy of criticism of the DES has 
been fuelled, rather than subdued. It has been alleged that NSA has exerted undue 
influence in the matter. Allegations of this kind led the US Senate Select Com­
mittee on Intelligence to investigate the role played by various government bodies 
during the design and development of the DES. The report of this committee 
is unavailable as classified materiat but an unclassified summarl7 of its findings 
was issued in 1979. NSA was exonerated from tampering with the design of the 
DES in any way. It was said to have convinced IBM that a shorter key was ade­
quate, to have indirectly assisted in the development of the S-box structures and 
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3.6. RECENT ACADEl/IIC STUDIES OF THE DES 
AND ITS PROPERTIES 

During the public existence of the DES there has been a steady level of academic 
interest in its security and general propertiesi this has led to publication of a 
number of interesting results/ some of which have only emerged relatively 
recently. A research group at the University of Louvain has published a series 
of papers/ 18

•
19 giving an account of several investigations. In 1983 it was shown, 

using various equivalent representations of the DES algorithm/ that is was pos­
sible to specify a totally iterative representation of the DES. It was also shown 
that the algorithm could be described with one fewer internal table and that it 
was related to the mixing transformation described by Shannon in his classical 
paperi a link was also established to nonlinear feedback shift register theory and to 
permutation networks. A successor paper in 1984 studied the degree of 
dependence of the output of the algorithm on its input/ with particular attention 
being paid to small avalanche characteristics. The 1984 paper drew attention to 
some newly discovered properties of the S-boxesi the studies included tests with 
some S-box input bits fixed and observations made of the effect of varying the 
other inputs, whilst another test included complementation of certain input bits. 
Attention was also paid to the key scheduling part of the algorithm, reducing 
the number of internal cycles in order to simplify the study. Links between the 
S-box structure and the performance of the algorithm were identified. The paper 
is full of minor results, but the authors make no claim to have made cryptanalysis 
of the algorithm any easieri they do assert that a better understanding of the 
algorithm has been achieved. 

Two papers20
•
21 published in 1985 by the MIT group led by Ronald Rivest gave 

particularly interesting results. The general aim of the work was to determine . 
whether the DES algorithm represented a group. The basis for this aim was the 
suggestion that if the set of permutations describing the DES transformation was 
closed under functional composition, then the DES would be vulnerable to a 
known-plaintext attack with 228 steps on average, a possibly serious weakness. 
The results obtained by Rivest and his colleagues show, with an acceptable level 
of confidence, that the DES is not a group, therefore the basic supposition of DES 
vulnerability on this score is not substantiated. However, in the course of 
experiments carried out in this connection, a really surprising result was noted. 
The particular work related to cycling tests on the DES for keys selected in various 
ways/ random keys and alternate encipherment with all zeros and al11s as keys. 
A cycling test is designed to discover when, after a series of operations of the 
algorithm beginning from a recorded starting value/ an output value is reached 
which has the same value as the start point. Encipherment with alternate keys 
of all zeros and all 1s produced a cycle length of rather less than 233 operationsi 
this was far less than that predicted according to analysis. It was estimated that 
the probability of such an occurrence was less than 1 in 109 if the permutation 
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is the reversal of path thl~Oulgh message space that causes the start point to 
be reached much earlier than would be expected. Again, this result does not aid 
the task of the cryptanalyst. The discovery of the fixed points makes the case 
for avoiding weak keys in practical applications all the stronger. 

Another interesting empirical result was reported by Shamir23 in his paper 
given at Crypto '85; this showed some remarkable structural patterns in the DES 
S-boxes. If one divides the S-box outputs into those containing an even number 
of 1s and those containing an odd number of 1s (in other words a classification 
based on the parity of the outputs), the distribution of this classification in the 
S-box rows is very striking. In almost all S-box rows there is a bias of output parity 
either to the right or left half of the row; in most cases this bias is very marked, 
the phenomenon being most apparent in S-boxes 1, 5 and 8. The input element 
which selects the right or left half of an S-box row is the 'B' bit, using the nota­
tion expressed in section 3.4. The conclusion is that the 'B' input bit has a very 
strong influence on the parity of the output pattern. Whilst Shamir did not explain 
the significance of the phenomenon in his paper, he did consider that the un­
expected result demonstrated the deficiencies of current certification techniques, 
arising from a lack of deep understanding of the nature of the DES algorithm. 
Having discussed the result with Brickell and Coppersmith, Shamir suggests that 
the observed properties of the S-boxes could be an unintentional consequence 
of some of the design criteria. Shamir also notes that the phenomenon was also 
reported independently by Franklin in a Berkeley MSc dissertation. 

Further illustration was thrown on the effect of regularities in the DES cycle 
keys by Moore and Simmons24 in 1987. Their study was prompted in part by the 
1985 results of Rivest and his co-workers, followed by the interpretation put by 
Coppersmith on these results. Moore and Simmons confirm the explanation 
advanced by Coppersmith; they identify a class of cycles of the kind noted by 
Rivest and call these 'Coppersmith cycles'. A formal derivation is provided of 
the set of inverse DES key pairs that comprises the weak and semi-weak keys 
as defined earlier in this chapter. The related phenomenon of palindromic and 
anti-palindromic keys is investigated. Palindromic keys are those which give the 
same sub-key sequence whether they .:m: read from sub-key 1 to sub-key 16 or 
from sub-key 16 to sub-key 1, in other words sub-key 1 is equal to sub-key 16, 
sub-key 2 to sub-key 15 and so on; only the weak keys have this property. Anti­
palindromic cycle keys are those where sub-key 1 is the complement of key 16, 
sub-key 2 is the complement of sub-key 15 and so on; four of the twelve semi­
weak keys have this property. Another interesting result is a proof of the asser­
tion that each of the weak keys has exactly 232 fixed points; similarly it is proved 
that the four anti-palindromic semi-weak keys have exactly 232 'anti-fixed' points, 
where the result of encryption is the exact complement of the plaintext. 
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which exploits the correlation between two bits of S-box input in neighbouring 
S-boxes, due to theE permutation. In principle this provides inferences concern­
ing the bits of the key if enough plaintext-ciphertext pairs are given. The infor­
mation available from this method would amount to 16 bits of key and greatly 
weaken the cipher. The analysis of the effect shows that the quantity of plaintext­
ciphertext pairs needed is comparable with 256, so the method does not improve 
on a systematic key search. There is slight evidence that the S-boxes might have 
been constructed to reduce this effect, but this is not conclusive. The analysis 
was extended to include three adjacent S-boxes, with the same result. 

3.7. IMPLEMENTATIONS OF THE DATA 
ENCRYPTION STANDARD 

Since the announcement and official launch of the DES in 1975 a number of 
manufacturers of microprocessors and LSI devices have designed, made and 
marketed devices embodying the DES. The performance spectrum has been 
extremely wide, ranging from inexpensive microprocessor implementations 
capable of carrying out the algorithm in 100 milliseconds to very fast LSI 
implementations which perform the algorithm in less than 5 microseconds. Some 
of the devices simply implement the algorithm in its basic block mode, whilst 
others also offer the more complex modes of operation which we shall encounter 
in our next chapter. The physical protection given to the devices also covers a 
very wide range, from simple chips with no protection to tamper-resistant boxes 
designed to withstand determined mechanical and/or electronic attack. There has 
therefore been available a very wide spectrum of equipment embodying the DES 
algorithm. 

Not all the DES devices announced by manufacturers are still available. There 
is an observable tendency for system designers to choose fast LSI devices rather 
than the slower microprocessor implementations; the cost differential is no longer 
as great as it once was. Some of the slower implementations may not now be 
available as they are no longer considered commercially viable and have been 
withdrawn. Equally there is little doubt that some DES implementations have 
been extremely popular and these are found in many commercial systems for 
ensuring data security. 

3.8. THE IBM CRYPTOGRAPHIC SCHEME 

International Business Machines have developed a sophisticated data security 
system, using the DES, which caters for data in transit between terminals and 
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The maximum data transfer rate of the 3848 is 1.5 Mbytes/s. The unit enciphers 
in CBC mode, using 64-bit data blocks. The encipherment operation is said to 
be faster than the input/output channel can handle data, so it appears that the 
equivalent block encipherment time is less than 5.3 J.I-S. Since the unit is not 
intended for use on insecure sites, it is not heavily armoured. However, the master 
key storage is arranged to delete the keys if attempts are made to access this 
illegally. 

A two-level key hierarchy is operated; the keys are classified as master and 
operational. Entry of master keys into the 3848 is carried out using the same design 

. of key entry module as that used for the 3845 and 3846 tamper-resistant boxes. 
Entry of the master key into the 3848 requires operation of a physical lock. The 
master key is double length, 128 bits (112 effective), in order to enhance the 
protection given by master key encipherment to the operational keys. Operational 
keys are protected by multiple DES operations under the control of the two halves 
of the master key; if we call the latter ka and kb, each of normal length, then 
the encipherment of operational keys follows the sequence 

Encipher under ka 
Decipher under kb 
Encipher under ka. 

Compatibility of the 3848 device with single-key encipherment is obtained by 
giving identical values to ka and kb. Examination of the encipherment sequence 
just quoted shows that this has the effect of encipherment once with the iden­
tical key value; thus the security given to the operational keys is reduced. 

The same scheme of treble encipherment with two keys has been adopted 
in the standards ANSI X9.17 and ISO 8732 described in chapter 6. 

It is recommended that ka and kb be chosen by some random method such 
as coin tossing. The keys entered must have correct parity, as the 3848 is pro­
grammed to reject keys with incorrect parity; calculation of parity depends on 
the person generating the keys. As a further degree of protection the unit is pro­
grammed to reject any of the weak keys should these be input by the operator. 
As the IBM key management system uses variants of the master key, calculated 
by inverting selected bits, the unit also rejects variants of the weak keys. Tests 
for the semi-weak keys are not carried out. 

3.9. CURRENT STATUS OF THE DES 

We have discussed in this chapter the early development of DES in the field of 
US federal and national standardization. Before we leave the subject it is 
appropriate to consider the current status of the algorithm. 
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encourage, advise and assist US private sector in achieving protection of some 
communications. The executive agent for this group is the Director, National 
Security Agency (NSA), acting as National Manager for Telecommunications 
Security and Automated Information Systems Security. 

Arising directly from NSDD-145 a Commercial COMSEC Endorsement Program 
(CCEP), already implemented by NSA in the context of protection of government 
information, was made available to the private sector. Under this program com­
munication security modules have been created that embody cryptographic 
algorithms designed by or for NSA; mechanisms have been set up for supplier 
approval. These NSA algorithms come in two types, I and II. Type I is used for 
the protection of classified government information. Type II was originally 
intended only for the protection of unclassified but sensitive national security 
information, but its application is now extended to cover the commercial private 
sector. Neither Type I nor Type II algorithms will be published, nor will either 
be available for export from the USA. 

One may now ask where this leaves the DES and its users. It was originally 
intended that new equipment using the DES would not receive endorsement for 
government purposes after 1 January 1988; existing endorsed equipment was to 
be allowed to continue in use for an indefinite period. When this policy was 
announced it was perceived that it might cause problems for the US Treasury 
program for certification of electronic funds transfer authentication equipment. 
Indeed the US banks were known to be using DES very widely for protection 
of funds transfers of all kinds, some of which involved international traffic. Aris­
ing from concerns of this kind, discussions took place that resulted in a revision 
of policy regarding the DES. On 22 January 1988 the US Department of Com­
merce issued a press release in which the National Bureau of Standards reaffirmed 
use of the Data Encryption Standard for another five years, saying that it con­
tinued to be a sound method of protecting computerized data. However, for 
federal non-financial applications the DES must now be regarded as superseded 
by the algorithms developed under CCEP. 

Fuller discussions of these developments can be found in Newman and 
Pickholtz25 and in Howe and Rosenberg. 26 We shall consider the wider impact 
of this US government policy on the international use of DES in chapter 11 on 
security standards. 
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4 

4.1. METHODS FOR USING A BLOCK CIPHER 

Block encipherment operates on blocks of data of fixed size but a message to be 
enciphered can be of any size. Encipherment is sometimes applied to a stream 
of data, where the length of the stream may not be known when encipherment 
begins. So a block encipherment algorithm seems, at first, to have some limita­
tions. Perhaps a stream encipherment algorithm might be closer to the real needs? 

This reaction is probably wrong. A block encipherment method like the Data 
Encryption Standard (DES) can be used in various 'methods of operation' which 
cover all the practical requirements. Instead of being a limitation, the fact that 
the DES operates on fixed-length blocks makes it a convenient starting point for 
at least four different methods of operation which offer a very versatile set of 
'tools' for encipherment. 

Given a plaintext block x and a key k, the encipherment algorithm enables us 
to compute the ciphertext blocky = Ek(x). This, in itself, is a 'method of opera­
tion' sometimes called the 'native mode'. It can be applied to any source _of 
plaintext in 64-bit blocks. This is actually a frequent requirement, for example 
when a DES key has to be enciphered. The DES key in its 64-bit form can con­
veniently be enciphered using the native mode of the DES algorithm. 

A more general case is the encipherment of a message of arbitrary length perhaps 
made up of many 64-bit blocks. We can think of such a message as having been 
generated in a processor and stored ready for encipherment. We need a method 
for enciphering such a multi-block message which is convenient and secure. For 
this purpose there is a method of operation called 'cipher block chaining'. 

The third case is the encipherment of a string of characters such as might come 
from a teleprinter which is being operated continuously. For such a stream we 
need a method of operation which enables each character to be enciphered as 
it arrives and does not have to wait until several characters have arrived before 
block encipherment can be carried out. This is a form of stream cipher and the 
related method of operation which will be described is called 'cipher feedback'. 

There is a fourth requirement, which will emerge later in this chapter, for which 
another method of operation is used, called 'output feedback'. 

The native mode of operation is called 'electronic code book' because, for a given 
key, it associates with every value of the input block a unique value of the output 
block and vice versa. Because of the large number of such values, 264

, the 
codebook in question is a very large one, never likely to be enumerated in full. 
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1. Electronic Codebook (ECE) 
one block. 

2. Cipher Block Chaining (CBC) the use of the to a 
message consisting of many blocks. 

3. Cipher Feedback (CFB) the use of the algorithm to encipher a stream of characters, 
dealing with each character as it comes. 

4. Output Feedback (OFB) which is another method of stream encipherment with 
its own properties, to be described later. 

These four methods of operation are the result of some careful study since the 
DES first became available. Other methods are possible but these four seem to 
meet most requirements. They are defined in a US Federal Information Process­
ing Standard1 and an international standard. 2 

The four methods can be used with any block cipher. In the descriptions which 
follow, the DES will be used because it is easier to describe the methods by a 
well-known example. It will be obvious how the methods can be used for any 
block cipher, changing only the details according to the block size. 

The limitations of the electronic codebook mode 

It might seem that a message comprising many blocks could be enciphered simply 
by dividing it into 64-bit blocks and enciphering each one separately. This is a 
simple application of ECB encipherment- the native mode. Decipherment is 
equally obvious. But, in general, ECB encipherment should not be used in this way 
because of some severe security weaknesses which arise from the structure of 
typical messages. 

In all practical applications, fragments of messages tend to repeat. One message 
may have bit sequences in common with another. Messages generated by com­
puters have their own kind of structure. The need for formal definition of proto­
cols and the desire for generality in their definition has made large parts of the 
formats used by computer messages very repetitive. They may contain strings 
of zeros or spaces. The protocol designer provides parameters which in practice 
are rarely used and, therefore, take constant values. Computers often generate 
messages in a fixed format, having the important data always in the same place. 

If the ECB type of encipherment is used with this kind of traffic, an alert enemy 
who intercepts collections of these messages will be able to detect the repetitions. 
Figure 4.1 illustrates how ECB encipherment fails to conceal this structure. 

Repeated phrases will not show through the ECB encipherment unless they 
happen at the same phase relative to the block size. Cryptanalysts will search 
for and exploit the occasional visible regularities. The commonest repeats, such 
as strings of zeros, show up easily. The biggest danger arises when the signifi­
cant parts of the messages change very little and appear in fixed locations. Analys­
ing these parts becomes a 'codebook' exercise in which the number of code values 
is small. 

Suppose now that a set of messages has been analysed and some partial 
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1 T 60 99 d6 42 52 82 22 

2 H A \1 E S E FF BF BC 77 BB BB F2 06 

3 V E R A L A C OD 40 86 DE B6 CD 92 50 

4 T I V E P E R 99 63 AB OF 32 03 E7 E9 

5 M A N E N T v 10 49 1F 3B DE 67 21 B7 

6 R T U A L c BD 2D 6D 61 42 08 C7 B8 

7 R C U T S 19 F1 01 A4 89 6A AE 4C 

8 A N D 0 R v 84 DB CC EC 35 18 58 9C 

9 I R T U A L c BD 2D 6D 61 42 08 C7 BB 

10 A L L S A T D4 3C D4 SA 9E OB AS ED 

11 T H E S A M E 84 52 01 AC 2D FE 98 3A 

12 T I M E 89 F1 89 E9 DB CC CB BB 

Key 01 23 45 67 89 AB CD EF 

Fig. 4.1 A weakness in ECB enciphemzent 

understanding has been obtained of these parts of the messages. An enemy can 
re-construct messages from the parts of the message he has intercepted. The ECB 
mode of operation has not linked these blocks together, so they can be reassembled 
in any order. For example, a bank payment message might have the payment 
amount or the payee account number in fixed positions. Even if the enemy does 
not know the precise amount, he might be able to deduce the payee. He may 
also be able to find which are the large payments. He could exploit his knowledge 
of the enciphered blocks by forging large payments for chosen accounts, simply 
by reconstructing messages from known pieces. 

The vulnerability of systems to 'code book' analysis is greatest at the beginning 
of messages, where formal headers appear which contain the destination, serial 
number, time etc. The problem of the 'stereotyped beginning' of messages has 
to be considered carefully in all cipher systems. 

The weakness of the ECB method lies in the fact that it does not connect the 
blocks together. By enciphering each block separately it leaves them as separate 
pieces which the cryptanalyst can analyse and assemble for his own benefit. What 
we need is a method of enciphering successive blocks which makes the cipher 
meaningless except in the given sequence. This is called 'chaining'. 

4.2. CIPHER BLOCK CHAINING 

Cipher block chaining uses the output of one encipherment step to modify the 
input of the next, so that each cipher block is dependent, not just on the plaintext 
block from which it immediately came, but on all the previous plaintext blocks. 
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, I 

shown on the of the figure, has a feedback 
back to plaintext input. Except for the first block, each successive block, 
encipherment, is added to the ciphertext of the previous one and this makes the 
nth ciphertext block C11 a function of all the plaintext blocks P1, P2, ... , P11 • 

The figure shows on the right-hand side how this process is reversed for 
decipherment. After decipherment of the ciphertext, a correction is made which 
corresponds exactly to the operation carried out at the beginning, namely the 
addition, modulo 2 of the previous ciphertext block. 

The words 'addition, modulo 2' do not adequately express the function shown 
by the circles in the figure. In fact, each bit of the input block P11 is added, 
modulo 2, to the corresponding bit of the previous ciphertext C11 _ 1. In actual 
implementations, the operations may be serial, or be carried out on one octet in 
parallet according to the speed required or the DES implementation employed. 
The figure shows the operations as though they take place with 64 bits in parallel. 

In order to make quite clear the sequence of operations, the ciphertext block 
is shown at both ends as entering a register where it remains between successive 
operations. This clarifies the point that, at both ends, the quantity entering the 
modulo 2 addition is the ciphertext of the block which preceded the one now being 
processed. 

The operation of the cipher block chaining can be expressed as follows 

encipherment: 

decipherment: 

Q11 = Dk(C11 ) +2 Cn-1 

In order to prove that the result of decipherment, Q1u is indeed the plaintext, 
apply the operation Dlc to the first equation, giving 

Dlc(C11 ) = pll +2 cn-1· 

All lines corry 64 bit blocks 

M 
I 
I 
I 
I 
I 
I 
I 
I 

Ploin Cipher Ploin 

Pn Cn Ou 

I 
I 
I 

Fig. 4.2 Cipher block chai11ing 
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T~~tere -:;vay to derrLrJnstr.~te this ir:ve:tse prop2rty vvhich derives 
4.2. It l1..as /rnirror' syrn:rLetiy about the broken line 

data flovvs. The flow of data through the enclp•ner­
ment/deciphenrtent is consistent with a symmetric pattern of data on 
the lines, noting that modulo 2 addition is naturally symmetric because the flow 
of data on the horizontal line can be reversed without changing the data values. 
It follows that the right- and left-hand sides are symmetric about the line M in 
the data values carried by the lines. From this it follows that the input and out­
put data are the same. This kind of argument is very useful for establishing quickly 
the plausibility of systems employing a block encipherment algorithm, though 
it should be checked by a more rigorous analysis and the timing or sequencing 
of the operations should be checked. The 'mirror' argument is an appealing one 
because it can be seen directly in a figure and we shall use it again. 

The first and last blocks 

To complete the definition of CBC operation, both the start and the finish of the 
procedure must be detailed. At the beginning, the 'previous ciphertext block' 
is not available so the initial contents of the registers in Figure 4.2 must be specified 
otherwise. This is the quantity shown in the following equations as I. It is known 
variously as the 'initializing variable' or 'initialization vector'. We shall call it the 
initializing variable (IV). The choice of this value is important to the security of 
the operation and it must be the same for the sender and receiver. The equations 
for expressing encipherment and decipherment must be replaced, for n = 1, by 

C1 = Ek(P1 +2 I) 
Q1 = Dk(C1) + 2 I 

and the equations given earlier hold for n=2,3, 
When cipher block chaining is used in a communication system it is normal 

to keep the IV secret. This can be done by transmitting the IV encipherment in 
ECB mode using the same key that will be employed for data encipherment. More 
important than the secrecy of the IV is its integrity. We want to prevent an enemy 
from being able to make purposeful changes to the plaintext which emerges from 
the encipherment system. With CBC encipherment this cannot be done by 
manipulating the ciphertext because changes to the ciphertext will produce an 
apparently random effect in the plaintext output. But changes to the initializing 
variable would have the effect of making corresponding bit changes to the first 
block of plaintext output. In this way the whole of the first block is vulnerable 
to purposeful changes by an enemy. The problem is avoided by sending the IV 
in enciphered form. 

Given a message of arbitrary length, it may not divide neatly into 64-bit blocks 
but leave something at the end. We can deal with the short end block in several 
ways but the simplest is to pad out the message by adding some extra bits until 
the block reaches the correct size. These padding bits could be zeros, because 
the addition of the previous ciphertext block before encipherment prevents them 
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One convention is that the last octet of indicates a 
indicator' octets, as shown in Ll.3. This method 
requires that the existence padding be revealed earlier in the message format. 
In a format that has been designed with encipherment in mind, special provision 
for a padding indicator might be made. 

For many applications the system designer must have a method of handling 
the short end block which does not expand the message size. This would be 
needed, for example, when a stored plaintext is being enciphered and put back 
into the same store. For this purpose the scheme shown in Figure 4.4 is useful. 

Lost block 

----------- Dote ends __.... .,.._____Padding _____. PI 

Example : last block has 3 octets, padding indicator 5 

Fig. 4. 3 Padding in the last block 

02 

Partial 

end block 

Lines carry 64 bit blocks 

except those marked 'm bits' 

Fig. 4.4 A method for enciphering the end block 

Ill bits 

I'll bits 
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block process is enci:::JhE'red 
used by modulo 2 addition to treat the last, short block. Its value is suffic:iently 

random for this purpose. The first m bits of the pattern are used to 
add, modulo 2, to the short block for transmission. A similar process at the receiv­
ing end generates the same pattern of m bits which deciphers the short block 
by modulo 2 addition. 

There is a weakness in any such additive encipherment. Although the enemy 
may not know what is being enciphered, he can change it systematically. He can 
choose individual bits in the last plaintext block and change their values simply 
by changing corresponding bits in the ciphertext. This is not dangerous unless 
the part of the message we are talking about contains essential information and 
fortunately this is not usually the case. The end of a message usually carries sum 
checks which cannot usefully be changed. When used with care, this method 
of dealing with the short end block can be effective. 

Transmission errors in CBC encipherment 

The CBC method of operation can be characterized as feedback of ciphertext at 
the sending end and feed forward of ciphertext at the receiving end. The feedback 
process has the property of extending indefinitely the effect of any small change 
in the input so that a single bit error in the plaintext message will affect the 
ciphertext from the block in which it occurs and every succeeding ciphertext block 
until the chain ends. This is not as important as it may seem because the decipher­
ment process restores the correct plaintext except for the error. 

Errors in the ciphertext are more important and may easily result from a noisy 
communication path or a malfunction in a storage medium. The effect of a single 
bit ciphertext error on the received plaintext is shown in Figure 4.5. 

The first effect is to change the input to the DES algorithm at the receiver. The 
output of the algorithm is then/ for all practical purposes, random, because of 
the good cipher properties of the algorithm. At the time of the next block, the 
ciphertext error emerges from the register in the feedforward path and a single 

I 
One-bit error 

Garbled block 

On 

Garbled 
block 

Fig. 4.5 One-bit error in cipher block chaining 

0 n+l 

One-bit error 
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say: 
be affected, but the system recovers and continues 

to work cmTe(:tly 
In contrast to recovery from bit errors, the system does not recover 

well from synchronization errors. it is possible for a bit to be lost or gained 
in transmission so that blocks are now shifted one bit out of position, then the 
receiving system will generate garbage indefinitely. The method of using cipher 
block chaining must ensure that the framing of blocks cannot be lost indefinitely. 
This will generally be achieved when it is used for data in storage or in conjunc­
tion with data-link protocols that use framing. 

The property of converting brief errors in transmission into lengthier errors of 
plaintext output is called 'error extension' or 'garble extension'. It is a nuisance 
in communication systems and may play havoc with a nicely tuned error-control 
procedure that depends on the statistics of error occurrences. For this reason, 
error control should be applied directly to the ciphertext stream, not around the 
larger plaintext loop which includes encipherment and decipherment. Figure 4.6 
shows these two alternative locations of error control. 

The error properties of CBC carry a security risk if they are not handled cor­
rectly. Errors randomize one block but they cause controlled changes to the next 
block. A system which ignored the errors in one block (or allowed them to be 
recovered later) and accepted the succeeding block would be vulnerable to 
calculated changes being made by an enemy to the ciphertext. 

For this reason, although CBC recovers fairly quickly from line errors, the way 
in which it is used should abort any chain in which errors have occurred. Error 
recovery procedure should be designed to repeat the whole chain and to accept 
it only when it is all delivered correctly. For this reason, it is normal to provide 
a sum check on the plaintext to detect these errors at the receiver. Any enemy 
trying to modify bits in the chain would probably cause a random sum check 
and this would be detected. In chapter 5 this is treated more fully. 

Choice of the initializing variable 

We described cipher block chaining as a method by which the blocks could be 
linked together to prevent codebook analysis. This is achieved for all the blocks 
after the first, but the encipherment of the first block cannot depend on earlier 
blocks. If the initializing variable is kept constant for a series of chains, the repeti­
tion of patterns in the beginnings of the chains will show through. Using the 
same IV and key, two messages which have the same plaintext string at the begin­
ning will have the same ciphertext until the point at which the two messages 
diverge. This degree of transparency would be very unwise, so we must contrive 
that either the beginning of the message or else the value of the IV differs on 
each occasion. 

For communication systems it is customary to use as chain identifier a serial 
number at the start of the chain which does not repeat during the currency of 
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4.3. CIPHER FEEDBACK 

Data are handled in many forms/ as complete messages/ or sequences of frames/ 
blocks/ 8-bit characters or binary digits. When messages must be treated character 
by character or bit by bit/ another kind of chained encipherment is used which 
is known as cipher feedback. 

When we treat data as a stream of bits or characters we are at a low level in 
the hierarchy of protocols which makes up the computer network architecture. 
This is a level at which transparency is important. We must introduce encipher­
ment in a way which disturbs the existing system as little as possible. For exam­
ple/ consider a character terminal which sends out a stream of characters in the 
ISO 7-bit code with an added parity bit. Each of these octets from the terminal 
must be transmitted through a communication network at once and encipher­
ment must not cause a delay. So the encipherment method, although it chains 
these octets together, must operate on each octet as it arrives and deliver it, 
enciphered/ as soon as possible. The same requirement for immediacy applies 
to the decipherment of the octet stream coming into the terminal. 

The cipher feedback method is illustrated in Figure 4.6. Superficially it appears 
similar to cipher block chaining but the important difference is that the DES block 
encipherment operation takes place in the feedback path at the transmitting ter­
minal and in the feedforward path at the receiving terminal. 

The encipherment of the character stream consists of adding, modulo-21 the 
character derived from the output of the DES algorithm to the plaintext character 
to form the ciphertext character and then at the receiving end adding the same 
data into the ciphertext character to restore the plaintext. The design of the system 
makes this added data stream pseudo-random and yet provides the same stream 
at the sending and receiving ends. 

Whereas cipher block chaining operates on whole blocks, cipher feedback 

Error 

Control 

Error 

Control 

Data 

Repeat 
requests 

Error 

Control 

Fig. 4. 6 Alternative locations for error C011trol 

Error 

Control 
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ElPY value of 1n _l_ rn 
is the character size ased in the communication 
can be 5 or 6 bits and in n10dem 7 or 8.) 
choice of character size is the octet and this 
character width. 

The eight bits used to encipher the character stream by modulo 2 addition are 
derived from bits 1 to 8 of the output of the DES algorithm. It is important to 
realize that the DES algorithm is performing an encipherment at both ends of the 
line. The input of this algorithm comes from a 64-bit shift register which contains 
the most recent 64 bits transmitted as ciphertext. Every character which goes out 
on the line at the sending end is shifted into the high-numbered bits of the shift 
register, displacing a similar number of bits from the other end. The same thing 
is done to the received ciphertext at the other end of the line. The argument of 
symmetry which was useful in understanding cipher block chaining can be applied 
to Figure 4. 7, but the layout of the figure is intended to make clear the number­
ing of bits into and out of the DES algorithm and this rather obscures its symmetry. 

If the ciphertext is transmitted without error, the contents of the shift register 
are the same at both ends. Therefore, the output of the DES algorithm is the same 
at both ends and the same eight bits are added to the data stream. This ensures 
that encipherment is correctly reversed by decipherment at the receiving end. 

The sequence of operations as each character passes through the system is as 
follows. The incoming plaintext character has added to it, modulo 2, the bits com­
ing from the DES algorithm. By this addition the character is enciphered and made 
ready for transmission. At the same time as it is transmitted it is loaded into the 
shift register, displacing the same number of bits from the left-hand or low­
numbered end. Now the shift register contains a new pattern of bits and the DES 
algorithm is invoked to produce a new output. This output is ready for encipher-

Shift register Shift register 

I I I I I I 

8 8 

8 

Plain Cipher Plain 

Fig. 4. 7 8-bit cipher feedback 



-- 107 --
MasterCard, Exh. 1004, p. 107

block Chiotinmg 
alg;onttliJm enophers 64 bits o£ users' da'[a. For this 

reason, feedback throughput could limited by the speed of the DES 
operation. Fortunately, the lower levels of network hierarchy, at which cipher 
feedback is used, are often quite slow in operation so this speed limitation is not 
important. 

Like cipher block chaining, cipher feedback chains the characters together, 
making the ciphertext a function of all the preceding plaintext. 

Error exten§ion in cipher feedback 

CFB operation is like cipher block chaining in having a feedback path at the send­
ing end and a feedforward path at the receiving end. Correspondingly, changes 
in the plaintext affect all the succeeding ciphertext, and errors on the communica­
tion line are subject to 'error extension'. We can follow the effect of a single bit 
transmission error in Figure 4.8. The first effect is to alter the corresponding bit 
in the plaintext output of that character. The error also enters the shift register, 
where it remains until the shift process pushes it off from the left of the register. 
While the error is in the shift register, the output is garbled. In the case of 8-bit 
cipher feedback which is illustrated, nine plaintext characters are affected by a 
single error. The error properties are similar to those of CBC except that the 'con­
trolled' change takes place at the beginning of the error pattern instead of the 

Ciphertext 
single 

bit error 

\ 
ITl 

I I 

8 

..,.__Shift 8 

I I I I Error enters at time 1 

garbled at times 2-9 

8 garbled octets 
f::: 4:::::::::t::::::::l:::::::::l::::::::t::::::l:: ];:::::::J 

123456789 

I 2 3 4 5 6 7 8 9 
ll::::::::f:::::::f::<r ::t:'::::J:':::::::I:::::'l:':::::l 

Errors in output 

Fig. 4. 8 One-bit error in 8-bit cipher feedback 
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plcunte;<t sum 
check would reveal as an error. A case occurs vvith the last character 
of a message, where the characters never come. This matters little for 
1-bit CFB and is unlikely to matter for 8-bit CFB since the 8 bits in question are 
probably part of the sum check, but it could be serious with 64-bit CFB and, for 
example, a 16-bit sum check. The enemy could alter the last 48 bits of the message 
and correct the sum check to match. Of course, 64-bit CFB is unusual and CBC 
is likely to be used instead. 

Initializing with CFB 

To start up the process of cipher feedback, the shift registers must be loaded with 
an IV. It is customary to use a different IV for every chain during the lifetime 
of a key, in order to mask any repetitions at the beginnings of the chains. These 
IV values can be transmitted in clear form because they enter the process through 
the encipherment algorithm. 

In cipher block chaining the transmission of the IV is a procedure quite distinct 
from normal message transmission because the IV is enciphered. The plaintext 
IV which is sent at the start of CFB operation can be regarded as a preamble to 
the message. It enters the shift register at both ends of the line and, when the 
registers are loaded with the same data, secure transmission begins. This method 
of start-up is characterized by random data being produced at the sending end 
(to conceal any regularities in the starts of messages) and different random data 
being produced at the plaintext output of the receiving end. In effect, the self­
correcting properties of this cipher method are being used for starting up. 

More formal procedures for initializing are described in chapter 11, in which 
a randomly chosen IV is sent before transmission of data begins. Each chain incurs 
this transmission overhead. There are polling systems which use very short 
messages, each message sent to a different station on a multi-station line. If CFB 
encipherment is used with a different key for each station, then each of these 
short mssages must be preceded by an IV. To avoid the full-length, 64-bit IV, 
it is customary to send a shorter-length value and pad it on the left (most signifi­
cant) end with zeros to make up the 64-bit pattern in the shift register. Of course 
the transmitted value should not be too short or the danger of code book analysis 
of the starts of messages returns. For example, if an 8-bit IV is transmitted the 
enemy has to construct 256 versions of the codebook. Suppose that the polling 
message consisted of an address which was fixed for the station followed by a 
command with only a few possible values, then it would not take long to analyse 
these command values for a given station. 

Endpherment of an arbitrary character set 

Cipher feedback is used for enciphering a stream of characters, where each · 
character is represented by m bits. In such a character set a character is represented 
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chaTacter 
which mean: start of start of tex( end of text, acl:Cn:JW'le(~[g(::meni:, 
link escape etc. In many communication if we tried to send such a 
chaTacter in a ciphertext stream it would have an unfortunate effect on the net­
work's procedure, so we have to restrict the transmitted characters to a 'safe' 
set. In the ISO case this usually means the binary values representing the numbers 
32 to 127, ninety-six values in all. 

We could consider an arbitrary character set which does not even use a con­
secutive set of character values. Then the first step in encipherment would be 
to map these characters into the consecutive values 0, 1, 2, ... n -1 where there 
are n different character values in the allowable set. If n=2m, normal CFB opera­
tion qm be used. Otherwise m bits are needed to encode the character where 
m is the smallest value for which n < 2111

• 

Figure 4.9 shows how the cipher feedback method of operation can be modified 
for the case of an arbitrary character set. 4 The process of encipherment in CFB 
is the addition of a stream of m-bit characters coming from the least significant 
m-bit positions of the DES output into the plaintext character stream. For dealing 
with the arbitrary character set modulo 2 addition of bits is replaced by modulo 
n addition of character values. Both these methods of encipherment are well 
established in classical ciphers, where binary addition, modulo 2, characterizes 
the Vernam method and modulo n addition characterizes the Vigenere method. 

Cipher feedback has the useful property that the method of deriving the 
character stream for encipherment can be chosen almost at will, provided the same 
method is used by the receiver for decipherment. We must now show how a 
character in the range 0, 1, 2, ... n -1 can be produced from the output of the 
DES encipherment . 

.,.__Shift m 

m 

Plain Cipher 

Fig. 4.9 Modulo 11 cipher feedback, n<2'" 
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nr,~,Nori11-N'> for the ten character values 0, 1, 
... 9 from a 4~bit output taken from the DES. This method is not recommended 
because the values 0, 1, 2, 3, 4 and 5 will occur twice as often as the values 6, 
7, 8 and 9. If the digits are not equiprobable in the plaintext there will be a distorted 
distribution in the ciphertext, which can be exploited by a cryptanalyst. For general 
use we need the additive character stream to give all the values 0, 1, ... n -1 
with equal probability. 

A useful method is illustrated in Figure 4.11 for the example of generating 
decimal digits. The 64~bit output of the DES is divided into sixteen blocks of 4 
bits each. Starting from the least significant end, the first four bits are examined 
and if they lie in the permitted range 0 to 9 this value is used for the additive 
encipherment. If not, the next block is tested in the same way. Since there are 
sixteen possibilities, it is highly probable that one of them will generate a satisfac­
tory character and the first one to be reached is the one used for encipherment. 
If, unfortunately, all the values happen to lie in the range 10 to 15 then we choose 
some arbitrary prearranged value to add to the character for encipherment, say 
5 for example. The probability that this arbitrary value will have to be used is 
(6/16)16 which is approximately 1.53 x 10-7. Clearly the method is not perfect 
since the probability of one particular character value (5) is very slightly larger 
than the rest. To exploit this flaw, even if the plaintext stream had one very highly 
probable character, the cryptanalyst would need to collect a very large sample 
of text. For most purposes the method is adequate. 

This slight flaw could be removed, at some expense. Instead of the default con­
dition when all sixteen tests fail, the DES output could be enciphered again to 

Value of 4- bit 

DES output 

Modulo 10 value I 0 II I 2 I 3 14J5 J6 J7 I 8 J9 I 
Probability J

1!8 J
11 8 J

1 18 J
1t8 J

1t8 l
1
/ 8 h6 1

1t, 6 J
1!16 J

1!1e,l 
Fig. 4.10 The modulo 10 value - an uneven distribution 

DES output Jl 0 I 0 I I 0 J 0 I I 0 J 0 0 I I 0 ~ 

Hexadecimal 10 13 3 

Result Reject Reject Accept 

Fig. 4.11 An improved rule for modulo 10 
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ment cannot he 
sixteen tests can be made 
of an indefinitely long process to a character, however rare 
that event might be. For most practical purposes, sixteen tests followed by a default 
procedure is adequate. 

The probability of the default condition should be checked to make sure that 
it does not weaken the system. Take another example, which is the 96-bit ISO 
graphic set. Since this is a 7-bit code, there will be nine useful blocks in the DES 
output and the probability of a default condition is (32/128)9 which is approx­
imately 3.8 x 10-6• 

4.4. OUTPUT FEEDBACK 

Of the three methods of operation that have been described, ECB, the 'native 
mode', is for limited use and the two others CBC and CFB are general-purpose 
methods. The fourth, output feedback, is intended for applications in which the 
error-extension properties of the two general-purpose methods are troublesome. 

Coded speech or video channels can withstand a small amount of random noise 
in transmission or storage, basically because they are highly redundant. The 
listener or viewer is not bothered by occasional clicks or spots due to faulty speech 
samples or picture elements. If we required it, an automatic process could detect 
and correct these errors, in the same way that blemishes in old films can be cor­
rected electronically. We do not want these occasional, isolated errors to be 
magnified by the error-extension properties of a cipher method. For example a 
standard speech channel with pulse code modulation (PCM) uses 8-bit speech 
samples. A single error would be extended by encipherment to damage about 
eight further samples. This could make a bad noise in the channel or, with 
multiplexing, cause clicks in eight other channels. 

Output feedback uses a cipher of the kind invented by Vernam; only the pseudo­
random source is new. In one respect it resembles CFB operation because it can 
be applied to streams of m-bit characters for any value of m between 1 and 64. 
It has the property of all additive stream ciphers (Vernam type) that errors in 
the ciphertext are simply transferred to corresponding bits of the plaintext output. 

Figure 4.12 shows OFB encipherment, working with m-bit characters and an 
m-bit wide feedback path. It resembles CFB operation in all respects except the 
place from which the feedback is taken. The pseudo-random stream is the result 
of feedback applied to the DES cipher. · 

The non-error-extension property of additive stream encipherment carries dis­
advantages with it. An active attack on the channel can produce controlled changes 
to the plaintext. Since OFB systems usually run continuously on a synchronous 
channel, the enemy may have no knowledge of where each message starts and 
ends, so the usefulness of this trick to the enemy might be limited. 

Synchronization of the pseudo-random number generators at the two ends of 
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m 

Plain Cipher Plain 

Fig. 4.12 m-bit output feedback 

the line is critical. If they get out of step the 'plaintext' output at the receiver will 
be random. Whereas CFB operation can recover when character synchronization 
is restored, OFB will not if characters have been gained or lost. A system employ­
ing OFB must have a method of re-synchronization after such a failure. This is 
the same as restarting with a new IV. 

To start up or resynchronize OFB, the shift registers must be loaded with iden­
tical values. The IV can be sent in clear form because knowledge of it does not 
help the enemy to construct the pseudo-random stream. In the same way as 
for CFB operation, the full 64-bit field need not be used. The IV sent over the 
line can be padded on the left with zeros to fill the shift register. There is the 
same trade off between IV overhead and security as in CFB initialization. 

Key stream repetition 

The pseudo-random stream which is added (modulo 2) to encipher and decipher 
is called the key stream. If ever the key stream repeats it weakens the cipher. If 
Xi is the key stream and it is used for two different plaintexts Ai and Bi, the two 
ciphertexts are: Ai+Xi and Bi+Xi (modulo 2 addition). Adding these, modulo 2, 
produces Ai + Bi, eliminating the key stream. The result is that which would have 
been obtained by enciphering Ai with Bias a 'running key' cipher, or vice versa. 
Solution of such ciphers is sometimes easy. The enemy may not know, at first, 
where the key-stream repetitions occur, but if the messages are in natural language 
there are statistical tests which distinguish their sum from the random stream 
caused by Xi. Digitally coded voice and video have even stronger statistical pro­
perties. Sliding the enciphered messages and testing their sum will detect the 
key repetition. Such repetitions must be avoided. 

Output feedback, like any other pseudo-random generator, repeats its output 
after a certain time, that is, it enters a cycle. The key-stream generator can be 
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it returns to its initial state. Permutahons can 
be the and it is well knuwn that when all 
the n! permutations are written out as cycles, the total length of all the 
of any length c is exactly n!, whatever the value of c. In other words, starting 
from an arbitrary state x0, the length of cycle is equally likely to take any one 
of the values 0, 1, 2 ... n. In the case of OFB, where n=264

, the mean cycle 
length (averaging over all keys and starting values- or with randomly chosen 
starting values) is 263 +l This result depends on a significant assumption, which 
is that the encipherment functions Ek(x) are effectively random choices among 
the (264)! permutations. 

A cycle length which is random and uniformly distributed is not as safe as a 
cycle of known length, but at least the average length is high and the probability 
of a very low cycle length is small. OFB with m = 64 is satisfactory. 

The analysis of OFB with other values of m is more difficult. The function 
xi+ 1 =f(xi) relating each state xi+ 1 to the previous state xi is not one-to-one. A 
simplifying assumption can be made, according to which it is a random function 
so that, until the cycle repeats, each new x value is effectively chosen at random. 
A cycle begins when any x value repeats one that has already occurred. Although 
this is not a good description of the OFB operation, it has been found experi­
mentally to give the correct cycle behaviour.5 The problem of finding cycle length 
is similar to the solution of the famous 'Birthday problem' which is of such im­
portance in the analysis of data security that it is described in an appendix to 
chapter 9, beginning on page 279. The solution of that problem indicates that 
coincidence of two x values is likely to happen after about -Jn iterations, where 
n=264 is the number of values from which the x values are randomly chosen. 
A more careful analysis described in reference 5 shows that the average cycle 
length for a random function is ( 1rn/8) Vz, which is close to 231

. The OFB function 
is, however, not random and by a closer analysis it was possible to estimate the 
way that the average depends on m. 

The largest effect of non-randomness occurs form= 1 and m = 63 and it increases 
the average cycle length by a factor -J2. The effect decreases form = 2, 3 ... and 
m = 62, 61 ... so that the average (1rnl8)'1' is accurate for most values of m. The 
average cycle length is always in the range 231 to 232

. 

An average cycle length of this magnitude is not satisfactory in an encipher­
ment scheme intended for general use. For example, a digitized speech channel 
at 216 bit/s rate would recycle on average after 216 s or 18 hours. There is a fur­
ther reason why a random function is not suitable for generating a key stream. 
The average number of distinct cycles for such a function is very small, namely 
-¥n n, which for 264 system states is only 22. The conclusion from these calcula­
tions is that OFB should be used only with full 64-bit feedback. The other feed­
back possibilities for OFB in Federal Information Processing Standard (FIPS) 
publication 81 should be avoided. The effect of this on standards is described 
in chapter 11 (page 349). 
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than one block because of the 
rP-r>o:>l-orl block values and the of messages 

from When ECB is used to encipher a block of data, the 'Nay it 
is used should prevent repetitions or make them very unlikely. 

The most usual application of the ECB method is to encipher a key for 
transmission. Since a key contains 56 bits of random data, the building up of a 
codebook is impractical. Of course, the danger of a replay of old keys must also 
be considered when the security is analysed. 

If very short messages (such as acknowledgements) have to be sent which fit 
into one block, codebook analysis should be defeated by making the block suffi­
ciently variable. There are several ways in which the variability can be achieved. 
One is to add an initializing variable, effectively using cipher block chaining. 
Instead of sending an IV, which must be protected from manipulation, the added 
variable can be a serial number, incremented for each transmission. If the message 
is short enough, the serial number can be incorporated in it, which is more con­
venient for checking and resynchronizing. 

An alternative is to put a date and time in the message which can be checked 
to detect a replay. Since a compact form of date and time, down to the second, 
occupies 48 bits, there will be space for 16 bits of message. Another method is 
to include with the message a random number. This prevents code book analysis 
but does not easily guard against replays. Methods like these can be 'tailor-made' 
for a particular application. Compared with general-purpose protocols these 
methods can be more efficient and justify the special software that has to be writ­
ten. In most circumstances it is better to use general methods based on CBC or 
CFB operation and accept their overheads. 

Cipher block chaining is the recommended method for messages of more than 
one block. This method avoids codebook analysis generally but not at the start 
of the chain. Communication systems generally use chain formats which begin 
with a serial number so that the first block differs for all chains using a given 
key. In other applications the IV may be varied. 

This method extends single bit errors in the ciphertext to affect two successive 
blocks at the plaintext output. An enemy with control of the ciphertext can 
introduce controlled errors into the second of these blocks, therefore the method 
of error recovery should not trust chains in which errors are detected. 

Cipher feedback is recommended for enciphering streams of characters when 
the characters must be treated individually. Like CBC it operates on chains -
in this case chains of characters. The problem of codebook analysis at the starts 
of chains is similar but in communication by CFB operation the variability of the 
start of the chain is usually provided by varying the IV. Error extension is pre­
sent also in CFB but the security implications are different because it is the first 
character of the error pattern in the plaintext output which is under the control 
of the enemy, if he can introduce ciphertext errors. The chain format should not 
allow important information to appear in the last character. This requirement is 
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is often regarded, in consequence, as the most of the methods. For-
tunately, cipher feedback is often applied with asynchronous, start-stop opera­
tion which restores the synchronism of characters immediately. Cipher block 
chaining is often applied to data which is in storage or is transmitted by a link 
procedure, such as HDLC, which restores synchronism at least in the next frame 
after a synchronization error. So the normal error recovery procedures can deal 
with the problem. 

Output feedback is needed when error extension is undesirable. In this method 
of operation, synchronization errors are not recovered. Therefore loss of syn­
chronism must be detected and notified in a signal back to the sender which causes 
a new IV to be sent, in order to restore synchronism. As an alternative where 
a return message is impossible, synchronization can be re-established so frequently 
that the loss due to an error is very brief. 

The four methods of operation are versatile enough for nearly all applications. 
In order to guard against active threats the designer has to choose carefully the 
methods of forming the IV and transmitting it. He may also need to provide 
variability at the beginning of a chain by means of a serial number, a time and 
date or a random number. The four modes of operation are a set of tools, extend­
ing the versatility of the block encipherment algorithm but still requiring to be 
applied with some thought. 

These methods do not exhaust the possibilities. We can construct other methods 
for using the block cipher on chains of blocks. For an example, Figure 4.13 shows 
how, operating on 64-bit blocks, encipherment can be incorporated into both the 
feedfonvard and the feedback paths. The symmetry argument helps us to generate 
such schemes. This one can be expressed by the equations 

encipherment: 

c/1 

kz 

Fig. 4.13 A 11011-standard chaining method 
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per±onTtan"ce, syncl:wcJmzation etc., this method is like CBC but it uses 
two k1 and k2 . To some extent these extra rather like the 

double encipherment. v\fe claim no special virtues for this method. 

4.6. SECURITY SERVICES IN OPEN SYSTEMS 
INTERCONNECTION 

The International Standards Organization has produced an architectural model 
for networking which is defined in ISO 7498 entitled /Open Systems Inter­
connection - Basic Reference Moder. This OSI model is the framework for all 
dependent ISO standards. Unfortunately, it is not universal because the IBM 
systems network architecture (SNA) is the basis for many of today's networks. 
Among other computer systems suppliers, OSI is gradually achieving a domi­
nant status. Though there is a general similarity in the approach taken by SNA 
and OSI, there are basic problems in interworking between these two systems. 
In this book we will follow the development of a systematic architecture for securi­
ty services in OSI. The model is contained in part 2 of ISO 7498.6 

Open systems interconnection is structured in the well-known seven layers from 
the physical layer at the bottom to the application layer at the top. The lower 
three layers, physical, data link and network form the communications structure 
and their standards have been put forward initially as CCITT recommendations. 
The higher layers, transport, session, presentation and application employ the 
communications facilities of the network layer. These upper layers can be con­
sidered as operating from end to end through the communications system. In 
principle, security features could be built into any layer of the osr structure but 
the security an;:hitecture is more specific than this and defines, for each security 
service, those particular layers which can provide it. 

The OSI security architecture makes a clear distinction between security ser­
vices and security mechanisms. For example, encipherment is a mechanism which 
can be used as part of a number of services, of which the most obvious is that 
of confidentiality. The emphasis in the OSI document is on the services rather 
than the mechanisms, since the latter form part of dependent standards detail­
ing how these services can be provided at the various layers of the architecture. 

Definition of security services 

The security services fall into five groups: confidentiality, authentication, integ­
rity, non-repudiation and access control. Some of these can be broken down into 
sub-types according to the method of communication and the details of the ser­
vice required. Definitions of the terms can be found in the Glossary starting on 
page 360. 

Data confidentiality ensures that information is not made available or disclosed 
to unauthorized individuals, entities or processes. It can be applied either to the 
whole of the message or to specific fields within a message, which is called selec-
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of connectionless service the term used is data origin authentication and is defined 
as 'corroboration that the source of data received is as claimed'. Where an associa­
tion has been set up between peer entities the meaning of authentication can be 
strengthened and is contained in the term peer-entity authentication meaning' cor­
roboration that a peer-entity in an association is the one claimed'. The term 
authentication is not therefore extended to include the integrity of the data which 
are being transmitted. 

Data integrity is treated as a separate concept, meaning the property that data 
have not been altered or destroyed in an unauthorized manner. Outside the con­
text of OSI, this form of data integrity is sometimes called authentication but the 
OSI distinction can be useful and will be maintained in the remainder of this 
chapter. 

In practice data integrity and data authentication are linked in two ways, they 
usually employ the same mechanisms and they are usually both required together. 

Concerning the need for both services, if it can be assured that the data received 
come from the claimed source, this is not useful in practice if the data may have 
been changed in an unauthorized way. Conversely, if we know the data have 
been transmitted without any unauthorized changes, this is not useful unless 
we know that the data came from the claimed source and not from an imposter. 
Therefore, in practice, data integrity and authentication are required together 
rather than separately. 

The mechanisms by which these services are obtained are the subject of chapter 
5 and depend on cryptographic processes using a secret key shared between the 
communicating parties. In many cases, the possession of this key establishes the 
authenticity of the data source and at the same time allows the integrity of the 
data to be checked. Not all authentication mechanisms employ cryptography but 
the more secure forms of authentication always do. 

Data integrity services can vary according to whether the communication is con­
nectionless or employs a peer-entity association. Where an association exists the 
data integrity mechanism can be provided with a form of recovery mechanism. 
Data integrity services can be applied to the whole of the message or to selective 
fields, as was the case for confidentiality. 

Repudiation is defined as 'the denial by one of the entities involved in a com­
munication of having participated in all or part of the communication'. Non­
repudiation is a service which can be provided in the OSI architecture in two 
forms, either with proof of origin or with proof of delivery. The concept of non­
repudiation will be understood better in the context of digital signatures, which 
are the subject of chapter 9. Digital signature is one of the mechanisms by which 
they can be provided, the other is notarization by a trusted third party. 

In the case of non-repudiation with proof of origin, the recipient of data is pro­
vided with proof of the origin of the data which will protect against any attempt 
by the sender to falsely deny sending the data or to deny its contents. A digital 
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to a trusted notarization authority. 

The final category of security services recognized in OSI is access control and 
this can be applied either near the source of a communication, at an intermediate 
point or near the destination. Access control may be needed in order to protect 
a network against deliberate saturation by an opponent, but normally it protects 
an information service against unauthorized access and is therefore frequently 
used at the application layer or above. Within the network layer, an access con­
trol service can provide protection for a sub-network, allowing only authorized 
entities to establish communication within it. The transport layer can provide a 
similar service. 

A special form of confidentiality is traffic flow confidentiality which protects against 
traffic analysis, namely the inference of information from the observation of traffic 
flows. It is difficult to obtain complete protection against traffic analysis and a 
number of mechanisms may be required simultaneously, such as encipherment 
at the physical layer together with traffic padding to confuse observation of traffic 
levels. 

The mechanisms employed to provide these services include encipherment with 
both symmetric and asymmetric algorithms, digital signature, integrity and 
authentication mechanisms, traffic padding, routing control and notarization. 
There are also pervasive mechanisms which can be applied at all levels of the OSI 
architecture and three of these are distinguished. The first is trusted functionality 
which means that the parts of the system which carry out security functions must 
be both protected and trusted. The second is called event detection and handling 
and includes the detection of attempts to break into the system and the way in 
which this information is acted upon. The third category of pervasive mechanism 
is the security audit trail which provides a record of what has happened and enables 
the security of the network to be reviewed and action taken when trouble is found. 

Security services in relation to the OSI layers 

Many of the services envisaged in the OSI architecture can be provided as alter­
natives at different layers. Table 4.1 shows, for each of the defined services, in 
which layers it may be provided. The session layer provides no security services 
so this has been omitted from the table. Many of the services provided by the 
application layer will actually employ security mechanisms within the presenta­
tion layer. For example, if the presentation layer changes the coding or format 
of some messages this can only be done prior to encipherment; therefore encipher­
ment to provide confidentiality at the application layer may, in practice, be car­
ried out by the presentation layer after the recoding or reformatting has been 
done. In this table we have combined the two forms of authentication, peer-entity 
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Lcoer OSI 

2 "> 4 6 7 J 

Confidentiality 
Connection y y y y y y 
Connectionless y y y y y 
Selective field y y 

Traffic flow confidentiality y y y 
Authentication (both kinds) y y y 
Integrity 

Without recovery y y y 
With recovery y y 
Selective field y 

Non-repudiation (both kinds) y 
Access control y y y 

OSI layers: 1, Physical; 2, Data link; 3, Network; 4, Transport; 6, Presentation; 7, Application. 

and data origin authentication, and the two forms of non-repudiation service, 
with proof of origin and with proof of delivery. 

The letter Y in the table means that the service should be incorporated in the 
standards for the layer so that the provider of this layer can include the security 
services as an option. Where there is no Y the service cannot be provided. 

For each of the OSI layers, work is proceeding to incorporate the security services 
as an option. Some of the progress to date is described in chapter 11. 

4.7. THE PLACE OF ENCIPHERMENT IN 
NETWORK ARCHITECTURE 

Even at a casual glance, a computer network can be seen to have a complex struc­
ture. It consists of switching centres, often called nodes, connected by communica­
tion links and joined to multiplexers or concentrators which provide the paths 
to the network's host computers and terminals. In such a structure, encipher­
ment could be employed in many different ways. A more careful study of network 
structure reveals that the complexity goes beyond its communication system. It 
has further levels of structure incorporated in the host computers and the 
terminals. 

When encipherment is used in a network, the security properties it gives are 
dependent on the layer at which it is applied. The OSI model shows that poten­
tially it can be applied at any of six layers and the effect is has depends on the 
network structure and on the responsibility for operating different parts of the 
network. For example, in a private network the nodes may sometimes be regarded 
as trusted facilities whereas they would not be trusted in the shared use of a public 
network. 

The OSI view of network structure encompasses both the communications 
system and the intercommunicating computers, terminals etc. For the present, 
we take a less-detailed view and look at the main alternatives for using encipher-
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Fig. 4.14 Network of nodes - switches, multiplexors, etc. 

ment in the communications part of a network. For this purpose we shall describe 
three ways in which encipherment can be employed, called, for the present pur­
pose 'link-by-link', 'end-to-end' and 'node-by-node'. 

Figure 4.14 shows a network as a set of switching centres or 'nodes' connected 
by communication lines. 

The simplest place to apply encipherment is on the lines between the nodes. 
These communication lines are the most vulnerable part of the system. This is 
called encipherment 'link-by-link'. Since the lines are used for carrying bits or 
characters from one node to another, the encipherment in principle need take 
no account of the structure of the messages, such as the presence of headers. 
Therefore some forms of this encipherment are very simple. Information must 
be deciphered as it enters the nodes, because these nodes look inside the struc­
ture of the messages and must see the information in clear form. The informa­
tion is completely vulnerable to attack while it is in the node: in the OSI model 
this form of encipherment is in layers 1 or 2. 

Many users will require a different form of encipherment, which allows the 
content of their data to remain enciphered whenever it is in the network, even 
in the nodes. This can be achieved with 'end-to-end encipherment' in which the 
communication network is regarded as a single entity which is transparent to the 
enciphered message: in the OSI model this is encipherment in any of layers 3 
to 7. The message content is enciphered at the point of entry to the network and 
deciphered at the point of exit. This makes the data as secure inside the nodes 
as elsewhere in the network. 

We shall also consider another method of making data secure inside the nodes 
which is called 'node-by-node encipherment'. 

Link-by-link endpherment 

The line is a path of communication betwen nodes and uses a protocol or pro­
cedure which operates over this line. To be more precise, both the physical and 
data link layers of the architecture may be involved. Figure 4.15 illustrates link­
by-link encipherment. 
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Fig. 4.15 Link-by-link enciphemzent 

If we encipher at the lowest level, treating what passes over the link as a 
sequence of characters or bits, then an enemy who taps the line will see nothing 
of the structure of the information. He will therefore be unaware of the sources 
and destinations of messages and may even be unaware whether messages are 
passing at all. This provides 'traffic-flow security' whch means that we conceal 
from the enemy, not only the information, but also the knowledge of where the 
information is flowing and how much is flowing. By using the lowest level of 
encipherment, traffic-flow security can be obtained. 

Consider a synchronous communication line, carrying a stream of bits. This 
stream can be enciphered using 1-bit cipher feedback. After the initialization, the 
process can continue to run as long as the line is open, recovering automatically 
from bit or synchronization errors. An enemy tapping the line will see only a 
random sequence of bits, which does not reveal whether data messages are pass­
ing or not. The designer might have to consider whether the 'infill' between actual 
messages should be a repetitive pattern or random. Having no knowledge of the 
beginning or end of messages, the enemy could not attempt any useful active 
attack. Supposing that he did change some of the information, this would appear 
as unpredictable changes in the plaintext. Detection of these changes at the lowest 
level of protocol would be difficult, but they should be detectable at a higher level 
if the error control mechanism is well chosep. 

The situation is less clear when asynchronous, start-stop communication is used. 
In this case, also, the entire message content can be enciphered by 1-bit cipher 
feedback or by character-wide cipher feedback, leaving the start and stop elements 
unchanged. There remains one clue for the enemy, which is the rate at which 
characters are passing. If this traffic information must be concealed, the system 
requires an extra provision which sends dummy messages during quiet periods. 
These dummies can be generated and absorbed within nodes. In packet switch­
ing networks a logical channel could be devoted to this purpose and made to 
fill up a part of the unused capacity of the line. 

What we have described belongs in the physical layer of the architecture. The 
data link layer protocols, such as HDLC or BSC, define 'frames' which pass be­
tween the nodes. If the encipherment procedure is applied to the data content 
of these frames, some more traffic information is given to an enemy tapping the 
line. This illustrates that raising the level at which encipherment is carried reduces 
the traffic-flow security. More details of the precise methods used for encipher­
ment at layer 1, the physical layer, are contained in chapter 11. 
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level functions of the netvvork. The information contained in the nodes (the 
ment, other than the lines or the link protocols) is in clear form. This 
tolerated only in a private network in which the degree of care in physical 
protection, personnel selection, maintenance etc. is just as high in the nodes as 
it is at the terminals or in the operation of host computers. Network errors, 
accidental program bugs or deliberate bugs introduced by an enemy might redirect 
a message to the wrong destination. If all the users of the network trust each 
other and have the same level of security clearance, this need not matter. However, 
even in a private network, information owned by one department may have to 
be withheld from another, so the kind of accident which might redirect messages 
should be avoided. In a public network, few users could accept the possibility 
of redirection of messages or the presence of clear messages in the switching or 
concentrator nodes. 

To summarize, the use of encipherment at a low level has the advantage of 
providing traffic-flow security but the great weakness of protecting data only on 
the communication lines, and not providing adequate separation between one 
network user and another. 

We therefore argue that the use of link-by-link encipherment should exploit 
its advantages and the weaknesses should be dealt with by encipherment at a 
higher level. When link-by-link encipherment is used in this way it should 
preferably be done at the physical layer, that is, applied to the individual bits 
or characters and without regard to the structure imposed by the link protocol. 
The best kind of low-level encipherment is at the lowest level, when it is sup­
plemented by encipherment at a higher level. 

End-to-end endpherment 

Figure 4.16 depicts end-to-end encipherment, with an encipherment device 
interposed between each terminal and the network. The encipherment process 
must take into account the protocol of communication between the terminal and 
the network. The purpose of a call from one terminal to another is to set up a 

Network 

Terminal 
User data are enciphered 

Terminal 

D-©----- headers, control signals, framing 

are in clear ----©-0 

Fig. 4.16 End-to-end encipherment 
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To an ~we can see how this relates 'co the 
use of an X.25 layer of X.25 interface is the physi~cal 
with/ immediately above it/ the data link layer that provides a HDLC mechanism 
for communicating packets. None of this changes when end-to-end encipherment 
is used. All that happens is that these mechanisms carry some enciphered data. 
At layer 31 in which packets are formed/ there are about twenty-six different packet 
types. Most of these are concerned with call set up and clearing calls/ with flow 
controt reset and restart. None of these packets is affected when enciphered data 
is handled. Only the two packet types that carry users/ data need be affected/ 
the DCE data and DTE data packets. In these1 the header includes a logical chan­
nel number and the send and receive sequence numbers1 forming part of the 
mechanism operated by the network itself to separate one virtual circuit from 
another and to control flow. This header must remain in clear. The user data which 
follows it is enciphered. The DTE and DCE interrupt packets also contain user data 
which is not examined by the network so that this information can be enciphered 
if the user wishes. 

If encipherment is carried out by a unit interposed between the terminal and 
the network1 as Figure 4.16 suggests/ this unit must interpret some part of the 
X.25 protocol in order to find these two kinds of users/ data fields/ which are 
the subject of encipherment. In practice/ encipherment might be carried out on 
the data before they enter the X.25 mechanism of the terminat so avoiding much 
of the complexity. It is also likely that the various virtual calls carried by a single 
X.25 interface would have different keys/ since they probably concern different 
users. 

In order to specify exactly how encipherment of data over a virtual circuit would 
take place/ additional protocol features are needed/ if only to let the destination 
terminal know that a call is enciphered. In practice the protocol features associated 
with security are moderately complex. They can be provided either by a special 
security protocol or as an amendment or enhancement of one of the higher 
protocol layers. 

All the operations of the network which set up a virtual circuit are unprotected 
by encipherment. The 1 call request' and I call accepted' packets can be observed 
passing through the network and so the progress of each call and the quantity 
of information carried can be monitored. There is no traffic-flow security in end­
to-end encipherment. The best overall approach is to use encipherment twice, 
at a high level and again at a low levet because the virtues of high- and low-level 
encipherment are complementary. End-to-end encipherment protects the users' 
data everywhere in the network and link-by-link encipherment protects traffic 
flow information on the lines. 

It might seem unreasonable to ask for traffic-flow information to be protected 
within the nodes/ because this is where routing decisions are made/ and they 
require traffic information to be exposed. But there are ways in which even this 
degree of protection can be achieved. It is done by providing in the network secure 
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but seems likely to have very use, when extreme traffic 
is the prime consideration. 

The 

The encipherment and decipherment functions at both of the terminals in Figure 
4.16 must have the same key. Therefore each pair of terminals that wishes to 
exchange messages must somehow obtain a key for that purpose. If there are 
N terminals, potentially there will be N(N -1)/2 possible keys. In chapter 6 we 
shall see how session keys can be distributed using only N master keys, so the 
problem is not as bad as it seems. Nevertheless, key distribution for end-to-end 
encipherment has a degree of complexity which was not present in line encipher­
ment, where the keys for each line were the concern of only the two nodes at 
the ends. The multiplicity of keys is a consequence of end-to-end encipherment' s 
big advantage- it separates each call from all the others. If a packet goes astray 
it arrives at a place where it cannot be deciphered and little harm is done. We 
shall return to the key distribution problem in chapter 6. 

Node-by-node encipherment 

A hybrid method of enciphering in networks has been described under the name 
'node-by-node' encipherment.8 This shares with link-by-link encipherment the 
property that each key belongs to a particular line, so the key-distribution problem 
is made easier. This has the corresponding effect that an error in the system could 
deliver messages to the wrong destination. But if ease of key distribution is an 
overriding factor, node-by-node encipherment might be attractive. It is used in 
some EFT networks. 

In this form of encipherment (unlike link-by-link encipherment) only the users' 
data are enciphered, not the headers. This enables the switches, multiplexers or 
concentrators to operate on the messages as though they were in clear form, but 
without having access to the users' data. 

There remains the problem of changing the encipherment from one key to 
another as data come in on one line and go out on another. This function is car­
ried out in a physically secure module which is contained in the node but given 
special protection. The secure module contains all the keys which the node must 
use, one for each of its lines. Figure 4.17 shows the principle. In order to carry 
out the re-encipherment the secure module must be told the identity of the input 
and output lines, after the node has made its routing decision. With these data, 
the module extracts the necessary keys, deciphers the data stream with the 
incoming line's key andre-enciphers it with the outgoing line's key. Clear users' 
data never exists in the less-protected part of the node and the risk associated 
with line encipherment is avoided. 
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But in removing one of the risks of link-by-link encipherment, we have lost 
its main virtue. All the headers and routing data are sent through the network 
in clear. Therefore node-by-node encipherment achieves very little since it has 
neither the main virtue of link-by-link encipherment, which is traffic security, 
nor that of end-to-end encipherment, which is separation of the users' data . 

. A best place for endpherment in network architecture? 

A rule of thumb could be formed from the preceding arguments, saying that 
encipherment is most useful at either a very low or a high level in network 
architecture. The low level, possibly in or just above the physical layer, provides 
traffic-flow concealment. The higher level, being one of the end-to-end protocol 
layers, separately protects data flows. But there are other possibilities. For exam­
ple if link-by-link protection against active attack is needed encipherment at layer 
2 may be preferred. For many commercial purposes, traffic flow security is not 
important and an end-to-end encipherment method will be all that is required. 

The backbone of data security will remain end-to-end encipherment, in spite 
of the key-distribution problem. 
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5.1. INTRODUCTION 

A piece of data, a message, file or document is said to be 'authentic' when it is 
genuine and came from its reputed source. In a broader sense we may also mean 
that the source had the authority to issue it. We might ask whether a payment 
is authentic in the sense that it corresponds to a genuine invoice. The concept 
of authentication is therefore very wide. For the purpose of this chapter we shall 
limit the concept to the following kinds of situation. 

1. A message passes from A to B through a communication network. A and B 
may variously be persons, procedures or 'entities' in a hierarchy of protocols. 
For a general term we will call them entities. We want B to know that the received 
message came from A and has not been changed since it left A, in other words 
that it is genuinely A's message. It is not reasonable to separate the authenticity 
of the message from the identity of A if we believe there may be enemies about. 
A message from A that has been undetectably modified is not different in its risks 
from an unmodified message that seemed to come from A but did not. 

2. A message that has been stored by A is later read from the store by A or by 
B, a different entity. We want the reader of the data to know that it was stored 
by A and was not changed by others before it was read. Since stored data can 
be changed legitimately it may be necessary for the reader to know the originator 
and all those entities which subsequently altered the data. We shall see that a 
'version number' is sometimes needed in stored data to keep track of alterations. 

3. Two entities A and B undertake a transaction in which messages pass between 
them, alternately from A to B and B to A. For the transaction to be authentic, 
A must verify the identity of B, B must verify the identity of A, and the contents 
of each message in the interaction must be genuine as received - each after the 
first must be a genuine reply to the last message sent. 

Authentication is the procedure for ensuring authenticity in any of these situa­
tions. The word authenticator is used for the specially constructed items of data 
used for this purpose. The question of secrecy of information can often be 
separated conceptually from its authentication. Obviously encipherment protects 
against passive attack (eavesdropping) whereas authentication protects against 
active attack (falsification of data and transactions). 

In the terminology of Open Systems Interconnection a distinction is made be­
tween authentication and data integrity. Authentication refers to the means by which 
the parties to a communication verify each others' identities. If it is a two-way 
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tions safe active actack. One 
Furthermore, is quite usual for the same nH:ctlartisJn 
cation and data integrity. It is quite common to use the word authentication in 
the more general sense of providing all the protection needed against an active 
attack. We shall therefore adopt the usage of Open Systems Interconnection in 
the OSI context, but otherwise we shall use the term authentication in the more 
general sense, to include integrity. 

Active attack is much more complex than passive since there are many different 
ways of altering data. Among the threats to be considered are; (a) alteration, 
deletion, addition; (b) changing the apparent origin; (c) changing the actual 
destination; (d) altering the sequence of blocks or items; (e) using previously 
transmitted or stored data again; and (f) falsifying an acknowledgement. 

It is noteworthy that encipherment, by itself, only protects against inserting 
new data. Most of the attacks listed above can be carried out, in principle, using 
old data that is available already in enciphered form. We shall detail in section 
5.7 below the extra precautions needed for full protection. Since it is difficult to 
protect a widespread system from enemy interference the most that can be ensured 
is that these active attacks are detected. 

In this chapter we shall first consider methods of protecting data against 
accidental errors in preparation and transmission and then broaden the discus­
sion to examine methods of authenticating data both by encipherment and by 
special authentication functions. 

Papers and signed documents are an important part of business transactions, 
usually setting out instructions or promises to perform actions. Because of this 
reliance upon documents their integrity has assumed great importance. On the 
other side, criminals have found much to gain from the successful falsification 
of business documents. 

The advent of digital communication networks is causing a revolution in com­
mercial practice. Transactions of a type which have in the past involved exchange 
of paper documents are now conducted by network messages; this trend can be 
expected to increase until the transport of messages by data networks dominates 
commercial practice. The accuracy and integrity of transmitted messages are 
therefore of very great significance .. 

Recognition of a valid document has customarily relied upon the written 
signatures of the parties to an agreement. The signature serves at least two pur­
poses - it indicates the assent of the signatory to the terms of the document and 
it vouches for the accuracy of the document as signed. Indication of assent by 
means of a signature is a kind of proof of origin for the document; we shall return 
to this in detail in chapter 9. Here we are concerned with the proof of accuracy 
of the document, which is one of the aspects of 'authentication'. 

In the following sections we treat in tum defences against the various kinds 
of error, leading up to message authentication which aims to provide data integrity 
through the ability to detect deliberately introduced changes. 
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method, particularly relevant in the preparation of financial documents, is to use 
a check digit or digits - a check field. 

It is well known that keyboarding errors usually fall into well-defined classes, 
such as single characters typed wrongly, adjacent characters transposed and 
characters repeated or omitted. Where trailing zeros are involved the number of 
zeros may be wrong. A check field provides a simple function of the numerical 
characters in the important fields (date, amount, currency, account identity, trans­
action serial number etc.) of a document in such a way that it is highly probable 
that mistakes of these kinds will be detected. 

Before the data entry (keyboard) operation begins, the data to be entered must 
be provided with a check field. Sometimes this is permanently attached; thus 
part numbers or account numbers can be constructed in this way- usually with 
a single check digit. After data entry the computer checks the correctness of the 
check field and rejects those which indicate errors. In the case of entirely new 
data the check field is provided by human effort, but this is not obviously better 
than having two independent operators enter the data. Use of a check field is 
not a substitute for the security provision of having af least two 'independent' 
people involved in data entry. An operator could maliciously enter wrong data 
as part of a fraud attempt, while giving the correct check field, since no secret 
is used in forming it. The principle of 'dual control' is applied by having one per­
son enter the data and another check it, perhaps an inspector belonging to another 
department. The value of a check field in this case is that it reduces the number 
of genuine errors to be picked up by the inspector. It can also be argued that 
the presence of a large number of errors to be corrected increases the opportunity 
for fraudulent changes. 

An excellent source of good check-field schemes is the International Organisa­
tion for Standardization (ISO) Draft Standard 70641 entitled Data processing -
check characters. The kinds of error that occur in data entry have been measured, 
for example 80 per cent of all errors are single character errors and 6 per cent 
are adjacent transpositions. Check digits to detect errors in numerical fields are 
best calculated in modulo 11 arithmetic (since 11 is prime) and with different 
weights in each column. One method using modulo 11 arithmetic is in turn to 
add each digit, then multiply by 2. The process starts from the left with the initial 
value 0 and the check digit is chosen so that the final value of 'balance' is 1. Here 
is an example with the given number 530128; in the example the Roman symbol 
X is used to represent the value 10 in modulo 11 arithmetic. 

check 
digit d 5 3 0 1 2 8 4 
digit c 0 X4 8 7 7 8 C; = 2Yi-1 
digit y 52 4 9 9 4 1 Y; = C;+d;. 

The starting value of c is 0. The c digit is added to the given number's digit to 
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1, 2, 8, 5, X, 9, 7, 3, 6, 1, 2, 

These values are 2i, modulo 11, for i = 0, 1, ... and it can he seen that 1, 
so the weights repeat after 10 columns. The appendix to chapter 8 (page 245) 
explains the mathematical basis for methods like this. 

It is very important to note that use of a check field does not provide any pro­
tection against deliberate fraud. It is quite easy to generate a fraudulent version 
of a document which yields the same value of check digits as the genuine ver­
sion. It is equally easy to create an entirely false document and generate a cor­
responding value for its check field, because the method of generating the check 
field is not kept secret. Nevertheless the check field has a useful role to play in 
handling data- to reduce genuine errors. 

5.3. PROTECTION AGAINST ACCIDENTAL ERRORS IN DATA 
TRANSMISSION 

In any communication system, users need assurance that their messages are 
delivered with neither accidental nor deliberate alteration. Accidental alteration 
of a message transmitted over a noisy channel is so frequent that it must be 
detected, and corrected either by retransmission or by application of a forward 
error-correcting code. 

To detect accidental errors in a communication system a range of techniques 
is available; use of the eighth bit for parity in a 7-bit character code is perhaps 
the best-known and simplest example. On a slightly more sophisticated level, 
'longitudinal parity' may be applied to a message, providing check digits on 
groups of characters by modulo 2 addition of successive words of 8 or sometimes 
16 bits. Parity checks suffer from the serious defect that they may fail to detect 
the occurrence of a group of errors. For this reason methods have been devised 
to cope with a wider range of error patterns. 

Cyclic redundancy checks 

The best known error detection method is the cyclic redundancy check (CRC), 
which operates by treating the binary patterns as polynomial forms, 'dividing' 
a block of data at the transmitter by a predetermined polynomial and taking the 
'remainder' of this arithmetic step as the check field which is appended to the 
data and transmitted with it. At the receiver, the received data is subjected to the 
same arithmetic process and the remainder from this operation compared with 
that received as the transmitted check field. Agreement of the two shows that 
it is highly unlikely that transmission errors have occurred. Recommendation V.41 
of the International Telephone and Telegraph Consultative Committee (CCITT)2 

defines a standard version of this process providing a 16-bit CRC for use on com­
munication lines; this is applied in line protocols such as HDLC. The CCIII V.41 
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is somewhat cun,bersome and is not often found in DnKt1ce 
the degree of forward error correction, the the amount of data ex]Jai1SilJn, 
and the overheads involved may be appreciable. An interesting proposal from 
British Telecom3 brings forward error correction into after it has been 
discovered that a particular channel is subject to serious noise, thus avoiding 
unnecessary overheads when a channel is performing satisfactorily. 

Though checks of this kind provide strong protection against the effects of 
accidental error, they are not sufficient to protect transmitted data against active 
attack because the method of creating the check data, including the parameters 
of the CRC polynomial, is public knowledge. The active line tapper has only to 
divert the transmitted message, make whatever alteration he desires and 
recalculate the contents of the check field. The reconstituted message can then 
be sent on its way to the intended receiver where it passes the prescribed check 
and, in the absence of other evidence to the contrary, would be accepted as authen­
tic. A more effective method is required in order to detect deliberate alteration. 

5.4. DATA INTEGRITY USING SECRET PARAMETERS 

The weakness of the methods we have discussed so far, from the point of view 
of secure authentication, is that they are based on parameters which are not secret 
- anybody can forge the data in the check field accompanying a message. 
Methods are needed which depend on a secret key known to sender and receiver 
only, information which is denied to any third parties. The distribution of this 
secret key represents problems like those of encipherment keys. 

Figure 5.1 shows the principle of the method. It is based on a public algorithm 
represented by the function A(k,M). The key k is known to sender and receiver, 
but not to the enemy. The message M to be authenticated may be of any length 
and the function A(k,M) must depend on every bit of the message. The function 
A is the authenticator that accompanies the message to its destination. The receiver 

Yes/no 

A(k,M') A 
Authenticator 

A( k,M') 

M M 

Fig. 5.1 Principle of data integrity checking 
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of the based on table and addition, vvas matched to this 
requirement. In order to simplify the only selected fields are subjected 
to the algorithm. This is an example preprocessing the message, shown in the 
figure by the function P. I£ a message is sent by a system that can change its coded 
form, the preprocessing must be done in such a way that only the essential and 
invariant features remain. For example a communication or storage system might 
treat 'new line' as equivalent to 'space' or it might remove or insert spaces or 
ignore the difference between upper and lower case letters. The preprocessing 
would then replace the 'new line' character by a space, reduce multiple spaces 
to one space and change lower-case letters to upper case. The message is transmit­
ted without these changes; the altered form enters the authentication function. 
These operations carry a danger that significant distinctions may be obscured. 
Data communication networks of recent design are usually 'bit-sequence 
transparent', they preserve all details of the coded message - Teletex has this 
property for example. We recommend in these cases that there should be no 
preprocessing and that the unchanged message should enter the A(k,M) function. 

The message conventions needed to complete the definition of authentication 
are, (a) the precise extent of M, where it begins and ends, and (b) the way in 
which the value A is formatted and located in the message as sent. A convention 
sometimes used is to reserve a place for A in the message format and replace 
it by a known constant value Q for the calculation of the authenticator. Figure 
5.2 shows this method, where the fields Fv F2, •.• F11 comprise the message con­
tent. If Q, known to the sender and receiver, is otherwise kept secret, it becomes, 
in effect, part of the key. 

The size of the authenticator field is fixed by the function A(k,M) and is typi­
cally between 16 and 32 bits, which is usually much shorter than the message. 
It follows that many messages have the same A value and this is a potential 

Information fields 

Fz 

A(k,M) 

Chosen 
constant 

Q Message 
authenticated 

Message 
sent 

Fig. 5.2 Using a constant value, Q, in the authenticator field 
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this is in many cases not 
a large enough to be useful. times to have a useful 
chance of success would alert the receiver to a serious attack on the system. The 
customary size of the authenticator field is 32 bits. 

An authenticator or cryptographic check value can be used on stored data in 
the same way as for communications. Anyone reading the data and knowing the 
key can check (with a very small chance of error) whether the stored data were 
changed by an enemy. 

Like encipherment, the use of an authenticator value does not itself detect a 
replay attack, in which previously authenticated data are substituted, with the 
authenticator employing the same key. For example, during the currency of one 
key, data in a store may be changed by the legitimate user and the new authenti­
cator stored. An enemy can restore the old values together with their authenticator 
and this interference is undetected by those legitimately reading and checking the 
data. The extra precautions needed to complete the defence against active attack 
are described later. 

5.5. REQUIREMENTS OF AN 
AUTHENTICATOR ALGORITHM 

The requirements for a good authenticator algorithm (integrity check) closely 
resemble those for a cipher but are somewhat easier to meet because there is no 
need for the inverse function to exist, as it must for decipherment. Like a cipher, 
the authenticator must protect its key from discovery, but this is not the full story 
because the function could be discovered, in principle, without knowing the key. 

Cipher strength can be measured either by the 'known plaintext' or the 'chosen 
plaintext' criterion, and so can the strength of an authenticator. The most severe 
test would be to allow the enemy to submit a large set of messages and be given 
the corresponding A values. With this information, could he 'authenticate' a bogus 
message of his own? To make the criterion very strict indeed, he should not be 
able to find the A value for any message for which he has not been given it. In 
practice, authentication facilities are carefully guarded to prevent A values being 
given to unauthorized messages, so the 'chosen message' criterion is more severe 
than practice suggests. Also the enemy is interested in authenticator values for 
a specific class of bogus messages, not just any pattern of bits that suits his 
incomplete knowledge of the authenticator function. However, using the strict 
criterion is a good way to build in a large safety margin. The strict criterion may 
be the only one that can be defined easily, since it is impossible to characterize 
the set of 'good' messages for which A values will be 'supplied' to the enemy 
and the set of 'bogus' messages that he would like to introduce. 

It is possible to describe how a good authenticator should behave, though this 
is not an effective criterion of strength. Changing any bit of message or key should 
alter about half of the bits of the A value. The full range of key values should 
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As with a one of the methods of attack is an exhaustive search 
for the key. Whenever a message with its authenticator can be read, 'known 
plaintext' is presented to the enemy, but there are two reasons why key search­
ing for authenticators is harder than for ciphers. 

First the authenticator value is a small number, typically between 16 and 32 
bits in length. If each key value is tested and there are, say, 56 bits in the key 
and 24 in the authenticator, the first message tested will pass about 232 key 
values as candidates. A second message is needed and this reduces the number 
to 28 and a third message reduces these to the one actual key. 

Secondly, each test of a key involves the whole of one message. Consider, for 
example, a 640-bit message using cipher block chaining (CBC) with the DES 
algorithm and compare this with the authentication based on the same method. 
There are ten blocks of message. Searching for the correct key out of 256 

possibilities requires on average 255 tests. For the enciphered message, any block 
will serve for the tests except the first (because the initializing variable (IV) is not 
known). With one block alone, because it has 64 bits, there is a high probability 
that only one 56-bit key will be found to fit the ciphertext. In the case of authenti­
cation, 255 tests on average must be made with the first message and each of 
these employs DES operations. The 10 x 255 operations make a greater task for 
the searcher. After this, 10 x 231 and 10 x 27 more operations are needed for the 
test with a second and a third message. Clearly all candidates passing the first 
test should be subjected at once to the other tests because the extra time involved 
is small and this enables the correct key to be identified before all 256 key values 
have been tried. Key searching is only a 'last resort' method when other methods 
fail, nevertheless it is apparent that authentication is usually less vulnerable than 
encipherment. 

The biggest practical use of authentication has been for financial messages, such 
as payments. For example the Society for Worldwide Interbank Financial Telecom­

. munications (S.W.I.F.T.) system4 (see page 289) uses an authenticator function 
but does not publish it. Another well-known authenticator is the 'Data Seal'5 

which is a proprietary system, also unpublished. 
An ISO standard 87306 describes the way in which a Message Authentication 

Code is formed, in particular the format options for the text, field delimiters and 
character coding. There are optional rules for editing messages prior to authenti­
cation. ISO 87317 describes two approved algorithms. The first is the well-known 
application of DES in the cipher block chaining mode. The second is called MAA, 
for Message authenticator algorithm, described below. 

The Decimal Shift and Add algorithm 

A suggestion was made in 1980 by Sievi for a message authentication method. 
Sievi' s method depends on the existence at sender and receiver of two secret ten 
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on the right to bring it up to ten decimal digits. The works 
in decimal arithmetic and is designed for use in a programmed decimal calculator 
having at least ten digit capacity. The method is called Decimal Shift and Add 
(DSA). 

The blocks of the message to be authenticated are taken one at a time and enter 
two parallel computations until the message blocks are exhausted; then follow 
ten more cycles of the algorithm using zero blocks as input. The result of this 
is to produce, in the parallel computations, two ten decimal outputs, z1 and z2, 
and these are combined together to form the message authenticator. 

The basic operation of the computations is a' shift and add', defined as follows. 
Let D be a ten decimal digit number and x be a single decimal digit; R (x )D is 
the result of a cyclic right shift of D by x places. 

Thus: 

R(3)(12 3 4 56 7 8 9 0} = 8 9 012 3 4 56 7. 

Then the shift and add function is defined by 

S(x)D = R(x)D + D (modulo 1010). 

Thus, in our example: 

D = 1234567890 
R(3)D = 8 9 0 1 2 3 4 5 6 7. 

Add, to produce 

5 (3)D = 0 1 3 5 8 0 2 4 5 7. 

Since the arithmetic is modulo 1010, carries beyond the tenth position are 
ignored. 

Let us now consider the authentication of a message of two blocks, respectively 
m1, (1 5 8 3 4 9 2 6 3 7) and m2, (52 8 3 5 8 6 9 0 0). We select for b1 and b2 
the values: 

b1 = 5 2 3 6 1 7 9 9 0 2 

and 

b2 = 4 8 9 3 5 2 4 7 7 1. 

The two parallel streams of computation begin by adding m1 to b1 and b2, 
respectively, modulo 1010 . 

STREAM 1 

m1 1 5 8 3 4 9 2 6 3 7 
+ b1 5 2 3 6 1 7 9 9 0 2 

result p 6 8 1 9 6 7 2 5 3 9 

STREAM 2 

m1 1 5 8 3 4 9 2 6 3 7 
+ b2 4 8 9 3 5 2 4 7 7 1 

result q 6 4 7 7 0 1 7 4 0 8. 
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p=6819672 39 
R(4)p = 2 53 9 6 8 1 9 6 7 
S(4)p = 9 3 59 3 5 5 0 6 

q=6LJ:7701 408 
R (5)q = 1 7 4 0 8 6 4 7 7 0 
s (5)q = 8 2 1 7 8 8 2 1 7 8. 

Let us call these values r and s, and add the next message block, m2, in each 
stream. 

r=9359354506 
+m2 = 52 8 3 58 6 9 0 0 

result u = 4 6 4 2 9 4 1 4 0 6 

5=8217882178 
+m2 = 52 8 3 58 6 9 0 0 

result v = 3 5 0 1 4 6 9 0 7 8. 

These are the second intermediate results, u and v; there follows the second 
shift and add operation. For stream 1 the number of places shifted this time is 
determined by the second digit of b2, (8), and for stream 2 by the second digit 
of b1, (2). So we have 

U=4642941406 
R (8)u = 4 2 9 4 1 4 0 6 4 6 
S (8)u = 8 9 3 7 0 8 2 0 5 2 

v = 3501469078 
R (2)v = 7 8 3 5 0 1 4 6 9 0 
S(2)v = 1 3 3 6 4 8 3 7 6 8. 

At this stage, the message data having been exhausted, the construction of the 
authenticator should properly involve ten more cycles with zero message blocks. 
We omit these to shorten our description and take the two last results to rep­
resent z1 and z2. The algorithm concludes by adding z1 and z2, modulo 1010 

z1 8 9 3 7 0 3 2 0 5 2 
+ z2 1 3 3 6 4 8 3 7 6 8 

result 0 2 7 3 5 6 5 8 2 0. 

This authenticator has ten decimals but evidently it was considered that a six 
decimal value is sufficient, giving a 10-6 probability of a false match. To reduce 
the size while using all the ten digits, the number is 'folded' by having the top 
four digits added modulo 106 to the other six, thus 

565820 
0273 

result 5 6 6 0 9 3. 

This final value is the message authenticator (except for the short-cut we made 
for ease of explanation). 

Successive digits of b1 and b2 control respectively the amount of shift in streams 
2 and 1 at each stage. The number of steps is always more than ten because of 
the added ten blocks of zeros. After each ten steps the digits of b1 and b2 are 
used again in succession. Thus each key value enters in two ways. It forms the 
starting value of one stream of calculation and controls the shift operations of 
the other. 

The methods by which this algorithm defeats an enemy can be looked at in 
different ways. If all the calculation had been made with modulo 1010

, there 
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If the te~c were known this would no easy way to 
calculate backvvards. The final set of ten zero blocks helps to reduce the vulnera­
bility of the final message block. Otherwise a single digit change of the final 
message block would reveal the parameters in the last shift operation, which are 
two of the key digits. The use of each key number in two distinct roles complicates 
any attempt to separate out the influence of one key digit. 

The DSA algorithm is well designed to exploit the abilities of a programmed 
decimal calculator. It was considered as a possible international standard, but, 
in the event not adopted. Small calculators employing the DSA algorithm are 
now used in home banking both to provide a message integrity check and also 
for the authentication of the user to the bank. This application is described in 
chapter 7. 

Message Authenticator Algorithm (MAA) 

The ISO working group recognized that more than one type of authenticator 
algorithm was needed and there seemed to be a need for an algorithm suitable 
for programmed computers of the binary type. Though it is known that the 
S.W.I.F.T. and Data Seal Algorithms meet this need, they are not available for 
use as a published standard. 

This requirement and the need expressed by some UK banking organizations 
led one of us and a colleague to produce a proposal for an authenticator algorithm 
suited particularly to binary computation. We called it a 'main frame' algorithm 
because it is based on 32-bit arithmetic and logical operations which are tradi­
tionally found in a . main frame computer. The advancing powers of micro­
computers soon changed this situation. There are both hand-held calculators and 
microprocessors which can conveniently implement this algorithm, but it was 
primarily designed to give a combination of speed and security in any 32-bit com­
puter which can rapidly produce the double-length result of multiplying together 
two 32-bit binary numbers. Its design was suggested by the DSA algorithm and 
it employs the same general principles. It is now incorporated in the international 
standard ISO 8731-2 and is known as MAA? 

The 'shift and add' operation of the DSA algorithm is similar to a multiplica­
tion with modulus 1010 -1 in which the multiplier takes the binary form 10 ... 
01, having an adjustable number of zeros between the two 1 bits. Using an actual 
multiplication enables this same operation to be used for 'mixing' the digits be­
tween each introduction of a new block of message, with a less restricted multiplier 
value. 

This multiplication scheme presents two dangers, the possibility that the result 
may become (and remain) zero and the property that, if the modulus has factors, 
any of these which appear in the intermediate result will remain there through 
the rest of the computation. To avoid the first of these problems the multipliers 
were deliberately constructed with certain bits fixed as zeros and ones, and to 



-- 138 --
MasterCard, Exh. 1004, p. 138

E: 

= XOk"_(X,l'!li): 

F: = ADD(E,Y); 

F: = OR(F,A); 

F: = AND(F,C); 

X: = MULI(X,F); 

= ,L\DD(E,X); 
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G: = AND(G,D,); 

Y: = MUL2A(Y,G) 
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Modular multiplications, see text 

Fig. 5.3 Tf1e basic loop of a 'main frame' authenticator calculation 

avoid the second problem one of the parallel computations is done with modulus 
232 -1 and the other with modulus 232 -2. The second of these is 2(231 -1) and 
231 -1 is a prime. 

Figure 5.3 shows the basic loop of the authenticator calculation with the two 
streams of computation shown side by side. CYC(V) is a 1-bit cycle left shift of 
V, MULl is multiplication modulo 232 -1 and MUL2A is multiplication modulo 
232 -2. A, B, C and Dare constants which help to condition the multiplier values 
F and G. The ADD operation is modulo 232 and the logical operations operate 
irt parallel on the 32 bits. Each multiplier is derived from the other calculation 
stream using also the value E which is derived from V and W and changes at 
each step (repeating after 32 blocks). 

As in the DSA algorithm, the final authenticator result is derived from both 
streams of computation, in this case by an XOR operation applied to the final 
results. A 32-bit authenticator is derived and it is left to the application to decide 
the size of authenticator field needed and the way in which the 32 bits will be 
used to generate this value. 

The keys which control this authenticator are two 32-bit numbers J and K. These 
are used in a 'prelude' which is a complex calculation, employing multiplications 
with the same two moduli, and which generates six 32-bit numbers employed 
to control the computation. Though the prelude is a relatively complex calcula­
tion, it is used only once when new keys are introduced. The six values can then 
be stored and employed in any number of authenticator calculations. Two of these 
values are the starting values for X and Y in the two streams of computation, 
two of them are V and W used to derive the changing values E and two of them, 
S and T, are used as final blocks appended to the given message to round off 
the computation, this part of the procedure being known as the 'coda'. 

The MAA algorithm derives its strength from the difficulty of analysis when 
calculations are carried out with a number of moduli. Not only are there multiplica­
tions with two different moduli, but also arithmetic operations modulo 232 and 
the logical operation XOR. Also, the logical operations which generate the 
multipliers F and G are non-linear, so that any arithmetic analysis is exceptionally 
complex. By deriving the six quantities from the key in a complex manner any 
method of analysis which was capable of partly deriving one of these values would 
be unlikely to give a clue to the others. It is particularly important that the final 
blocks S and T which are appended to the message for authenticator purposes 
are secrets derived from the key values. 

The computation time for authenticator values is proportional to the message 
size except for the small addition of blocks S and T. This makes it practicable to 
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"Wherever DES haidv;are is available it is convenient to use for authentication 
and for this purpose 'modes of operation' have been defined in Federal Informa-­
tion Processing Standard (FIPS) 81 and in ISO 8731-1?'8 Any block cipher 
algorithm could be used in these modes, but in practice the DES will normally 
be employed. This is convenient only i£ a hardware DES function is available 
because the algorithm is slow and inconvenient in software. There are two 
authentication methods based respectively on the cipher feedback (CFB) and 
cipher block chaining (CBC) methods used for enciphering messages (see pages 
81-90). CBC operates always on 64-bit blocks, but a message can be padded 
out with zeros to fill the last block. CFB operates on appropriate-sized characters 
such as 8-bit bytes where ISO- or ASCII-coded character sets are used. The choice 
between the alternative methods will depend on whether the data are presented 
in characters or larger units. For use in financial messages a standard is available9 

giving more detaiL 
For the generation of an authenticator in CBC mode, the message to be authenti­

cated is enciphered as a chain of 64-bit blocks, any incomplete final message block 
being padded out with zeros. The generated ciphertext is not transmitted. The 
authenticator is derived from the final output block, taking the most significant 
m bits. No additional DES operation is required at the end of the process because 
it is not possible for an enemy to make a change in the plaintext and a compen­
sating change in the authenticator. Figure 5.4 shows how the process of CBC 
authentication operates. All the cipher blocks except the last are used only for 
feedback. The most significant m bits of the last block C 11 is used to provide the 
authenticator. In US standards the authenticator is sometimes called the message 
authentication code (MAC). 

In CFB mode the text to be authenticated is subjected to a CFB encipherment 
process. When all the data have been enciphered and the last unit of ciphertext 
fed into the DES input register (completing the CFB operation as normally 
understood), the DES device is operated once more, producing a new state of 
its output register. From the output register, the most significant m bits are 
extracted to form the authenticator. Figure 5.5 shows this method; note that if 
the m bits of MAC were taken from the DES input register at the end of the text 

n - block message 

Fig. 5.4 Authentication by the cipher block chaining mode 
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Fig. 5.5 Authentication by the augmented cipher feedback mode 

encipherment, then for large enough m it would be possible to make compen­
sating changes in the last plaintext character and the authenticator, hence the 
extra operation of the DES. This CFB method is not much used. The CBC mode 
is used in practice. 

The number of bits used in the authenticator is subject to agreement between 
the communicating parties; it should be as long as is practicable. For US Federal 
telecommunications applications it is recommended8 that the authenticator 
should be at least 24 bits in length. For financial purposes the US standard 
recommendation9 is that m should be 32. m should be large enough that the risk 
of a matching value occurring by accident with a bogus message, which is 2~ 111 , 

is small enough. Making m longer than necessary would add to the message 
overhead due to the A value it carries. 

The authenticator values obtained either by CBC or CFB mode depend on the 
entire message stream or chain. In any application the start and finish points of 
this stream or chain must be defined and also the location, size and format of 
the authenticator field. The authentication depends also on the IV which is loaded 
into the 64-bit register at the start of the operation. It is possible to use a secret 
IV, as is customary for CBC encipherment. However, the purpose of the IV is 
to prevent codebook attack on the first part of the ciphertext and this is not rele­
vant to authentication. The simplest convention is to use a zero IV and this is 
adopted in several standards. 

5.6. MESSAGE INTEGRITY BY ENCIPHERMENT 

Encipherment of a message offers, in itself, a kind of integrity. If the sender and 
receiver of a message share the secret key, receipt of an enciphered message which 
deciphers into a sensible plaintext message gives the receiver some assurance that 
the message has arrived without unauthorized changes and came from the other 
owner of the key. 'Sensible' in this context implies that the message contains 
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matter, is considered the next section. 
An attempt an intruder to alter selected bits of ciphertext generated in CBC 

mode leads to random changes in the deciphered message, which should be 
obvious to the recipient. A single bit alteration in one ciphertext block will result 
in random changes in the corresponding plaintext block; note, however, that the 
exactly corresponding bit will be affected in the next plaintext block. A garbled 
plaintext block in a CBC decipherment should be taken as a warning to mistrust 
the plaintext of the next block. It is safer to discard the whole message and request 
complete retransmission. If the transmission is in CFB mode, then the intruder 
can also select the plaintext bit he wishes to alter, but his action should be apparent 
to the receiver because of the error propagation property of CFB encipherment; 
at least sixty-four following bits will be subject to unpredictable change. The final 
character of a CFB transmission can be altered without detection since there are 
no following characters to betray the change. It should never carry vital data. 
In CFB the plaintext unit preceding a garbled section should be mistrusted and 
retransmission is again the safest course. 

Choice of the plaintext §Urn check method for authentication 

Drafts of the Proposed Federal Standard 102610 which contai~ed a section on 
encipherment at the data link layer proposed a sum check on plaintext called the 
'manipulation detection code' (MDC). This check field would be produced by 
splitting the message or 'chain' into consecutive 16-bit words (the last one padded 
with zeros if necesary) and adding these words together modulo 2. The result 
was a 16-bit field that was appended to the plaintext before encipherment; an 
alteration to the ciphertext was expected to be very likely to upset the relation­
ship between text and MDC on decipherment, thus detecting an active attack. 
The proposed FIPS for 'Data Integrity' made a similar proposal. Unfortunately 
this choice of sum check method was bad and it will be replaced by a better 
method. The reason for this weakness is instructive and will be described. 

Consider first the CBC method, because this is the easiest to analyse. Figure 
4.2 of chapter 4 shows how a ciphertext chain C1, C2, ... C11 is deciphered. If 
the IV is I, the resultant plaintext chain is 

I +2 Dk(C1), C1 +2 Dk(C2), ... C11-1 +2 Dk(C,z). 

The modulo 2 sum of these 64-bit words is 

n-1 11 

I +2 r; ci +2 I: Dk(CJ 
i~l i=l 

If a modification can be made to the ciphertext chain which leaves this 64-bit sum­
check unaltered, it will also leave the modulo 2 sumcheck of 16-bit words 
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this kind do not alter the 16-bit modulo 2 sum and will not be cletecte(~l. 
feedback is a little more but an of a modification which 

escapes detection can be given. Assume that 8-bit is so that eight 
characters fill the shift register. Then the text consisting of the character sequence 

ABCDEFGH 

can be modified to 

ABCDEFGXABCDEFGXABCDEFGH 

without changing the 16-bit sumcheck. The proof of this is left as an exercise for 
the reader. The method of proof we used for CBC will serve, but the eight 
characters of IV must be assumed to precede the given character streams and 
these will enter into the calculation. 

It is a simple matter to avoid this problem by addition modulo 216 for the 16-bit 
word, that is to say ordinary addition with suppression of carries beyond the six­
teenth bit. It is true that a ciphertext can be introduced if it is inserted 216 times, 
but this is neither likely to be useful nor to go undetected. 

It has not usually been suggested that a modulo 2 sumcheck can be applied 
to the output feedback mode of encipherment, since compensating modifications 
are so easy to produce. Nor will modulo 216 arithmetic avoid the problem entirely 
because changes to the most significant bits of the 16-bit words add by modulo 
2 addition without affecting other bits and these changes can be used freely if 
an even number of them are changed. This problem can be overcome by using 
modulo 216 -1 arithmetic, in which carries beyond the sixteenth bit are cycled 
round to add into the least significant bit. To add with modulus 216 -1 the 16-bit 
words are added into a register large enough to avoid losing carries. Assuming 
that a 32-bit register is long enough, the final step is to add the top 16 bits to 
the bottom16 bits. If a carry is produced this carry is added into the least-significant 
bit (and no further carry is produced). 

This example of the faulty MDC illustrates that it can be difficult to find a 
system's vulnerabilities. The methods using modulo 216 and 216 -1 arithmetic 
have some weaknesses, but not, we hope, serious ones .. 

Endpherment or authentication? 

We have seen that encipherment with a secret key provides one form of message 
integrity; it is now fair to ask: Why should it be necessary to consider any other 
method? Why not encipher with a secret key all messages that require authen­
tication? The reason is that, whereas authentication may be required in a given 
context, encipherment may be an embarrassment. 

Consider a system in which mesages are broadcast to many destinations, one 
of which has the responsibility of monitoring authentication. Here transmission 
must be made in plaintext, with an associated authentication field. One terminal 
checks the authentication field and holds the key for this purpose. The other ter-
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cle(:lpJher "ll received messages. Authentication is carried out 
on a selective messages chosen at random for ch,2cl<:in:g. 

Yet another very important application of authentication of a plaintext is that 
of a computer program text. Here it is essential that the text shall be capable of 
interpretation by a processor; decipherment each time the program was required 
to run would be wasteful of resource, therefore authentication by full encipher­
mentis inappropriate. It is possible to authenticate the program text by append­
ing an authentication field. This can be checked whenever assurance is required 
of the integrity of the program. 

Authentication without a secret key 

Neither encipherment nor authentication can be provided 'out of the blue'. The 
methods we have discussed so far have depended on a secret key, common to both 
sender and receiver. It is also possible to base authentication on an authentic 
number. This is no more paradoxical than basing the secrecy of enciphered data 
on the secrecy of a key because what has been achieved is that a large message 
is authenticated by a much smaller one. 

In place of the authenticator A(k,M) let us use a 'one-way function' A(M) of 
the message alone. This must have the property that if a set of message~M is 
known together with their A(M) values it is nevertheless exceptionally difficult, 
given some other value A0, to find any message M such that A(M)=A0. A 
necessary condition is that the value A must have a large range, for example it 
could have 64 bits, large enough to prevent a table of messages being compiled 
and sorted on their A values so th?.t for most A values a message could be found. 
Such a function is sometimes called a 'hash function' but these 'pseudo-random' 
functions are used for several purposes and some hash funcitons are not suitable 
for authentication. An example of a suitable function appears in chapter 9 
(page 264). 

To authenticate message M, the quantity A(M) is calculated and sent to the entity 
receiving or reading the message n such a way that A(M) is certainly authentic. 
With its aid M can be checked to see if A(M) agrees with the authentic value. 
If it does, M is pronounced authentic since it is assumed that no enemy could 
have found a bogus M that fitted with A(M). Applications for this kind of authen­
tication are not widespread, but examples will appear later. Suppose, for example, 
that Ann has sent Bill a large file of data and Bill wants to ensure its authenticity. 
If both can agree on a one-way function A(M) then a telephone call will enable 
Bill's A(Mb) to be checked with Ann's A(Ma). If they are equal it is a good bet 
that Ma=Mb, so Bill can accept his version. The telephone call is assumed to confer 
authenticity because each knows the other's voice and can chat about mutual in­
terests which would betray an impersonating enemy. Note that methods which 
do not use a secret key are vulnerable to the 'birthday attack' described in chapter 
9, section 9.3. 
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message sequence or replacing a stored a value it held previously. 
In this section we shall consider the set of messages which make up a transaction 
between two communicating 'entities'. 

The solution to the problem of replayed messages is quite simple in principle; 
it requires that each message should be different from all preceding messages 
using the same key and that the receiver should be able to test the 'newness' 
of each message. Furthermore, the sequence of messages which together form 
a transaction must be linked in some way so that their sequence can be checked. 
Protection against message replay would be complete if each communicating entity 
compared its received messages with all those it had previously received with 
the same key and rejected any messages which were copies, but this would be 
laborious and cannot be a general solution to the problem. 

Authentication of transactions is basically a two-way requirement with each 
entity needing to authenticate the other. There are applications in which one­
way authentication is sufficient, but the need for two-way authentication must 
always be considered. There is no longer any economic reason for transactions 
to do without two-way authentication. 

In the conventional exchange of messages, each message is a response by an 
entity to the previous message which it received from the other. Typical short 
transactions employ one, two or three messages and there are circumstances in 
which a three-message protocol is essential for two-way authentication. 

Use of a message sequence number 

Two entities which frequently exchange transactions can maintain a sequence 
number n which increases by one for each message they exchange. Figure 5.6 
shows how this number would be used in an exchange of messages M1, M2 ... , 

with authenticators in each message. Each message contains a sequence number 
and each entity keeps a note of the next number it will send and the next number 
it expects to receive. The authenticator is computed over the whole of the 
remainder of the message, including the sequence number, so neither the message 
content nor the sequence number can be falsified without detection. Since each 
party knows which sequence number to expect next, deletion of messages, replay 
of previously transmitted messages or changing the sequence of messages is 
detectable by the receiver. 

The requirement to link together the messages which make up a transaction 
can be met in other ways. Figure 5.7 shows a scheme in which the authenticator 
of each message is repeated in the following message. Message M2 contains a 
copy of the authenticator A1. Its own authenticator A2 covers both the message 
content and A1. For practical purposes, the authenticator is a random number 
which links together or 'chains' the sequence of messages so thatit is extremely 
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Fig. 5. 7 Chaining messages by their authenticator values 

unlikely that a false chain can be assembled by an enemy. The size for the link­
ing authenticator is chosen with the criterion that the probability of an enemy 
finding a link by accident is too small to make it worthwhile to wait and search; 
typically from 16 to 32 bits are used. 

Where messages are enciphered this provides a convenient way in which 
messages may be chained together by making the process of CBC run over from 
each message to its response. Thus the final 64 bits of each message become the 
initializing variable of the succeeding one. This form of chaining does not occupy 
space in the message. A similar method of chaining can be used with CFB. 

When messages are chained in one of these ways (by repeating the authen­
ticator or deriving the IV from the previous message) the sequence number n in 
the first message identifies the whole transaction. Supposing that transactions 
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diE;tribute(:L The field of n must be large enough to accommodate all the 
transactions which can take place before the next key distribution. In many 
systems this is an argument for changing the key frequently, to keep the size 
of the n field reasonably small. If, due to a communication or processing error, 
the sequence numbers held by the two entities get out of step, the 
resynchronization procedure must not allow the undetected insertion of stored 
messages by an enemy. This requires that the new value of n should be greater 
than any previous value held by either of the entities. Resynchronization according 
to this rule is simplified if the requirement of strictly incrementing n is dropped 
and the receiver merely checks that n has increased with each transaction he 
receives. This relaxed rule allows the sender, optionally, to hold a single sequence 
number for use in all the transactions originated (or messages sent), but this does 
not remove the need for each entity to keep a separate sequence number 
corresponding to each source for checking all received transactions (or all received 
messages). 

The use of random numbers for entity authentication 

In a large community, authentication can be based on session keys derived from 
a key distribution centre (see chapter 6), so that each entity does not need keys 
for all those -vvhich might communicate with it. Alternatively, public key ciphers 
(see chapter 8) can be used to simplify the key-distribution problem. In these 
circumstances, maintaining separate sequence numbers for each possible 
communicating entity is not usually practicable. The need to make each message 
different from others using the same key can be met (with high probability) by 
including a random number. Consider, for example, the three-message transaction 
shown in Figure 5.8. The originator of the transaction includes a random number 
R, which is returned as part of the response. Each message has an authenticator 

generute R 

Check R 
if correct: 

return S 

return R 
generate S 

check S 

Fig. 5.8 Random numbers for wtity authentication 
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an assurance that the transaction is newly initiated and not a repeat. Each entity 
puts its own random number into the protocol in case the other is a masquerader. 

Consider the possibility that M1 is a replay of an earlier initial transaction 
message. The innocent receiver returns M2, including the correct response toR 
and a new random numberS. If M3 is received in reply it must have come from 
an entity which possesses the secret key needed to generate the new authenticator 
value A3 . Could this be the genuine owner of the key if M1 were a fake? This 
owner would not have accepted M2 as valid unless it sent M1. Therefore M1 must 
have come from the genuine owner of the key and can be accepted as valid. But 
it is important that M1 is not accepted as a valid message until M3 is received 
and checked. For example, if M1 were a request to update a data base, this action 
should be deferred until M3 arrived. 

If the transaction were to continue with further messages it would be necessary 
to chain them to the earlier ones by one of the methods we have described earlier. 

Because of the Birthday paradox, the use of random numbers approximately 
doubles the size of field required for a given life of key. This presents no problem 
when a session key is used for just one transaction because the random numbers 
then have to be no bigger than normal authenticators. 

The use of date and time stamps 

Transactions employing a single message are vulnerable and should be avoided 
if possible. Where they are used, there is no possibility of the sender authenticating 
the receiver, but the receiver should be sure that the message came from the sender 
directly and was not a recording of an earlier message. A sequence number can 
achieve this but, in a large group, maintaining sequence numbers could present 
almost as much difficulty as storing all the received messages for comparison with 
new ones. 

Where message transmission is reasonably rapid, an assurance of the 'timeliness' 
of the message is sufficient to prevent undetected message replay by an intruder. 
Store and forward systems delay messages, but do not prevent this method of 
checking if they can be relied upon to keep messages in sequence, since the time 
and date stamp provide a kind of sequence number which is universal for all 
messages received. Circuit-switched networks give delays less than 1 s and 
modern packet-switched systems should not exceed this figure very often; 
therefore, unless the rate of transactions is very high, a date and time stamp with 
a precision of 1 s is adequate. 

If the date stamp is allowed to repeat, there is a risk of replayed messages. A 
very cautious view would be that no system is likely to be operating according 
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accuracy, but, allowing for the need to correct it from time to time and the 
combined tolerances of two clocks, a margin of 5 s is likely to be the tightest 
criterion in general use. This can allow replays to be detected in all but the busiest 
systems. If public data networks provide a digital date and time source, this does 
not always mean that local clocks can be dispensed with, because of the risk that 
an enemy might be able to interfere with the time signal received. The public 
date and time source can safely be used to correct the local clock, with a warning 
if the correction is too large. · 

In theoretical treatments of the synchronization problem, much trouble has been 
taken to invent time criteria which do not require strict synchronization between 
the co-operating entities. With modern clocks and communication networks, 'real­
time' can be re-instated. 

In the very simplest terminals there may be cost criteria preventing the use of 
clock time, otherwise it presents no great problem. Active tokens, such as 
microcircuit cards, will usually have to accept a date and time value given by the 
terminals into which they are inserted and the security implications of this trust 
have to be examined. 

Integrity of stored data 

A file of data can be protected against illicit modification using authentication 
techniques closely parallel to those used for transmitted data. Authenticator values 
are calculated, using a secret key, and stored along with the parts of the file they 
protect. Users of the stored data also hold the key value and can check the 
authenticator. 

The entire file could be protected by one authenticator, but any user would 
have to make the calculation over the whole file before using any of its data. Any 
change to the file, however small, would entail recalculating the authenticator 
over the whole file. It is better to divide the file into convenient 'units' which 
tend to be read or written at one time. Most files lend themselves to this kind 
of subdivision. But then a new threat appears - the units could be rearranged 
by an enemy if their authenticators are carried with them. If each unit has a built­
in identifier, like the name and address in a file of data about people, this may 
not be a significant attack. If, however, a file is accessed by position (i.e. file 
address) the rearrangement threat is real. It can be met by including the address 
in the authenticated data. This does not require the address to appear in each 
stored unit, the address is inserted only for the purpose of calculating and checking 
the authenticator. 

Messages and transactions are subject to the threat of a 'replay' during the 
currency of one key. This has a counterpart for stored data in the threat of 'restore'. 
After an item has been (legitimately) altered it can be restored by an enemy to 
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which each unit carries in addition to its authenticator. If units are updated 
piecemeal all their version numbers will be different and there would be no way 
that a reader of the file would know that the latest version was being read. When 
the date and time or sequence number are not natural parts of the file, yet 
piecemeal updates are needed, there must be a separate 'update record'. This 
is a record which has its own authenticator and includes a date and time stamp 
to verify it has not been 'restored' by an enemy. It contains, for each unit in the 
file, a note of the current version number. It is not necessary to store the version 
number also in the item itself, but the number must be part of the authentication 
function for that unit. Therefore checking the authenticity of one unit of the file 
requires this procedure. 

1. Check the authenticator and date/time stamp of the update record. 
2. Read the version number of the required unit. 
3. Format the version number (and the address, if used) with the contents of the 

unit. 
4. Check the authenticator of the unit. 

The use of a separately authenticated update record illustrates an hierarchical 
approach to authentication which we shall meet later in the application of digital 
signatures - an advanced form of authentication which has particular relevance 
to stored data. 

5.8. THE PROBLEM OF DISPUTES 

Authentication using a secret key is symmetrical - both parties know the key 
and either can generate an authenticator value. The secrecy of the key protects 
them both against third parties but not against each other. Disputes can arise 
between them. 

Ann may send Bill an authenticated message, but if Bill is dishonest he can 
forge a different message and claim it came from Ann. The authenticator value 
provides no evidence to resolve a dispute, for it could have been given by Bill 
to a false message. Since it is feasible for Bill to falsify a message, Ann can deny 
sending a message she really did send. Bill cannot prove it is genuine by producing 
the authenticator value. Business is possible between honest people who trust 
each other, but there is no way to adjudicate disputes, even if the judge is given 
the value of the key. This problem- the inability to provide evidence to resolve 
disputes - is called the 'problem of disputes'. To avoid this is the purpose of 
the OSI service of 'non-repudiation'. 

The most elegant solution to the problem of disputes is the 'digital signature' 
described in chapter 9, which continues this account of authentication. 
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6.1. INTRODUCTION 

The security of encipherment depends on protecting the key. In effect, encipher­
ment concentrates the risk of discovery on the key in order that the data can be 
handled more easily. For this reason, the management of cryptographic keys is 
a vital factor in data security. Keys used for authentication and data integrity must 
be handled with equal care. In this chapter we describe some key management 
methods designed for the two main applications of encipherment, storage of files 
and communication of messages. In order to cover the subject in reasonable depth 
we have taken as examples two well-developed schemes, one coming from Inter­
national Business Machines (IBM)1 and the other an international standard.2 

In a large network, messages are transferred between many terminals and hosts, 
on behalf of many users. The essence of end-to-end encipherment is to keep these 
users and these terminals separate so that they cannot read or interfere with each 
other's messages except where they are allowed to, by the sharing of keys. There 
will be many encipherment keys and their management is complex. Similar prob­
lems are presented by a host computer which stores files for different users and 
is asked to communicate some of these, under strict control to other users. A 
key management scheme should be able to handle a multi-user, multi-host and 
multi-terminal situation and protect data both in storage and in the communication 
network. 

Key management includes every aspect of the handling of keys from their 
generation to their eventual destruction. The main complexities occur in the 
distribution of keys and their storage, so these will occupy most of our attention. 

In order to move a key through a communication network, it must be enciphered 
with another key. For example, if we have a key ks which is used to encipher 
data and need to transport this key through the network, we use another key 
kt to encipher it as Ekt(ks). There are advantages in using a data enciphering key 
like ks for only a short period and then establishing a new one through the 
network. 

Since the key ks is typically used to encipher. data for just one session it is called 
a session key. When the session key is being moved out to a terminat the key 
kt used to encipher it for transit is called a terminal key. A terminal key is used 
for a longer period than a session key and it may have to be stored at a host 
computer with a number of similar keys for different terminals. In order to 
minimize the amount of secure storage needed, all these can be enciphered under 
yet another key km which is called a master key. Thus the storage of kt is in the 
form Ekm(kt). 
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6.2. KEY GENERATION 

An ideal method of key generation would be one that chose the key at random 
- with an equal probability of choosing any of the possible key values. 
Unfortunately, this is difficult to achieve and we often have to make do with less. 
Any non-randomness which could give an enemy some way of predicting a key 
value or finding a value with higher than normal probability would reduce the 
task of searching keys and make cryptanalysis easier. Fortunately, a completely 
uniform distribution of key values is not essential; unpredictability is the essential 
requirement. 

A classic method of generating random numbers is tossing a coin or throwing 
dice. It is perhaps surprising to find that methods like this, which are labour 
intensive, are suggested by IBM3 for generating the top-level master keys. In fact, 
the labour involved is not significant because these keys are very rarely changed. 
The reason for choosing manual methods is to have them completely under the 
control of a trusted individual. Any mechanism or algorithm that is provided for 
generating keys carries with it a danger that someone has arranged the mechanism 
or algorithm to generate predictable, though apparently random, numbers. 
Tossing coins or throwing dice has the advantage that the operator has the whole 
procedure under his control. A small bias that might be introduced by wear on 
the coin or die would not significantly change the security. The IBM authors

1 

publish a table for convenient conversion from the results of tossing a coin seven 
times to the two hexadecimal characters which represent one octet of a DES key. 
Fifty-six throws are needed for the whole key. 

The top-level master key has such importance that the methods of double or 
treble encipherment described in chapter 3 are sometimes used. By having 
different people generate the various keys, the responsibility for safe generation 
of the master key can be spread. 

Manual key generation is not suitable for the large number of keys in the levels 
below the master key. Some procedures need new keys very frequently. There 
are two possible sources of the random numbers required for numerous keys, 
a genuine physical source of random bits or pseudo-random number generators. 

Random bit generators 

Electrical noise is a problem in amplifier design but can be turned to good use. 
All resistors generate noise (though less at very low temperatures) and a wide­
band amplifier will turn this noise into a signal which can switch a gate on and 
off. One method of generating random bits uses the zero crossings of this signal 
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Pseudo-random number generators 

There are many examples of mathematically determined sequences which generate 
digits that are, to all appearances, random. Unfortunately, when a variety of 
statistical tests are tried, many of these 'pseudo-random number generators' can 
be shown to have a pattern in their output. Fortunately, a good cipher algorithm 
helps greatly in generating pseudo-random sequences. If the algorithm works 
well as a cipher then almost any method of using it to generate a sequence should 
generate random numbers, otherwise there is a pattern in the cipher output which 
would be a weakness in the cipher. 

For example, if the key, k, is chosen then the result of enciphering the sequence 
of natural numbers 0, 1, 2, ... should generate a sequence of random numbers, 
each one unrelated to its predecessor. In other words, a random number sequence 
R" can be generated as 

Rn = Ek(n). 

There is a danger that two sequences generated in this way might use the same 
key and therefore be identical. This illustrates the rule that random number 
generators should have random data to start them off. They use numbers called 
'seeds' because a series of random numbers can be grown from them. A series 
grown from seed values cannot be infinite in length but it can be very long. The 
example we have just given does not stop generating random numbers until the 
value n = 264 is reached. 

The purpose of our random sequence is to generate key values (and perhaps 
initializing variable (IV) values) for a key management scheme. The essential 
requirement is that the keys it produces should be unpredictable, even if many 
of the earlier keys are known. The simple random number generator we described 
might not be able to conceal the value of n which entered into its calculation but, 
if the security of the DES cipher is good enough, this still does not allow the seed 
value k to be deduced and so none of the other random numbers can be found. 
It would not be wise to keep a key generator of this kind operating indefinitely 
with the same seed value. There must, therefore, be a source of seed values, 
obtained by a more reliable random process, such as tossing coins, throwing dice 
or the random noise source. 

Most systems use random number generators that are a little more complex 
than our example, using many different sources of randomness or unpredictability, 
for extra safety. One source of unpredictability is a secret number which is already 
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by a host computer. For example, the number of calls on the operating system 
can be counted. It would be difficult to predict this number exactly from outside 
the system. An unpredictable quantity can be obtained by timing an operator's 
reaction. When the system is started, it can ask the operator to pause a while 
and then press some convenient button. If the elapsed time before pressing this 
button is measured in microseconds, the range of possible values certainly extends 
over several thousand. By putting together a calculation employing as seeds a 
number of unpredictable or random quantities like these, it is possible to generate 
a number sequence which is for most practical purposes random. 

An example of a pseudo-random number generator designed according to these 
principles is given in reference 3. The notation has been changed to simplify the 
appearance of the expressions. It has a starting value U0 and generates a 
sequence U1, making use of cryptographic functions which employ two secret 
master keys, shown here as k1 and lc2. The generation of the sequence employs 
a further sequence of seed values Z; each derived from some real-time clock 
readings with an input-output operation of unpredictable length between 
successive clock readings. The calculation of the sequence U; employs these 
relationships 

Xi = Dk1(U1) 
U;+1 = Ek2[DX;(Z;)]. 

The random number sequence R; is obtained from the U; by the relation 

The complexity of this method makes it extremely unlikely that anyone could 
predict its outcome or deduce anything useful from a sequence of R; values that 
it creates. It is perhaps a matter of judgement how complex a random number 
generator is needed in practice. 

Figure 6.1 shows, in block diagram form, the operation of the random-number 
generator we have described. The register is shown containing the value of U; 
before returning it for the next iteration. The two compound operations shown 
in the broken rectangles are the cryptographic functions employing the secret 
master keys shown here as lc1 and k2. This is the operation which we shall meet 
later in the IBM key management scheme and which is known as 're-encipher 
to master key'. It is provided for a specific purpose in the key management scheme 
and has been adopted in the random number generator simply because it employs 
the master keys and is available to the operating system but not to the users of 
the host computer. 
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Fig. 6.1 A pseudo-random number generator 

6.3. TERMINAL AND SESSION KEYS 
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Imagine a set of N terminals which we shall call Ti and that each terminal may 
wish to communicate in secret with any other. If all the keys to provide for the 
possible connections were produced in advance, each terminal would need to 
store N -1 keys and, supposing that the same key could be used for both directions 
of communication between a pair of terminals, there would bet N(N -1) keys 
in total. 

This method is clumsy and becomes more so as the population of terminals 
increases. In practice, few terminals are actually communicating at any time. The 
period of communication between two terminals is known as a session. It is better 
to provide keys only for those sessions which are actually in operation and these 
are the session keys. Then a procedure is needed to establish session keys whenever 
they are required. 

The use of a session key has a worthwhile bonus of security. Because it exists 
only for the duration of one session, an enemy who could obtain one of these 
keys gets limited value from it. Of course, the establishment of session keys 
requires a key at a higher level in the hierarchy, in this case the terminal keys 
kti are employed. These keys are, in fact, better protected than the session keys 
because session keys can be attacked by a knowledge of the data that are being 
communicated, but terminal keys are used only to encipher session keys, so the 
information they encipher is both less in quantity and more random in nature 
than the data handled by the session keys. Effectively, an attack on the terminal 
keys would require a knowledge of the session key values so cryptanalysis must 
be successfully carried out twice to reach a terminal key. 

When a session key, ksif' is needed for the communication between terminals 
Ti and T1 it can be transmitted through the network under two different 
encipherments, for these two terminals, Ekti(ksif) and Ekt1(ksif) respectively. 
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Fig. 6.2 Loading a session key at the terminal 

These quantities are generated at some central point, which might be a host 
computer responsible for the operation of these terminals, or in a wider network 
there might be a specially appointed 'key distribution centre', 4 sometimes called 
a network security centre when it takes on additional responsibilities. 

Figure 6.2 shows how the arriving session keys are handled at the terminal. 
The decipherment operation shown would typically employ a DES hardware 
device or chip which was capable of storing two keys. One of them, kt, is regarded 
in this context as the terminal's master key. It is held in a register where it can 
be made available each time a session key is to be loaded. Then its value is copied 
into the working-key register. This register supplies the key for the DES operation 
used to decipher the incoming session key and produce the clear value ks. In a 
well-designed chip, the value ks should not leave the device but be transferred 
after the decipherment into the working-key register, where it displaces the value 
kt. In this way, the physical security of the chip protects the session keys, since 
they do not come out of the chip at any time. 

There are two other key management operations at the terminal, the loading 
of the terminal key and the destruction of the working key. Loading the terminal 
key is part of the process of transporting this key to the terminal and is discussed 
later. Destroying the session key could either be treated as a separate operation 
or regarded as a special case of loading a session key in which a dummy value 
such as 0 is loaded. It is useful for the destruction of the session key to be under 
the control of the host or key distribution centre but, on the other hand, any 
command from the centre can be stopped by an enemy, therefore, as a fallback, 
the session key should be cleared locally at the end of the session if the centre 
fails to do so. 

Routes for distribution of session keys 

Figure 6.3 shows a pair of terminals for which a session key ks is to be estab­
lished. The key distribution centre (which might be a controlling host) must share 
a knowledge of the key kt1 in common with terminal 1, and the key kt2 in 
common with terminal 2. The most direct routes for the session keys are those 
shown on the left of the figure. These may be inconvenient in practice. One 
terminal takes the initiative in setting up the communication path, in this case 
we suppose it to be terminal1. Terminal 1 must first communicate with the 
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Fig. 6.3 Routes for session key distribution 

distribution centre and request a session quoting the terminal2 as the target 
for its future call. If the session keys are now distributed by the direct routes, 
terminal 2 will receive the session key before it receives the call from terminal 
1. In fact it may be engaged in interaction with another terminal or unwilling 
to accept the call. At the time that it receives the enciphered session key it has 
no knowledge of which terminal is about to call it. In a busy situation, there will 
be a need for each terminal to be ready to receive several future session keys, 
storing them until a call arrives, then it must associate the call with one of these 
keys. Rules will be needed to decide the proper action in a number of error 
situations, such as a breakdown of terminal 1 before the call is completed, or a 
busy condition in the network which prevents the call. Time-outs could deal with 
these problems but time-outs do not produce neat and reliable solutions. 

For these reasons it is usually preferred to transfer the session key to the target 
terminal (terminal2) by way of terminal1, as shown on the right of the figure. 
Terminal1 must receive not only the enciphered form of ks for its own purpose 
but also the value of ks enciphered with kt2, which it will pass on to terminal 2 
when it is establishing the call. From the viewpoint of terminal1, setting up this 
call has two phases, obtaining the key from the key distribution centre and then, 
after making the call to terminal 2, transferring an enciphered form of the session 
key to that terminal. In the figure we have shown that the key which is intended 
for transfer, namely Ekt2(ks), is included with the value of ks in the message sent 
to terminal 1 enciphered under kt1. To do this, kt1 should be used to encipher 
these data as a chain, to prevent an enemy separating the two parts for his own use. 

This apparently simple key distribution function has been the subject of several 
security studies5•6 which have considered a number of possible attacks and 
elaborated the protocol to frustrate them. There is a third possibility for routing 
the session keys, which is to send both keys from the distribution centre to 
terminal 2 and have terminal 2 relay the key required by terminal 1. Since the 
procedure begins with terminal1 sending a request to the key distribution centre, 
this produces a complete cycle in which messages are passed successively from 
terminal1 to the key distribution centre to terminal2 and back to terminal1. This 
circular route enables a random number chosen by terminal1 at the time of making 
the request to be returned with the key he receives. By this means, a replay of 
old keys is prevented and the timeliness of the session key in use is ensured. 
This message sequence has not yet been elaborated and the examples we shall 
give below are of the kind shown on the right-hand side of Figure 6.3. 

Session key distribution protocol 

The two phases of key distribution are the interaction between terminal 1 and 
the distribution centre, called 'key acquisition' and the interaction between 
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communication links to take the 
terminal 1 with a that was distributed earlier. This could be done without 
knowing any of the keys, merely by repeating earlier messages. Another threat 
is that an enemy terminal might impersonate terminal 1 to the distribution centre 
and obtain a new key for calling terminal2. A third threat, which is more serious, 
is that an enemy terminal might masquerade as terminal 1 in calling terminal 2, 
using a key that had been transferred earlier. 

The principal danger lies in an enemy re-establishing a session key that has 
been used before, either by masquerading as the key distribution centre and 
persuading terminal 1 to establish this key, or by masquerading as terminal 1 
and establishing the old key for a fraudulent call to terminal2. The same messages 
would be used that passed between the terminals when the key was used earlier, 
so there is no need for the enemy to know kt1 or kt2 . 

The trick of establishing an old key can be exploited in one of two ways. Suppose 
that the enemy had obtained the value of ks, then at any time that he could 
establish this value again, he could either listen in on a call between terminals 
1 and 2 or impersonate terminal 1 in a call to terminal 2. Finding the value of 
ks might be the result of cryptanalysis applied to an earlier session and the ability 
to re-establish ks defeats one of the virtues of the session key which is that it 
is used only for a short time. Another way of exploiting the masquerading trick, 
even when ks is not known is to use it to replay an earlier interaction between 
terminals 1 and 2. This might enable a transaction between these terminals to 
be repeated with an advantage to the enemy. Of course, transactions have their 
own protocol which usually employs checks to prevent transactions being 
replayed. Nevertheless, it is legitimate to expect some help from the key 
distribution protocol in preventing such abuses of the system. 

Authentication at the key acquisition phase 

When it calls the key distribution centre, terminal 1 should establish that it is 
conversing with an intelligent device that knows its key value is kt1, and is not 
simply an enemy repeating the data from an earlier transaction. This authentication 
of the key distribution centre can be carried out by giving the centre a task 
depending on kt1. The following interaction will do this: 

Terminal 1 sends to key distribution centre in clear 

av rl, a2. 

Key distribution centre to Terminal 1 

Ekt1 { r1, a2, ks, Ekt2(ks, a1) }. 

The commas denote that the terms are parts of a continuous message. Where 
the message is enciphered it is treated as a chain but the IV can safely be zero, 
because each chain begins with a random number: a1 and a2 are the addresses 
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1nesscg::, bec~rLtse it irtclu~les 
is tl1e i:rtcltlsio:rl the chain. u "-L;-'-"d C',ClQIE?oS al o£ the 
terminal. \!Vhen this reaches terr.ninal 2, it to authenticate terminal 1 as the 
source of the message, because its en(:ip.heJ:m;~nt with kt2 shows that it must have 
come from the key distribution centre. 

Does the key distribution centre need to authenticate terminal 1? Another 
terminal could make the call and present the same data a1, r1 and a2 . In fact, it 
would serve no useful purpose because in order to use the data from the centre 
it would have to decipher them with kt1 which is a key known only to the key 
distribution centre and terminal 1. An intruder could change the value a2 in the 
request and thus divert the subsequent transaction but the repetition of a2 in the 
enciphered reply allows this to be detected. So authentication in this 'key 
acquisition' phase need only operate in one direction, in principle. But one factor 
might make it desirable for the key distribution centre to authenticate the calling 
terminals - the possibility that enemy terminals might overload it with bogus 
calls. The distribution centre can authenticate the calling terminal only by variable 
data, since fixed data can be replayed by masquerading terminals. The calling 
message could be replaced by 

av Ekt1(n1, r1, a2) 

in this expression n1 is a serial number for all the calls from terminal 1 to the key 
distribution centre since the key kt1 was established. Its presence in the 
enciphered chain of this expression ensures that each call will be different and 
that the distribution centre can check the serial number, after decipherment, to 
verify that the caller possesses the key, kt1. Alternatively a date and time can be 
used in place of n1. The address a1 must lie outside the encipherment so that the 
centre can identify the caller and use the correct key for decipherment. 

There are other methods for authenticating the terminal to the key distribution 
centre but we question the need for further elaboration to solve this problem, 
since the only risk is the extra load on the key distribution centre. 

Authentication at the key transfer phase 

There is a clear need for two-way authentication between the terminals 1 and 
2 enabling each to be sure of the other's identity and certain that it is not receiving 
a replay of earlier messages. 

If terminal1 is certain, because it authenticated the key distribution centre, that 
it received a new session key, ks, then the fact that the subsequent enciphered 
conversation with terminal2 works will verify that terminal2 is responding. No 
other terminal could respond sensibly because the establishment of the common 
session key ks requires it to decipher the key transfer message with its own key 
kt2• If terminal 1 wants to get this reassurance early it can send another random 
number r2 in the form Eks (r2) and receive some function of r2 in an enciphered 
message from terminal 2. 
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Worse still is case of the enemy discovering h\ because then he can obtain 
from the key distribution centre a stock of ks values for future masquerading. 
Even if terminal 1 changes its terminal key, the masquerade with old values of 
ks can continue, as long as terminal 2 keeps its master key unchanged. 

The solution to this problem proposed by Denning and Sacco7 is to time-stamp 
the session key. They propose the following squence. 

Request from terminal 1 to key distribution centre 

Reply from key distribution centre to terminal 1 

Ekt1(ks, a2, d/t, Ekt2(ks, a1, dlt )) . 

Key transfer from terminal 1 to terminal 2 

Ekt2(ks, av dlt ). 

In these expressions, d/t is the date and time. 

The value of dlt supplied to terminal1 authenticates the key distribution centre. 
Any terminal which makes calls to the centre at shorter intervals than 1 min must 
keep a list of ks values for the last minute and check that these are not repeated. 
There will rarely be a need for such checking. 

The value of d/t supplied with the key transfer to terminal2 verifies the freshness 
of the session key. Keys obtained from the distribution centre must be used at 
once and cannot be stored for future use and the time required to establish calls 
must be at most a few seconds if the scheme is to work well. This immediacy 
should be easy with modern networks .. Either terminal will reject a key that is 
too old, thus preventing replays. 

Distribution of terminal keys 

For the present, the possibility of non-secret methods of key distribution will be 
ignored (these are described in chapter 8) and we will describe more traditional 
methods using ciphers like the DES. Whatever key hierarchy is used, there must 
be at least one key at each terminal that has not been sent through the network. 
In the system we have just described this is the terminal key kt. Such keys must 
be loaded into the terminals manually and they may have to be changed from 
time to time for extra security. They must be physically transported to each 
terminal. 

The older method of loading a key into a terminal was by rotary switches or 
a keyboard. This operation must be carried out only by trusted personnel, 
therefore a lock was usually provided into which a physical key was inserted and 
turned to allow the entry of a new key. Such key loading operations might be 
spied on by an enemy. If the key is written down on paper for its journey to 
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6.4. THE IBM KEY MANAGEMENT SCHEME 

In the remaining part of this chapter we shall describe two different key manage­
ment schemes, both of which have been worked out in some detail. They are 
not only valuable as examples of comprehensive schemes, they also demonstrate 
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reE;pects we have the scheme to make it easier without 
changing its essential ±ea.t-m·es. 

It is important to understand the environment for which the key management 
method was devised. Though it is like the key distribution scheme we described 
earlier, employing session keys and terminal keys, the environment is different 
because the terminals do not communicate directly with one another through a 
communication sub-network. Communication takes place through host 
computers, each host being responsible for a group of terminals. The host acts 
as a key distribution centre for its own group of terminals and encipherment is 
used for messages passing between the terminal and the host. There may be 
several hosts in a network and then the hosts organize the communication of 
messages or files between them. A key management system has two functions 
which the IBM scheme mostly keeps separate - the encipherment of messages 
to provide communication security and the encipherment of files to provide file 
security. Each of these functions has its own key hierarchy and the two key 
hierarchies have close parallels. We shall describe first the communication function 
and then the file security function, making comparisons between the two. The 
functions come together when files are transported from one host to another. 

Physical security requirements 

The handling of keys at the terminal is like that described in Figure 6.2. Each 
terminal contains a terminal key kt and at the start of a communication session, 
a session key ks is delivered to it, enciphered under the terminal key. 

The physical security requirement at the terminal is the protection of the two 
keys. The loading of kt is a privileged operation. The key-management scheme 
must provide the value of kt for this purpose, whether or not a key carrying 
module is employed. 

At the centre, the physical security requirements are much more severe. A 
number of terminal keys must be stored safely and at any one time many sessions 
may be in progress, so a number of session keys must be kept ready for use. 
The host computer is provided with a special, physically secure module containing 
all that secret information which must be protected. In the IBM papers it is called 
the 'Cryptographic Facility' and it is typified by the IBM 3848 cryptographic unit: 
we shall call it a 'Tamper Resistant Module' (TRM). 

Both in the terminal and at the centre, the encipherment operation must be 
carried out in an appropriately secure place. At the host all encipherment 
operations occur inside the TRM. The TRM also contains the most important keys 
which, once they have been loaded into it, can never be read again. In the same 
way, none of the keys can be read from the hardware of the terminals. 

The processing wo.rk of the host is carried out on behalf of many users, each 
with his own rights of access to certain terminals or files. As in all multi-user 
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access another's is the 
re~;pc1nsibillitv o£ the access control system. cannot improve on the 
security of this access control, it merely the security to stored files and 
distant terminals. An enemy within the system who can undermine the access 
control mechanism can steal files or read messages illegally in spite of the use 
of encipherment. Therefore, the key management system must rely on the access 
control method to control access to keys. 

There is always the possibility that one of the system's users could be an enemy 
and could steal data from the system and pass it to an enemy outside. If he could 
steal keys and pass these to an enemy outside, then various stolen storage media, 
or ciphertext recorded from a line, could be deciphered and all the security of 
encipherment with the stolen keys would be lost. It is, therefore, a cardinal 
principle that the key management scheme should prevent anyone, including 
legitimate users and system programmers, from obtaining any cryptographic key. 
Therefore, cryptographic keys (with a few exceptions) are allowed outside the 
TRM only when they have been enciphered by other keys. As a result of this 
principle, the damage that can be done by an enemy within the system is confined 
to the data he reads by misusing the access control system of the host. He cannot 
steal keys that can be used outside the system. To put it another way, the barriers 
inside the system between the various subjects are not strengthened by the use 
of encipherment. The encipherment of data, together with key management, 
places a firm barrier between what can be done inside the system and what can 
be done outside. 

The main principle is that no keys can be taken outside the TRM in their clear 
form, the form in which they could be exploited by an enemy. The exceptions 
to this rule are the terminal keys which must be in clear outside the TRM, at least 
at the moment when they are loaded into the terminal. This operation of loading 
terminal keys is carried out under careful discipline by trusted people. The 
procedure for initializing the whole system by the creation of top-level master 
keys and loading them into the TRM is another exception to the general rule and 
it requires the greatest discipline and trust. 

The key hierarchy 

There is a three-level key hierarchy which will now be described as it applies to 
the communications security part of the scheme. This description is intended only 
to give a general picture and the details will follow later. 

The three levels are shown in Figure 6.4. At the top level are two master keys, 
kmO and kml. In the middle level are the terminal keys, denoted kt, one for each 
terminal belonging to the host. The lowest level keys are the session keys, ks, 
which are associated with terminals on a more temporary basis. Only the session 
keys encipher data. The terminal keys, as we saw earlier, are used to encipher 
session keys for transmission to the terminals. 
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Fig. 6.4 The hierarchy of keys for conmnmication sec!Lrity 

The two master keys in the host, called kmO and kml, are used, respectively, 
to store all the session keys and all the terminal keys in the system. Because all 
the session keys are enciphered under the key kmO whenever they are outside 
the TRM, they can be stored in ordinary memory locations. The stealing from 
the host of a quantity such as EkmO(ks) would not be disastrous because the master 
key kmO is special to this one host so the enciphered value of ks is useless outside 
it. Likewise, the terminal keys are stored as Ekml(kt) in ordinary memory locations. 

The purpose of storing the terminal and session keys outside the TRM is two­
fold. First, it reduces the amount of store in the TRM and, secondly, it allows 
the control of access to these keys to be the normal access control provided by 
the operating system. There would be little point in having a duplicate or 
alternative access control system for keys. 

The existence of the master keys inside the TRM makes all the operations of 
the TRM special to this one host. The various functions of the TRM are not all 
equally available. Some, such as the loading of the master keys, take place rarely 
and only with specially privileged people present. The operations of the TRM 
used for distributing new terminal keys are accessible only to the operating system. 
But at the lowest level, the operations of enciphering and deciphering data are 
available to ordinary user's programs, provided that they can gain access to the 
appropriate session key. 

The endpherment and decipherment of data at the host 

A program at the host computer can use the functions of the TRM to decipher 
data coming from the terminal or encipher data going to that terminal, if it can 
provide the TRM with the session key in use at that terminal. The operations 
carried out in the TRM are illustrated in Figure 6.5. They are not simple encipher­
mentor decipherment because the key arrives in an enciphered form. The first 
action is to decipher the key using the master key kmO which is stored in the TRM. 
The resulting session key, ks, is then used for the encipherment or decipherment 
operation. This function of the TRM is given the name 'Host Encipherment' (HE) 
or 'Host Decipherment' (HD). In a sense, the host encipherment or host 
decipherment of each individual host is different because of the different master 
key contained in its TRM, so a session key taken from the store of one host cannot 
be used in another host. 

The two inputs to the HE or HD operations must be distinguished because one 
is a key input and the other a data input. We have shown in our figure a small 
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HE HD 

Fig. 6.5 Data encipherment and decipherment operations of the tamper-resistant module 

circle where the key input enters the TRM by analogy with the notation used 
for the block cipher itself. 

Generation and distribution of a session key 

Figure 6.6 illustrates the function of the TRM which is used for distributing a 
session key. The new session key ks must be transmitted to the terminal in the 
form Ekt(ks). Both kt and lcs must be protected by encipherment whenever they 
are outside the TRM. The terminal key kt is stored under encipherment by the 
master key kml and the first operation in this key distribution function is to 
decipher it and produce the plaintext value, let. Then the stored session key EkmO(lcs) 
can be deciphered inside the TRM by lcmO andre-enciphered by let to produce the 
required quantity Elct(ks). This operation is known as 'Re-encipher from master 
key' (RPM) since it changes the session key from encipherment by the master 
key to encipherment by the terminal key. This function of key distribution is 
carried out by the host's operating system, responding to a request from the 

Session key as 
stored and used 

in the host 

EkmO( ks) --1--.....-l 

Generated as a 
random number 

RFM 

Ekm1 (kt) 

Session key as 
distributed to 

the terminal 

1---+--__,,_ E k t ( k s ) 

Fig. 6. 6 Session key distribution 
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the session key. The value of ks will then be a random number, no,~hor,tlu 
suitable for its purpose. Generating the enciphered key Ekt(ks) at random is useless 
because the RFM function works only one way, there is no function available 
which will take Ekt (ks) and re-encipher it under the master key. It is important 
that there should not be such a function, otherwise an enemy within the system 
could obtain the session key by tapping the line while it was being transmitted 
to the terminal and from it obtain EkmO(ks) which he could then exploit in the 
HE or HD functions to encipher or decipher users' data taken from the line. So 
the one-way property of the RFM function is essential. 

In this operation there are two master keys, kmO and kml. If only one key were 
used it would be possible, by misuse of the TRM operations, to expose a key in 
its unenciphered form as shown in Figure 6.7. Suppose that the same master key, 
kmO, was used to encipher both ks and let. Then the quantity EkmO(kt) could be 
used as the key for the HD operation and applied to the value Ekt(ks) obtained 
by tapping the line to the terminal during session key distribution. This trick would 
produce the session key ks in plaintext form and this could be employed anywhere 
to decipher users' data obtained from the line. The use of two different master 
keys prevents this trick. 

Generation and loading of a top-level master key is time-consuming, so the 
need for loading two different master keys must be avoided (and as we shall see 
later, a third is needed). In the IBM scheme this is achieved by deriving kml from 
kmO simply by inverting a specific set of bits in the value of the key. Although 
these keys are then closely related, their encipherment properties are completely 
different and, since both are kept secret, their relationship is not of great 
importance to the strength of the system. 

Since the random value used for starting the key distribution is EkmO(ks) the 
value of ks produced is a random block of 64 bits and does not have the correct 

Ekt(ks) 

Token from a 

I ine top HD 

EkmO(kt) -this does not exist 
in the host's store 

ks 
exposed 

Fig. 6.7 How ks could be exposed if kml =krnO 
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Generation and distribution of the terminal 

New session keys are produced frequently but the terminal key is changed less 
often. When it is changed, the new key value has to be taken to the terminal 
and loaded into it and for this purpose it must be available in its cleartext form, 
kt. It is therefore an exception to the normal rule that cleartext keys are never 
exposed. Since it is important that there should be no way of regenerating kt at 
the host after it has been distributed, the only way to organize its distribution 
is to generate the key in the cleartext form and this presents a new problem, how 
to form the quantity Ekml(kt) which is the stored value of the terminal key. This 
operation is, of course, carried out by the operating system and it uses the special 
quantity Ekm l(kml). 

A function is provided in the TRM for enciphering under the master key kmO 
and this is known as 'Encipher under Master Key' (EMK). It is a privileged 
operation which is given the quantity x and returns the quantity EkmO(x). 

The quantity Ekml(kml) is produced when the system is initialized, then it is 
stored away and kept only for use in the kt distribution process. To produce it, 
kmO is used to produce kml, a trivial operation, and this is used with the EMK 
function to generate EkmO(kml). This quantity is used as the key in the HE 
operation with kml as data, as shown in Figure 6.8, to generate the special quantity 
needed. After these processes, all stored values of the master keys are destroyed 
except those in the TRM. A written copy of kmO is kept in a safe for disaster 
recovery. If the system is destroyed, but enciphered files are available in a back­
up store, these would be useless unless the master keys could be retrieved. 

Using the special quantity Ekml(kml), it is possible to complete the distribution 
of the terminal key in two stages. First this key is enciphered under kmO using 

Ekm0(km1) 

km1 ---+------------~ Ekm1!km11 

Acc:essible only to the system 
HE 

Fig. 6.8 An operation used at system initiation 
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E km 0 ( kt ) --f-__,.,.j 
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Stored terminal key 
RFM 

Fig. 6. 9 An operation used to prepare a new terminal. key, kt 

the EMK function, then the RFM function is applied to this quantity, using as 
key the special quantity Ekm1(km1), as shown in Figure 6.9. The result is the 
quantity Ekm1(kt) which can then be kept in store and used for distributing session 
keys as shown in Figure 6.6. 

Notice that the intermediate quantity EkmO(kt) is one which earlier we said 
should never exist, because it could be misused to expose session keys stolen 
from the enciphered line. This means that terminal key distribution must be carried 
out with extreme care, using trusted software and making sure that the 
intermediate values cannot be accessed by another program. 

The principles of file security in the IBM key management scheme 

The hierarchy of keys used for file encipherment is very similar to the one used 
for communication security and is shown in Figure 6.10. The data in the files are 
enciphered by file keys, kf, and file keys are stored under secondary file keys, 
denoted kg, which are held by the owners of the files. A single value of kg creates 
a 'protection domain' which may contain a number of files each having its own 
data enciphering key. The quantities Ekg(kf) need not be concealed because they 
cannot be used unless kg is available. For example it may be convenient to store 

kmO km2 Master keys encipher kf, kg in store 

Secondary file keys encipher kf in files 

kf File keys encipher data in files 

Data 

Fig. 6.10 The hierarchy of keys for communication security 
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user appear to be the main reasons •Nhy the 
intermediate or secondaq file is included in the hierarchy. 

At the top level of the hierarchy are the master keys. The key kmO is used for 
enciphering file keys (as well as session keys) in the host. The key km2, derived 
like km1 by a trivial operation on kmO, enciphers secondary file keys for storage 
in the host. 

The encipherment or decipherment of a file is allowed for any user or process 
which has access to the secondary file key in its stored form Ekm2(kg). This can 
be used, as we shall show later, to generate the file data encipherment key kf 
in the form EkmO(kf) required for employment in the HE and HD functions. These 
quantities EkmO(kf) are not stored in the system, they are simply recreated 
whenever a file is to be deciphered. Thus the control for deciphering a file rests 
in controlling access to the secondary file key kg. 

Generating and retrieving a file key 

Figure 6.11 shows the TRM function which is used when preparing to encipher 
a file or retrieving a file key for decipherment. It is called 'Re-encipher to Master 
Key' (RIM) and is almost a mirror image of the RFM function but using the master 
key km2 instead of km1. At the top of the figure, the 'key' input is the secondary 
file key in the enciphered form Ekm2(kg) in which it is stored in the host. The 
data quantity entering the RIM function is a newly generated pseudo-random 
number when the file is first enciphered. This gives rise to a random number 
kf inside the TRM which is the file data encipherment key and is never exposed 
outside. The result of the RIM function is the file key enciphered under the master 

File key as 

stored on file 

Ekm2 (kg) 

Ekg(kf) --1-...,...j 

Generated as a 

random number 
RTM 

File key as used 
in the host 
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Fig. 6.11 Preparation to encipher or decipher a file 
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function. 
The clever feature of the of this system is that it makes the RFM and 

RIM functions almost the inverse of each other but different master keys, 
kml and km2. employing one of these functions communication security 
and the other for file security, it is made impossible to misuse these functions 
in the wrong context. If kml and km2 were identical, RTM could be used to reverse 
the effect of RFM and thus values of Ekt (ks) stolen from the line would be usable 
to generate EkmO(ks) for decipherment. 

We have described both the communication security and the file security 
functions inside a single host. When two hosts are connected together in a 
communication network, two further functions are required, the transfer of 
messages under encipherment between hosts and the movement of files from 
one host to another in an enciphered form. These are provided by extensions 
to the key management scheme which will now be described. 

Transfer of enciphered data between hosts 

All we have described so far about the IBM key management scheme concerns 
a single host. In order to extend this to a number of hosts which are nodes of 
a network the keys in the system must have an additional index which will be 
a superscript i or j. For example, the master keys are kmOi, kmli and kmi for the 
ith node. A method of transferring data from node ito node j will be described. 
For this purpose, all that is needed is to be able to establish as many session keys 
as we need, which are known to both nodes. A session key would be created 
in node i as EkmOi(ks) and then, in the ordinary way, the operation RFM would 
be used (see Figure 6.6) to encipher this session key under a terminal key. The 
session key can be sent to another node if there is a suitable 'terminal key' for 
the purpose. The proper name for this key would be 'secondary communiction 
key' but to avoid the change of notation we will call it ktii signifying that it serves 
for moving session keys from node i to node j. It is important that this 'inter­
node terminal key' is directional; it can only function from node i to node j not 
the other way round. 

Figure 6.12 shows how the session key moves from its normal place of storage 

Ekmoi(ks) 

Randomly generated 

Sending host i Receiving host 

Fig. 6.12 Preparing a session key for inter-host communication 



-- 171 --
MasterCard, Exh. 1004, p. 171

t12ms:te::recl fror.n one ;-1ode to 
i:tans£er data i~1 either direction. The relates 

to the movement of the session key. For ktii is used when a user 
or process in node i takes the initiative in transferring the session key to node j. 

The operation shown in Figure 6.12 is made possible because the inter-node 
key is available in each node in a suitable form, using the km1 master key in the 
second node and km2 master key in the receiving node. In this respect, the 
receiving node is anomalous because a terminal key is not usually stored in this 
fashion. Its existence in node j requires the use of the function RTM to be controlled 
very carefully. The inter-node key ktii must be transported between the two 
nodes outside the communication system, probably in a key carrier, and then 
established in the appropriate enciphered form for storage at each node. We have 
already seen how Ekm1(kt) can be established at a node in a privileged operation 
using the secret number Ekm1(km1). A similar procedure can establish Ekm2(kt) 
and for this purpose the secret number, Ekm1(km2), is needed. This is generated 
when the system is initialized, immediately after the master key kmO has been 
loaded, using a procedure like that shown in Figure 6.8. Obviously these functions 
which operate on clear values of ktii and establish their appropriate enciphered 
form at each host must be very carefully controlled, and they are not used very 
often. When an inter-node key is established between a pair of nodes, it is available 
for a relatively long period to transmit session keys. A different key, known as 
ktii, is established for sending session keys in the opposite direction. 

Transfer of enciphered files between hosts 

To complete the description of the IBM key management operations, it remains 
to show how a file can be transferred from node i to node j. This is illustrated 
in Figure 6.13. The middle part of this figure is very similar to the operation shown 
in Figure 6.12 but with the session keys replaced by file security keys. The 
secondary file key kgii can be regarded as an 'inter-node file transfer key' for 
sending files from node i to node j. Its establishment uses the procedure described 
earlier. 

The procedure in Figure 6.13 is more elaborate than the communications 
procedure because the quantities EkmO(kf) do not normally exist in the system, 
but are called into being when an operation is to be carried out on a file. The 

Ekgi(kf) 

Fig. 6.13 Moving an enciphered file from host i to host j 
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which is to receive the file. There is no change to the data since the 
file key kf remains unchanged. All that is necessary at the receiving end is to 
the new enciphered file key Ekgi (kf) in the appropriate place in the header the 
file. 

In this procedure the RFM operation which prepares the file key for leaving 
node i is unusual, in that secondary file keys are not normally held under 
encipherment by km1 and stored file keys, like EkmO(kf), cannot normally be 
transferred to a new secondary file key by the RFM operation. Therefore, it is 
important to control carefully the use of the RFM function in this context. 

The security given by the IBM key management functions comes from limiting 
the cryptographic operations provided by the TRM to a specific, small set of 
operations each working with the appropriate set of keys. This restriction prevents 
the exposure of keys in their clear form or the use of any stolen keys in a different 
host from the one that they belong to. But the functions used for transferring 
data or files from one node to another cannot not be made available to every user 
and these are among the functions which must be controlled by the system in 
order to maintain security. Other things that must be controlled are the key loading 
functions and the use of the special numbers Ekm1(km1) and Ekm1(km2). Ulti­
mately, security depends on the control of access to storage and processing 
functions within the host computers. 

6.5. KEY MANAGEMENT WITH TAGGED KEYS 

The IBM key management scheme uses encipherment by variants of the master 
key in order to separate different kinds of keys and ensure that they are used 
in the correct way. Three variants of the master key are needed so that functions 
provided for data encipherment and decipherment, session key distribution and 
file key retrieval cannot be misused for other purposes. 

Jones8 has described a method of handling keys which achieves the same 
separation of functions with only one master key. The separation of functions 
in this new method can be applied to an extended key hierarchy without any 
further complication. The principle employed is to attach a tag to each key in its 
clear text form which identifies that key's function. The idea of tagging words 
in a computer has often been used, for example to distinguish between capabilities 
and other words in a capability-based computer. The tag is typically a short extra 
field attachedto the word and preferably one which cannot be separated from 
the word or altered by non-privileged users of the system. In this section we shall 
describe the use of the eight 'parity bits', which are attached to the 56-bit DES 
key, as a tag field. Later, we shall see that the number of tag bits needed is quite 
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undefined bits without specifying how were to be used. The ingenious aspect 
of Jones's scheme is since are not outside a TRM in their clear 
form, it is not possible for an enemy, even one with access to the computer, to 
modify these tags. 

To begin our description, assume that each type of key employed in the key 
management system has its own tag value. The top level master keys are an 
exception because they never leave the TRM so their method of use is entirely 
controlled. The other key types are the communication keys, ks and kt, and the 
file security keys, kf and kg. We denote the tags attached to these keys as Ts, Tt, 
Tf and Tg respectively. The key values are concatenated with their tags to form 
plaintext values which are then stored in enciphered form. A typical example of 
a key in this system would be Ekm (ks; Ts). The semicolon denotes concatenation 
where the tag is actually interleaved with the key, occupying the spare bits. Since 
there is only one master key, we call it km. 

In order to use the tags as part of the control of key management, each of the 
operations of the TRM checks the tags of incoming keys and, where appropriate, 
places the correct tags on outgoing keys. We shall now consider the action of 
these various functions in turn, beginning with the encipherment and 
decipherment of data. 

There is little change to the functions depicted in Figure 6.5. The incoming 
session key is tagged in the form (kg; Ts) and the HE and HD functions will only 
accept a session key if it has the correct tag. With any other value of the tag, the 
TRM must return a 'reject' signal. 

The HE and HD functions are also used, with file keys kf, to encipher 
and decipher files. For this purpose, the HE and HD functions should be 
prepared to accept keys with either of the tags Ts or Tf. The essential restriction 
on these operations is that they should only be used on data, not on keys. 
So if an enciphered key-enciphering key were presented in place of the enciphered 
session key at the 'key' input of one of these functions, it would be rejected. 
Essentially, the Ts or Tf tags verify that a data enciphering key is being used, 
making it safe to offer the encipherment or decipherment function to a user 
or process. 

Next, consider the RFM and RTM operations. These are operations entirely with 
keys but the 'key' input of the function takes in an enciphered key-enciphering 
key whereas the 'data' input takes an enciphered data-enciphering key. Figure 
6.14 shows the RFM operation in its new form. It checks the types of the two 
keys it is handling when their plaintext is exposed inside the TRM. The key which 
enters at the data input leaves the module (under different encipherment) carrying 
the value of tag with which it entered. Because of this checking of key types, 
there is no need for the master key variants. 
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Fig. 6.14 The operation RFM with tagged keys 

Generation of new tagged keys 

New keys are produced by a random number generator but before they can be 
used they must be correctly tagged and enciphered. The key enciphering keys, 
kt and kg, present no problem because the processes which are allowed to generate 
these keys have access to the 'encipher with master key' operation which, in this 
key management scheme, could attach either the Tt or Tg tag, whichever is asked 
for. But although a terminal key must be available to the system in clear form 
for distribution to the terminal, the same is not true of a secondary file key, which 
is only ever used in the enciphered form outside the TRM. It is, therefore, more 
secure to insist that a new secondary file key be generated entirely within the 
TRM, each such key generation starting with a new random number which is 
not revealed outside the TRM. This prevents an enemy who has penetrated this 
part of the system from generating identical keys with two different tags so that 
a key value could be used in both the RFM and RTM operations, something which 
the system is intended to prevent. 

The generation of new session and file keys in the IBM key management scheme 
is performed in such a way that different operations are used, RFM for the session 
key and RTM for the file key. The starting point in each case is a random number 
which represents an enciphered key. With the tagged-key method, a random 
number will not create a key with the correct tag, so a different method of key 
generation is needed. One possibility is to include in the operations of TRM, two 
key generation functions designed for these types of keys. A session key is 
generated in the form Ekm (ks; Ts) and can be used for any terminal. In order 
to generate a file key, the secondary file key kg must be provided to the TRM 
as Ekm (kg; Tg) and with this input a random key kf is chosen and its enciphered 
form Ekg(kf; Tf) is supplied from the TRM. Thus each type of key requires a 
function for generating it in the TRM, designed in such a way that the same key 
cannot be generated with more than one tag value. Only kt keys begin their lives 
in plaintext form. 
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distinctive If we wanted to extend the 
levels v1e would need to introduce new values the various 
operations of the TRM, in particular the RFM and RTivl operations, to recognize 
new combinations of tags which they will allow. 

The proposal by Jones has a different and simpler scheme which allows the 
key hierarchy to be extended without introducing new tag values. The main 
distinction which it makes is between data enciphering and key enciphering keys. 
Only data enciphering keys are allowed to enter the operations HE and HD. The 
categories ks and kf that we have distinguished are both included in the data 
enciphering category. All key enciphering keys belong to a second category, which 
includes kt and kg, but these two types of key must be distinguished because 
we only allow kt as a key input to RFM and kg as a key input to RTM. This 
distinction is made by providing two bits in the tag field which determine whether 
the key can be used for encipherment or decipherment or both. From Figure 6.6 
it can be seen that kt is an enciphering key and from Figure 6.11 that kg is a 
deciphering key. Therefore three bits form the complete tag; one distinguishes 
data and key enciphering keys, the others allow encipherment and decipherment 
respectively, or both. The operations RFM and RTM can be carried out at several 
levels of an extensive key hierarchy because there are key encipherment keys of 
several levels. Only data enciphering keys can be used in the operations HE and 
HD. 

The distinction between enciphering and deciphering keys has so far been 
applied only to key-enciphering keys, leaving the data-enciphering keys such as 
ks and kf marked for both encipherment and decipherment. But data-enciphering 
keys can also be produced for a single role, either encipherment or decipherment. 
Within a system controlled in this way it should be possible to generate 
corresponding pairs of enciphering and deciphering keys. This makes possible 
an asymmetric form of cryptography. 

A particular session or file key, with its tag, can be transmitted throughout a 
network of inter-connected nodes which employ the same tagged key 
management system. Their security depends on the physical security of all the 
TRMs in the system and in particular on the safe distribution of the 'inter-node 
keys' such kgij and ktij_ The inter-node keys create a problem for the key 
generation method which we described earlier because the same key is tagged 
in two different ways in the two nodes it interconnects. We saw earlier that the 
handling of inter-node keys requires privileged operations. In the tagged scheme 
it seems to require that the inter-node key, generated as a terminal key for use 
in RFM at one node, can be converted into a secondary file key for use in RTM 
operations at the other node. The establishment of inter-node keys uses operations 
that must be very carefully guarded, whether the IBM method or Jones's variant 
is used. 
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Wlloies;:~le bainkj,ng includes rnessages between banks, betvveen banks and their 
corporate customers or between banks and a government. This makes it clear 
that messages of some consequence are being protected and that such applications 
as home banking and point of sale transactions are not within its scope. The 
standard is complex and occupies more than one hundred pages. It describes the 
procedures for manually exchanging keys in order to initiate the system and then, 
with the aid of these manually exchanged keys, the automatic exchange of the 
keys which are used to protect the messages and, in particular, to provide message 
authentication. The major part of the standard is concerned with the automatic 
methods, giving their procedures, the contents of the messages and the detailed 
coding. 

For someone coming to this standard for the first time, the main problem is 
the quantity of detail. Our account cannot be a substitute for the standard itself 
and we therefore do not attempt to cover the detail but describe instead the main 
principles, leaving out features where this does not prevent its principles being 
understood. For example, we give little attention here to error messages or error 
recovery procedures. 

The standard is very significant because it is the first internationally agreed 
principle for key management. Consequently, some of its notation and concepts 
have already been adopted in other schemes, such as proprietary key management 
procedures which do not follow ISO 8732 in detail but claim some similarity. 
Departing from our usual terminology, we shall adopt the word encryption in place 
of encipherment to align with the standard, where appropriate. 

We begin our account by describing the key hierarchy and the way it uses keys 
of both double length and single length. The standard was derived from the US 
standard ANSI X9 .17 where the intention, at the time, was that the DES algorithm 
would be used. For generality, the international standard does not specify that 
DES shall be used, though the standard ANSI X3.92 (which describes the DES 
algorithm) is quoted. 

Each participating bank or other (corporate or government) organization is 
expected to have a key management facility which includes the cryptographic 
equipment and provides a secure environment in which the cryptographic 
functions can be performed and the keys held. The standard does not describe 
how secure arrangements can be made for the storage of the keys, though their 
encipherment under some unspecified master key is implied. These are details 
which are the concern of each user and they are not specified because they do 
not affect the exchange of messages between the participants. 

A short section of the standard, little more than one page together with an 
example in an annex, deals with the manual distribution of keying material which 
sets up the basic keys on which the key hierarchy depends. 

We continue with a description of the three different environments under which 
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a key from service. How these tools will be used by individual banks is left to 
their judgement. The user can also choose the type of hierarchy (within limits) 
and whether to use double or single length keys for some of the functions 
described. Thus a decision to use the ISO 8732 standard for key management 
does not complete the agreement between users, who would then have to detail 
the chosen options and the schedule of keys and key changes. 

There are two technical features which are central to this standard, known as 
notarization and key offset. Notarization employs the modification of a key using 
the names of the source and destination of a communication as the modifying 
data. This key is then used to encipher a subordinate key in a key management 
message and the receiver of that message can only interpret it by using the correct 
key modifications by the names employed by the sender. This prevents any 
intruder diverting a key intended for one purpose into another purpose. There 
are other ways to do this, but the notarization principle is used here. A similar 
modification of the key encrypting key uses a counter which is incremented 
throughout the whole life of that key. In this way, the subordinate keys sent with 
this key encrypting key carry a built-in note of their sequence number and an 
attempt to reuse an old key would be detected. Notarization and key offset are 
generally used together. 

These two features, and the general complexity of the standard make it 
questionable whether it should have a wider validity than the scope for which 
it was intended, but it is invaluable as an example of a fully developed key 
management standard. 

The key hierarchy 

Figure 6.15 shows the two alternative key hierarchies employing two or three 
layers of keys respectively. It also shows the notation for the three types of keys 
employed. 

A key used for enciphering or authenticating data is known as a data key (DK) 
and is the lowest level, layer-:;_, of each hierarchy. These keys are used for either 
encipherment or authentication but should not be used for both except when 
the standard specifies this. Wherever data keys are distributed for use in protect­
ing banking messages, either one or two keys can be sent so that one can be used 
for encipherment and the other for authentication. The encipherment function 
of the data keys also includes the encipherment of initializing Values for use in 
the standard modes of operation described in chapter 4. Data keys are always 
single length keys. 

For the distribution of data keys, a key encrypting key (KK or KKM) is used. In 
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Fig. 6.15 Alternative key hierarchies of ISO 8732, KKM, master (key encrypting) key: KK, key encrypt­
ing key, to encipher DKs; DK data key, to encipher data or IVs or authenticate messages 

the two-layer hierarchy a master key is used, which has been established by 
manual key distribution for this purpose. In the three-layer hierarchy any KK 
which is used to encipher a data key for transmission can itself be distributed 
using a master key encrypting key (KKM). 

Since it is widely accepted that the 56-bit. key size of the DES algorithm weakens 
it, under certain circumstances, there is sometimes a need for multiple encryption 
to obtain an effectively longer cryptographic key. Where keys are in use for a 
long time, the opportunity for an attacker to perform a key search is greater, 
therefore this standard envisages the possible use of double-length keys at the 
higher levels of the hierarchy. The method by which encipherment is performed 
with these double-length keys is described in the next section. 

The use of double-length keys is mandatory only for master keys which are 
used for key management between a participant and one of the two kinds of key 
management centre (either a key distribution centre or a key translation centre). 
Apart from this requirement, key encrypting keys (KK or KKM) can be either 
single or double length but a single length key must not be used to encipher a 
double length key. The standard does not give any criterion for the use of double 
length keys but we would expect a double length key to be used wherever the 
life of the key exceeds about one month. The presence of a double length key 
is signified by the notation * KK or * KKM. 

Endpherment and decipherment with double length keys 

Two single length keys each of 64-bit size can be concatenated to form a double 
length key. Thus a double length key * KK is considered as being made up from 
two single length keys KKl and KKr where the notation signifies the left and right­
hand halves of the concatenated double length key. The encipherment and 
decipherment processes using these keys are shown in Figure 6.16. In each case 
three cryptographic operations are employed. For double-length encipherment 
these are encipherment, followed by decipherment, then by encipherment. Both 
encipherments use the left-hand part of the key and the intervening decipherment 
uses the right-hand part. This triple processing was chosen because the simpler 
double process could be weakened by a 'meet-in-the-middle' attack, employing 
a large amount of storage in order to reduce the computational task of key 
searching. 
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.,. Fig. 6.16 Triple encipherment with a double length key 

The corresponding decipherment function shown in the figure employs 
decipherment followed by encipherment then decipherment with the same key 
sequence. The notation for encipherment using this process is ede and correspond­
ingly for decipherment ded. 

It is not entirely certain that the use of double length keys provides an effective 
key length which is double that of a single length key, but the structure of DES 
and the experimental evidence that it does not form a group supports the view 
that multiple encipherment is more secure. There is, however, no need to use 
multiple encipherment unless the threat of a key-search attack is significant. 

Key distribution environments and messages 

The simplest environment is that two banks wish to establish keys for the exchange 
of messages and they already have in common a key encrypting key, either a 
master key (KKM) or a key at layer two of a three-layer hierarchy (KK). Their 
aim may be to distribute a KK for the three-layer hierarchy or to distribute data 
keys or perhaps to do both. No other party is involved. This is the point-to-point 
environment. 

To avoid the need for banks to have master keys or key encrypting keys in 
common with all their correspondents, it is possible to use a key management 
centre which has an established cryptographic relationship with both parties to 
the communication. Then, using the key already"~stablished they can obtain the 
necessary material from the key management centre to establish contact. There 
are two kinds of key management centre, one of which generates keys, called 
a key distribution centre and the other which accepts a key from one party, re­
enciphers it and returns it in a form suitable for communication with the other, 
called a key translation centre. Thus there are three environments in the standard, 
known as point-to-point, key distribution centre and key translation centre. For 
each of these there is a procedure for carying out the key exchange which we 
shall describe with reference to Figures 6.17, 6.18 and 6.19 respectively. 

In describing these procedures we do not detail all the messages which can 
be used. In particular, any message may be in error and receive a response which 
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Standard ISO 6L':6, ofcen known the ASCII code. The messages are coded in 
a 'Nay which makes them readable ·when on the page. There is an intention 
to introduce another version of the standard with coding of messages. In 
the coding, both the message type and the tag for each field of the message is 
a set of three capital letters. Within the message, the various fields are tagged 
to indicate their significance and separated by space characters. Additional format 
characters can be inserted to improve the ease of reading the message. For our 
purpose, we shall not define the format and coding in detail. 

Point-to-point distribution of keys 

When two banks A and B already have a key encrypting key in common they 
can use it to exchange other keys of the form KK or KD. The messages they use 
are shown in Figure 6.17. For example, bank A can send a key service message (KSM) 
to B containing a key or keys enciphered under the already established key. Bank 
B will return a response service message (RSM) and this completes the exchange. 
But suppose that bank B wishes to establish keys in this way and does not have 
the ability to generate keys. It is then possible for bank B to send the optional 
request service initiation message (RSI) shown by a broken line in the figuref which 
stimulates bank A to begin the procedure already described. 

All messages in this and the other protocols we shall describe contain three 
particular fieldsf the first defines the message typef for example a key service 
message would have a field MCLIKSM where MCL is the tag for the message 
type. The other fields which all messages contain are the identities of the originator 
and receiver of the message. We shall not repeat these fields because they occur 
in all messages. 

All messages also contain either an authenticator (MAC) or else an error 
detection code (ED C). Whenever a message is of cryptographic importance and 
a suitable authenticating key is available, a MAC is included. In the point-to-point 
proceduref the KSM and its response RSM have MAC values but the RSI message 
does not. This is because authentication always uses a data key and the purpose 
of this procedure is to establish a data key (or keys) so the existence of such a 
key cannot be assumed. The KSM and RSM messages both include a MAC using 
the data key which has been transmitted in the key service message. 

Request service initiation 
----------- ---- B 

RS1 
Key service message 

KSM 
Response service message 

RSM 

Fig. 6.17 Basic messages in point-to-point key distribution 
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it does not also have a present; 
the key used for authentication service message is formed from their 
exclusive OR. The KSrvi may also contain an initializing value (IV) enciphered 
with a data key, the second one if there are two present. The RSM also contains 
the date and time at which the data keys become effective. 

For each key encrypting key shared by the two banks, a counter is maintained 
which starts at the value 1 when this key is first used to encipher KD values. 
It is incremented for each subsequent use and the counter value is sent in the 
message. The receiver checks the counter and responds with an error service 
message if it is wrong. 

Notarization is an optional feature in the procedure for point-to-point key 
distribution. If it is used the field NOS/ with no parameters is included in the 
message. In this case the KK is subject to a transformation by notarization and 
key offset before it is used to encipher the data key. 

The response message contains no more than the fields contained in all 
messages, mentioned above and the MAC. The MAC is formed with the same 
key that was used for the key service message, therefore the receiving bank must 
decipher the KD value or values before using them to check the received 
authenticator and generate an authenticator on the response. Reception of a correct 
RSM by bank A, when its MAC value has been checked, verifies that the correct 
KD was received and hence a correct KK, if one was sent. There is no 
corresponding check on the correct receipt of the IV. 

In addition to the messages shown in Figure 6.17 either bank may send the 
other a disconnect service message (DSM) which, in addition to its standard fields 
includes the identity of the key to be discontinued. The DSM also includes the 
identity of a key used for authenticating it and a MAC value. The response to 
the disconnect service message is an RSM containing the identity of the 
discontinued key and a MAC using the same key as for the DSM. Note that the 
content of a response service message varies according to the type of message 
to which it responds. 

Key distribution centre 

If bank A does not have a data key in common with bank B it may be able to 
establish such a key through the agency of a key distribution centre (CKD). For 
this purpose, bank A first communicates with the distribution centre and obtains 
from it a new data key in two forms. One of these it can interpret using a KK 
which it holds in common with the distribution centre. The other it passes on 
to the bank B which itself can interpret this using another KK which it has in 
common with the same distribution centre. The scheme of messages used is shown 
in Figure 6.18. 

There is an optional request service initiation (RSI) from bank B to bank A, in 
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Fig. 6.18 Basic messages using n key distribution cmtre (CKD) 

case bank B wishes to stimulate bank A into carrying out this protocol. Normally, 
bank A would initiate the protocol with an RSI sent to the distribution centre. 
In this procedure, only the RSI messages use an error detection code, all the others 
employ a MAC. The RSI from bank A indicates the service required and the 
identity of the 'ultimate recipient' which is bank B. 

The service provided by the key distribution centre is the supply of one or two 
data keys and optionally an IV enciphered under a data key, the second one if 
there are two. Note that a key distribution centre does not supply key encryption 
keys. This contrasts with the key translation centre which is able to translate key 
encryption keys if a superior master key encryption key exists. 

The response to request (RTR) is returned by the distribution centre and contains 
the usual three fields identifying the message type, the originator and receiver 
and also a MAC using as key a data key or, if there are two, a key produced by 
their exclusive OR. In addition, the RTR includes the identity of bank B, the data 
key or keys in two forms, an optional IV and the date and time at which the data 
keys become effective. 

The key distribution centre maintains a counter which is incremented each time 
it uses the key encrypting key, either the one for bank A or the one for bank 
B. The two values of these counters (CTA and CTB) are sent in the message. 
Concerning the data key or keys, these are provided in two forms called KD and 
KSU, the first intended for bank A and the second for bank B. Each is notarized, 
that is to say the KK used is modified according to the source and destination 
of the key and it is also offset with the value of the counter CTA or CTB. 

Bank A receives the RTR, extracts the KD value or values from their notarized 
encipherment and verifies the MAC. It can then generate a MAC for the key 
service message which it sends to bank B containing the keys in the form KTU, 
together with the IV, date and time of effectiveness of the keys and the counter 
for bank B (CTB). Bank B can then extract the KD value and verify the 
authenticator, after which it returns the RSM. Both the KSM and the RSM contain 
the identity of the key distribution centre. Finally, bank A verifies the MAC 
received in the RSM. 

Key translation centre 

A more powerful facility is provided by the key translation service offered by a 
key translation centre (CKT). In this scheme, bank A generates the keys it needs 
and passes them to the translation centre for conversion to encipherment under 
the keys held in common between that centre and bank B. The message which 
initiates this procedure, request for service (RFS) contains the key values that will 
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Fig. 6.19 Basic messages using a key translation centre (CKT! 

eventually arrive at bank B, see Figure 6.19. As before, the whole procedure may 
optionally be initiated by bank B using an RSI message to prompt bank A into 
starting the procedure. Apart from the RSI, all the other four messages in this 
procedure are protected by authentication using a MAC based on a data key which 
is transmitted (in enciphered form) with the message for that purpose. Though 
the names of the messages are similar in these various procedures, the content 
is different according to the procedure in which they take part. The handling of 
the counters CTA and CTB is similar to that of the key distribution procedure, 
so also are the identifying data, such as the identity of bank B in RFS and RTR 
and the identity of the key translation centre in KSM and RSM. Effectively, each 
important message holds the identity of all three parties. 

The key translation centre translates either one KK or one or two data keys. 
It never translates keys of both types. Keys to be translated are sent enciphered 
under existing superior keys but not notarized. If a KK is sent for translation a 
data key is also sent, enciphered under this KK, but is not intended for translation, 
it is merely for calculation of the MAC values. 

The response, RTR, contains the translated keys, either a KK or a KD or a pair 
of KDs. They are notarized for transmission between the translation centre and 
bank B, and offset using the counter CTB. The value of CTA is sent in the RFS 
and returned in the RTR. Bank A receives the RTR and verifies its authenticator 
using the data key it originally sent. It then transmits the notarized keys to bank 
B, together with the CTB value received from the translation service. 

If a key encrypting key has been translated, new data keys are generated by 
bank A to include in the KSM, enciphered under the new KK. At least one 
such data key is needed to provide the means for authentication of the KSM and 
its response. Two data keys may be sent in the KSM and may subsequently be 
used between the two banks as working data keys. In addition, bank A may 
generate an IV and send this enciphered under a data key, the second key if there 
are two of them. Bank A also decides the effective date and time (EDK) for the 
new keys and includes that in the message. Bank B deciphers first the KK, if any, 
then the data key or keys before verifying the authenticator and returning the 
RSM, which contains only identifying data and a MAC. Finally bank A verifies 
the authenticator of the RSM. 

The full procedure for operation of the key translation centre includes error 
service messages (ESM) and error recovery service messages (ERS) which help 
to report and recover from loss of synchronism of the counters. As with the other 
two environments any one of the parties can send a disconnect service message 
(DSM) to terminate the operation of a specified key and receive a response to 
verify that this has happened. 
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Fig. 6.20 Using two key translation centres in tum 

Consecutive use of two key translation centres 

Suppose that bank A has a key relationship with translati0n centre CKTl. By key 
relationship we mean that the two parties share a key encryption key. Suppose 
also that CKT1 has a keying relationship with another key translation centre CKT2. 
Bank A wishes to communicate with bank B for which the normal key translation 
centre is CKT2. There is a scheme which enables bank A to communicate with 
bank B by using the procedure shown in Figure 6.19 twice over. The method is 
shown in Figure 6.20 in which, for convenience, bank A is shown twice. 

In the first stage, bank A uses the normal procedure with key translation centre 
1 to establish a key encrypting key in common with CKT2. Having done this, 
bank A then interacts with CKT2, and since CKT2 has a key in common with 
bank B, it is able to translate bank A's key for delivery in a KSM message to bank 
B. At the end of these two stages, banks A and B have a key encrypting key in 
common. They can then exchange data keys by the point-to-point procedure and 
use these data keys to protect their messages. 

It is clear that this principle could be extended to translate keys through a 
number of translation centres which are linked by mutual KK values. A group 
of translation centres could organize themselves to provide a comprehensive 
service in a number of ways, for example appointing one of them to translate 
keys between any of the others. These possibilities are not described in the 
published standard, which quotes the arrangement of Figure 6.20 as an application 
of the key translation procedure. 

This extension to more than one centre is not possible with the key distribution 
centres because they can distribute only data keys and therefore cannot establish 
a new KK relationship. 

Key notarization and offset 

Key notarization and offset are applied to any keys supplied by a key distribution 
centre and to the translated keys from a translation centre .. These keys are supplied 
under encipherment by a superior key and the notarization and offset procedures 
consist of modifying the superior key before using it for encipherment. 
Notarization means that the key is modified according to the source and 
destination of the message, offset means that the key is modified according to 
a counter value, which provides a sequence number for the successive keys 
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6.21 shows the calculation involved in notarization and offset. We 

begin with a key encrypting key of double length which has two parts, KI<l and 
KKr. The application to single-length KK will be described later. The identities 
of the source and destination of the key are given by double-length fields entitled 
TO and FM. The two halves of TO are called TOl and T02 and similarly the two 
halves of FM are called FMl and FM2. The figure shows how a combination of 
encipherment and exclusive OR is used to combine these values to form a double­
length value called the notary seal (NS). This is the quantity which is used to 
modify the key * KK before it is used for encipherment. 

The figure also shows the use of key offset, in which the counter value CT is 
combined by exclusive OR with each part of the notary seal before this is used 
to modify the double-length KK which is to be used for enciphering the key. The 
result of these operations is the double-length value * KN which is used in the 
triple encipherment process ede to encipher the key for transmission. Normally 
this transmitted key will be a data key, but it could be a key encrypting key 
enciphered by a master key encrypting key. A similar procedure can be used with 
single-length KK values employing the convention that KKr equals KKI. A single­
length notary seal value is generated by combining the 32-bit halves of the double­
length value as shown at the right of the figure. The subsequent operations are 
applied to a single-length value to generate a single-length modified key KN used 
for the encipherment of a transmitted key. 

KKr KKt 

~ ~ 

Single length KK• 

___ N'"~F"l _____ ~ 

CT-cr Off"t rCT KKI • KK' • KK 

KKr 

Fig. 6.21 Notarization and key offset 
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'Jc:Hc:leu purpose cipher and modes of are now an estab-
lished fact but key management is tailored to applications. The need 
for this adaption will become even clearer when we describe the special 
circumstances of point-of-sale EFT in chapter 10. For all kinds of applications, 
key management standards will become necessary and they will have some 
features in common and many points of divergence. Progress in this field still 
seems unclear. The international standard ISO 8732 includes some valuable 
concepts and notation but should not be taken as a point of departure for all future 
key management standards. 

There is great potential for the use of public key cryptography in key 
management. This technology is introduced in chapter 8 and the application of 
these asymmetric algorithms to digital signature is described in chapter 9. Both 
are valuable techniques for improving the security of key management. 
Standardization in their key management role has not begun but ISO 8732 
envisages that there will be, in due course, provision for the use of asymmetric 
algorithms for key distribution. The most immediate use is to employ public key 
cryptography to distribute keys for symmetric algorithms as typified by DES. The 
security requirements for the safe use of public key cryptography are described 
in chapter 8 and digital signatures, as described in chapter 9, provide a superior 
method of checking the integrity of key distribution messages and resolving 
disputes concerning messages sent and received. 

Key management in electronic funds transfer systems (EFT) has been developed 
both with symmetric algorithms and public key cryptography. Chapter 10 contains 
descriptions of key management of both kinds. 
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7.1. INTRODUCTION 

The security of a system often depends on identifying correctly the person at 
a terminal. A familiar example is a bank's 'Automatic Teller Machine' which gives 
cash to account holders that it can identify. Direct person-computer interaction 
is good for efficiency, but it opens possibilities for fraud by a masquerade - the 
adoption of a false identity. Access to computers and entry to buildings should 
be controlled according to the identity of the person, but like many human skills 
that we take for granted (such as language and vision) recognizing a person is 
surprisingly hard for a computer. 

Suppose that a bank has a million customers. If it is to recognize them by a 
personal identification number (PIN), that number must have at least six decimals 
and if instead it recognizes by a signature, the measurement of the signature must 
separate each person's signature from all the others. The bigger the population, 
the harder it is to make a positive identification. Fortunately for us, this is not 
the problem usually presented. We assume that the terminal user wants to be 
known. We can ask him his identity and it can be entered on a keyboard or from 
a card he carries. We can use this claimed identity to access a file giving the 
reference 'measures' of his signature or his reference PIN. If the given data match 
the reference, we accept him. Suppose he is an impostor who does not have the 
correct signature or password, then there is a small probability that he may be 
lucky, for example a four-digit password, well-chosen, makes this probability 
10-4• With the right precautions, this can be adequate because nobody would 
risk being caught for such a small chance of success. Nevertheless, the probability 
of a successful masquerade must be chosen according to the amount at stake -
an instant pay-off of £10 million is worth a 10-4 chance try if the risk of detec­
tion is small enough. The important characteristic of identity verification is that 
the precision of the method need not be increased as the population increases. 
It depends rather on the ratio of the potential illegal gain to the 'loss' value of 
being caught. Practical systems do not identify the individual but do verify the 
identity he claims to have. 

Methods of personal identity verification can be divided into four broad 
categories, though particular systems can contain elements of more than one 
category. These categories employ, (a) something known by the person, (b) 
something possessed by the person, (c) a physical characteristic of the person, 
(d) the result of an involuntary action of the person. 

A password and a passport are examples of categories (a) and (b). Categories 
(c) and (d) are not always distinguished - we can quote a fingerprint as an 
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7.2. IDENTITY VERIFICATION BY SOMETHING KNOWN 

Passwords 

The best-known example of identity verification by something known is the 
password. Passwords have been used very widely in identity verification in an 
enormous range of contexts, from Ali Baba' s opening of the magic cave, through 
military applications, to protocols for accessing computer systems. Much atten­
tion has been given to methods of generating and managing passwords. A stan­
dard for PIN management was published by ANSI in 1982.1 

We can divide passwords into several categories, (a) group passwords which 
are common to all users on a system, (b) passwords which are unique to individual 
users, (c) passwords which are not unique to individual users, but serve to con­
firm a claimed identity, (d) passwords which change every time a system is 
accessed. Each of these types of password has seen some use in our context. 

Group passwords are sometimes used as part of the log-on procedure for a ser­
vice being accessed from a terminal. However, being common to all users, they 
are likely to become known outside the circle for which they are intended. 
Disclosure usually happens through a breach of security such as writing the 
password on the wall by a terminat a regrettably widespread practice. In any 
system where more than the minimal security is needed, group passwords should 
be ruled out. 

Passwords unique to each user potentially provide a much higher level of 
security. If illegal access takes place, then a system log should be able to 
show under what password the access took place. Control of this kind can 
detect the use of a loaned password, disclosed by the user to some acquaintance. 
On the other hand, careless security in storing or handling a password may lead 
to its unintentional disclosure; this could also be said to be the fault of the person 
to whom the password has been allocated. Good security practice entails memoriz­
ing the password and not keeping a printed copy. If unique passwords are 
implemented, then a separate user identifier need not necessarily be used, though 
an added confirmation of identity can be generated. In a user population which 
is very large, as, for example, the users of a bank's automatic teller terminals, 
use of unique passwords is impracticable - such a password would have to be 
too long for easy memorizing. 

This implies a third kind of password which is becoming increasingly common 
- the non-unique password. Here a relatively short password, of, say, four 
decimal digits, is allocated to each user. Identification of the user depends on 
a much longer number which the user is not required to memorize - it may be 
held on the magnetic stripe of a card, for example. The fact that the same password 
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token, for in such a vvay that the off--line ter-
minal can interpret it whilst the user intruder) is too dif-
ficult; this implies some kind of encipherment. 

There is a fourth kind of password - one which changes every time the system 
is accessed. To operate such a system it is necessary to prepare a list of passwords 
and give a copy of the list to the user. At each access one password is used and 
then becomes invalid for future access. This prevents an intruder from acquiring 
a current password by tapping a communication line because the traffic on the 
line gives no indication whatsoever of the next acceptable password. Clearly the 
system is stronger than those systems which use the same password(s) repeatedly 
and is useful where the highest security is required. However, there are certain 
disadvantages; the user must protect his printed list of passwords and the 
password list requires storage and protection at the central installation. The 
amount of password material depends on the frequency of access. One-time 
passwords of this type are in use in the Society for Worldwide Interbank Finan­
cial Telecommunications (S.W.I.F.T.) network of the international banking com­
munity described in chapter 10. For greater security the S.W.I.F.T. password 
tabulations are prepared in two halves, so that each list contains only half 
passwords. The two halves are sent separately to users, reducing the chance of 
complete passwords being intercepted. 

It is of course necessary to design the password handling by the system in such 
a way that it is protected against disclosure. For this reason, any password that 
is transmitted from a terminal to a central installation should be protected during 
transit by encipherment, otherwise a passive line tap will suffice to betray it to 
an intruder. Equally, the response from the central installation to the terminal 
accepting the validity of the identity and password must be protected by encipher­
rnent. If this is not done, then the accepting response can be reorganized and 
reproduced on the line by an intruder with an active line tap; if the terminal were 
an ATM this would allow an intruder to defraud the system without actually 
knowing any password. Furthermore, some variability must be included in both 
request and reply (for example, serial number or time/date), otherwise a stan­
dard request or reply would lead to a standard enciphered format. All the intruder 
need then do would be to record the standard message and replay it whenever 
he chose; a replayed request would deceive the central system or a replayed reply 
would deceive the ATM. 

We have referred to lists of identities and passwords held at central installa­
tions. Such lists could easily become available to operational staff or systems pro­
grammers; on this account it is important not to store passwords in clear form. 
The usual solution to this problem is to encipher the passwords in some way; 
the original idea for using enciphered password lists is due to Needham, cited 
by Wilkes. 2 If the encipherment is carried out with an algorithm such as the Data 
Encryption Standard (DES), then the risk is transferred to disclosure of the 
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The f',Jeeclharn made use of a one-way 
this is a function is easy to in on2 but very difficult to 
invert. This of function is considered in detail in chapter 8. The Bell password 
protection system made a novel use of the DES algorithm as a one-way function 
in a programmed implementation. Instead of using a secret key to encipher the 
password list, the first eight characters of each individual password were used 
as a DES key to encipher a constant; the DES algorithm was iterated twenty-five 
times and the resulting 64-bit field repacked to become a string of eleven print­
able characters. The result of this operation was stored in the password list. The 
strength of this system was considered adequate until fast hardware implemen­
tations of the DES became available; it was feared that fast DES operation would 
allow exhaustive search for passwords, using the enciphered forms from the 
password list. For this reason the programmed algorithm was altered so that the 
internal E permutation (see chapter 3) became dependent on a random number 
chosen (and entered into the password file) at the time of registration of each 
password. Thus standard DES devices could no longer be used for a systematic 
attack on the password security. 

Figure 7.1 shows the flow of variables in password checking with a one-way 
function. 

The Bell study considers the time taken to search for a password. On the 
assumption that an intruder has the opportunity to program a system to try a 
sequence of passwords without being detected and thrown off the system, it is 
possible to predict how long it would take to test all possible passwords against 
a given identity. On a PDP11/70 it took 1.25 ms to encrypt and test each poten­
tial password and compare the result with the password file. For a sequence of 
four lower case letters the time taken to check all possible passwords was 10 min; 
for a four-character sequence selected from ninety-five printable characters the 
time was 28 h; for a sequence of five characters chosen from the set of sixty-two 
alphanumeric characters the time was 318 h. Evidently a password consisting of 
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Fig. 7.1 Password checking with a one-way function 



-- 191 --
MasterCard, Exh. 1004, p. 191

to select char;;,cter sequences that are 
sequences that consider to be memorable. The Bell casts a 
fascinating light upon user habits when no constraints were placed on password 
choice. Of 3 289 freely chosen passwords examined the character strings used 
were as follows: 15 were a single American Standard Code for Information Inter­
change (ASCII) character, 72 were two ASCII characters, 464 were three ASCII 
characters, 477 were four alphanumeric characters, 706 were five letters, all upper 
case or all lower case, and 605 were six letters, all lower case. 

They also discovered that favourite choices of passwords were dictionary words 
spelt backwards, first names, surnames, street names, city names, car registra­
tion numbers, room numbers, social security numbers, telephone numbers, etc.; 
to an intruder these are all worth testing before considering less-likely character 
sequences. Of the 3 289 passwords the Bell authors collected, 492 fell into one 
or other of these categories. Added to the list of short sequences already given, 
this meant that 2 831 passwords, or 86 per cent of the sample, were either too 
easily predictable or too easily searched for. 

It seems from this evidence that the practice of leaving choice of password to 
the user can result in the use of unsatisfactory passwords. An alternative is to 
have the choice of password made by the system. For this purpose a series of 
random characters can be generated, but the user will find it difficult to memorize 
totally random character streams, even if the string length is limited to eight 
characters, say. 

Memorability is known to be enhanced if the character stream can be chosen 
so as to be pronounceable, because users find syllables rriore easily memorable 
than characters. Therefore a generator that is constrained to obey certain built-in 
pronunciation rules may be able to produce passwords which are difficult to 
predict but not impossibly difficult to remember. For example, 'SCRAMBOO', 
'BRIGMERL', 'FLIGMATH' and 'LIDFRANG' are all nonsensical, but easily pro­
nounceable and therefore memorable. The total number of different eight-letter 
character strings is about 2.1 x 1011

. One particular password generation 
scheme4 produced a measure of the fraction of all possible eight-character strings 
that were pronounceable; this was found to be about 0.027, giving a total popula­
tion of pronounceable eight-letter strings as 5.54 x 109. A large commercial 
English dictionary would contain as many as 2.5 X 105 different words of all 
lengths, so the random number generator used in this mode produces vastly more 
potential passwords than are found in a dictionary; hence such passwords are 
far less predictable. 

The task of secure transmission of passwords from a central system to the users 
deserves attention. Unless the passwords are transported securely, their value 
is nullified. Encipherment is no solution because verifying the correct identity 
of the receiver presents the same problem that the password is intended to solve. 
It seems advisable to use some other means of transport such as the letter post 
for password transmission. The banks use this technique when sending PINs to 
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open. 
PnuP'In-r>P is with in transit, then this is ob;1ious to the intended reci­
pient, should he eventually receive it; any interference should lead to 
the rejection of the password. In banking practice the PIN is used in conjunction 
with a plastic card which is sent separately from the PIN; in order to receive a 
PIN the authorized user must acknowledge safe receipt of the card to the bank. 
An intruder must obtain both card and PIN before being able to secure any profit 
from his action. A modest degree of security is obtained by this technique, but 
it could not be applied where high security is called for. In the latter case it may 
be necessary to use a trusted courier service to transport passwords or hand them 
over personally to the user. 

There is a school of thought that believes that the password should not be known 
to the issuing organization. One system5 that allows a personal choice of 
password unknown to the system makes use of a one-way function of a com­
bination of personal account number and password; the password is chosen by 
the user on the occasion of a visit to the bank and keyed on a keyboard unseen 
by any bank officiat combined with the personal account number and then stored 
in the bank system. To identify the user at a subsequent visit to the bank, the 
same one-way function is used. The password is not known by the bank at any 
time; if the user forgets the password, then another personal visit to the bank 
is necessary in order to choose and activate a new password. Since the passworc). 
is not known to bank employees, manipulation of the account cannot take place 
by normal system channels, though this does not rule out improper access by 
privileged system operators, for example using the command to change to a new 
password. 

When the screen of a VDU requests 'Enter your password' and the user taps 
his password on the keys, he is taking a risk. The system has not yet authen­
ticated itself to the user so he might·be seeing a masquerade of the actual system, 
designed only for the purpose of capturing his password. This trick has been 
widely used as a student prank. When a guard holding a gun asks for your 
password you have no choice, it is an unequal situation. Perhaps this led to the 
habit of using one-way passwords in computer systems. But if each party needs 
to authenticate the other, there should be an exchange of passwords. 

When system and user exchange passwords there is a dilemma. One party gives 
his password before the other and he has no guarantee at that moment that the 
other party is not a masquerader. This problem can be overcome in a way that 
is illustrated in Figure 7.2. Here there are two parties, Ann and Bill, holding 
passwords P and Q respectively. Each knows the other's password for checking 
purposes. They do not directly exchange passwords but use a one-way function 
to reply to a challenge from the other party. For example Ann challenges Bill by 
sending the random variable x1 and Bill replies with a one-way function y1 of this 
value, namely 
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Y1 

does y1=0(Q',x1l? 

X I 

Y1 "O(Q, x1) 

find random x2 

y2 

does y 2 = 0 ( P ', X 2 ) ? 

Fig. 7.2 Two-way password checking 

The one-way function must be such that even when x1 and y1 are both known 
it is not possible in practice to determine Q. Although Ann cannot determine 
Q from this reply she can check her own value of Q against the value used by 
Bill in applying the same one-way function to the value x1 which she created. 
If this check is successful she accepts Bill as the genuine owner of the password Q. 

In a similar way Bill issues the challenge x2 and receives the response y2 in the 
form 

y2 = O(P, x2). 

This can also be checked so that Bill now has determined that Ann knows the 
password P. 

This method fails to be secure if the range of the passwords is insufficient. For 
example, in banking practice the personal identification number is often only four 
decimal digits long. The system described above using such a short password 
is very weak because the 10 000 possible values can be checked and, for one of 
them, the response will match the response received. The challenger can deter­
mine the password of the other party. 

It might seem that this problem can be overcome by padding the password with 
a random number and revealing the padding only after the challenges and 
responses have been exchanged. For example, let the 16-bit password Q be con­
catenated with a 40-bit random number R1 to form a 56-bit variable and then let 
Bill respond to the challenge x1 from Ann with 

Y1 = O(QIIR1, x1). 

In this expression, QIIR1 is the 56-bit concatenation of these two variables. 
Suppose that each party has carried out this challenge and response, then it 

remains for them to exchange the values of R1 and R2 so that they can verify the 
responses and thus authenticate each other. But the problem has not been solved 
because the dilemma 'Who should give the password first?' has been converted 
into the dilemma 'Who should first reveal the random padding?' As soon as one 
party reveals his random number, the other party can carry out a password search 
to find his password. 
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method a 
sequence of one number. It uses a one-way func-
tion y = O(x) and iterates this function times. We use the notation that 
O"(x) is the result of operating the one-way fm1cbion n times, beginning with 
the variable x. For example 

0\x) = O(O(O(x))). 

To establish the password sequence, Ann takes a random variable x and forms 
the value y0 to send to Bill: 

Yo = O"(x). 

This transfer need not be made in secret since the seed value x cannot be 
discovered. 

For the first password Ann sends the value 

y1 = on-\x). 

Bill can easily check this since O(y1) = y0 and he has already received y0 as the 
initializing value. 

The sequence of passwords continues in this way. The ith password is 

Yi = on-i(x). 

Each password can be checked by its relation with the previous password, which 
has itself been checked. The sequence terminates at the nth password which is 
x itself. 

If passwords are lost or an error occurs, provided that Bill has a recent authen­
tic password value P, a new offered password can be checked against this value 
by repeated operation with 0 to cover the gap between the offered password 
and P. In this way the system can re-synchronize after a failure such as might 
be caused by a line error. 

Questionnaires 

Another method of identity verification makes use of information known to the 
authorized user but unlikely to be known to others. On first introduction to the 
system the user is asked a series of questions relating to such apparently irrele­
vant things as name of school headmaster, colour of grandmother's eyes, name 
of favourite author or football team, etc., rather than to the more usual components 
of a curriculum vitae, such as place and date of birth, maiden name of wife, etc. 
Not all the questions need be answered, provided that enough are answered. 
The user might add his own questions and answers, if the system allows this 
feature. The selected items are such that the user is likely to find them easy to 
remember, but an intruder is likely to find them difficult to discover. If desired, 
the answers may be totally fictional, in which case an intruder may find them 
even more difficult to discover. On later visits to the system for access, the user 
is asked a selection of questions to which the system has stored the answers. 
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ling access to a automatic teller terminal, for example. Furthermore/ if the 
value protected in the computer by the access control system is great enough, 
the determined intruder can take the trouble to research the background of the 
authorized user sufficiently to provide the questionnaire answers. Therefore this 
technique is not likely to be used in systems requiring a high level of security. 

7.3. IDENTITY VERIFICATION BY A TOKEN 

In the widest sense1 access control by means of something possessed by the 
authorized user is very familiar. Nearly all of us possess keys to operate locks 
in cars1 filing cabinets1 house doors etc. Computer system access may be made 
dependent upon possession of a key which fits a lock installed in the computer 
terminal. The first action of a user is to enable the terminal using his key1 after 
which normal log-on procedure may follow. For adequate security the lock must 
be of a complicated (and therefore expensive) type/ preferably 1 Unpickable'; there 
must be a wide range of possible key variations (known in the locksmith trade 
as I differs') to fit locks of the particular class in use, so that the intruder cannot 
make use of a full set in his possession, trying each until one is found that will 
fit. Unfortunately/ if a key is lost or loaned to someone, it is usually fairly easy 
to copy it/ even though the lock mechanism may be complicated. Locksmiths have 
agreements that keys of particular types are not copied without proper authoriza­
tion, but even this will not deter the determined intruder. The copied key may 
be restored to its owner without the latter even being aware of its being missing. 
A lock and key is a useful way to restrict access to one or two selected people, 
such as those authorized to load cryptographic keys, but it is not of general use 
for access control. The problem of 'copyability' is typical of all token-based iden­
tity verification. 

Magnetic stripe cards 

A token which is becoming as common as the physical key is the plastic card 
with a magnetic stripe. Such cards are increasingly being used for identification 
purposes/ for automatic teller machine (ATM) and point-of-sale operations, for 
credit validation, for access control to secure sites etc. An International Organiza­
tion for Standardization (ISO) standard6 gives dimensions for card and stripe; 
other proposed standards define the use to which each of the recording tracks 
on the stripe shall be put, including the relevant data formats. The general card 
dimensions and layout are indicated in Figure 7.3. Amongst other data the user 
identity is stored on the magnetic stripe. Generally speaking the magnetic stripe 
card is used in conjunction with a type of password called a personal identifica­
tion number (PIN). In off-line systems the PIN must also be stored on the stripe 
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Fig. 7.3 Layout of magnetic-stripe cards 

in enciphered form. The recognition equipment reads the identity, deciphers the 
PIN and compares the latter with the PIN keyed in by the user. In on-line systems 
the reference PIN need not be carried on the card, but can be stored in the cen­
tral system; the claimed identity is notified to the central system together with 
the offered PIN; if the latter agrees with the reference PIN, then access is 
permitted. 

As we have remarked already in our discussion of passwords, the user must 
be educated to take proper care of his PIN. It is not unknown for users to write 
their PIN on the card itself in order not to forget it; this is clearly asking for trou­
ble. There are also slightly more subtle forms of attack. Cards often carry the user 
name imprinted so that an intruder can easily discover the user identity corre­
sponding to a stolen card. If the card is an ATM card, the enemy telephones the 
user, claims to be representing his bank and asks for the PIN 'in order that we 
may restore your card to our system'. If the card does not carry the user identity, 
the latter may still be discovered because the bank national number and user 
account numbers appear; these identifiers appear together with users' identity 
on cheques. 

Ideally, PINs should be memorized by their users and not written down in diary 
or notebook. However, this may be asking too much of the average user, especially 
if a large number of cards is carried. It is said that the average number of credit 
cards carried by American businessmen is eleven, each of which may have its 
distinct PIN. 

Unfortunately it is very easy to copy the usual kind of magnetic stripe card. 
Cards can be manufactured, without excessive difficulty, to resemble true cards 
sufficiently well as to deceive most people having to deal with them. One widely 
used method of hindering the production of forged embossed cards is the 
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described here. 

Watermark 

The Emidata/Malco system7 establishes a permanent, non-erasable, magnetic 
encoding in the structure of the tape. The permanent recording is made during 
the manufacture of the tape by exposing it to a sequence of magnetic fields whilst 
the magnetic particles (held in suspension in a resinous lacquer) are still wet. The 
particles in most tapes (for example gamma ferric oxide) are in the form of long 
thin needles (acicular); to produce the watermark pattern the particles are first 
aligned by application of a steady magnetic field at 45° to the longitudinal axis 
of the tape. A pattern of current pulses is then applied to a special recording head 
as the tape passes beneath it; when the current is present the particle orientation 
is changed to the other 45° orientation. The tape then passes through a drier and 
the orientation of the acicular particles is fixed permanently. Figure 7.4 shows 
the arrangement of particles. Emidata use the trade name /Watermark/ for tape 
prepared in this way. 

To check the permanent record on a stripe with this structure a special reader 
is required; in this reader the tape is exposed first to a constant magnetic field 
and then the fixed recording is read by a head suicc.bly oriented. Because 
the tape is first exposed to the constant field before reading1 this operation 
is restricted to track 0 of the stripe/ a track which is not present on most 
current magnetic stripes. On tracks 1 to 3 recording and reading is carried out 
by heads with normal orientation; the normal recording and reading is not affected 
by the presence of the underlying structure in the magnetic tape. It is, therefore, 
possible to read a permanent pattern of ones and zeros from track 0 which is not 
alterable by a forger; this recording pattern can be used to provide valid iden­
tification of the stripe and therefore of the card. It would be virtually impossible 
for a forger to reconstruct the underlying recording in such a way as to deceive 
a Watermark reader; any attempt to record the 45° pattern on normal tape would 
be frustrated by the initial exposure of track 0 of the tape to the constant field 
in the Watermark reader. The layout of the various tracks is shown in Figure 7.5. 

The watermark contains 50 to 100 bits of data which are fixed and it is not easy 
to code these to suit the user of each card. In many cases, random numbers are 

Conventional Magnetics Watermark Magnetics 

Fig. 7.4 Arrangement of 'Watermark' particles 
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used. If W is the watermark number and D the data on tracks 1 and 3 to be pro­
tected, an enciphered check field, C = Ek(W, D) can be stored on the magnetic 
stripe as well as D. Thus the reader can verify this relationship if the secret key, 
k, is used in its checking device. An enemy cannot compute C and therefore can­
not use one card to hold another's data, since their W values are different. The 
data D can be changed in a device where k is available by altering C to match 
the new data, but generally it is fixed data that are protected, such as the account 
number and PIN validation data. It is a weakness that k must be available at all 
places where the watermark is checked (the checking need not be done at the 
terminal, however, if a link to a central place is available). The use of public key 
ciphers (see chapter 8) makes it possible to check using only non-secret data, but 
increases the data storage requirement a great deal. 

The whole strength of the system depends upon the difficulty faced by a forger 
in counterfeiting watermarked tape. The manufacturing process is such that a 
forger would find it very difficult to do this, since the process requires significant 
capital investment and unique technical skills. 

Sandwich tape 

An alternative to Watermark tape is the tape sandwich in which low- and high­
coercivity recording media are bonded together with the low-coercivity tape 
nearest the recording heads. In order to write on such a tape so that the record 
is made in both layers a head is required which will produce a high-intensity field. 
In the tape reader, the tape first passes through an erase field such that any record­
ing in the low-coercivity layer is removed, but the recording in the high-coercivity 
layer is not disturbed. The 'permanent' recording is then read in the usual way. 
Figure 7.6 illustrates the structure of the tape and the nature of the recording. 

Security of a system using sandwich tape is based on two premises; first, if 
a forger uses ordinary tape in the manufacture of a forged card, this will be 
frustrated by exposure of the card to the erase field in the reader; second, if a 
forger seeks to use the sandwich tape on a stolen card and make a recording of 
his own, he will find it difficult to create the high-intensity field required for writing 
into the high-coercivity layer. There is no doubt that use of ordinary magnetic 
tape is frustrated by this technique, but it seems that high-intensity recording 
heads might not be too difficult to obtain. There is, therefore, some doubt whether 
the sandwich tape provides an adequate solution to the problem of making the 
recordings on plastic cards unforgeable. 
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A recent development is the 'active' or 'smart' card, in which microprocessor 
or store chips are embedded in the plastic card. This enables the card to extend 
its storage capacity beyond what is possible on a magnetic stripe (about 250 bytes) 
and to engage in some data pro.cessing. The problem until recently has been the 
difficulty of introduction of the chip into the card. It has been seen as a require­
ment that cards of this type shall be of the same dimensions as the standard card 
with magnetic stripe (8.57 em x 5.40 em X 0.76 mm); it is also desirable that the 
chip card shall be as durable as the standard card. Developments in chip 
technology have now advanced to the point where the chip is small enough to 
fit into the required space, thickness being the critical dimension; new methods 
of mounting and connecting to the chip allow sufficient flexibility. Contacts to 
the circuitry are via plated areas on the card surface; power supply will almost 
certainly be applied via this route so that the card is active when it is in a ter­
minal device. 

At present the type of chip inserted in a card can be a processor with about 
8 Kbytes of store in electrically alterable ROM; on the other hand, other cards 
contain only memory. This of necessity limits the kind of operation that may be 
carried out. 

Information stored on the card may be semi-permanent, stored in ROM, in 
which case it may have the same sort of function as that usually carried at pre­
sent on magnetic stripes - user identification, etc. Illegal alteration of the ROM 
contents would almost certainly be much more difficult than alteration of a 
magnetic stripe; therefore, security of such a card is enhanced. Such a card can 
play a role in identity verification similar to that which we have already outlined, 
though the additional security and amount of storage might allow more­
sophisticated systems. 

One application of a card with stored data is for viewing pay-television. If the 
television transmission is sent out enciphered, such that a decipherment key is 
required in order to make it usable, then the decipherment key, changed every 
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If the card has capability, this can be invoked in an identity 
verification procedure. The secret key is held on the card and each card issued 
has a different key according to the user to whom it has been issued. Identity 
verification can then be made to depend on the card making the correct response 
to a challenge issued by the verification terminal; the terminal issues a test pat­
tern which the card encrypts and returns to the terminal; the latter checks the 
response against the encipherment key which should be contained in the card, 
correct response implying presence of the right key. This system has the advan­
tage that the response depends on the challenge and, therefore, an attempt by 
a potential intruder to tap the channel between card and verification terminal 
would yield little of use in making an attack upon the system. 

If a system can be devised in which sufficient rewritable store can be established 
on a plastic card, then many applications become possible. Bank customers may 
be supplied with cards which allow them to make purchases in shops at point­
of-sale terminals; the card is initially 'charged' at the bank with value (debited 
to the customer's account) which is decremented at the point-of-sale terminal, 
the amount of the decrement being transferred as a credit to a corresponding 
data store held by the retailer. When the customer's card is exhausted, it 
is returned to the bank for 're-charging'. The retailer periodically takes his stored 
data to the bank for credit to his account. This type of system is described in 
chapter 10. 

The physical security of data on a 'smart card' is improved by storing all the 
sensitive data on the same chip that holds the processing and encipherment 
facilities. Active or passive attack can be made difficult, but there is not yet 
available an independent assessment of the level of physical security obtained. 
The thin plastic card is not the only format for an 'intelligent token' containing 
storage or processing chips. Tokens could be physically similar to a small calculator 
or like a physical key that turns in a 'lock' which is really a reading terminal. 
It is possible that greater physical security can be provided in enclosures a little 
larger than a card. 

Another development uses plastic cards which contain stores which are read 
once and then erased. One such storage medium is the hologram. The kind of 
application where a system of this type may be used is the purchase of a card 
with a set initial value, to be used against the provision of a service, for example, 
transport, telephone or pay-television; a recent example is the 'Cardphone' ser­
vice of British Telecom, which uses a holographic medium. As the service is used, 
so the storage on the card is progressively read and erased, bit by bit; finally the 
card has no more value. When the card is exhausted it is thrown away and another 
card purchased. To the supplier of the service it is important that the erasure 
of the card value is permanent, otherwise illegal 'refreshment' of the card may 
take place with loss of revenue. It is also important that it is excessively difficult 




