
-- 1 --

MasterCard, Exh. 1004, p. 1

Second Edition

An Introduction to Data Security
in Teleprocessing and

Electronic Funds Transfer

-- 2 --
MasterCard, Exh. 1004, p. 2

-- 3 --
MasterCard, Exh. 1004, p. 3

Editorial Advisory Board

Professor B. Evans
University of Surrey

Professor A. Danthine
Universite de Liege

Satellite Communications Systems
G. Maral and M. Bousquet

Professor G. Pujolle
Universite Pierre et Marie Curie

Professor 0. Spaniol
Technical University of Aachen

Integrated Digital Communications Networks (Volumes 1 and 2)
G. Pujolle, D. Seret, D. Dromard and E. Horlait

Security for Computer Networks, Second Edition
D.W. Davies and W.L. Price

-- 4 --
MasterCard, Exh. 1004, p. 4

to Data Security
in Teleprocessing and

Electronic Funds Transfer

Second Edition

D.W. Davies
Data Security Consultant

and

W.L. Price
National Physical Laboratory, Teddington, Middlesex

JOHN WILEY & SONS
Chichester · New York · Brisbane · Toronto · Singapore

-- 5 --
MasterCard, Exh. 1004, p. 5

J!Viley Edi!:azial ,,QfJic=s

Wiley & Sons Ltd, Baf£ins Lane, Chichester,
Sussex P019 lUD, England

John Wiley & Sons, Inc., 605 Third Avenue,
New York, NY 10158-0012, USA

Jacaranda Wiley Ltd, G.P.O. Box 859, Brisbane,
Queensland 4001, Australia

John Wiley & Sons (Canada) Ltd, 22 Worcester Road,
Rexdale, Ontario M9W 111, Canada

John Wiley & Sons (SEA) Pte Ltd, 37 Jalan Pemimpin #05-04,
Block B, Union Industrial Building, Singapore 2057

Copyright © 1984, 1989 by John Wiley & Sons Ltd.

All rights reserved.

No part of this book may be reproduced by any means,
or transmitted, or translated into a machine language
without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data:

Davies, Donald Watts.
Security for computer networks : an introduction to data security

in teleprocessing and electronic funds transfer I D.W. Davies and
W.L. Price. -2nd ed.

p. em. - (Wiley series in communication and distributed
systems)

Includes bibliographies and index.
ISBN 0 471 92137 8
1. Data transmission systems-Security measures.

II. Title. III. Series.
TK5105.D43 1989
005.8-dc20

British Library Cataloguing in Publication Data:

Davies, D. W. (Donald Watts, 1924-)
Security for computer networks : an introduction to
data security in teleprocessing and electronic funds
transfer. - 2nd ed- (Wiley series in communications
and distributed systems)

I. Price, W. L.

1. Computer systems. Security measures. Cryptograms
I. Title II. Price, W. L.
005.8'2

ISBN 0 471 92137 8

Typeset by MHL Typesetting Ltd, Coventry
Printed and bound in Great Britain by Courier International, Tiptree, Essex

89-14760
CIP

-- 6 --
MasterCard, Exh. 1004, p. 6

-- 7 --
MasterCard, Exh. 1004, p. 7

Acronym List XV

Preface to the First Edition xvii

Preface to the Second Edition xix

Chapter 1 DATA SECURITY . 1
1.1. The need for data security . 1
1.2. Assessment of security . 3

Software integrity . 5
Security and people . 7

1.3. The effects of technology . 7
1.4. The notation for enciphetment , . 8

The need for key distribution and management . 11
1.5. Some uses for encipherment . 11
1.6. General properties of cipher functions . 12

Chapter 2 CIPHERS AND THEIR PROPERTIES . 15
2.1. Introduction . 15
2.2. Substitution ciphers . 18

The Caesar cipher . 18
Monoalphabetic substitution . 19
Polyalphabetic substitution . 22
The Vigenere cipher . 23

2.3. Transposition ciphers . 25
Simple transposition . 26
The Nihilist cipher . 27

2.4. Product ciphers . 28
2.5. Cipher machines . 28

The Jefferson cylinder . 28
The Wheatstone disc . 29
Rotor machines, the Enigma . 30
Printing cipher machines ._. 32
Modern cipher machines . 32
Substitution in modern ciphers . 33
Keyed substitution . 33
Transposition in modern ciphers . 34

2.6. Attacks against enciphered data . 34
Classes of attack . 35

2.7. The stream cipher . 37
The Vernam cipher . 37
Pseudo-random key streams . 39

-- 8 --
MasterCard, Exh. 1004, p. 8

TI-12

2. g. fileas-._~re:neni: of
Sh::tnr;.,:::>n' s i:heory o£ s2cr2cy

Lirnits of comp~-ltation ~1
An application of Shannon's th2ory L12

2.10. Threats against a secure system L12
Active line taps . 43
Methods of protection . 44

2.11. The encipherment key . 45
References . 46

Chapter 3 THE DATA ENCRYPTION STANDARD 47
3.1. History of the DES . 47

The role of NBS . 48
The IBM Lucifer cipher . 49
The process of establishing the DES . 51

3.2. The algorithm of the Data Encryption Standard . 52
The ladder diagram . 58
An algebraic representation . 60

3.3. The effect of the DES algorithm on data . 60
3.4. Known regularities in the DES algorithm . 61

Complementation . 61
The weak keys . 65
The semi-weak keys . 65
Hamiltonian cycles in the DES . 66

3.5. Argument over the security of the DES . 69
Exhaustive search for a DES key . 69
Multiple DES encipherment . 71
Trapdoors in the DES? . 72
Senate investigation of the DES . 72

3.6. Recent academic studies of the DES and its properties . 73
3.7. Implementations of the Data Encryption Standard . 75
3.8. The IBM cryptographic scheme . 75
3.9. Current status of the DES . 76
References 77

Chapter 4 USING A BLOCK CIPHER IN PRACTICE 79
4.1. Methods for using a block cipher . 79

The limitations of the electronic codebook mode . SO
4.2. Cipher block chaining . 81

The first and last blocks . 83
Transmission errors in CBC encipherment . 85
Choice of the initializing variable . 86

4.3. Cipher feedback . 87
Error extension in cipher feedback ·. 89
Initializing with CFB . 90
Encipherment of an arbitrary character set . 90

4.4. Output feedback . 93
Key stream repetition . 94

4.5. Standard and non-standard methods of operation . 96
4.6. Security services in Open Systems Interconnection . 98

-- 9 --
MasterCard, Exh. 1004, p. 9

=._in:k-by-linl~ enciph2rrn2~-rt

m:
101
102

End-to-end encipherment 104
The key distribution problem fm end-to-end encipherment 106
Node-by-node encipherment . 106
A best place for encipherment in network ai·chitecture? 107

References . 107

Chapter 5 AUTHENTICATION AND INTEGRITY 109
5.1. Introduction . 109
5.2. Protection against errors in data preparation . 111
5.3. Protection against accidental errors in data transmission 112

Cyclic redundancy checks . 112
5.4. Data integrity using secret parameters . 113
5.5. Requirements of an authenticator algorithm . 115

The Decimal Shift and Add algorithm : 116
Message Authenticator Algorithm (MAA) . 119
Authentication methods using the standard 'modes of operation' 121

5.6. Message integrity by encipherment . 122
Choice of the plaintext sum check method for authentication : 123
Encipherment or authentication? . 124
Authentication without a secret key . 125

5.7. The problem of replay . 126
Use of a message sequence number . 126
The use of random numbers for entity authentication 128
The use of date and time stamps . 129
Integrity of stored data . 130

5.8. The problem of disputes . 131
References . 132

Chapter 6 KEY MANAGEMENT 133
6.1. Introduction . 133
6.2. Key generation . 134

Random bit generators . 134
Pseudo-random number generators . 135

6.3. Terminal and session keys . 137
Routes for distribution of session keys . 138
Session key distribution protocol . 139
Authentication at the key acquisition phase . 140
Authentication at the key transfer phase . 141
Distribution of terminal keys . 142

6.4. The IBM key management scheme . 143
Physical security requirements . 144
The key hierarchy . 145
The encipherment and decipherment of data at the host 146
Generation and distribution of a session key . 147
Generation and distribution of the terminal key . 149
The principles of file security in the IBM key management scheme 150
Generating and retrieving a file key . 151

-- 10 --
MasterCard, Exh. 1004, p. 10

tagged keys 156

Extending the kel hierarchy 15'7
6.6. Key rnanagement standard for wholesale banking 158

The key hierarchy 159
Encipherment and decipherment with double length keys 160
Key distribution environments and messages . 161
Point-to-point distribution of keys . 162
Key distribution centre . 163
Key translation centre . 164
Consecutive use of two key translation centres . 166
Key notarization and offset . 166

6.7. Alternatives for key management . 168
References . 168

Chapter 7 IDENTITY VERIFICATION . 169
7.1. Introduction . 169
7.2. Identity verification by something known . 170

Passwords . 170
Variable passwords based on a one-way function . 176
Questionnaires . 176

7.3. Identity verification by a token . 177
Magnetic stripe cards . 177
Watermark tape . 179
Sandwich tape . 180
Active cards . 181
Authentication by calculator . 183

7.4. Identity verification by personal characteristics . 186
Machine recognition . 186
System tolerance . 187

7.5. Handwritten signature verification . 188
Techniques for recording pen movement . 189
Use of signature verification . 190

7.6. Fingerprint verification . 190
Machine recognition of fingerprints . 191

7.7. Voice verification . 192
7.8. Recognition of retinal patterns . 193
7.9. The verification process . 194

Introduction . 194
194
195

... Verification
Tradeoffs ...

7.10. Assessment of identity verification techniques . 198
The Mitre evaluation studies . 198

199
Voice ...
Signature . 200
Fingerprints . 201
Comparison of systems . 202

7.11. Performance of other identity verification devices . 203
Speaker verification . 203
Signature verification . 204

-- 11 --
MasterCard, Exh. 1004, p. 11

Pro{ile ve~-iii~ation

'7 .12. S2lection of an iclentit:,/ v2ri£icc"tion systen1
Re£erenc2s

8 PUBLIC KEY CIPHEF.S

206
207

209
8.1. The principle of public key encipherment 209

Access control with an asymmetric cipher 212
Constructing a public key system . 212
One-way functions revisited . 213
Number theory and finite arithmetic . 213

8.2. The exponential function and key distribution . 214
The exponential as a one-way function . 217
The complexity of the logarithm . 218
Key distribution . 219
Authentication and transparency . 222

8.3. The power function . 222
Encipherment without key transport . 224

8.4. The Rivest, Shamir and Adleman public key cipher . 226
An attack by iteration and a defence . 228
Practical aspects of the RSA cipher . 230

8.5. The trapdoor knapsack . 235
Practical aspects of the trapdoor knapsack . 238

8.6. A cipher based on error-correcting codes . 240
8.7. The registry of public keys . 242
8.8. Complexity theory and cryptography . 243

The limitations of complexity theory for cryptography 244
8.9. Appendix: Finite arithmetic . 245

Counting in modulo m arithmetic . 246
Addition . 246
Subtraction . 246
Multiplication . 247
Division . 248
The Euclidean algorithm . 248
Calculation of the reciprocal'. 249

References . 250

Chapter 9 DIGITAL SIGNATURES . 252
9.1. The problem of disputes . 252
9.2. Digital signature using a public key cipher . 253

Signature and encipherment combined . 256
Signature using the RSA cipher . 256
The asymmetric use of DES as a signature substitute 259

9.3. Separation of the signature from the message . 260
Falsifying a signed message by the 'Birthday' methci'd 262
A one-way function for signature or authentication . 264

9.4. The Fiat-Shamir protocols for identification and signature 265
Mathematical basis of Fiat-Shamir protocols . 266
The basic identification scheme . 266
Fiat-Shamir signature scheme . 269

9.5. Signatures employing a symmetric cipher . 271

-- 12 --
MasterCard, Exh. 1004, p. 12

P..,.:rbitrated sig:-~:::_Cures

9.6. apl:;lication o£ dig:.t?1l ck;cci·•c~·oo

Revocation o£ signatures
9.7. Appendix: The Birthday
References

Chapter 10 ELECTRONIC FUNDS TRANSFER AND THE
INTELLIGENT TOKEN

10.1. Introduction ...
10.2. Established payment mechanisms

The bank cheque ... · · · . · · ·
Credit transfer ... · · · · · · ·
Summary of the properties of payment methods

10.3. Inter-bank payments .. .
The Society for Worldwide Inter-bank Financial Telecommunication S.C.
Message format standards
Security in the S.W.I.F.T. system
The Clearing Houses Automated Payments System

10.4. Automatic teller machines
On-line and off-line operation
PIN management
Algorithmic PIN checking
The dialogue for an on-line ATM
Shared ATM systems
Checking the PIN with an authentication parameter
Public key cryptography in a shared A TM system

10.5. Point-of-sale payments .. .
The transaction key method
Derived unique key per transaction method
An improvement to the derived key method
EFT-POS with public key cryptography
Off-line point-of-sale terminals and smart cards
Physical security requirements of the intelligent token
PIN checking in an intelligent token

10.6. Payments by signed messages
Point-of-sale payments by electronic cheque
A development of the intelligent token

10.7. Access control by intelligent tokens
Access control for centralized and distributed information services

10.8. Negotiable documents
A general-purpose negotiable document
Protection of negotiable documents against theft

References .. .

Chapter 11 DATA SECURITY STANDARDS
11.1. Introduction

275
277
279
281

282
282
284
285
286
287
288
289
289
293
294
297
298
300
301
303
305
309
310
311
314
318
321
321
324
325
325
328
330
331
332
333
335
336
338
339

340
340

The standards authorities . 341
11.2. Standardization related to the Data Encryption Standard 344

Federal Standard 1027 - General security requirements for equipment
using the DES : . 346

A register of cryptographic algorithms . 347

-- 13 --
MasterCard, Exh. 1004, p. 13

oi
er;•:':)her;:':l.,:nc at ::h.'2 phys ':al lay=_;_·

Signalling the sta.rt of l::ransE'l.ission
Treatrtler.t o£ the break signal
The option of bypass control
Characteristics o£ enciphern1.ent in the layer

11.5. Peer entity authentication .. .
11.6. Standards for data security in ban._king
11.7. Postscript .. .
References .. .

Glossary ..

Index ..

352
354
355
355
356
358
358
359

360

372

-- 14 --
MasterCard, Exh. 1004, p. 14

ABA
ANSI
AP
ASCII
ATM
BACS
BSC
CBC
CCITT
CFB
CHAPS
CHIPS
CLCB
CRC
DCE
DEA
DEE
DES
DK
DMA
DSA
DTE
EAR OM
ECB
EDC
EFT
FAR
FIPS
HDLC
IPR
ISO
ITAR
IV
KGM
KK
KKM
KLM
KTM

American Bankers Association
American National Standards Institute
authentication parameter
American Standard Code for Information Interchange
automatic teller machine
Bankers' Automated Clearing Services
binary synchronous communication
cipher block chaining
International Telegraph and Telephone Consultative Committee
cipher feedback
Clearing Houses Automated Payments System
Clearing Houses Inter-bank Payments System
Committee of London Clearing Bankers
cyclic redundancy check
data circuit terminating equipment
Data Encryption Algorithm
data encryption equipment
Data Encryption Standard
data key
direct memory access
decimal shift and add
data terminal equipment
electrically alterable read-only memory
electronic code book
error detection code
electronic funds transfer
false alarm rate
Federal Information Processing Standard
high level data link control
impostor pass rate
International Organization for Standardization
International Traffic in Arms Regulations
initializing variable
key generation module
key encrypting key
master (key encrypting) key
key loader module
key transport module

-- 15 --
MasterCard, Exh. 1004, p. 15

lcr:n

},;lAC

1'!l.AR
MDC
i\TBS
NIST
NFL
NSA
NSM
OFB
OSI
OWF
PCM
PIN
PKC
p-MOS
PROM
PSS
PVV
RAM
ROM
RSA
SDLC
SID
SNA
S.W.I.F.T.
TRM
TTL
XOR

IVlAC residue:'
nEmipu1atiOJ1irno,:::li£icatic'n detection code
National Bureau of Standards
National Institute of Standards and Technology
National Physical Laboratory
National Security Agency
network security module
output feedback
Open Systems Interconnection
one-way function
pulse code modulation
personal identification number
public key cryptosystem
p-channel metal oxide semiconductor
programmable read-only memory
Packet Switchstream
PIN verification value
random access memory
read-only memory
Rivest, Shamir and Adleman (PKC)
synchronous data link control
S.W.I.F.T. interface device
systems network architecture
Society for World-wide Inter-bank Financial Telecommunications

tamper resistant module
transistor-transistor logic
exclusive-OR

-- 16 --
MasterCard, Exh. 1004, p. 16

Blackmail, fraud and the stealing of commercial secrets are examples of crimes
using information as the medium. There was a time, not many years ago, when
it was necessary to alter the account books in order to cover up a fraud; now
the same effect can sometimes be produced at a computer terminal. The
widespread introduction of information technology into business inevitably leads
to its misuse for crime, which data security aims to prevent.

Essentially, security means controlling access to data, depriving the blackmailer
of his information, protecting commercial secrets and preventing the falsifying
of records. The need to control access in computers first became serious when
'time~sharing' began to operate. Undergraduates regarded the security features
of these systems as a challenge and soon found that the existing methods of con­
trol were defective. This taught designers a useful lesson: that data security needs
care and attention.

In 1983 the film War Games, and the publicity it created, introduced people to
a new and surprising cult, the 'computer hackers' who spend their time obsess­
ively trying to break into computer systems. Their devotion to a basically tedious
pastime is extraordinary, and it shows up one advantage of an amateur attacker
over the professional defenders. The attacker's time is apparently unlimited and
uncosted; the defender's time is expensive. The systems that hackers have broken
into were protected only by weak password schemes, but the hackers' success
and the excitement it generated prepares the way for more advanced attacks when
simple hacking fails to satisfy them. A special feature of illegal attacks on com­
puter systems is that there is no tradition of associated guilt-feelings. The law,
in most countries, has not begun to define the new kinds of crime. With no
likelihood of punishment, the probing of the defences of computer systems is
considered to be a game. It could become the tool of organized crime.

Cryptography is a long-established way to keep information secret. Now that
the majority of information systems transport data from place to place (as well
as processing and storing it) the place of cryptography in data security is assured.
It is beginning to be accepted that cryptography is the basic tool for achieving
data security. This book is about the use of cryptography to protect data in
teleprocessing systems, not only keeping data secret but also authenticating it,
preventing alteration and proving its origin. These go beyond the classical uses
of cryptography. Some of the main concerns of data security in banking and other
commercial information systms are those of authentication.

After the introduction in Chapter 1, ciphers are described in Chapter 2 and then
the Data Encryption Standard in Chapter 3. This standard is used as one of the
principal tools of data security in what follows. The first step is to define a number

-- 17 --
MasterCard, Exh. 1004, p. 17

to control
Chapter 7.

A breakthrough in encipherment technique occurred in 1976 with the discovery
of the 'public key ciphers' by Diffie and Hellman. The properties of these ciphers
make them specially useful for access control and they have unique virtues for
key distribution and for a strong form of authentication called a 'digital signature'.
Chapter 8 describes public key ciphers and Chapter 9 describes digital signatures.

The largest commercial use of cryptography and other data security techniques
is in banking and the payment systems operated by banks. Chapter 10 describes
how data security measures can be applied to 'electronic funds transfer' in its
various forms, leading us to some new concepts for future payment systems.

Finally, the wide use of these methods will only be possible if systems can in­
terwork and a range of compatible equipment can be manufactured. Chapter 11
describes the progress made towards standards for data security.

We have tried to make the approach pragmatic, illustrating the principles with
examples. At present the subject is essentially pragmatic in that only the insecurity
of systems can be demonstrated, by breaking them, but their security is
demonstrated only by the absence of demonstrated flaws.

The information in this book represents the best practice known to us but it
cannot carry any guarantee of security- nothing can. When a cipher, or another
part of a security scheme, resists attacks for a long time, this gives the users con­
fidence, but there is no absolute or provable basis for that confidence. The possibili­
ty of provable security (in some sense yet to be defined) still exists but, with a
few exceptions, proofs elude us. In this respect there has been no big change
as a result of new technology - the security of ciphers has always been tenuous
and this is still true of nearly all aspects of data security.

Mathematical notation is often the clearest way to describe unambiguously how
a cipher operates, or how it is used. Some ciphers, notably public key ciphers,
cannot be described in any other way. Whenever possible in this book, intuitive
arguments have been given as well. We aim in this book to help those people
who will actually put security schemes into practice. More formal and complete
treatments will sometimes be found in the original papers listed in references at
the end of each chapter.

-- 18 --
MasterCard, Exh. 1004, p. 18

without
a set of for authentication, associ2,ted with the names of Fiat
are described in this new edition.

Because this book is mainly concerned with the application of new technology
to information security and deals with basic methods rather than specific
implementations, the ideas it describes are remarkably stable.

The second edition has allowed us to make worthwhiie changes and additions
to the text while the main shape of the book and the concepts it introduces have
remained unchanged.

Finally, we have received no solutions for the cryptogram given at the end of
the preface to the first edition and reproduced here.

ZSYTT IFXVJ NVWRS OHTTR ESUIJ VGEJB DDO.A TZMKV
QUYVS QTMVX NGDVX .A WIP TKVTZ KMMSG DVITF NKXRF
BDYDL HHRDK DNTQE AKJDK HGFST DU.MO CCNXY

-- 19 --
MasterCard, Exh. 1004, p. 19

n of new technology
rather than specific
tble.
wnges and additions
1ts it introduces have

n given at the end of

DDO.A TZMKV
DVITF NKXRF
CCNXY

1.1. THE NEED FOR DATA SECURITY

Each major advance in information technology changes our ideas about data
security. Consider the use of written mesages to replace those carried· in the
memory of a messenger. Written messages are less prone to error, and since the
courier need not know the message, but can destroy it in an emergency, there
could be better security. Yet written messages can be concrete evidence of con­
spiracy or spying, whereas a carrier of a spoken message might escape
unsuspected. The need to hide the content of a written message must therefore
have been realized very soon, and there is evidence that codes and ciphers
appeared almost with the beginning of writing.

When telegraphy began, Wheatstone and others thought that ciphers would
be needed by the senders of telegrams and there was a flurry of new ideas for
cryptography. But the need did not show itself. Cryptography has traditionally
been used by kings, popes, armies, lovers and diarists and has moved into
business and commerce only recently. Now that information is processed, stored
and transmitted in large quantity, the need for data security is greater and more
varied. We shall be dealing with the secrecy of transmitted information, using
encipherment, and also with authentication of information, verifying the iden­
tity of people, preventing the stealing of stored information and controlling access
to both data and software. Such varied data security problems arise from the more
recent advances in information technology - large stores and microprocessors
which give us processing wherever we need it. The microprocessor and the floppy
disc create a new and urgent problem of safeguarding software. The requirements
summed up by the phrase 'data security' do not stay the same; they change as
the technology changes.

Nowadays, almost everything we do with information is assisted by some new
invention. The fundamental operations of storage, processing and transmission
seem to be undergoing a relentless and rapid improvement, so fast that the
application of the technology cannot keep up with the rate of advance. The intro­
duction of teleprocessing into all aspects of business, commerce and industry
brings new data security problems to the fore. Undoubtedly, electronic banking
has experienced the first impact, with spectacular frauds in the shape of falsified
money transfers. Banks have been the first to apply modern methods to make
their systems secure. The rest of commerce and industry is well behind banking
in its attention to data security.

In order to avoid repeating the same phrases we will use conventional names
for the actors in the security drama. The bad guys who are trying to do something

-- 20 --
MasterCard, Exh. 1004, p. 20

operanng systerns,. beca:..1se
o£ the effort 'chat went

into 'phone freaking' was motivated in this way.]\Tone the it is potentially
dangerous because the techniques in innocent attacks can be exploited
by criminals.

New methods of payment and transfer of funds using communication networks
and intelligent tokens are developing fast and are usually called 'electronic funds
transfer'. These are an obvious target for fraudulent manipulation of data. As
electronic message systems of all kinds come into wider use, carrying data which
has already been captured in the 'electronic office', there must inevitably be a
proportion of sensitive information carried as 'electronic mail'. This is another
area which needs attention to security, both for secrecy of information and to
preserve its authenticity.

The advance of information technology has sparked off a public debate on the
subject of individual privacy. Like many public debates it expresses both rational
and irrational fears. Everyone is now alerted to the real dangers of inaccurate per­
sonal information and uncontrolled access to files. Most advanced countries have
introduced laws to enforce a reasonable degree of individual data privacy and
others have such laws in preparation. If we think of privacy as the legal concept,
then security of data is one of the means by which the privacy can be obtained.
The implementation of these new laws is likely to produce applications for data
security techniques.

Of the three main operations carried out in information systems, storage, pro­
cessing and transmission, it is undoubtedly data transmission that carries the
greatest of security risks. A communication network consists of numbers of cables,
radio links, switches and multiplexers in a variety of locations, all of these parts
of the system being potential targets for 'line taps' or 'bugs'. It is impossible to
make a widespread network physically secure, therefore security measures depend
on information processing techniques such as cryptography.

Storage of data is next on the list of vulnerabilities because data spends much
more time in storage than in processing. The protection of stored data can use
the same techniques of cryptography but with different twists. For most purposes,
processing is the least vulnerable part but it may be worth attacking. Perhaps
an enemy can gain more by discovering which parts of a file are active than by
stealing a whole file. For example a police file of intelligence about crime activities
contains a lot of data about dormant criminals and perhaps even more about
dubious suspects. A team contemplating a big crime could learn more from the
data being accessed than by searching the whole data base.

No data system can be made secure without physical protection of some sort
of the equipment. The effect of good design is to concentrate the need for physical
security, not to circumvent it entirely. In particular, processing of data usually
(perhaps always) requires those data to be in clear form, not enciphered, therefore
processors themselves must be protected from intrusion, such as the attachment
of radio bugs. In many systems the data and operations needing the greater degree

-- 21 --
MasterCard, Exh. 1004, p. 21

describ2.

c:Pr'nritv of the systen1 s11ch as
graphic which enable. there is a ,.,.,·v·,,rl,,,."'
formed inside the module and this a small processor. The mteriace
between the module and the rest of system must be designed carefully to
avoid any compromise of secret data and this interface is also controlled by the
processor within. The software employed within the module must be trusted­
software integrity is discussed in the next section. The module is protected by
being enclosed in a strong box but usually the strength of this box cannot ensure
that it will never be broken into. Consequently, the module is provided with a
number of sensing devices which will detect various forms of tampering. These
are sensitive to vibration, penetration of the protective box, tilting or temperature,
for example. When the sensors detect an attack, at a certain level of severity all
the important data contained within the enclosure are destroyed by over-writing.
By this technique of 'tamper-responding' the secret data can be protected without
an exceptionally strong outer case. Details of the techniques for making tamper­
responding modules are best kept confidential because knowledge of the sens­
ing devices helps an attacker to overcome them and this increases the cost for
future generations of tamper-resisting modules.

1.2. ASSESSMENT OF SECURITY

Security is a complex property and difficult to design or optimize. Designing a
system to be efficient, convenient or cheap is an optimization problem which,
though complex in practice, has a mathematical structure which is easy to under­
stand. The problem is to choose the design parameters in order to maximize a
figure of merit. Designing a system for security means analysing an adversary prob­
lem where the designer and the opponents are each independently thinking out
their strategies. The outcome of the contest is a result of their combined choices.
The mathematical theory for such problems is the 'theory of games'. The kind
of game which fits the situation is a 'two-person, non-zero-sum game with im­
perfect information'. The 'non-zero-sum' condition appears because the system
attacked may lose more than the attacker gains. 'Two-person' means that we con­
sider one attacker at a time, to simplify the problems as much as possible. Games
theory, beyond the most trivial cases, is extremely difficult and there seems to
be no way in which the theory of games can actually be useful in analysing security
- it merely serves to illustrate the underlying complexity of the problem and the
inadequacy of a naive 'risk analysis' approach.

Every kind of threat to a system should be assessed, yet it is very difficult to
enumerate the complete range of attacks. First of all, the motives and intentions
of the attackers have to be guessed. Stolen information can be used for fraud,
espionage, commercial advantage, blackmail, and probably in many other ways.
Enciphering information on a magnetic tape can make the tape useless to an enemy
as information, but, if there are no other copies of this tape and the information

-- 22 --
MasterCard, Exh. 1004, p. 22

trte ~J3A, each
money iJ.c'co its account. If the custcmer had

ten to up similar forms in the banking halt which
were not encoded. At first of according to the magnetic
characters, uncoded forms were rejected, then operators inserted the account
number of the payee along with the other details that had been written on the
form. An ingenious fraud was devised by distributing coded paying-in forms
among the forms in the banking hall. Customers did not notice the presence of
the coding and unwittingly paid their money into the fraudster's account.

The existence of so many methods of attack makes the protection of an infor­
mation system very difficult indeed. It is doubtful that a systematic method to
analyse the problem will ever be found, though checklists can be a help. It is
unusual to have an information system described in sufficient detail that all the
potential weaknesses can be identified. Therefore, a good investigator works from
observation and by discussion with those who know the system well, not from
paper designs and specifications. The ability to find security flaws depends on
an attitude of mind which takes nothing on trust.

Security is essentially a negative attribute. We judge a system to be secure if
we have not been able to devise a method of misusing it which gives some
advantage to the attacker. But we might just have failed to identify the nature
of the enemy or missed out a method of attack.

A security investigation should never be based on the designer's concept of
the system. He has thought about the security and convinced himself that every
aspect has been covered. Probably, he has a good theoretical reason for believing
that the security goals have been achieved. What is then required is 'lateral think­
ing' which questions his assumptions and finds different approaches. The
designers may have concentrated their attention on some parts of the system and
forgotten others. On the other hand, systems can be so complex that only those
who implemented them can fully understand their details. With a complete change
of attitude, the implementers can be valuable allies in a security study. They must
first be convinced that there are flaws and persuaded to search for them ..

The security measures applied to a system always cost something and in an
extensive network the total expense may be very large. Before embarking on a
programme of installing security features, managements will want to know that
the expense is justified. For this purpose elaborate procedures have been
developed, called risk assessment. A number of different threats are tabulated,
together with measures of the probability that each will happen and the likely
losses that would arise from a successful attack. From these data, in an obvious
way, the 'annual loss expectancy' associated with each type of threat can be
evaluated. The idea behind this assessment is that a comparison of the loss
expectancy with the cost of proyiding protection will be a guide for the managers
in deciding what security features to install.

The data which enter into a risk assessment are known only with very low
accuracy, rarely better than an order of magnitude and sometimes even less preci-

-- 23 --
MasterCard, Exh. 1004, p. 23

any :or,Esc:ri-cJ~icm

deosigJn.er could rniss ore vital :Jel'l"':IDE
information . For arc automatic teller machine in
producl:iOJ~t) delivered bank notes a slot vvhich was contained in a neat
recess. Someone built an attractive looking plate which covered the recess and
presented to the user a dummy slot from which the money would never emerge.
He fitted this plate to an automatic teller outside a bank, when the bank was open,
stood back and watched what happened. The user went through the correct pro­
cedure but received no money, then went into the bank to complain. The crook
took away his plate and the money which was concealed behind it. This is a variant
of an old trick which has been used with returned-coin chutes since vending
machines and public telephones began; it pays off better with automatic teller
machines. Some of the earliest attacks on automatic teller machines were to pull
them out of the bank wall, illustrating that the security of a system may have
nothing to do with its data handling.

When all the precautions have been taken against illegal access to data in com­
munications and storage, there remains an indefinite number of other threats.
There are two areas of sufficient importance for special mention, system software
and the people operating the system.

Software integrity

The complexity of an information system is built mainly into its software, in order
that the hardware can be simpler and composed mainly of standard units such
as microprocessors and stores. The virtue of software is that it can be changed
both during development and subsequently to give the system new properties.
This flexibility is a severe threat to system security.

The first difficulty with software is understanding it sufficiently to be sure that
it functions correctly in the first place. Where equipment is built with several pro­
cessors, each handling a restricted range of functions and interacting with others
according to carefully devised rules or protocols, the verification of software may
be a tractable problem. At the other extreme, mainframes with their complex
operating systems are never fully understood. If the security requirements are
strict, it must be assumed that any normal operating system has weaknesses. In
particular these flaws could be exploited by the software designers, who know
the details well enough to find the flaws. In this respect, large operating systems
have improved a little and the provision of special hardware to assist access con­
trol has made them proof against attacks which were common in the early days
but no complex system can be regarded as entirely secure, even if the designers
and builderjl were all trustworthy and had only that aim in mind.

A dishonest designer could provide 'hooks' in the software ready for the
attachment of modifications to undermine its security. The auditing of software
by independent software designers should look for unnecessary features which
might be used in this way.

During software design, special tools are provided to help the implementers

-- 24 --
MasterCard, Exh. 1004, p. 24

weakness becans2 it allows
trapcloors into the

The of this threat is greater if
is planned in design process, hence of trustworthy
system designers. There may be a need to keep one or two highly instrumented
versions of the system for software testing and updating but those systems which
go outside a secure environment should be made as difficult to modify as possible.

If the software of a system is entirely reliable and trustworthy, the next prob­
lem for the designer is how to keep it that way. Some software can be physically
protected, for example by storing it in a read only memory (ROM) or in a store
which, though it could be overwritten is protected by a physical 'write protect'
device. Preventing the over-writing of software by a programmed feature (such
as an access control mechanism in the operating system) is no real protection
because that can be altered. The more ingenious attacks on software integrity
employ the operating system. This is not only the most powerful part of the soft­
ware but also the least understood and therefore the most difficult place for the
discovery and prevention of attacks.

Dedicated processors, carrying out a single task with a fixed program, can be
reasonably secure if they are protected against physical attack.

The least secure program environment today is the microcomputer because the
philosophy of designing these systems is to make them highly adaptable, with
the greatest ease for changing their programs. Users of microcomputers can obtain
free software from a number of sources. If they accept and run it they can endanger
their entire system, for example doing irreparable damage to the contents of their
fixed disc. This attack by a program which appears innocent and does something
useful but contains a hidden enemy is called the Trojan horse attack.

Even more insidious is the software virus. This is designed to infect other pro­
grams so that the treacherous ;program is replicated and, in some cases, moves
from one computer to anothe{.

Just before Christmas 1987, in West Germany, a Christmas greeting message
was sent into an electronic mail system on a European Academic Research Net­
work. The message produced a pretty display and invited the user to run the
program. When this was done, the program accessed the standard files contain­
ing the names of the user's correspondents in the mail system and sent out a
copy to all of these people. Though basically a harmless type of virus, it spread
through at least three networks and the quantity of electronic mail it produced
swamped the networks' capacity.

More insidious viruses can spread in the same way and remain dormant until
some criterion is met (such as time and date) when they begin a destructive phase,
such as over-writing storage. In order to remain dormant and yet spread from
program to program, they can be hidden in the operating system or in parts of
files which are employed by the operating system but invisible to the user.

Maintaining the integrity of software is not technically difficult but it can con­
flict with the way in which computer systems are used and with the freedom
to make changes or adopt software from any source. It is not orrl.y the software

-- 25 --
MasterCard, Exh. 1004, p. 25

C3TLil0'[b:; in SOit'Nare;
the:tefore an unmodified purpose system such as the corn-

is never a secure enviromnent.

The owners of a system depend for its security in the first place on the integrity
of the supplier, which itself depends on the people who design, build and main­
tain the system. When it is in operation, keys and passwords are introduced which
protect it from enemies outside, including enemies in the ranks of the suppliers,
unless software changes have subverted the protection. With good design, the
security then depends on the people who operate the system and carry out its
security-related procedures.

Some operators will be in positions of very great trust, such as those who load
the system with master keys and those who transport keys from one part of the
system to another. Improved design can reduce the need for some of this trust,
up to a point. For example, the transport of cryptographic keys can use hard­
ware modules which make the keys inaccessible to the couriers. With these means,
it requires a much more elaborate attack to obtain the keys illegally, though it
is never impossible. Some kinds of privileged operation cannot be avoided.
Someone has to write into the system the rules of access control at the top level,
giving special privilege to certain people, such as database managers or security
controllers. Careful design can reduce the residual threat from these directions.
For example, a security controller may be responsible for enforcing the correct
procedure in using the system but he need not know the values of any crypto­
graphic keys. In this way, though some trust is placed in a number of people,
there are few opportunities for individuals to subvert the whole system. Where
there is a particularly sensitive requirement, such as a top-level master key, the
responsibility can be split between several individuals, with the effect that it would
require a conspiracy of all of them to undo the security of the system as a whole.
In a well-designed system it should be clear who is being trusted and to what
extent, but there is no way to make the system proof against unlimited deceit.

1.3. THE EFFECTS OF TECHNOLOGY

As information technology becomes more complex, the opportunities for its misuse
are greater. Complexity of design is not a protection against interference with
data systems. At first sight it might seem that a complex protocol makes it more
difficult to extract information from a communication link or change data in tran­
sit. In practice, increased complexity is made workable by greater standardiza­
tion and then standard software and hardware becomes available to unravel the
complexities. For example, it is now possible to buy instrJ-lmentation which will
interpret the binary pattern on a communication line, enabling a specialist to deter­
mine the link layer protocol and extract the contents of frames, also to interpret

-- 26 --
MasterCard, Exh. 1004, p. 26

with som;: aclclfi:lO:~lal cn:-hu-o,-a

it vrith the correct format
hibitively difficult just by rw .• -..}n,,-,rd cmnp,lex:ity

In fact, the variety of new technologies increases the possibilities of attack. If
a local ring or Ethernet is used, all of the data passing between terminals and
computing resources in this local area can be made accessible from a single line
tap. The Ethernet broadcasts all messages to all terminals. In most designs of ring,
all the data pass completely round the loop and return to the sender. A line tap
attached to an Ethernet or ring network gives access to all the information it car­
ries. For example, some large organizations employ a set of interconnected
Ethernets carrying information of many different levels of sensitivity. The sta­
tion logic attached to the Ethernet tap filters out messages addressed to each
destination, but a small change to that logic can make it extract information for
other destinations, giving access up to the highest level of sensitivity for the
information in that network. Without additional precautions such as encipher­
ment, today' s local area networks make a very insecure environment.

Microwave radio and satellite systems similarly expose large quantities of data
to easy access. Together with the increasing use of electronic mail in the future,
this provides good opportunities for large-scale tapping of traffic.

In the past, the mere quantity of data would protect most of the secrets because
the target of the enemy would be buried in uninteresting information. But since
the source and destination of packets and messages travels with them in their
headers, extracting information travelling to or from a target is not difficult. This
target may be a terminal, a person or a computer process or port, depending on
the level of addressing. Furthermore, unprotected messages can be selected
according to their content, extracting messages which contain certain words or
bit patterns for review by the enemy. It can be seen that modern technology
increases rather than decreases the opportunities.

Improved technology of information processing has aided the protection of
information by making good ciphers available in the form of single-chip devices
and by allowing complex systems to be made more compact and thus given ade­
quate physical protection. But the same technology is available to the enemy who
can buy low-cost processing and storage in order to investigate systems and exploit
their weaknesses.

1.4. THE NOTATION FOR ENCIPHERMENT

Codes and ciphers are part of the subject of cryptography which is the art of hiding
information in a secret way so as to preserve its confidentiality. We shall only
be concerned with ciphers so the operations that are carried out are called
encipherment and decipherment.

The original purpose of ciphers is to conceal information while it is being
transmitted. Stored information can be concealed in a similar way. But the security
of information systems is much wider in scope than merely concealment and

-- 27 --
MasterCard, Exh. 1004, p. 27

two oper<tticm.s
1J"-·•v1.uu convention we shall use is shown in

can be described as functions of two variables, or can be de:scr1be~ct
algorithm - a systematic procedure for calculating the result when the
of the variables are given.

The plaintext mentioned in the figure is the set of data before encipherment.
The result of encipherment is the ciphertext. The result of applying decipherment
to the ciphertext is to restore the plaintext. These words 'plaintext' and 'ciphertext'
are relative to a particular encipherment - it could easily happen that the plaintext
shown here is the result of a previous enciphermeilt but for our purpose, since
it enters into the encipherment function, it is called the plaintext. The capital let­
ters D and E are reserved for the decipherment and encipherment functions
respectively. In the mathematical notation we shall use, if xis the plaintext then

y = Ek(x)

the result of encipherment, and the inverse function

x = Dk(y)

expresses decipherment of the ciphertext to produce the plaintext. In both func­
tions, the other variable k is the key.

The key is an essential feature of a cipher. In principle, if the function y = E(x),
without a key, were kept secret, this might serve to conceal the value of x but,
if the secret of the function E is lost, nothing can be done to restore the usefulness
of the cipher. An entirely new cipher is needed. Since the design and testing
of a cipher is a very big task, its loss in this way would be expensive. Further­
more, all those who took part in the design and testing or who wrote programs
for the encipherment and decipherment procedures would have to be trusted
indefinitely. These secrecy problems are made much easier by employing a key,
a parameter which, in effect, allows a large class of ciphers y = Ek(x) to be defined.
If a key is compromised (discovered by an enemy, or by someone untrustworthy)
it can be changed and the cipher function can remain in use.

Key k Key k

Plaint ext
0

Plaintext
X

Encipher ment Decipherment

Fig. 1.1 Notation for encipherment and decipherment

-- 28 --
MasterCard, Exh. 1004, p. 28

can find out tl-'1e function.
The notation Ek(x) is derived from one that has now been used and

it started with k as a suffix Ek(x) to denote that k is a parameter, which
is kept constant for a number of encipherments. In the pictorial form of the nota­
tion it is necessary to distinguish between the two inputs to the boxes which
denote the functions E and D. Therefore we use the small circle shown in Figure
1.1 to show which is the key input.

Other notations for encipherment have their uses. If complex expressions or
lists are enciphered and when the procedure of decipherment is not shown
explicitly, the notation (...] k is often used, where the data or text in the curly
brackets is enciphered with key k. This is the notation that has been used widely
in discussions of authentication. We have preferred to keep a uniform notation
throughout this work andy = Ek(x) is our choice. If there are several keys in
use these could be shown with suffices as kab' k5 etc, but in this book we put
these symbols on the same line. Thus Ekab(x) means that xis enciphered, using
as key the value kab. This kab is similar to the 'identifier' in a programming
language- it does not, in this context, mean that k, a and bare separate variables.
All our key identifiers will begin with the letter k.

The domain of values from which the key k is taken is called the key space. In
a typical cipher, the key might be 20 decimal digits, for example, which gives
a key space of size 1020

. Alternatively the key might be expressed as a binary
number of 50 digits with a size of key space 250

. In other ciphers, the key is a
permutation such as the letters A, B ... Z in some sequence, consequently the
key space has size 26!

The notation y = Ek (x) treats x and y also as single variables, which have values
in a finite domain. Since x represents, in general, a block of text, a cipher of this
kind is called a block cipher. For example, eight characters in ISO 7-bit code with
parity make up a block of 64 bits. The cipher could be designed for a 64-bit block,
but the redundancy of the ISO code makes the information content much less.
If the characters are taken from text in a natural language such as English, the
true information content of x is smaller still.

We also need a notation for the encipherment of messages of indefinite length.
The single variable x is replaced by a string of variables. For this situation we
write the cipher text as:

Ek(x0, X1, ... X;, ...)

where x0, x1 ... is a string of variables whose size is given by the context. They
could be parts of the message or its header, such as the source identifier or a
sequence number. The simplest case is the one in which each variable x; is a
character with its value taken from a finite set of values known as the alphabet.
For example the alphabet might be, literally, A, B, ... Z or it might contain the
256 different values of the octet (i.e. an 8-bit character). Ciphers which are designed
to encipher a string of such characters with no theoretical limit to the length of

-- 29 --
MasterCard, Exh. 1004, p. 29

The need distribution

When encryption is used to make data secure in communications, there must
be prior agreement between the communicating parties about all aspects of the
procedure. A cipher algorithm, and the method of using it and initializing it, must
be agreed. The most difficult requirement is that a key must be chosen and made
available at both ends of the communication path. Before the enciphered data
flow over the line, the value of the key must make a similar journey. Keys can
be enciphered using other keys but in the end at least one key has to be distributed
by some other means. The cipher can therefore be regarded not as a creator of
secrecy but as a means of extending the secrecy applied to the distribution of
the key into the transport of a much larger volume of data enciphered with that
key.

When encipherment is used for proteCting stored data, key handling is easier
because the encipherment and decipherment are carried out at the same loca­
tion, so the key need not travel, but secrecy of the stored key is still important.

Choosing the key in the first place and making it available only to authorized
users are aspects of key management. After encipherment methods have been
decided, key management becomes a major task for system designers because
the security of the whole system has then been concentrated on the keys. Chapter
6 is devoted to key management.

1.5. SOME USES FOR ENCIPHERMENT

Encipherment conceals the content of a message, except for those intended to
receive it who, knowing the key, can decipher it. Thus it controls access to the
message content, making it readable to those who know the key. If the ciphertext
is made public and the cipher algorithm is well known, knowledge of the key
is the equivalent of access to the message. Knowing the key also allows a person
to construct another message so, under the right circumstances, a message can
both be read and written. By using a 'public key cipher' it is possible to have
separate control of reading and writing, as we shall see in chapter 8.

Without a knowledge of the key an enemy cannot usefully alter a message.
He can probably alter the ciphertext but when that is deciphered it will read as
a random pattern, because lack of the key prevents the enemy having control
of its deciphered form. Assuming that the message has some redundancy, the
authentic message produced with the aid of the key can easily be distinguished
from the random pattern. In this way its authenticity can be proved to whoever
knows the secret key. We discuss authentication in more detail in chapter 5. It
is one of the principal uses of encipherment methods. These operations of access
control and authentication can be applied to transmitted messages or stored files.

-- 30 --
MasterCard, Exh. 1004, p. 30

put th2ir brainchild on record
to To do this "Wrote a it, pu.blish:tng

the and keeping the secret. Later, when the invention became
known, others might claim to its Then the true inventor revealed
the key so that anyone could verify that he published it at the earlier date.

In chapter 8 we describe a novel kind of cipher in which both sender and
receiver have secret keys but neither sends his key to the other (page 224). This
was first described in the context of 'Mental Poker' - a game of poker played
between people who are all in different places and joined only by telecommunica­
tion channels. This is a vivid illustration of a use of encipherment in which secrecy
and authentication are not the whole story. We can illustrate this by a simpler
case, the tossing of a coin by two people at a distance, using only messages to
link them.

The two people are Ann and Bill. Deliberate bias in their coin-tossing can be
avoided by a convention in which Ann announces her call Ca with its value
'heads' or 'tails' and Bill similarly announces Cb then the outcome of the pro­
cedure is a head if the two calls coincide and a tail if they differ. The simple analysis
of this 'game' shows that both Ann and Bill will choose between head and tail
at random. If either shows a bias the other can improve their chance of winning.

If Ann announces her call first then Bill can arrange to win, and vice versa.
If no trusted third person is available to receive the calls and adjudicate, the two
parties can use encipherment in the following way.

Ann chooses one of two highly redundant statements such as 'My call for this
game is heads' or 'My call for this game is tails', enciphers whichever phrase
she chooses and keeps the key secret. Because of the redundancy she cannot find
two keys that will generate either message from the same ciphertext. Of course
there must be no other dues such as the length of the mesage. Ann and Bill
exchange their enciphered calls. When Ann has received Bill's call she reveals
her key and vice versa. If each finds the deciphered message to be one of the
two phrases, the calls stand and the outcome is as defined. The use of encipher­
ment authenticates the calls after they have been exchanged and ensures that
they cannot be modified after learning the other's call.

A large part of the practice of data security consists of procedures (or protocols)
using encipherment of which the coin-tossing procedure is just a simple exam­
ple. The procedures range from the very simple to rather complex schemes such
as those of key management described in chapter 6.

1.6. GENERAL PROPERTIES OF CIPHER FUNCTIONS

The most useful ciphers are those which do not expand the text. A block cipher
for an n-bit block maps the 2n different plaintext values onto the 2n different
ciphertext values. In effect, it is a permutation of these 2n values, one which

-- 31 --
MasterCard, Exh. 1004, p. 31

For a k, if x ranges 07er all its values, y =

also ranges over all its values. On the other hand if xis held constant
and k ranges over all its key space, the y values generated can be regarded as
random choices. Some y values may not occur at all, others may occur more than
once.

When there is no data expansion the identity x = Dk[Ek(x)] implies another
identity x = Ek[Dk(x)]. In other words, the encipherment and decipherment can
be interchanged. This is illustrated in Figure 1.2 and it is not a trivial result. If
there is data expansion then Dk(x) reduces the size of the text and the second iden­
tity cannot be true. Bear in mind that, when encipherment and decipherment
are exchanged, though they have all the formal properties of a decipherment/
encipherment pair, some of their useful properties may disappear. Figure 1.2 is
a trivial example based on a 3-bit character.

The type of function shown in Figure 1.2 is called a bijection. This kind of func­
tion maps a set of values into a set of equal size. Each value maps into just one
corresponding value, both for the function and its inverse. This is a one-to-one
mapping.

There is a special kind of cipher which is an involution, that is a function f(x)
which has the property that f[f(x)] = x. In the case of a cipher function which
is an involution,

Ek[Ek(x)] = x

implies that Ek(x) = Dk(x), encipherment and decipherment are identical. In the
days when ciphers were produced by mechanisms a 'self-inverse' cipher was an
advantage because the mechanism needed no adjustment between sending and
receiving. Many examples exist of involutions as cipher functions.

The product of two involutions is not necessarily an involution, as Figure 1.3

E 0 0 E

X E(x) O(E(x)) O(x) E(O(x) l
: X :X

Fig. 1. 2 Exchange of cipher and decipher functions

-- 32 --
MasterCard, Exh. 1004, p. 32

y

Fig. 1.3 The product of two involutions

illustrates. The inverse of such a product can easily be found if its components
are known. If encipherment is

y = E2[E1(x)]

and both E1 and E2 are involutions, the decipherment is

X = El[E2(y)]

A series of involution transformations can produce a secure cipher which is easily
inverted, and this principle underlies the construction of the Data Encryption Stan­
dard described in chapter 3.

-- 33 --
MasterCard, Exh. 1004, p. 33

2.1. INTRODUCTION

The known history of codes and ciphers is long and fascinating, dating back almost
4 000 years to the time when the Egyptians, possibly out of respect for the dead,
used a hieroglyphic code for inscriptions on tombs. It is likely that the art of con­
cealment of meaning of written communication goes back even further, though
the Egyptian funerary inscriptions are amongst the earliest known examples. Many
and various have been the techniques employed over the centuries. By today most
of the 'classical' techniques are thought to be too weak for serious application;
however, many of their basic principles can still be identified as forming part of
modem techniques and therefore it is worth examining how some of them
worked. This chapter aims to give a flavour of classical techniques without
attempting to be exhaustive. For a comprehensive treatment readers should con­
sult David Kahn's book The Codebreakers.1 Another useful reference on classical
techniques is the book Cryptanalysis by Helen Fouche Gaines.2

Concealment may take two forms, either the message is hidden in such a way
that the very fact of its existence is obscured or the message is transformed so
as to be unintelligible even though its existence is apparent. The first of these
techniques has been called 'steganography' (literally: covered writing), whilst the
second is known as 'cryptography' (literally: hidden writing); the literal distinc­
tion between these terms seems very fine, but their technical significance makes
a rather useful distinction.

A steganographic method said to have been popular in classical times involved
shaving the head of a slave, writing the message on the shaven head, waiting
till the hair grew again and then despatching the slave to have his head shaved
by the intended message recipient. This technique has little to commend it, least
of all the slow rate of communication (unless early Greek hair grew much faster
than does ours). Another method used pictures to carry hidden messages; Figure
2.1 illustrates an example. At first glance this seems to be just another drawing
of a shrub; however, a concealed message is contained within the picture. H.eading
clockwise around the outline of the shrub (beginning at the trunk) and recording
a '1' for each twig bearing a fruit and a '0' for each empty twig, we obtain a binary
message. Enclosed regions are ignored- they only add to the pictorial effect­
but in a more elaborate 'tree-structured' reading of the figure they could be used,
adding 16 bits to its message.

Lord Bacon's method of steganography used two type founts, differing slightly
in appearance. Effectively one fount stood for binary 0 and the other for binary
1, permitting encoding of letters of the secret message within a totally unrelated
text. Much effort has gone into attempts to prove that Bacon was the true author

-- 34 --
MasterCard, Exh. 1004, p. 34

j__

0110
1100
1101
0110
0011
1100
1111
1000
1101
0010
0101
1101
1100
0011
1001

Fig. 2.1 A picture containing a hidden message - steganography

of the plays attributed to Shakespeare; one approach was to scan the first folios
of these plays for messages hidden by Bacon's method. The famous American
cryptologist, William Friedman, began his cryptographic career in a fruitless search
for these messages at the Riverbank Laboratories, Geneva, Illinois. Under
Friedman's leadership the Riverbank Laboratories became highly respected in
cryptology but their owner, George Fabyan, never gave up his belief that the
Baconian ciphers could be found in Shakespeare.

In yet again another steganographic method, messages have been expressed
by patterns of goods in shop windows. Writing a message in invisible ink could
be said to use steganography. The variations on the steganographic theme are
endless. However, the nearest thing to a steganographic technique that is useful
for modern data protection is that of filling the spaces between encrypted messages
with meaningless garble when these messages are transmitted over communica­
tion links. The intention is to present the appearance of a link busy at all times
and thus conceal the passage of messages; unlike real steganography, the existence
of a communication link is evident, only the traffic level is concealed.

We shall find cryptography of far greater significance than steganography as
we consider methods of achieving security of data. Here the important thing is
so to change the message that its meaning is completely concealed from anyone

-- 35 --
MasterCard, Exh. 1004, p. 35

11p in c~ code
a1]::lhclbe·i:ic or numeric; the book

Keplcl_cem<ont of th'2 com-
their code constitutes the entire pro-

cess of encoding. To an encoded message efficiently a second, matching
code book is required, this time indexed according to the code elements. A brief
example, based on the international radio code, is given in Figure 2.2. Codes
are often applied today in ordinary commercial correspondence in order to achieve
message compression and economize on transmission costs, by using single-word
equivalents to represent plaintext word groups. Many such codes have been
devised and offered for sale; company letter headings often carry a list of codes
used; such codes are public knowledge and can therefore not be used for message
concealment.

Secret codes have held an honourable place in the techniques of general-purpose
cryptography. They can be made more effective for this purpose by ensuring that
multiple equivalents are listed in the code books, so that the code element used
for a particular word or word group is not always the same, but is chosen at ran­
dom among the alternatives. In this way an important word which frequently
occurs does not leave a tell-tale frequency in the coded text. For the protection
of computer data, codes are far from ideal, because the equivalent of a code book
would make bulky storage demands and the process of look-up might be time
consuming. The generation of an adequate code book is itself a formidable task.
Protection of stored code tables, vital for security, could itself be difficult to achieve.
The secure and rapid transport of bulky code tables to the locations where they
are required is potentially a difficult problem, especially if frequent change of code
is required in order to maintain security.

Unlike cryptographic codes, ciphers are not concerned with whole words or
groups of words. In the past they have operated, generally speaking, at the level
of the individual letter; modern cipher techniques applied in a computer context
operate sometimes with big units of many characters, sometimes at the character
or letter level, and sometimes at the level of the individual binary digit. Some
of the classical techniques which have operated at the letter level are considered
in the next section.

Before leaving the subject of codes, the important class of secrecy systems known
as nomenclators 1 must be mentioned. These had their origin round about the year
1380 and at first consisted simply of code substitutions for important elements

Are you busy? QRL QRH Does my frequency vary?

Does my frequency vary? QRH QRL Are you busy?

Is my keying correct? QSD QRO Shall I increase power?

Shall I increase power? QRO QRZ Who is calling me?

What is the exact time? QTR QSD Is my keying correct?

Who is calling me? QRZ QTR What is the exact time?

Fig. 2.2 Brief extract from a two-part code book

-- 36 --
MasterCard, Exh. 1004, p. 36

gi·)~l_?S. f-_S ar~ C7.,c.cH:JlC

hsrv::: been i:r1cl-udecl. 1-\t ·the same tirne a 1ette1·-nv-1en:er
was intro:luced to

lists. Ii: is that of this combination of
were sufficiently aware of the possibility of cryptanalysis by counts
that they included multiple equivalents (known as 'homophones') in their
substitution cipher.

Nomenclators survived in popular use until the middle of the nineteenth cen­
tury, when commercial codes were developed in order to economize on message
lengths in telegraph transmission and improved understanding of cipher crypt­
analysis led to the development of ciphers that were stronger than simple
substitution.

The two basic components of classical cipher techniques are substitution and
transposition. In substitution, letters are replaced by other letters, whilst in
transposition letters are arranged in a different order.

2.2. SUBSTITUTION CIPHERS

The Caesar cipher

If we wish to replace letters of a message by other letters in a systematic fashion,
then one of the simplest ways is to express the alphabet in cyclic form (Figure
2.3) and then select letters shifted by a specified number of places in a particular
direction from each plaintext letter. An example of an enciphered message is given
in the figure. Here the letter displacement is by three places to the right and the
cipher corresponds to one credited to Julius Caesar. Another classical cipher of
this kind is said to have been due to Caesar Augustus, Julius' nephew, who chose
a letter displacement of one position. Such a cipher is extremely easy to operate;

®
~z A 8

c w
D

E

T v@ s
I

M l2]
Plaintext I F WE W I S H T 0 R E P L A C E L E T T E R S 0 F A
Ciphertext I Z H Z L V K W R U H S 0 0 F H 0 H WW H U V R I 0

Fig. 2.3 Caesar's cipher, c p + 3 modulo 26

-- 37 --
MasterCard, Exh. 1004, p. 37

HEVDVHRGSNQOOKZBDKDSS0QR
IF~EWISHTOREPLACELETTERS

JGXFXJTIUPSFQMBDFMFUUFST
KHYGYKUJVQTGRNCEGNGVVGTO

Cipher ~~ LI ZHZLVI\\'7RUI-ISODFHOH'i1TJ'7HUV
MJAIAMWLXSVITPEGIPIXXIVW
NKBJBNXMYTWJUQFHJQJYYJWX

Fig. 2.4 Breaking a cipher of the Caesar type by searching tzcenty-six keys

the alphabet written on two concentric discs displaced by the required amount
makes a useful tool for encipherment and decipherment. The cryptologist may
even attempt to make things more difficult for the cryptanalyst by changing the
amount of the displacement from time to time. If, in Julius Caesar's cipher, the
letters A, B C ... are given numbers 0, 1, 2 ... the process of encipherment can
be expressed as c = p + 3 (modulo 26), where the addition requires 26 to be sub~
tracted if the result exceeds 25.

Unfortunately such a cipher, which must surely have been re-invented by
countless schoolboys, is ridiculously weak. If the amount of the displacement
is known, then there is no secret and the plaintext is readily retrievable; even
if the displacement is not known, then it can be discovered very easily. All one
need do is to write out the ciphered message followed by all its possible
displacements by from one to twenty-five letters. One of the transformed messages
will correspond to the plaintext and will be obvious to the reader from the mean­
ing conveyed, assuming that there is adequate redundancy in the message (a
plaintext message consisting entirely of arbitrary characters would present a pro­
blem). In Figure 2.4 we give an example of what is involved; the displacement
here is of three letters, as in the Caesar cipher. In Figure 2.4, and indeed in all
subsequent figures in this chapter, spaces between words are omitted; they are
ignored in the cipher operation. This convention is customary when simple ciphers
are used. They could have been treated as a twenty-seventh letter and enciphered
like all the others, but their high frequency weakens any simple cipher.

The technique of trying all possible displacements to solve a Caesar-type cipher
is effectively a key search; the displacement is the key and possible values are
tested until the right one is found by inspecting the 'plaintext' produced in each
case.

Monoalphabetic substitution

Somewhat greater security may be obtained if the letter substitution is carried
out with a 'jumbled alphabet'. In Figure 2.5 we show the message of Figure 2.3

Plain ABCDEFGHIJKLMNOPQRSTUVWXYZ

Cipher DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext IFWEWISHTOREPLACELETTERS

Ciphertext WIRFRWAJOHYFTSDVFSFOOFYA

Fig. 2.5 A monoalphabetic substitution

-- 38 --
MasterCard, Exh. 1004, p. 38

cur-'llo."uc'" is 26! number of
po,ssJ"biliti<::s nlorloatlpl:talJetic substitution is a very
Sadly its apparent strength is a delusion. Two reasons can be found the
weakness: the statistical clues given to the cryptanalyst are very strong and the
alphabet can be discovered piece by piece. Even if the alphabet used has many
wrong letters, the cipher can be read, like a badly transmitted telegram, and the
wrong letters can be corrected. In a good cipher, getting the key nearly right
reveals nothing of the plaintext.

The monoalphabetic substitution illustrates the fallacy of relying on double
encipherment for increased strength. Double encipherment with different
alphabets is equivalent to single encipherment with an alphabet formed by apply­
ing the second substitution to the first alphabet.

Cryptanalysis of a message enciphered with a monoalphabetic substitution
depends on the fact that each plaintext letter is always transformed into the same
ciphertext equivalent. In natural language, letter frequency tables can be set up
which show the relative order of use of letters of the alphabet. For English text
the order is generally that shown in Figure 2.6 (after Gaines). Depending on the
text from which the frequency tables are created we may find small variations

% % %
E 13.1 D 4.1 G 1.4
T 9.0 L 3.6 B 1.3
0 8.2 c 2.9 v 1.0
A 7. 8 F 2.9 K 0.4
N 7.3 u 2.8 X 0.3
I 6.8 M 2.6 J 0.2
R 6.6 p 2.2 Q 0.1
s 6.5 y 1.5 z 0.1
H 5.9 w 1.5

Letter frequencies in English text

TH THE
HE AND
AN THA
IN ENT
ER ION
RE TIO
ES FOR
ON NDE
EA HAS
TI NCE

The ten most frequent digrams and trigrams
in English text

Fig. 2. 6 Frequencies of letters, digrams and trigrams in English text

-- 39 --
MasterCard, Exh. 1004, p. 39

'1ey th2 leE~St info:rr.natio:rL irt the piOCeSS o£ rnrn,-;w-,;;;rv~-r9.
VU'.OOHJl.UC.FCO for the lettei"

pliunte)<t to indicate he is hot on the scent. Aid may
obta1necl from tables of digraph and trigraph in English, which

will show what letters are most likely to be adjacent in text. Figure 2.6 also shows
a few of the most frequent English digraphs and trigraphs. If the cryptanalyst
is not even sure that he is dealing with an English enciphered message, then the
frequency count, if the ciphertext is long enough, may give him a clue. For example
the letter 'Q' ranks very low in English and German, but rather higher in French
and Italian; the vowel '0' ranks relatively high in English, Italian, Spanish and
Portuguese, but rather lower in French and particularly low in German. Figure
2.7 shows letter frequency profiles for the more frequent letters of English, Ger­
man and Italian (the spot values are joined together to assist in reading the
profiles). For the four most frequent letters in each language the profile is very
distinctive; beyond this the profiles rapidly become indistinguishable. From such

15

Frequency ranked letters

Fig. 2.7 Letter frequency profiles for English, German and Italian

-- 40 --
MasterCard, Exh. 1004, p. 40

Realizing this weakness of monoalphabetic the went one
better - they created polyalphabetic ciphers. Here there is not one jumbled
alphabet for use as a substitution table, but a number of them which are used
in succession on the successive plaintext letters. When the last alphabet has been
used, we start again with the first. Because each letter of the plaintext is no longer
always represented by the same letter in the ciphertext, it is not possible to take
a simple frequency count and deduce the shape of the substitution- more subtlety
is required. It is of great help to the cryptanalyst to find out how many alphabets
are in use; for this there are various techniques available. One of them depends
on the frequent repetition of letter groups in text; the letters the are very com­
mon in English. In a sufficiently long text there is a very good chance that cor­
responding repeated letter groups may be found in the ciphertext, and they will
sometimes be located at intervals of some multiple of the number of alphabets
in use. These can be found by scanning the ciphertext and, from their spacing,
intelligent guesses made as to the number of alphabets. A short text enciphered
with five different alphabets is shown in Figure 2.8; note the repeated letter groups
in the ciphertext occurring at a multiple of five letters. This method of determin­
ing the number of alphabets in use was made public in 1863 and is due to
Kasiski. 1 Once the number of different alphabets is known, the cryptanalysis is
simple if the text is long enough. All one does is to take frequency counts of the
ciphered letters enciphered under each individual alphabet. The process then pro­
ceeds by trial and error as in the case of monoalphabetic substitution.

In both monoalphabetic and polyalphabetic substitution the common secret
information that must be shared by sender and receiver of an enciphered message
is the mixed alphabet or alphabets. This information forms the cryptographic key,
which has to be distributed to both sender and receiver. A compact form of key
is more convenient. For this purpose the alphabet can be generated from a key
word as demonstrated in Figure 2.9. A key word of ten or twelve letters, in which
each letter occurs once, might be suitable. In creating the mixed alphabet the key

Plaintext THEREISNOOTHERMATTER

Cipher MBJSRBMSPBMBJSZTNYFE

10 letters

Fig. 2. 8 A polyalphabetic substitution with five alphabets

Plain ABCDEFGHIJKLMNOPQRSTUVWXYZ

Cipher EXHAUSTINGBCDFJKLMOPQRVWYZ

Fig. 2.9 Method of generating a substitution alphabet using a key word

-- 41 --
MasterCard, Exh. 1004, p. 41

to be corcmurcicaC2cl. A.noth2r advan-
-vvoTcl rnay be :c::n1ernbered useful if it is carried

in someone' s memory. Note that at the end of the sequence some of letters
of the cipher alphabet are unchanged from the plain alphabet. This is sometirnes
avoided by an additional cyclic shift of the alphabet, as in the Caesar cipher.

The Vi~;enere cipher

Key words play an important part in a particular form of polyalphabetic cipher
known as the Vigenere after its inventor and first published in 1586.1 Here the
multiple alphabets are not jumbled but displaced from the normal with a cyclic
shift (compare the construction of the Caesar cipher). Application of the Vigenere
cipher is facilitated by using a tableau, in which all the possible displaced alphabets
are tabulated. Figure 2.10 shows such a tableau.

In a Vigenere encipherment the key word determines which displaced alphabet
is used to encipher each successive letter of the plaintext message. This process
can also be expressed as a modulo 26 addition of the letters of the key word
(repeated as many times as necessary) into the plaintext letters. In Figure 2.11
we show a short section of plaintext enciphered with the key word 'cipher'. The
process of modulo 26 addition can be carried out conveniently by means of a device

ABCDEFGHIJKLMNOPQRSTUVWXYZ

A ABCDEFGHIJKLMNOPQRSTUVWXYZ
B BCDEFGHIJKLMNOPQRSTUVWXYZA
c CDEFGHIJKLMNOPQRSTUVWXYZAB
D DEFGHIJKLMNOPQRSTUVWXYZABC
E EFGHIJKLMNOPQRSTUVWXYZABCD
F FGHIJKLMNOPQRSTUVWXYZABCDE
G GHIJKLMNOPQRSTUVWXYZABCDEF
H HIJKLMNOPQRSTUVWXYZABCDEFG
I IJKLMNOPQRSTUVWXYZABCDEFGH
J JKLMNOPQRSTUVWXYZABCDEFGHI
K KLMNOPQRSTUVWXYZABCDEFGHIJ
L LMNOPQRSTUVWXYZABCDEFGHIJK
M MNOPQRSTUVWXYZABCDEFGHIJKL
N NOPQRSTUVWXYZABCDEFGHIJKLM
0 OPQRSTUVWXYZABCDEFGHIJKLMN
p PQRSTUVWXYZABCDEFGHIJKLMNO
Q QRSTUVWXYZABCDEFGHIJKLMNOP
R RSTUVWXYZABCDEFGHIJKLMNOPQ
s STUVWXYZABCDEFGHIJKLMNOPQR
T TUVWXYZABCDEFGHIJKLMNOPQRS
u UVWXYZABCDEFGHIJKLMNOPQRST
v VWXYZABCDEFGHIJKLMNOPQRSTU
w WXYZABCDEFGHIJKLMNOPQRSTUV
X XYZABCDEFGHIJKLMNOPQRSTUVW
y YZABCDEFGHIJKLMNOPQRSTUVWX
z ZABCDEFGHIJKLMNOPQRSTUVWXY

Fig. 2.10 A Vigenere tableau

-- 42 --
MasterCard, Exh. 1004, p. 42

Keyword CIP3ERCIPHERCIPHERCIP6ERCIPHE

Ciphertext VPXZTIQKTZWTCVPSWFDMTETIGAHLH

Fig. 2.11 A Vigen ere encipherment

called a slide Kerckhoffs and named after the French
military academy), rather like a slide rule (Figure 2.12). The same device carries
out the modulo 26 subtraction needed for decipherment.

An attack on a Vigenere-enciphered message can be carried out by many of
the methods applicable to polyalphabetic ciphers in general. One method of attack
is particularly powerful against the Vigenere cipher- the 'probable word' attack.
The cryptanalyst chooses a word which he considers is likely to be in the plaintext
message and then carries out modulo 26 subtraction of that word from the
ciphertext in all possible locations, i.e. a scan is made of the entire ciphertext.
If at any position the result of the subtraction yields a word of natural language
or a fragment of such a word, then it is very likely that the key word or part of
it has been discovered. The whole message can then be deciphered easily. In
Figure 2.13 we take the ciphertext of Figure 2.11 and show how the key word
'cipher' is revealed by guessing that the word 'process' is in the plaintext. Only
when 'process' is subtracted from the ciphertext in the right position do we see
fragments making up a plausible key word. A procedure like this employs the
strong redundancy of natural language texts. · ·

A particular form of Vigenere cipher uses a 'running key'. For this purpose
a text is chosen by the sender and notified secretly to the receiver; the text must
be something that is readily available, for example, part of a standard work of
reference or a well-known novel. To encipher the message it is combined letter
by letter by modulo 26 addition with the chosen text; decipherment is carried

ABCDEFGHI JKLMNOPQRSTUVWXYZABCDEFGHI JKLMNOPQRSJUVWXYZ

ABCDEFGHI JKLMNOPQRSTUVWXYZ

Fig. 2.12 The Saint-Cyr slide

Ciphertext VPXZTIQKTZWTCVPSWFDMTETIGAHLH

PROCESS
Result GY JXPQY

PROCESS
Result AGLREYS

PROCESS
Result IOFGMSB

PROCESS
Result KCUOGBH

PROCESS
Result ERCIPHE <--Key word revealed

Fig. 2.13 A probable word attack on a Vigenere ciphertext

-- 43 --
MasterCard, Exh. 1004, p. 43

be

communicators is to the same random series at both ends of the com-·
munication channeL The channel which carries i:he key must carry as much data
as the enciphered channel. The use of a pseudo-random generator at the two
ends may be an acceptable alternative, providing that the pseudo-random
is very long indeed. This point is considered again in the context of the Vernam
cipher.

It is generally recommended that a running key be used only once for encipher­
ment, because certain cryptanalytic attacks can take advantage of its repeated use.
Where two cipher texts are enciphered with the same key and are in phase, they
are said to be enciphered 'in depth'. If the start points are not known it is pos­
sible to make use of a property known as the 'index of coincidence' in order,
when shifting one ciphertext against the other, to determine when the two
ciphertexts are in depth. The index of coincidence is a concept due to William
Friedman, who defined it in connection with solutions3 of the Vogel and
Schneider ciphers. The concept makes use of letter frequency distribution in
natural language. If two streams of letters are made up of totally random sequences
(with equal probability for all letters), then the probability of any two correspon­
ding letters being the same is~ or about 0.0385. It on the other hand, the let­
ters in the two streams obey the natural language letter frequency distribution
(e.g. if they are meaningful plaintext streams), then the probability of coincidence
in any letter pair from the two streams is about 0.0667 (for English text). If two
ciphertexts are examined for coincident letter pairs, then the probability of coin­
cidence will be about 0.0385, as for the random streams, unless they are enciphered
with the same running key and are in phase, when the probability of coincident
letters will be about 0.0667. Given amounts of ciphertext sufficient to establish
the index of coincidence reasonably accurately, the difference in the two measures
is sufficiently pronounced for the condition of encipherment in depth to be
detected.

2.3. TRANSPOSITION CIPHERS

Transposition ciphers aim to hide the contents of a message by taking the
individual characters or bits and rearranging their order. For decipherment an
inverse process of unscrambling takes place. The word 'transposition' is com­
monly used for this kind of operation, though 'permutation' might be better.

A very early cipher based on transposition was the Greek 'scytale' (literally:
staff). To operate this a narrow strip of writing materiat such as parchment, was
wrapped spirally around the staff. The message was then written in rows of
characters longitudinally along the staff. Unwrapped, the strip appeared to carry
meaningless sequences of characters. Only by carefully wrapping the strip around
a staff of equal diameter would the plaintext message be apparent. The method
is neat but not secure because the relation between strip width and staff diameter
allows only a small key space.

-- 44 --
MasterCard, Exh. 1004, p. 44

a lT12Sssge
re;~rranged. in the order t:l1532; this seq1~}2Ilce constitut~s

2.1'1 shows a rnessage in this vJay.
trequency count taken on such a message should show letters in
their normal places in the ranking, suggesting that a transposition and not a
substitution has taken place. Solution of a transposition cipher of this kind is on
a par with the kind of anagramming which is carried out by crossword enthusiasts.

A convenient way to express the permutation in easily memorable form is by
a key word. This operation is illustrated in Figure 2.15 where the key word is
'computer'. The letters of the key word are numbered according to their
alphabetical order- 14358726. The plaintext letters are then written in rows of
eight letters beneath the keyword, filling in the final row, if that is incomplete,
with null characters. As a general rule, the user of a transposition cipher based
on a letter array would be well advised to use garble rather than unusual letters
standing as nulls. The use of a string of unusual letters helps cryptanalysis,
because the cryptanalyst can find column and row arrangements bringing together
these unusual letters. To create the ciphertext, each row is read out in succession
in the order of the letters of the key word. Given that a message has been trans-

Plaintext THESIMPLESTPOSSIBLETRANSPOSITIONSXX

Key 4 1 5 3 2

s T I E H
E M s L p
s T s 0 p
E I T L B
s R p N A
T 0 I I s
X 0 X s N

Ciphertext STIEHEMSLPSTSOPEITLBSRPNATOIISXOXSN

Fig. 2.14 A simple transposition cipher

Plaintext ACONVENIENTWAYTOEXPRESSTHEPERMUTATION

Key word c 0 M p u T E R

1 4 3 5 8 7 2 6

A N 0 v I N c E
E w T A 0 T N y
E R p E T s X s
H E p R T u E M
A 0 I N z z T z

Ciphertext ANOVINCEEWTAOTNYERPETSXSHEPRTUEMAOINZZTZ ----------- -
Fig. 2.15 Transposition based on a key word

-- 45 --
MasterCard, Exh. 1004, p. 45

its letters do not get distributed very far and can be found
the or of it. If the vvorcl is tncm~;nt
the underlined letters are found. The same transposition in PER and ION
establishes which E to use and the size of the permuted arrays.

The Nihilist cipher

Slightly more complex is the operation of the 'Nihilist' cipher which is a com­
bination of columnar and row transposition. The plaintext is again written in rows
under a key word, but this time the key word is also written vertically at the side
of the columns (Figure 2.16). Ciphertext readout takes place row by row as in
the previous example, but with the order of row selection being determined by
the key word written vertically alongside; the effect of this process is to spread
the mixture of plaintext letters over a domain equivalent in size to the square
of the size of the key word. The key word is repeated as many times as necessary
in the vertical dimension, the transposition process being taken separately for
each key word repetition.

A cryptanalytic attack on a Nihilist cipher depends on column and row
rearrangement, with much trial and error in seeking to build up words, aided
by intuition. To program this kind of attack, use can be made of digraph and
trigraph letter frequencies when testing trial rearrangements.

An alternative method of operating this kind of cipher is to write in the plaintext
according to the sequence controlled by the key word and to read out the
ciphertext according to some complex order, such as diagonally and in opposite
directions for alternative diagonals, as also shown in Figure 2.16.

Plaintext NOWISTHETIMEFORALLGOODMEN

L E M 0 N

2 1 3 5 4

L 2 0 N w s I

E 1 H T E T

M 3 E M F R 0

0 5 L A L 0 G

N 4 D 0 M N E

Nihilist Ciphertext HTEITONWSIEMFRODOMNELALOG

Diagonal Ciphertext ONHETWSEMLDAFIITRLOMOOGNE

Fig. 2.16 A Nihilist transposition and variant read-out

-- 46 --
MasterCard, Exh. 1004, p. 46

on_ce 1-tave served a 11seft1l p11rpose.
'~"~"'"'-~ '' 1 ''n~n of 021peilCIS on the USe of

tre~qu"ency counts and on the to rearrange letter
patterns of How much more would task of cryptanalysis

be if substitution and transposition techniques were used in combination? Because
of the substitution, it would no longer be possible to rearrange the rows and col­
umns of a matrix by inspection. Because of the transposition, digraph and trigraph
counts would be broken up.

Attractive though a product cipher might be from the point of view of crypto­
graphic strength, it is too complex for human effort, unaided by a machine. The
risk of making a mistake is too high and the encipherment and decipherment
processes are slow. To use ciphers of this complexity requires cipher machines.

2.5. CIPHER MACHINES

Cryptographers have used mechanical aids of one kind or another for centuries;
these began with simple devices like the Saint-Cyr slide and developed into very
complex electromechanical systems by the time of the Second World War, before
electronics took over.

The Jefferson cylinder

An interesting cipher device is credited to the American president, Thomas
Jefferson, who in the 1790s developed a mechanism for applying polyalphabetic
substitution. This consisted of thirty-six discs, each of which carried a jumbled
alphabet on its periphery, which could be mounted on a common axis (Figure
2.17). The discs were numbered so that their order on the axis could be specified
and agreed between communicators. The disc order constitutes the key; the
number of different ways in which thirty-six discs can be arranged is of the order
104

\ therefore the key space is very large. In operation a message would be set
up on the device by rotating the discs until the message letters stood on the same
row against an index bar. To read out the ciphertext the bar could be moved to
any of the other twenty-five positions around the cylinder; the row indicated
would then be read out as the ciphertext. It is immaterial which row is chosen,

Fig. 2,17 The Jefferson wheel cipher device

-- 47 --
MasterCard, Exh. 1004, p. 47

Of slightly later date was the concentric disc type of cryptograph,
invented by Wadsworth in 1817, but developed by Wheatstone in the 1860s. This
type of device is effectively a polyalphabetic substitution cipher, but the way in
which the various alphabets are used depends on the plaintext letter sequence.
Two concentric discs carry the letters of the alphabet around their peripheries.
Wheatstone's outer disc had twenty-six letters in alphabetical order plus space,
whilst the inner disc had just twenty-six letters in random order (Figure 2.18).
Two pointers were provided, geared together in such a way that when the outer
had traversed twenty-seven letters so had the inner on its scale of twenty-six;
if the pointers were coincident at the outset, after one complete revolution of the
outer pointers the inner had moved by one revolution plus one letter, thus
separating the pointers by one letter position. For encipherment the outer pointer
was moved successively to the letters of the plaintext (moving always clockwise
and including space as a character), whilst the ciphertext letters were indicated

Fig. 2.18 The Wheatstone disc cipher device

-- 48 --
MasterCard, Exh. 1004, p. 48

A very important class of cipher machines is based on various rotor designs in
which rotors with internal cross-connections are used to achieve substitution with
a continually changing alphabet. The internal links have been expressed both by
pneumatic and electrical connections. Fibre optics came too late for the rotor
machines.

One of the most famous polyalphabetic substitution machines was the Enigma
(wiring shown schematically in Figure 2.19), a development from a Dutch inven­
tion dating from about 1920 and used by the German forces in the Second World
War. This was a machine in which three, or in later machines four, rotors turned
on a common shaft. Each rotor had twenty-six positions. The mode of rotation
was similar to the action of an odometer with the rightmost rotor, R1, moving
by one position for each letter enciphered and each rotor stepping the one to its
left as it passed a certain position. Unlike a standard odometer the rotor, R2, in
the middle stepped on itself by one additional position as it communicated a step­
ping action to the next rotor. Rotor R2 rested for only one character on its 'step­
ping' position and the effect was to give a three-rotor machine a cycle of
26 x 25 x 26 characters. The four-rotor machine had the same cycle because its left­
hand rotor did not move - no messages were long enough to make this matter.

+

R3 R2 Rl Lamp
A

Key A

r

+

~
Lamp

H

Key H

Fig. 2.19 Schematic of the Enif(ma cipher machine

-- 49 --
MasterCard, Exh. 1004, p. 49

CCll.tacts,
\;1/hen the macmne -vvas a

plugboard was added to it. This had and a
number of double-ended cables were to join them in pairs. For most
of the time ten cables were used, leaving six sockets unplugged. The plugboard
was wired between the set of rotors and the set of keys and lamps. As shown
in the figure for the two sockets A and F, the effect of a cable and its two plugs
was to transpose one pair of connections that otherwise went straight through.

The figure shows only eight connections to represent the twenty-six connec­
tions of the actual machine. Depression of key H is shown, which disconnects
that key from the lamp H and connects it, via the plugboard, to pin H on the
fixed-entry commutator EN, since socket His not used in this case.

Lamp A is connected through its key (undepressed) to socket A which is plugged
to socket D. The effect of the cable is to transpose connections A and D. In the
position of the rotors shown it happens that D and H are joined together so the
connection to the negative supply at key H results in lighting lamp A. The
plugboard permutes the connections from lamps/keys to EN and the permuta­
tion happens to be an involution (A to D implies D to A, as the figure shows).
There is no logical reason why it should be an involution and late in the war a
twenty-six position switch, the Enigma Uhr, was introduced which removed this
restriction and allowed the plugboard setting to be changed each hour.

The figure shows the eight connections laid in a row instead of a ring of twenty­
six. Rotation of any rotor completely changed the permutation of the twenty-six
wires. The machine provided a sequence of 26 x 25 x 26 substitutions before it
repeated. In the fixed commutator, RE, on the left are thirteen connections. Since
the key H operates lamp A it follows that, at the same rotor position, key A would
operate lamp H, therefore each substitution is an involution- and this does not
depend on how the plugboard is wired. It is a consequence of the thirteen wires
in RE which themselves define an involution that is transformed by the rest of
the equipment. It is also clear that no letter can be enciphered into itself because
the electrical connections prevent that happening.

It was possible to replace Enigma rotors on the shaft from a collection or 'basket'
of several different rotors. The initial setting of the machine required the selec­
tion and installation of rotors with their ring settings and then setting up the plug
board. These operations constituted the current encipherment key. For each
message, the initial rotor positions were chosen by the operator and transmitted
in the message header. This 'indicator' was the weak point exploited in crypt­
analysis. The German forces changed the method twice.

Operationally the Enigma machine was inconvenient. It needed at least two
people, one to type the text on the keyboard and the other to read the lamps
and write down the enciphered message. A printer attachment was developed
but not widely used. There was also an extension attachment for the lamps so
that only one person need see the plaintext.

It is now well known that, during the Second World War, messages enciphered

-- 50 --
MasterCard, Exh. 1004, p. 50

V\fith the invention of the in the latter of the nineteenth
it seems natural that efforts should be made to develop cipher machines in
the plaintext could be typed on a keyboard and the ciphertext produced directly
by a printing mechanism in the machine. The first known machine of this type
was due to De Viaris in the 1880s. Many other machines with this property
followed, some of which were also able to transmit ciphertext directly onto a com­
munication link. A notable example of a printing cipher machine was the
celebrated M-209 machine of Boris Hagelin, used in large numbers during the
Second World War. A full description of the M-209 is given by Beker and Piper.5

The M-209 was only one of the very many different cipher machines invented
by Hagelin.

On-line cipher machines take the automatic handling of text one stage further
than the printer. In these, the plaintext is typed on a machine which enciphers
it and transmits the ciphertext (via a telegraph circuit or a radio-telegraph chan­
nel) to the receiver. Here, the same type of machine deciphers the received text
and prints it in clear form. No human handling of the ciphertext is needed.

One of the most highly developed of the on-line telegraph cipher machines was
produced by Siemens and Halske from the early 1930s to 1945. The machine was
called type T52 and was built around a standard electric teleprinter. It was prob­
ably also called the Geheimfernschreiber or Geheimschreiber. It was used very
effectively, mainly on telegraph circuits, in the Second World War. In its simplest
form this machine used 10 wheels, each wheel stepped on by one place for each
letter sent. The sizes of wheels were 47, 53, 59, 61, 64, 65, 69, 71 and 73, relative­
ly prime, potentially giving a repeating cycle of length about 9 x 1017

.

The wheels produced letter substitution on the 5-bit Baudot code by a com­
bination of running-key addition from five wheels and permutation of the five
code elements by five other wheels. The key setting of the machine was at first
a plug and jack field for permuting the ten channels from the cams on their way
to the encipher/decipher circuits. Later versions of the T52 produced an irregular
movement of the ten wheels by stepping the wheels according to logical func­
tions (derived by magnet circuits) of the outputs of the cams, taken from a dif­
ferent place on the cam. A further complication was that the ten binary encipher­
ment channels, after permutation according to the key, were subjected to linear
logical operations (XOR) so that each channel to the encipher/decipher circuits
depended on four cam outputs. A detailed study of the development of the T52
machine has been made by Davies.6

Modern cipher machines

A wide range of cipher machines is currently available from many manufacturers.
These machines are mostly communications oriented, provided with appropriate
interfaces for connection to modems and communication lines. Their design details

-- 51 --
MasterCard, Exh. 1004, p. 51

on which "0 '''"'ic" deoeJl.cl<~cl,

communication vvould
details of the algorithm. It is realistic to assume that an intruder may be
steal a machine and study it. Any machine 'Northy of consideration can be
expected to possess a large key domain from which a secret key can be chosen;
this is the other component in attaining adequate strength. As we saw in con­
nection with monoalphabetic substitution ciphers, the size of the potential key
domain is not necessarily a good indication of cryptographic strength.

Substitution in modem ciphers

A substitution can replace a 'word' of n bits by another word either as a
mathematical (logical or arithmetical) function or using an arbitrary function
expressed in a table of values.

We shall later meet examples of mathematical functions, such as those based
on modular arithmetic. Addition, modulo 26, provides the Vigenere substitution.
In chapters 8 and 9 exponential functions with very large moduli are used.
However, the simplest mechanism for a cipher is an arbitrary table of values.

As an example consider an 8-bit substitution. There are 256 different values
of the independent variable and for each value the 8-bit output must be specified.
This can be done in 256 bytes of memory, which is a small expenditure in a micro­
based encipherment device. In a programmed form, it usually requires two or
three instructions and of the order of 1 f.J-S of time in a cheap 8-bit microprocessor.
This is an excellent component for a simple cipher, though 8-bit substitutions alone
are not very secure.

If we are willing to employ more of the address space of a microprocessor in
a substitution table, then large substitution tables are possible. In an 8-bit machine
with 16-bit addressing it is unlikely that more than 16 Kbytes could be given over
to a substitution table. This puts the practical limit at 14 bits. If the table has to
be loaded using the key, the time to do this is also important.

Building a 64-bit cipher (for example) out of 8-bit substitutions requires some
way of mixing together the outputs of several substitutions. This illustrates the
importance of permuting bits or characters, the so-called 'transposition cipher'.

Keyed substitution

A fixed substitution, for example one built into a read-only memory (ROM), can
be a powerful component of a cipher, but a substitution that is unknown to the
enemy because it is derived from the key can be even better. Fortunately it can
be shown7 that almost all 8-to-8 bit substitutions are acceptable ones, free of the
flaws of linearity or insensitivity to certain input bits.

Often the requirement is for an invertible substitution or bijection, which means
that the set of 256 byte values (for example) are a permutation of the set of numbers
0, 1, ... 255. Efficient methods of generating such permutations exist8

, but

-- 52 --
MasterCard, Exh. 1004, p. 52

- ·hic:i--_ x 'lnd
or

of th:= cs a 's.eedr to gerL:::rate a_ (JS'2'.-'':Lo--ranctom
i = 0, 1, 255 where 0 ::::; = R(i) ::::; 256. These random are used in
turn to S(i) with S[R(i)]. In this way each element of S(x) is permuted
with a chosen other element of the array. If desired, the permutation
process can be continued, to ensure a random result.

_rransposit:i.on in modern ..__._~__._ .. o_._"

We have seen how substitution can be provided by table look-up, which is a fast
operation either in a programmed microprocessor or purpose-built hardware.
Transposition of bits in purpose-built hardware need be no more than a crossing
over of connecting wires on a chip or board. In a serially operated device, it
requires a number of delays. and feedback paths and becomes complex.

Frequently the effect of transposition is provided by shiffregisters and by loading
a set of 8-bit 'registers' in one sequence and reading them in another. The carry
propagation in arithmetic operations can exploit the functions available in a pro­
cessor to produce the effect of transposition, but the average length of a carry
sequence is smalC about log n bits for an n-bit number.

Variable or key-dependent transpositions of the classical form (bit or letter
transposition) can be difficult to arrange in hardware. If all the permutations are
to be available, a device like a miniature-scale telephone switch is required. In
programmed form it is a little easier to do, but bit transpositions always tend to
be inefficient and slow, hence the value of hybrid methods based on shifting,
adding and XORing whole words. 9

2.6. ATTACKS AGAINST ENCIPHERED DATA

Until the advent of digital computers the task of decipherment of cryptograms
depended entirely on human skill; it was an esoteric art requiring considerable
intuition on the part of the practitioner and a great deal of tedious work. Digital
computers have changed this. For all the classical methods, analysis of enciphered
text to identify the type of cipher can be carried out rapidly; once the cipher
mechanism is known, the processing speed of computers allows quite crude
methods to be used to break these classical ciphers.

Nevertheless, someone receiving a radio signal from outer space has a very con­
siderable problem in interpretation - the modulation system of the signal may
be complex, the 'plaintext' language is unknown, the message may be enciphered
in an unknown cipher algorithm and the encipherment may be controlled by an
unknown key. The message may not be intelligible, even with immense com­
puting power and unlimited time.

The cryptanalyst trying to obtain the meaning of a message couched in an
unknown cipher with an unknown key faces a task which is nearly as daunting.
Unless a ve~y elementary cipher has been used, identification of the encipher­
ment algorithm itself can present a severe problem. When the cipher is known,

-- 53 --
MasterCard, Exh. 1004, p. 53

Classes of attack

than the crack-
that a ~vvhole stream of messages has been
whole stream becomes intelligible.

In assessing the strength of a cipher system it is prudent to assume that the
algorithm ·is known to the cryptanalyst and that the attempt to crack the
enciphered message consists of trying to find the key. The cryptanalyst's task
is most difficult when all he has to go on is ciphertext, with no knowledge what­
soever of the plaintext; this is the ciphertext-only attack. If there is no redundancy
in the plaintext (for example, an arbitrary string of numbers) then it is impossible
to find a key. For a given ciphertext, each key value gives for its plaintext an
arbitrary string and all these strings are possible. Some known plaintext could
resolve this problem, for example if the arbitrary message has a preamble in stan­
dard format. Keys can be tested until an instance of the preamble appears in the
deciphered text; if the preamble is long enough then this may allow the key to
be identified with confidence, since the preamble only appears for one key value.
Otherwise it may be necessary to collect all possible candidate decipherments,
thus identifying a set of possible keys. A knowledge of the representational code
of a plaintext with, say, even parity, can give the cryptanalyst something to work
on.

More favourable to the cryptanalyst is the situation where some plaintext and
its matching ciphertext are available - the known-plaintext attack. The task is then
to find a key corresponding to this match. If the length of the available text is
sufficient, then the key can be identified with absolute confidence. Circumstances
in which a plaintext-ciphertext pair is known are more common than one might
imagine. For example, market changes may lead to predictable instructions being
sent out to bankers or brokers. Sending enciphered press releases from a coun­
try to its embassy is another case in point. This is discouraged because of the
working material it might afford a cryptanalyst seeking to break the diplomatic
cipher. The remedy here is to ensure that the press releases are paraphrased before
release.

The most favourable situation for the cryptanalyst arises from a chosen-plaintext
attack. Here the cryptanalyst has somehow managed to introduce a plaintext of
his own choosing into the encipherment process. The plaintext may be chosen
to ease the task of key finding; for example, it may be helpful if the chosen plaintext
could be 'all zeros'. The 'probable word' is an example of known plaintext, though
its position in the text is unknown to the cryptanalyst. Sometimes the probable
word is actually 'chosen plaintext'. An example of forcing a word into a cipher
system occurred in the breaking of Enigma, where a bombing attack was made
on a lightbuoy with the certainty that the comparatively rare word 'leuchttonne'
would turn up in Enigma enciphered messages. 10

In order to ensure the strength of a cipher it is best to make the most adverse

-- 54 --
MasterCard, Exh. 1004, p. 54

be assn_ETL2CL A silnilar ~ri-terion, less discussed
s1clenng, is that of chosen For could the
own text on the line and somehow get access to the pl;;1intexf?
cipher should resist all these attacks.

If the method of attack is to be exhaustive search using a computer,
given a known plaintext-ciphertext pair, then we can estimate the mean time
it will take to find a key based on assumed times to test each key and the number
of possible different keys. We assume for the sake of illustration key testing times
of 1 p,s and 1 ms. These times approximate to the performance one might expect
from special-purpose, large-scale integration (LSI) hardware and a microprocessor
system, respectively. We assume key domains of 24, 32, 40, 48, 56 and 64 bits.
In the left-hand part of Figure 2.20 we show the times taken to find correct keys,
assuming that one key is tested at a time and that on average the correct key
is found after working through half the key space. Any results above and to the
right of the thick line represent conditions where the cipher is very weak. Results
expressed in days may indicate conditions to be avoided for very important
messages, whilst results expressed in years may be strong enough for most pur­
poses. The results for times greater than 100 years are not shown, being beyond
the normal expectation of human life.

Imagine, however, that a cryptanalyst has at his disposal a more powerful
machine which is able to test many keys in parallel at the same time. Our
imaginary machine contains many distinct units, each of which is programmed
to explore a particular part of the key domain; eventually one of the units iden­
tifies the key and the machine signals success in its key search. For the sake of
illustration we shall assume that such a machine can be built and that it is capable
of testing 1 million keys simultaneously. This changes the situation completely.
The fight•hand part of Figure 2.20 shows the times now achieved in key sear-

Single test 106 tests in parallel
Key size

bits 1 ms 1 JlS 1 ms 1 J.!S

24 2.33 h 8.4 s 8.4 ms 8.4 vs

32 24.9 d 35.8 m 2.15 s 2.15 ms

40 17.4 y 6.4 d 9.2 m 550 ms

48 >100y 4.46y 1.63 d 2.35 m

56 > 100 y 1.14 y 10.0 h

64 > 100 y 107 d

Fig. 2.20 Times for exhaustive key search

-- 55 --
MasterCard, Exh. 1004, p. 55

:nssed b1__.1t 1/iO:r'cl-l col:.·-
the enemy his

Ltext? A good Inodern

ch using a computer,
timate the mean time
h key and the number
:J.tion key testing times
mce one might expect
~ and a microprocessor
iO, 48, 56 and 64 bits.
n to find correct keys,
·erage the correct key
sults above and to the
r is very weak. Results
,d for very important
enough for most pur­
shown, being beyond

)Sal a more powerful
the same time. Our

Nhich is programmed
one of the units iden­
earch. For the sake of
lt and that it is capable
situation completely.
achieved in key sear-

ests in parallel

1 !lS

8.4 vs

2.15 ms

550 ms

l 2.35 m

10.0 h

107 d

\Vhe1e a communication systerH needs handle characters in a st1eam, as, for
example, when a simple terminal without is connected, this
tain constraints upon the choice of cipher system may be used. Each chara,ctE:r
must be accepted as it becomes available, enciphered and then transmitted.
some form of substitution cipher could be used, but not a cipher which transposes
characters.

Plaintext data arriving in this fashion is normally handled by what is known
as a 'stream cipher'. A stream cipher may be synchronous, when encipherment
depends on the current plaintext character and its position in the stream (in
addition to the encipherment key) and the ciphertext is not influenced by the
particular plaintext characters which have gone before. Enigma produces this kind
of cipher. If the positional information becomes inaccurate, then the result may
be completely unintelligible. Other types of stream ciphers are self-synchronizing;
decipherment then depends on the current plaintext character and on a limited
number of previous ciphertext characters; synchronism may be lost temporarily,
but recovered as more text is processed. Because of the dependence of the cur­
rent ciphertext on the immediately recent ciphertext, each ciphertext character
depends on the current plaintext character, its position in the plaintext stream
and also on the whole of the preceding plaintext stream.

The Vigenere cipher is an example of a synchronous stream cipher. The modulo
26 addition of a key text into a plaintext naturally takes place character by character
and depends on relative position of current plaintext and key text; correct registra­
tion of plaintext and key text is essential. In that context we pointed out that a
truly random stream of characters used as key material would yield an uncrackable
ciphertext. The idea of adding a random stream into a plaintext arose as a result
of an important invention by Vernam in 1917.

The V ernam cipher

At that time Vernam was working with other employees of the American
Telephone and Telegraph Company on methods of encipherment for the print­
ing telegraph. Vernam' s important contribution was the bit-by-bit combination
of random characters with characters of the plaintext, the combination being car­
ried out by modulo-2 addition (the XOR function); the principle is illustrated in
Figure 2.21. Random characters, chosen by picking numbers out of a hat, were
punched on paper tape; this tape was fed through one reader in synchronism
with the plaintext tape fed through another reader. A new tape was punched
in a tape punch, enciphered in this neat and elegant operation. The encipher­
ment key was the random number stream punched on the key tape, sometimes
called the 'key stream'.

Decipherment was equally simple; all that was necessary was to take the re­
ceived enciphered tape and feed this through a tape reader, combining it by bit­
by-bit modulo-2 addition with a copy of the random key stream. In other words,

-- 56 --
MasterCard, Exh. 1004, p. 56

Fig. 2.21 The flow of data in the Vemam cipher

the process of decipherment used exactly the same mechanism and exactly the
same key data as the process of encipherment. Figure 2.21 shows the data flows
in the Vern am encipherment and decipherment. The modulo 2, or 'exclusive­
OR', operation, used in the Vernam encipherment, has acquired great import­
ance in designing modern cipher procedures. There is close similarity between
Vernam' s and Vigenere' s methods except that one works with bits and the other
with characters.

To operate Vernam' s cipher it was necessary to provide sender and receiver
with identical sequences of random numbers. Vernam' s original idea was to use
loops of tape, so that the random number stream was used over again as many
times as necessary to encode a complete message. In order to generate longer
number streams, two random number tape loops (with different random number
streams) were used together, the tapes differing in length by one character. The
two tape loops were run in synchronism and combined in an exclusive-OR opera­
tion, the result being combined with the plaintext. Thus, if one loop were 1000
characters long and the other 999, the number of combinations which would be
produced before a repeat would be 999 000, but this is not a true indication of
its complexity.

If tapes of truly random numbers can be provided at the two ends of a com­
munication system using a Vernam cipher system, then the cipher is completely
uncrackable. This is because, for any ciphertext with an unknown random key,
all possible plaintexts of the same length are equally valid as decipherments. For
very important communication channels it is worth going to the trouble of securely
providing such random number tapes. Since the key is as long as the message,
it is not generally usefut but there are situations needing great security in which
the amount communicated is small but it is urgent and carrying bulk data as key
is not difficult. This method, known as the 1 one-time tape', has been used to pro­
tect channels such as the Washington-Moscow 'hot line'.

A similar method, operated by hand, is the I one-time pad' which has been in
the news more than once in connection with the unmasking of spies. Here the
random number series is printed on tear-off pads, each sheet being used only
once and then destroyed. Matching pads are held at sender and receiver locations.

As was pointed out in connection with the Vigenere cipher, so, with the Vernam
cipher, it is important to avoid using the same key for more than one message,
hence the use of the term 'one-time'. Use of the same key in encipherment for
a number of plaintexts allows attacks either by a Kerckhoffs' superimposition or
by elimination of the key by an exclusive-OR combination of the two ciphertexts.

-- 57 --
MasterCard, Exh. 1004, p. 57

Hessogs
key

Fig. 2.22 Stream cipher with pswdo-random generators

Pseudo-random key streams

According to the Vernam principle the same random key stream is used for
encipherment and decipherment. If a repetitive key stream is insecure and a com­
pletely random key stream is impractical, the compromise which is normally used
is to employ a pseudo-random key stream generated by a finite state device at
each end of the line as shown in Figure 2.22. Much of the ingenuity of cryp­
tographers has gone into the development of these key stream generators. The
key stream generator employs a secret key, the main cryptographic key, sometimes
known in this context as the base key.

In order to synchronize the two ends of the line, the two pseudo-random key
stream generators must begin with the same stored data, that is to say the same
state of the machine. The number used to establish this state may be considered
as part of the key, sometimes called the message key and it can be exchanged by
a preamble to the main communication. Many systems allow the synchronizing
data to be sent in clear through the network. Because synchronization can be lost
due to a fault in the system or a bad communication line, practical systems which
run automatically must be able to recover synchronism without human interven­
tion. Effectively, this means that a portion of the channel capacity has to be given
over to synchronizing information.

In some systems, the data being transmitted has considerable redundancy,
perhaps because it is multiplexing a number of data streams. In this case, a loss
of synchronism can be detected and both key stream generators stop their nor­
mal operation and enter into a resynchronizing sequence. In other systems, par­
ticularly those working at high speed or over networks with delay such as satellite
links, the synchronizing information is sent continually and the two units resyn­
chronize at a moment defined by a secret criterion based on the structure of the
data being transmitted.

An example of this kind of key stream is given in chapter 4, section 4.4 - a
method called output feedback.

2.8. THE BLOCK CIPHER

Block ciphers handle plaintext characters in blocks, operating on each block
separately. The block size depends on the particular encipherment device in use;

-- 58 --
MasterCard, Exh. 1004, p. 58

trarcsters. I-Iovvever, if th2re is r_o irtfhJence frorn other parts
··~ll·"''·'=lLcc•clu. of eacll block tl1is is a seriotl_S It :rnearts that

if a block happens to occur more than once in a then co:rresp<Jn,:lirtg
repeated ciphertext blocks will occur in the ciphertext, giving away information
to an eavesdropper; this characteristic is very like that of material that has been
encoded, as distinct from enciphered, when repeats may also be evident (indeed
the simple block mode of using the Data Encryption Standard is usually known
as' electronic code book'). Even more seriously, an active line-tapper may be able
to change the order of ciphertext blocks, delete selected blocks or duplicate par­
ticular blocks without risk of discovery.

Since the block cipher is effectively a substitution cipher acting on blocks in­
stead of characters, if such a system is to be used with anything like adequate
security, it is essential to use blocks of appreciable size in order to prevent a crypt­
analysis based on frequency counts of block types.

Methods have been devised for using block ciphers as a basis for constructing
stream ciphers. We shall see in chapter 4 how this has been done for the Data
Encryption Standard.

2.9. MEASUREMENT OF CIPHER STRENGTH

Shannon's theory of secrecy systems

A most important contribution to the theory of encipherment systems was made
by Claude Shannon, when he published his paper 'Communication theory of
secrecy systems',11 which followed soon after his better-known paper on the
mathematical theory of communication. Shannon assumed that the cryptanalyst
had only ciphertext to work on, which, from the point ofview of cryptanalysis,
is a more stringent assumption than the known or chosen plaintext assumption.

Shannon identified two significant classes of encipherment system- those that
are unconditionally secure and those that are computationally secure. An un­
conditionally secure system is defined as one which defies cryptanalysis even though
the cryptanalyst has unlimited computing power available to him. The only un­
conditionally secure cipher that is in common use is the one-time tape system,
mentioned earlier, if used with a truly random key tape. As we have already seen
all plain texts with length equal to the ciphertext are decipherment candidates and
there is no way of choosing between them, computational resources
notwithstanding.

A particular cryptogram may be unconditionally secure if it is so short as not
to contain sufficient material to lead to a unique solution. Even a monoalphabetic
substitution ciphertext may fall into this class. Shannon defined the minimum
length of text required to yield a unique solution as the 'unicity distance'. Stated
simply, Shannon's criterion was that the redundancy in the plaintext must exceed
the information contained in the key. For example, the key size for a
monoalphabetic substitution cipher is 26! and log2 26! is 88. If the redundancy

-- 59 --
MasterCard, Exh. 1004, p. 59

of text ".n-n' ,,.,­

lower limh observed in cnrot2_n:tlv'sis
time tape the

A ciphertext which cm:~tains sufficient information for cryptanalysis is said to
be computationally secure if the task of solution is so as to be impossible of
execution with the largest conceivable computational power. The 'one-way' func­
tions that we shall meet in chapter 8 are of the class that are easy to compute
in one 'direction', but are required to be computationally infeasible in the other.

There is no accepted definition of what is computationally infeasible, bearing
in mind that extremes of parallel processing can be used, that time-memmy trade­
offs are possible and that some notion of the acceptable time for a solution must
be obtained. Furthermore, processing and storage technology continually improve.
It would generally be agreed that a calculation employing more than 1025 steps
is not feasible today. Perhaps 'step' should be defined as 'that which an LSI chip
can do in 1 fLS'. To get a more absolute limit, going beyond our present technology,
it is possible to set a thermodynamic limit.

Limit§ of computation

A reasonable assumption is that each logical step consumes energy kT, where
k is Boltzmann's constant and T the absolute temperature. From a calculation of
the amount of heat falling on the earth from the sun and assuming that the crypt­
analytic computation must take place at a temperature of 100 K, it can be
shown12 that the number of elementary operations obtainable in 1000 years is
about 3 x 1048 . The other significant consideration in a time-memory trade-off is
the amount of available store for the computation. Let us assume that somehow
a store can be constructed in which each bit requires 10 atoms of silicon; this store
shall be 1 km high and cover all the land mass of the earth (or shall be placed
in orbit as a new moon of equivalent mass). The number of bits that can be stored
is about 1045 .

Being cautious in placing our limits of computational infeasibility, let us define
these as 1050 operations in 1000 years and a store of 1050 bits. Any computations
requiring more than this amount of computing power can be said to be totally
impossible in the time scale stated. In practical terms, computations requiring
very much less power than this are also likely to be impossible. A feel for the
scale of the problem can be gained by looking at cryptanalysis of the Lucifer
system13 with its key of 128 bits; if this can only be attacked by exhaustive search
for the key, given a known plaintext-ciphertext pair, then the number of keys
that must be tested is about 3 X 1038 . If one Lucifer key can be tested every
picosecond, then the time taken to find a solution is about 1019 years.

Key size and its effect on the time for exhaustive search set an upper limit on
the strength of a cipher, but it is a great mistake to judge the strength of a cipher
in this way. The history of ciphers is full of 'unbreakable ciphers' with large key
spaces. Key search is no more than the universal method on which to fall back

-- 60 --
MasterCard, Exh. 1004, p. 60

are as to break as the dJ1tJCuli:V

certain that mathematicians agree to be
The possibility of improved computational methods make breaking feasible
cannot be ruled out.

Looked at from the point of view of the theory of computational complexity,
some systems can be proved to be unconditionally secure, but computational in­
feasibility of any cryptanalytic problem cannot be demonstrated. For this reason
it is usual, when assessing the strength of a cipher, to postulate an attack under
conditions which favour the cryptanalyst. This departs from Shannon's assump­
tion of a ciphertext-only attack and makes the assumption of a known-ciphertext
or chosen-ciphertext attack. It is on such assumptions that the strength of a modern
cipher system is judged.

An application of Shannon's theory

An interesting application of Shannon's theory is to the solution of messages
formed by adding two English texts. The operation can be modulo 2 addition
of bits (Vernam) or modulo 26 addition of a letter code (Vigenere) - it makes
little difference. From one point of view, each text is enciphering the other. Each
text has a redundancy of about 80 per cent. The amount of key needed to solve
it is provided by the other's redundancy. In other words, the 20 per cent equivoca­
tion in each text still leaves enough redundancy (60 per cent) to solve the prob­
lem. This, even if it were an exact argument, would not show that it could be
done in practice because our knowledge of the structure of English is not perfect
and long messages would be needed, with correspondingly long computation,
to exploit all the redundancy which Shannon has estimated. In practice, by guess­
ing first at one message and then the other the problem can often be solved. For
a starting point, a probable word or phrase in one or other text is needed.

The same method of solution can be applied to an equivalent problem- solu­
tion where two texts have been additively enciphered with the same key stream.
Such a solution gives both the texts and a sample of keystream for further analysis.

2.10. THREATS AGAINST A SECURE SYSTEM

Threats against any protected system, be it a communications system or a data
storage system, can be classified conveniently into two categories - the passive
and the active threat. A passive attack against a system is merely an attempt to
get round the protective barriers and read what is being transferred or stored,
but without attempting to alter it. This type of attack has been perpetrated against
communication systems ever since the invention of the electric telegraph. In the
days before multiplexing it was very simple indeed to introduce a wire tap onto
a transmission line (Figure 2.23). Telephone tapping of a local connection is all
too easy to achieve. The various forms of multiplexing now in operation and the

-- 61 --
MasterCard, Exh. 1004, p. 61

InforrrHJ.liun
source

Passive
line tap

Fig. 2.23 A passive line tap

Irrforrnotion
sink

complex protocols in data networks demand greater sophistication of the intruding
line-tapper, but this is well within the compass of the technologist criminal. It
is often thought that multiplexing provides in itself a kind of safeguard against
the intruder, but this is a dangerous and fallacious belief. It is well known that
in the USA a foreign power made a practice of listening-in to microwave links
(no physical line tap then being necessary) and selecting interesting telephone
calls by recognition of the in-band dialling tones used to set up the calls.

A passive line tap need not break into the protocol controlling the flow of data.
This simplifies the task of the passive line tapper enormously.

Detection of a passive line tap is feasible where a physical communication link
is involved, based on precise measurements of line characteristics, but clearly this
is impossible where a microwave link is tapped. Defence against passive line­
tapping intrusion must therefore be based on protecting by encryption the data
transmitted; it cannot hope to succeed by protecting the transmission line itself,
except where the line is totally protected physically, an unusual state of affairs.

Active line taps

The active threat is potentially far more serious. Here the intruder seeks to alter
the stored or transmitted data, and will hope to do this without discovery by the
legitimate data owner or user. Alteration of stored data may take place either
through misuse of the normal access channels or by re-writing data on
exchangeable storage media. We are not so much concerned here with the access
rules, though this is an important subject, but rather with the techniques for pro­
tecting data against attack via clandestine means. Use of encryption can protect
against undetected alteration of the data by arranging that the encrypted data
is structured in such a way that meaningful alteration cannot take place without
cryptanalysis; we shall discuss this at greater length when we consider secure
data formats using encryption. Where an intruder has illegal access to data­
recording media, deletion of data cannot be prevented. Clearly this is a very

-- 62 --
MasterCard, Exh. 1004, p. 62

Information
source

False
protocol

Active
line tap

False
protocol

Fig. 2.24 An active line tap

Information
sink

serious matter and demands the creation of a secure physical environment for
storage of tapes and discs, together with back-up copies at a different storage
location.

An active line tap on a communication link is almost as difficult to prevent as
is a passive line tap except in radio channels. Detection is much easier and may
even be possible without encipherment or similar logical schemes. Successful
alteration of data requires time to carry out and precise measurements of transmis­
sion times may indicate the presence of intrusion. Whereas a microwave link was
easily tapped in passive mode, this type of link would present a severe challenge
to an active line tap. If a physical communication link is under constant
surveillance by its owner, with traffic constantly flowing and being monitored,
then it may be almost impossible for the intruder to introduce his tapping con­
nections without detection. The type of configuration that a line tapper would
require is shown in Figure 2.24.

To operate an active line tap successfully is not a simple task. In Figure 2.24
communication between source and sink is controlled by a protocol, called in the
figure 'true protocol'. The line tapper must interrupt this protocol and conduct
a separate 'false protocol' with source and with sink, thereby deceiving each that
they are still in direct communication. The true information flows from the source
to the active line tap; false information flows from the tap to the information sink.
The task of the line tapper is probably simplest when source and sink are allowed
first to establish a genuine communication channel, to be taken over later by the
line tapper. With some added complication the active tap takes part in the pro­
cess of setting up the channel.

Methods of prot!ction

Protection of transmitted data against an active line tap is based on the same prin­
ciples as those mentioned earlier in connection with the protection of stored data.
It is essential to prevent undetected alteration, addition, deletion and replay. In

-- 63 --
MasterCard, Exh. 1004, p. 63

is the attack in vvhich the intruder records an enciphered transmission
and later sends it again from his line-tapping transmitter. For example, the aim
might be to make money transfers to a bank account appear to take place more
than once. Replay cannot be prevented, but it can be detected by including in
the plaintext sufficient block identification data, a block number (either unique
or cyclic with a large range) and, possibly, a time-stamp. The receiver would ignore
any enciphered message whose decrypted plaintext did not contain valid iden­
tification. Detection of unauthorized changes is part of the subject called authenti­
cation and is treated in chapter 5.

2.11. THE ENCIPHERMENT KEY

In all but the most elementary of the systems we have discussed in this chapter,
the role of the encipherment key is most significant; key-less encipherment
algorithms, which always behave in a predictable manner, are only of academic
interest; the security of such systems depends on keeping the design details secret
and when the secret is lost a new design is needed to replace the lost cipher.

In keyed algorithms the encipherment process is carried out under the control
of the key, which influences the behaviour of the encipherment algorithm. This
property applies equally to substitution, transposition and product ciphers; it is
particularly important when we come to machine ciphers. In the latter, capture
of a machine may expose the detailed construction of a secret encipherment
algorithm to an opponent. However, if the opponent does not know the relevant
encipherment key, then knowledge of the algorithm alone should be totally
insufficient to permit cryptanalysis of an enciphered message. It is a sound prin­
ciple, much followed in modern practice, that security of a cipher system should
not depend on the secrecy of the algorithm, but on the secrecy of the encipher­
ment keys.

This principle places a considerable responsibility on the designer of the system
under which keys are generated, distributed, used and destroyed after use. In
the past the key material has been sent to encipherment users by human courier,
but this is too slow and inconvenient for many of today' s applications. Therefore,
means must be devised for transporting keys more rapidly and efficiently. Often
this implies sending the keys via the communication channel which is itself the
subject of encipherment protection. Here we need an hierarchy of keys which
distinguishes those keys which are used for data protection (and which may
therefore be much in use) from those used solely for the protection of keys in
transit. Keys used for encipherment of keys are used far less frequently and may
be transported by less efficient means, such as a physical visit; the very fact that
they are used less frequently means that they are less exposed to cryptanalytic
attack.

-- 64 --
MasterCard, Exh. 1004, p. 64

1. Kahn, D. The Codebreakers, Macmillan, New York, 1967.
2. Gaines, H.F. Cryptanalysis, Dover, New York, 1956.
3. Friedman, W.F. The Index of Coincidence and its Applications in CJ~;ptography, The River­

bank Publications, Aegean Park Press, Laguna, 1979.
4. Hinsley, F.H., Thomas, E.E., Ransom, C.F.G. and Knight, R.C. British Intelligence in

the Second World War, Vols I and II, HMSO, London, 1979 and 1981.
5. Beker, H. and Piper, F. Cipher Systems: The Protection of Communications, Northwood

Books, London, 1982.
6. Davies, D.W. 'The Siemens and Halske T52e cipher machine', Cryptologia, 6, 4, 289,

October 1982; 7, 3, 235, July 1983.
7. Gordon, J.A. and Retkin, H. 'Are bigS-boxes best?', Cnjptography (Proceedings, Burg

Feuerstein, 1982, ed. T. Beth), Lecture Notes in Computer Science 149, Springer Verlag,
Berlin, 1983.

8. Ayoub, F. Some aspects of the design of secure encryption algorithms, Hatfield Polytechnic,
School of Engineering, Ph.D. Thesis, March 1983.

9. Bruer, J-0. 'On non-linear combinations of linear shiftregister sequences', Proceedings,
IEEE 1982 International Symposium on Information Theory, Les Arcs, France. Also appeared
as Internal Report LiTH-ISY-I-577, Linkoping University, March 1983.

10. Johnson, B. The Secret War, BBC Publications, London, 1978.
11. Shannon, C.E. 'Communication theory of secrecy systems', Bell System Technical Journal,

28, 656, October 1949.
12. Davies, D.W. Limits of computation, NPL Internal Note, 1978.
13. Feistel, H. 'Cryptography and computer privacy', Scientific American, 228, 5, 15, May

1973.

-- 65 --
MasterCard, Exh. 1004, p. 65

3.1. HISTORY OF THE DES

Why do we need a data encryption standard, since proprietary encipherment
systems are available from many manufacturers? Users wishing to protect com­
munication on a line need only purchase a pair of matching encipherment devices,
install them, enter matching keys and they are ready to communicate securely.
Whenever communication is internal to a particular group, protection of transmis­
sion by encipherment presents little in the way of organizational problems, such
as reaching agreement on a particular method of encipherment. Until recently
most data communication has been within single organizations, often carried on
a private network of leased lines. In these conditions a standard is not needed.

When protected communication is required between users who belong to dif­
ferent organizations, this may not be so easy to arrange. The organization may
have chosen encipherment devices from different manufacturers, in which case
the devices are likely to be totally incompatible and unable to communicate either
securely or otherwise. Furthermore encipherment must often be introduced in
the context of standard communication protocols; this may place new restrictions
on the means of encipherment. This kind of interworking is becoming increas­
ingly common. Therefore, there is a case for considering standard encipherment
algorithms for widespread use. Of necessity any standard encipherment algorithm
must be public knowledge and this is a departure from previous cryptographic
practice where users attempted to keep the nature of the encipherment algorithms
in use a secret. The entire security of a system based on a public standard must
rest on the strength of the algorithm and the secrecy of the encipherment key.

The initial move towards a public encipherment standard came from the US
Federal Government, which, if it chose, could have dictated to its agencies
involved in data processing what existing proprietary algorithm they should use.
Encipherment had, of course, been in use by the US Government before this
initiative; such encipherment was designed to protect data covered by the US
National Security Act of 1947 or the Atomic Energy Act of 1954 and similar legisla­
tion. The new initiative was aimed at areas where the responsible authority
deemed that the data in question, though not covered by legislation demanding
encipherment (that is to say, not 'classified'), yet merited cryptographic protec­
tion; in general the application was, therefore, outside the military, diplomatic
and other areas of national security.

-- 66 --
MasterCard, Exh. 1004, p. 66

The US Pecleial ctepa:ctn1er1t
np.n:c;,.i--n-;Pr<~ of Cmr_merce; witnin this was
the Bureau o£ Standards (lt is novv Institute
for Standards and Under the Brooks Act (Public Law
NBS had the setting Federal Standards for the effective and
efficient use of computer systems; the relevant clause of PL 89-306 reads: 'The
Secretary of Commerce is authorized ... (2) to make appropriate recommenda­
tions to the President relating to the establishment of uniform Federal automated
data processing standards.' The standards which have been produced as a result
of this legislation are expressed in a substantial series of publications under the
general title of Federal Information Processing Standards; they cover hardware,
software, data, ADP operations, etc. _

Under this general remit NBS initiated a study programme on computer security.
One of the early actions in this programme was to express the need for a stan­
dard for data encryption. The Bureau took the view1 that purchase of encipher­
ment devices from commercial suppliers must be subject to the principle of 'caveat
emptor' or 'buyer beware'. An NBS statement averred that 'the intricacies of
relating key variations and working principles to the real strength of the encryp­
tion/decryption equipment were, and are, virtually unknown to almost all buyers,
and informed decisions as to the right type of on-line, off-line, key generation,
etc., which will meet buyers' security needs have been most difficult to make'.

The NBS's responsibility extended primarily to the protection of data as pro­
cessed and transmitted by Federal agencies; however an important secondary
area of responsibility as part of the Department of Commerce was to the general
buyer of encipherment equipment. An interesting sidelight is thrown by the NBS's .
view that much of the proprietary (i.e. non-standard) encipherment equipment
available came from outside the USA. Therefore the preparation of a standard
for data encipherment would not damage the trade of US manufacturers to a
serious degree.

In 1974 the US Congress passed a Privacy Act, which, strangely, did not address
directly the question of data security. However, data security is an important tool
in attaining in a satisfactory manner the requirements of legislation of this type,
and the Office of Management and Budget assigned to NBS the responsibility
of developing computer and data standards to meet the needs of this Act.

The NBS study programme got under way effectively in 1972. A search was
begun for an appropriate encipherment algorithm which could form the basis
of a Federal Information Processing Standard. The requirements for this were
as follows: 2

1. It must provide a high level of security.
2. It must be completely specified and easy to understand.
3. The security provided by the algorithm must not be based on the secrecy of

the algorithm.
4. It must be available to all users and suppliers.
5. It must be adequate for use in diverse applications.
6. It must be economical to implement in electronic devices and be efficient to use.

-- 67 --
MasterCard, Exh. 1004, p. 67

3 for the effec'cive and
PL 89-306 reads: 'The
ropriate recommenda­
Jrm Federal automated
~n produced as a result
publications under the
; they cover hardware,

e on computer security.
ss the need for a stan­
purchase of encipher-

, the principle of 'caveat
that 'the intricacies of
strength of the encryp­
Nn to almost all buyers,
f£-line, key generation,
nost difficult to make'.
)tection of data as pro­
n important secondary
erce was to the general
:is thrown by the NBS's .
cipherment equipment
~paration of a standard
US manufacturers to a

:angely, did not address
rity is an important tool
legislation of this type,
NBS the responsibility
e needs of this Act.
, in 1972. A search was
:h could form the basis
1irements for this were

and.
based on the secrecy of

2s and be efficient to use.

alg::;ncn:~L be :ealizable
in hard,;vare; lTl?jnfrar.::--Le co:c11t:mtets

min<ipulatiorls that forrn com-
ponents of under the remit in the
eight points listed, the NBS team was not looking for ideas needing a lot of fur­
ther development, only methods which were already well developed were sought.

In May 1973, NBS issued a call for ideas fitting these needs. The response was
disappointing; many mathematicians sent them outlines of algorithms which
needed development. One suggestion received was virtually a restatement of the
'one-time tape' method, based on the Vernam invention. None of the offerings
came anywhere near filling the stated requirements. In August 1974 a second call
for ideas was issued. In response, several algorithms were sent in; some of these
were too specialized, some were not strong enough. However, one algorithm
submitted showed great promise in meeting the requirements. This submission
came from International Business Machines (IBM).

The IBM Lucifer cipher

The IBM submission to NBS was a development from an encipherment scheme
invented in the early 1970s; this was the IBM 'Lucifer' encipherment algorithm,
a 'product' cipher, one of the early applications of which is understood to have
been in a bank automatic-teller terminal. As the eventual Data Encryption Stan­
dard (DES) was more or less directly developed from the Lucifer design it is worth
examining Lucifer in a little detail. Lucifer certainly met the NBS requirement
that the algorithm should be made fully public; it had been the subject of several
articles quite freely available in various journals and reports. 3

•
4

In chapter 2 we met various substitution and transposition ciphers and we saw
that, used alone, many of these are very weak. However, as was pointed out
by Shannon, 5 cipher operations which are weak in themselves can be combined
together to form something much stronger; this is the concept of the product
cipher. A product cipher may take a block of plaintext and transpose the order
of its binary bits (called' diffusion' by Shannon), following this with a systematic
substitution of bit patterns with others according to look-up or substitution tables
(called 'confusion' by Shannon). These two steps may be repeated a number of
times. Figure 3.1 illustrates the process.

In Figure 3.1 the first logical step is a substitution, in which the bits of the
plaintext block are taken in groups and replaced by other bit patterns of the same
size according to substitution tables (S-boxes), with no expansion of data. The
second step is a transposition, or re-ordering, of the bits of the whole output from
the first step. The third step is a substitution, similar to the first step. This is fol­
lowed by a further transposition and so forth. Thus transposition and substitu­
tion alternate until the ciphertext produced as a result of the total process is
unpredictable from the plaintext without knowledge of the intervening trans­
formations (the actual number of steps employed is set by the designer of the

-- 68 --
MasterCard, Exh. 1004, p. 68

X

'" c
:_§
ll.

"

T T T

S- Substitution

T - Transposition of bits

Fig. 3.1 A product cipher with transposition and substitution

encipherment). Decipherment by the possessor of this knowledge is carried out
by running the ciphertext data back through the process, using the inverse of
each S-box and transposition; without this knowledge a plaintext block should
not be deducible from the ciphertext. Greatest strength of encipherment is
achieved if the S-boxes used at each stage are different. If we say that the S-boxes
are to carry out transformations on groups of 4 bits, then the total number of
different S-boxes that can be specified is (24)! or about 2 x 1013

, so there appears
to be plenty of choice, although few of the choices are actually suitable.

The description of the transformations can be expressed in terms of a key, which
should be shared knowledge between communicating parties and must, therefore,
be readily transportable. The size of this key can be calculated precisely on cer­
tain assumptions. We have already postulated 4-bit S-boxes- now suppose that
the transposition should be the same at all steps, and, therefore, need not be
specified in the key. Take a plaintext block of 128 bits, the Lucifer block size, then
at every stage thirty-two S-boxes will be required. An S-box usually comprises
a read-only-memory (ROM) and in this case it stores sixteen words of 4 bits, but
the information required to specify an invertible transformation of 4 bits is
log2(16!) = 44.2 approximately. If there are 16 stages of transposition/substitu­
tion, then the total size of the specification of the transformations, i.e. the key
size, will be 32 x 45 x 16 (= 23 040) bits. This is clearly an inconveniently large key.

In the Lucifer cipher only two different S-boxes were specified; the selection
of the S-boxes to be used at each substitution step was based on the digits of
the encipherment key; the S-box specifications themselves were part of the
algorithm and not affected by the encipherment key.

-- 69 --
MasterCard, Exh. 1004, p. 69

a :modulc-2. cJfnbination o£ seleccei
and follovvecl the order, confusior,. 1n1··eo,-,.,,_.,_

tion, diffusion. The details of the Lucifer operation
were the specifications of the and S-boxes.
strength depended on the series of substitutions, with interposed
transpositions, and on the secrecy of the encipherment key.

The Lucifer block size was 128 bits, with no data expansion in the encipher­
ment process, and the key size was also 128 bits. Thus the number of different
mappings of plaintext onto ciphertext under control of the encipherment key was
2128

, compared with the total number of ways of mapping 128 bits onto a 128-bit
field with is (2128)!, a very much larger number.

The process of establishing the DES

The IBM reply to the second NBS solicitation for candidate encipherment stan­
dards was based on an algorithm of this type. During the months that followed
the submission of the algorithm the proposal underwent government scrutiny
to determine its suitability as a Federal standard. The National Security Agency
(NSA) was called in by NBS to carry out an exhaustive technical analysis of the
algorithm. During this time NBS and IBM negotiated the terms under which this
piece of IBM intellectual property might be made available to others for manufac­
ture, implementation and use. IBM agreed to grant non-exclusive, royalty-free
licences for the manufacture or sale in the USA of DES devices where otherwise
this would infringe IBM patents. The agreement was eventually recorded in the
13 May 1975 and 31 August 1976 issues of the Official Gazette of the United States
Patent and Trademark Office. In March 1975 the description of the algorithm was
issued for general public comment and in August 1975 a draft of the proposed
standard was published.

The comments received showed a wide range of views. Many comments con­
cerned the ways in which encipherment should be implemented in various com­
puter architectures. The recommended modes of use of the standard algorithm
are examined in chapter 4. Others were directed at the cryptographic strength
of the algorithm. We shall return to this subject in the present chapter.

The process of comment, discussion and reply occupied about 18 months,
following which the data encipherment algorithm was adopted as a Federal stan­
dard on 23 November 1976. It was published as FIPS Publication 46, entitled Data
Encryption Standard, on 15 January 1977,6 becoming mandatory 6 months later on
15 July 1977. After that date Federal agencies were expected to comply with its
provisions, or show an acceptable reason for not doing so.

The abbreviation DES has achieved very wide currency for the Data Encryp­
tion Standard. The algorithm has also been adopted by the American National
Standards Institute, where it is known as the Data Encryption Algorithm (DEA).
We will now describe the way in which the algorithm carries out the encipherment.

-- 70 --
MasterCard, Exh. 1004, p. 70

~LG L

2IKRYFT"Jl.J STij TI::A?D

-.v,rhich encorrtpasses
the

c:uur-,uc:uJ.ccl" key block, and on2 M--bit
output, the (or transforms into
ciphertext or vice versa, depending on the mode in which it operates. Of the 64
bits in the encipherment key block, only 56 enter directly into the algorithm. In
the Federal standard the eight remaining bits take the values for odd parity in
each 8-bit byte of the key block.

The building blocks of the algorithm are permutations, substitutions and modulo
2 additions (XOR) .. Permutations in the DES are of three kinds, straight permuta­
tions, an expanded permutation and permuted choices. Figures 3.3 (a), (b) and
(c) illustrate the nature of these operations (the permutations actually used are
defined in later figures). In a straight permutation bits are simply reordered. In
the expanded permutation some bits are duplicated and the whole resulting field
reordered. In permuted choices some bits are ignored and the remainder
reordered.

Substitutions in the DES are known as S-boxes and are specified by eight dif­
ferent tables. In Lucifer the input and output of the S-boxes were each of 4-bits.
In the DES the S-boxes have 6-bit inputs and 4-bit outputs.

The first operation to which the input data is subjected is the Initial Permuta­
tion, which has a highly regular character. The effect of this may be seen as an
acceptance of data, an octet at a time, in eight shift registers (one bit to each
register). As the successive input octets are accepted, their bits are distributed

Fig. 3.2 The logical structure of the DES

Key
genera tor

-- 71 --
MasterCard, Exh. 1004, p. 71

Output

a

Input

Output

b

Input

Output

c

Fig. 3.3 Three types of permutation, a a straight permutation, ban expanded permutatio1z,
c a permuted choice

to the eight shift registers. When the input is complete and all 64 bits accepted,
the contents of the shift registers are placed in sequence. The exact way in which
the bits are permuted is shown in Figure 3.4. In this permutation input bit 1
emerges as output bit 40, input bit 2 emerges as output bit 8, etc.; output bit 1
corresponds to input bit 58, output bit 2 corresponds to input bit 50, etc.

One result of this permutation is that for a code such as American Standard
Code for Information Interchange (ASCII), with every eighth bit representing
parity, all the eight parity bits of the input block will be collected together into
one octet at the beginning of the block, before transposition and substitution
begins. There is, however, no evidence that this initial regularity introduces any

-- 72 --
MasterCard, Exh. 1004, p. 72

iQ

62 46 -·;o 30 22 .J(j 6

6~!. 56 48 L!.Q 32 24 ., '
10

57 L!-9 41 33 25 17 9

59 51 43 35 27 19 11

61 53 45 37 29 21 13

63 55 47 39 31 23 15 7

Fig. 3.4 The Initial Pennutation of the DES

weakness into the encipherment operations; this is because of the powerful dif­
fusion properties of the algorithm. It is understood that the algorithm includes
this permutation for reasons of convenience in implementation; it has no
cryptographic value.

Before. the permuted and substituted data is available for reading from the out­
put register at the end of the complete encipherment operation, it is subjected
to the exact inverse .of the Initial Permutation.

After the Initial Permutation, the 64-bit data field is split into two 32-bit fields
which are sent to registers Land R, part of the main loop of the algorithm logic.
Then the action of the main loop of the algorithm begins.

From register R the 32 bits are passed to the Expansion Permutation E, which
is a regular transformation in which half the bits are replicated, so that the out­
put of the permutation consists of 48 bits. For each of the four octets the first,
fourth, fifth and eighth bits are replicated. The full permutation is expressed in
Figure 3.5. In this permutation output bit 1 corresponds to input bit 32, output
bit 2 corresponds to input bit 1, etc. The other output from register R is a direct
32-bit transfer to register L. We shall see later what happens to the displaced con­
tents of register L.

The 48-bit output from the Expansion Permutation is next passed to an exclusive­
OR operation in which it is combined with a selection of bits from the encipher­
ment key. The 48-bit output from the exclusive-OR operation is split into eight
sextets for input to the set of eightS-boxes, thus each S-box receives a 6-bit input,
but produces only 4 bits as output. The individual S-box look-up tables are as
shown in Figure 3.6. The layout of these tables requires further explanation. The

32 2 3 4

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32

Fig. 3.5 Tlze Expansion Permutation (E) of the DES

-- 73 --
MasterCard, Exh. 1004, p. 73

0 lC !1 L::

Sl 0 14 15 1 3 lC 6 12 9 0 7
Rov/ 0 2 13 l 10 6 12 j] 3

2 4 1 14 13 6 2 11 15 12 9 7 3 10 0
3 15 12 2 4 9 1 7 5 11 14 10 0 6 13

S2 15 1 14 6 11 4 9 7 2 !3 12 0 5 10
3 13 4 7 15 2 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4 7 13 14 3 0 6 9 10 1 2 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 12

S5 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5· 15 10 11 14 1 7 6 0 8 13

S7 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Fig. 3.6 The S-box tables for the DES

input to each consists of 16 bits, of which the first and the last are taken together
as a 2-bit number which has the effect of selecting the row in the S-box table;
bits 2 to 5 of the input to each S-box, together giving values in the range 0 to
15, select the table element in the appropriate row (the left bit is most signifi-
cant); each row of an S-box table represents a bijection from bits 2 to 5 of the
S-box input. We shall return to the question of the structure of the S-boxes.

The 4-bit outputs from all the S-boxes are collected together as a 32-bit field
for input to the permutation P, which is a rather irregular permutation, quite unlike
the regular structures of IP and E. The details of the permutation Pare as shown
in Figure 3.7; this permutation neither replicates nor removes bits and therefore

-- 74 --
MasterCard, Exh. 1004, p. 74

l'! r23 ,;

1.5 23 25

5 18 31

2 24

32 27 9

19 13 30 6

22 11 4 25

Fig. 3.7 Permutation P of the DES

has a 32-bit output. In this permutation bit 1 of the output corresponds to bit
16 of the input, bit 2 of the output corresponds to bit 7 of the input, etc.

To complete the main loop of the algorithm the output from permutation P is
combined with the erstwhile contents of register L in an exclusive-OR operation
and the result moved into register R. In order to achieve this operation without
a clash on register allocation, a temporary register TEMP is shown in Figure 3.2
between the exclusive-OR and register R.

The cycle of the main loop we have described here is repeated sixteen times
before the contents of registers R and L are assembled in a 64-bit block in the
sequence K L, then subjected to the inverse of the Initial Permutation already men­
tioned and transferred to the output register. Note the final swap of registers R
and L before the inverse Initial Permutation. The reason will appear shortly. Each
cycle of the main loop is usually known as a 'round'.

It now remains to describe how the encipherment key participates in the pro­
cess. We mentioned that the 48-bit output from the Expansion Permutation E is
combined with selected bits from the encipherment key before input to the S­
boxes. The selected bits are different for each of the sixteen rounds. At the right­
hand side of Figure 3.2 the method of generating these bits is shown. After input
of the key to the key register, the key is read into the Permuted Choice 1 (PC1)
where every eighth bit is eliminated, otherwise the structure of this permuted
choice is very similar to that of the Initial Permutation, probably signifying a similar
kind of implementation; the structure of PC1 is given in Figure 3.8. Here bit 1
of the input to register C corresponds to bit 57 of the encipherment key and bit

cr 49 41 33 25 17 9

58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

Dr
55 47 39 31 23 15

62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4

Fig. 3.8 Permuted Choice 1 of the DES

-- 75 --
MasterCard, Exh. 1004, p. 75

pr<::Jd1XE the selection of 48 bits for combination with the
in the main of the algorithm/ the combined contents of C and D are sent
to a further Permuted Choice (PC2). This has a rather irregular structure, expressed
in Figure 3.10. Bit 1 of the output corresponds to input bit 14 (of the combined
C and D)

1
output 2 corresponds to input 171 etc. The output from PC2 consists

of 48 bits. For each round of the algorithm the output of PC2 forms the I sub-key'
used in the main loop.

Cycle

14

3

23

16

41

30

44

46

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

K block

K,
K,
K,
K.
K,
K,
K,
K,
K.
KID
K"
K12
K,
K"
K,

. K"

Number of left
shifts before PC2

1
1
2
2
2
2
2
2
1
2
2
2
2
2
2
1

Fig. 3.9 Schedule of left shifts for encipherment

17 11 24

28 15 6 21

19 12 4 26

7 27 20 13

52 31 37 47

40 51 45 33

49 39 56 34

42 50 36 29

Fig. 3.10 Permuted Choice 2 of the DES

10

8

2

55

48

53

32

-- 76 --
MasterCard, Exh. 1004, p. 76

K1 0
2 K, 1
3 K, 2
4 K, 2
5 K, 2
6 K, 2
7 K, 2
8 K, 2
9 K. 1

10 K1o 2
11 K11 2
12 K1, 2
13 K1, 2
14 K1, 2
15 K1, 2
16 K1, 1

Fig. 3.11 Schedule of right shifts for decipherment

This description of the structure of the encipherment algorithm is now com­
plete. Decipherment is carried out very conveniently by a similar process, the
only difference being in the generation of the sub-keys. For decipherment the
cyclic shifting registers C and D are cycled to the right, the opposite sense from
that used in encipherment. The schedule of right shifts for decryption is given
in Figure 3.11. Note that in encipherment a shift takes place before the first sub­
key emerges but not in decipherment. The result is that in decipherment the
same set of sixteen sub-keys is produced, but in the opposite sequence.

The ladder diagram

The method of operation of the algorithm can be understood more easily if we
consider the ladder diagram shown in Figure 3.12. This illustrates the relation­
ship between the successive rounds of the algorithm. We see how the exchanges
between registers Rand L are made under the influence of the sub-keys, k1 to
lc16; the latter are the 48-bit patterns produced by operating on the main encipher­
rrient key; the action of the permutation E, the S-boxes and the permutation P
are subsumed in the function Fin this diagram. For the sake of economy of space
only three of the sixteen rounds are shown.

The ladder diagram also enables us to illustrate quite neatly the relationship
between encipherment and decipherment. In Figure 3.13 we show the process
of encipherment followed immediately by the process of decipherment. The lad­
der has been 'untwisted' to make its nature more clear. The symbols R and L
refer to the contents of the respective registers at each stage in the process. Note
that the sub-keys are presented for decipherment in the opposite order from that
in which they were used for encipherment. At each point in the ladder for

-- 77 --
MasterCard, Exh. 1004, p. 77

Fig. 3.12 Ladder diagram representation of the DES .

Encipherment Decipherment

Fig. 3.13 Enciphennent and decipherment mirrored in a ladder diagram

-- 78 --
MasterCard, Exh. 1004, p. 78

This result may also be in algebraic form. IN e shall refer to the various
rounds by the subscript j, and we shall call P the output of the permutation P.
F has the same significance as in the ladder diagram. R and L refer to the con­
tents of their respective registers and R1, L1 to the contents after the jth round.
The sub-key at the jth round is k1.

During encipherment the following relationships are true

L1 = R1_1

Ri = Lj-1+2 Pi

P1 = F(Rj_1,kJ)

(1)

(2)

(3)

where the operator + 2 has the significance of exclusive-OR. The second and
third of these equations may be combined

(4)

With equations (1) and (4) we now have a complete description of the jth state
in terms of the (j -1)th state.

By simple rearrangement of equations (1) and (4) we can also write:

Rj-1 = LJ

Li-1 = R1+2 F(Rj-1,kj)

Substituting from (5) in (6) we get

Li_1 = R1+ 2 F(Li,ki).

(5)

(6)

(7)

Thus from equations (5) and (7) we have a complete description of the (j -1)th
state in terms of the jth state. These equations can be understood as describing
decipherment from L16,R16 to L0,R0, using the sub-keys in the sequence k16,k15,

... k1. Note that L and Rare interchanged- this is the reason for the swap of
L and R at the end of the sixteen rounds of encipherment or decipherment.

Each distinct round constitutes an involution. In decipherment the inverse
operation is achieved by taking the same set of involutions in reverse order.

3.3. THE EFFECT OF THE DES ALGORITHM ON DATA

It is the aim of the designers of the DES algorithm that plaintext data processed
by the algorithm shall be transformed in such a complicated way that it is not
possible to find any correlation between ciphertext and plaintext, nor is it pos­
sible to show any systematic relationship between ciphertext and encipherment
key. The effect of a change of one bit in an input plaintext block should ideally
be to change the value of each individual bit in the output ciphertext block with

-- 79 --
MasterCard, Exh. 1004, p. 79

different cip•nene·xr.
plEmTtex:t, rein 1-, "'"'""'r1· and keys are all in

hexadecin<al notation. In 3.14 a plaintext block is shown at the head of
the table, with, later in the table, other selected blocks which each differ from
the first by 1 bit only. All these blocks have then been enciphered under the same
key (0123456789ABCDEF). A glance at the corresponding ciphertexts shows that
the changes caused by the 1-bit differences in plaintext are large and random.
To obtain some measure of the change the Hamming distance is listed of each
of the subsequent ciphertext blocks from the first in the table; the mean Hamming
distance from the first block measured over all the blocks is 31.06. This is very
close to the expected value of 32.

In Figure 3.15 shows the result of enciphering the same plaintext block
(ABCDEFABCDEFABCD) with a succession of different keys. At the top of the
table we have encipherment with a chosen key, followed by encipherment with
keys each of which differs from the first by 1 bit (parity correction has been
included, so the appearance is given of a 2-bit difference). Against each subsequent
ciphertext the Hamming distance from the first in the table is listed. Once again
the mean Hamming distance of 32.88 is very close to expectation.

The DES transformation is thus seen to be efficient in obscuring similarities be­
tween plaintext. This can be illustrated even more graphically by examining the
progression of the transformation within the algorithm. Figure 3.16 shows the
result of encipherment of two plaintexts, which differ by 1 bit, under the same
key (08192A3B4C5D6E7F). The contents of the Land R registers at the beginning
of each of the sixteen rounds are listed (these quantities are called 'intermediate
results'); the overall result of the encipherment transformation is also shown.
The progression of the Hamming distance between the intermediate results at
each stage can be traced (taking the combined L and R states within each
encipherment process). For the first and second intermediate results the Hamming
distance is low, but an appreciable distance soon develops and is maintained.
By the completion of the fifth internal cycle there is very little correlation between
the inputs and the intermediate results. There are many ways to examine this
property and they all lead to the conclusion that five rounds would have been
just sufficient to remove obvious regularities from the function. It seems that six­
teen rounds are more than adequate.

3.4. KNOWN REGULARITIES IN THE DES ALGORITHM

Complementation

A notable feature of the DES algorithm is the property of complementation. If
the complement of a plaintext block is taken and the complement of an encipher­
ment key, then the result of a DES encipherment with these values is the
complement of the original ciphertext.

-- 80 --
M

asterC
ard, E

xh. 1004, p. 80

10

11

12

13

14

15

16

17

Key 0 1 2 3 4 5 6 7 8 9 A B C D E F

Plaintext

A B C D E F A B C D E F A B C D

B C D E F A B C D E F A B C D

A C D E F A B C D E F A B C D

A B D D E F A B C D E F A B C D

A B C F E F A B C D E F A B C D

A B C D F A B C D E F A B C D

A B C D E B A B C D E F A B C D

A B C D F F D B C D E F A B C D

A B C D E F A C D E F A B C D

A B C D E F A B E D E F A B C D

A B C D E F A B C C E F A B C D

A B C D E F A B C D 6 F A B C D

A B C D E F A B C D E 7 A B C D

A B C D E F A B C D E F B C D

A B C D E F A B C D E F A F C D

A B C D E F A B C D E F A B D D

A B C D E F A B C D E F A B C

Ciphertext

C D E D 4 A F

C D D A A 4 C 4 B A

1 F 8 A B C

D c 7 D D D B A F

A F 4 c

c 9 F F

F 8 C 8 F A D C E A

D A B B F

D B 8 B C D C E

F E E E A C

B E 4 D E F A D

4 F B 3 5 B

A B C 6 0 B

B D A F D 7 B D

c E D E

A A 9 F 4 B

B E C c B E

Hamming
distance

29

38

36

26

30

-33

34

30

25

29

28

35

30

34

34

26

Mean Hamming distance 31.06

Fig. 3.14 DES enciphermenl of a series of data blocks each differing by 1 bit from a chosen block

-- 81 --
M

asterC
ard, E

xh. 1004, p. 81

Plaintext A B C D E F A B C D E F A B C D

Key Ciphertext Hamming

A B C D E F C D E 8 7 2 D 4 A 4 7 1 3 4 6 F
distance

A B C D E F 1 B 7 3 F E 8 B C 0 B 8 8 6 0 6 35

A B C D E F 0 F 9 2 F 6 0 D 2 F D 4 D 8 B 7 32

A B C D E F 3 1 A F D 8 C 5 4 F B F 4 B C D 37

1 2 6 4 5 6 7 8 9 A B C D E F C 7 9 F 5 9 6 3 D 4 6 5 A 7 E E 29

A B C D E F 3 6 5 2 9 C C 1 0 7 1 7 A 3 8 9 39

A B C D E F 7 F 3 5 F 7 E 6 C E C 5 7 E E 3 30

4 6 8 9 A B C D E F C 9 F 3 F D 9 2 6 0 C 6 8 1 8 A 27

5 6 4 8 9 A B C D E F E 6 9 2 8 3 2 2 E E 8 B 9 A 6 9 36

10 0 1 2 3 4 5 6 7 A 8 A B C D E F 0 9 9 7 A 5 A F 6 E 4 E 1 4 6 0 37

11 0 1 2 3 4 5 6 7 8 A A B C D E F C 7 B 4 1 C 4 F 3 8 D 9 A F 7 A 31

12 0 1 2 3 4 5 6 7 8 9 E A C D E F 4 B 4 A A 2 0 A B 2 1 4 4 D D D 30

13 0 1 2 3 4 5 6 7 8 9 A 8 C D E F 1 2 9 9 7 E E 8 0 0 1 B D 2 7 C 32

14 0 1 2 3 4 5 6 7 8 9 A B 4 C E F 4 2 D 1 7 B 7 D F 5 3 4 3 B 7 9 28

15 0 1 2 3 4 5 6 7 8 9 A B C E E F 8 7 F 6 4 9 3 C 4 C 8 9 8 3 2 7 33

16 0 1 2 3 4 5 6 7 8 9 A B C D 6 E F C 3 0 F 6 F 7 6 B D 4 2 5 9 2 31

17 0 1 2 3 4 5 6 7 8 9 A B C D E C 1 C B D E C 4 B 7 9 B C A 7 A 1 39

Mean Hamming distance 32.88

Fig. 3.15 DES encipherment of a data block with a series of keys each differing by 1 bit from
a chosen key

-- 82 --
MasterCard, Exh. 1004, p. 82

:~ - - - ::.:=soc:::-·-:::

? t2~~ t 1 00 ~2.::::.in- 00' : ')00 JC0'/'0 l
--~ .. k~---·~·--·--~~-~----·-----------~~·-·-··----··-,·--- ·-~~-~~~·-··· ~--~-o-.- - ~ ·-··------~~~- ---~-~~,--

Round Regis-ter L Hegis·te:::- Resis·te:c L F.egiste~ dist:al-.:.::e
- ------~~---------~~---~-~--~-

00000000 00000000 00000080 00000000

00000000 AFOD68FD 00000000 AFOD687D 1

AFOD68FD CEOA36EA AFOD687D CE3A32E2

4 CEOA36EA 0BDCC5FE CE3}\32E2 81BDED5F 15

OBDCC5FE 5D181CC3 81BDED5F F8CA39B2 26

5D181CC3 1744B978 F8CA39B2 A994B918 26

17448978 9B1CBOD8 A994B918 3E9D05D8 22

9B1CBOD8 7AE8C7EO 3E9D05D8 23F48DFF 26

7AE8C7EO A2AC7B3F 23F48DFF 9D58DCFB 34

10 A2AC7B3F 580E51EF 9D58DCFB 3F076303 34

11 580E51EF 2865DBD4 3F076303 97AE4AE3 35

12 2865DBD4 BF68F77C 97AE4AE3 68ABB612 37

13 BF68F77C 8F57F629 68ABB612 09D9C398 32

14 8F57F629 0827B240 09D9C398 44B0435C 31

15 0827B240 F2DEBFAC 44B0435C 319FD4B8 29

16 F2DEBFAC 16CDOEB8 319FD4B8 42684FF9 24

Ciphertext 1 25DDAC3E96176467 Ciphertext 2 1BDD183F1626FB43 22

Fig. 3.16 DES decipherment of a block with two keys differing by 1 bit, showing the intermediate results
before each round of the algorithm

y = Ek(x),

then
:y = Ek(x).

This result may seem surprising, especially when the non-linearity introduced
by the S-box transformations is considered. The effect is entirely due to the
presence of two exclusive-OR operations, one of which precedes the S-boxes in
the logical flow of the algorithm and the other follows the permutation P. If the
two input fields to an exclusive-OR operation are complemented, then the
resulting output is exactly the same as that obtained for the uncomplemented
inputs. Complementation of the plaintext and key inputs to the DES algorithm
results respectively in complementation of the output of the expansion permuta­
tion E and the output from the sub-key selection procedure (following PC2); these
two data fields are the inputs to the exclusive-OR before the S-boxes, so the S­
boxes received unchanged data. Their unchanged output enters the exclusive­
OR gate which transfers the (complemented) L register to the (complemented)
R register.

The complementation property of the DES algorithm does not represent a
serious weakness in the security of systems using the DES; there is no reduction
in the time taken for an exhaustive key search, given a known plaintext-ciphertext
pair. If a chosen plaintext attack can be mounted, then, by exploiting the com­
plementation property, the time taken to exhaust the key domain by exhaustive

-- 83 --
MasterCard, Exh. 1004, p. 83

01 ']1 ~11 Ol 0~ J1

FE ?E FE FE F2 FE FE

1F lF lF 1F OE OE OE OE

EO EO EO EO F1 Fl Fl Fl

Fig. 17 The wenk keys of 1/zc DES

search may be reduced by a factor of two, given the plaintext x and the values
of y1 = Ek(x) and ih = Ek(x), so that y2 = El((x). If all values of x are searched
to find if the Ek(x) value equals either y1 or y2, then each test covers the two key
values k and k. If this is a matter for serious concern it might be said that steps
should be taken to frustrate a chosen plaintext attack, probably by controlling
access to the DES function. A system should not enable an opponent to discover
both Ek(x) and Ek(x). From another point of view, it does not appear that any
attempt has been made to exploit the complementation property in the design
of applications of the DES.

The weak keys

A further regularity in the operation of the DES algorithm is due to the way in
which bits are selected from the encipherment key to form the individual sub­
keys, k1 to k16 . Clearly, if the encipherment key bits are either all ones or all
zeros, then the output from PC2 at each cycle will be the same for all rounds.
Therefore, presentation of the sub-keys in the order k1 to k16 will be identical with
the order k16 to k1. This means that encipherment and decipherment are exactly
equivalent. Thus the effect of the algorithm on a plaintext block with a key of
all zeros or all ones will be the same whether encipherment or decipherment is
invoked. The result of this is that if a block is enciphered with either of these
keys and then re-ciphered with the same key, the original plaintext will be
restored; the function is an involution for these values of key. Futhermore, because
of the way in which the C and D registers are segregated, having zeros in C and
ones in D (or vice versa) will also produce a set of constant sub-keys. For this
reason four encipherment keys which have this property can be specified. These
are known as 'weak' keys7 and are listed in Figure 3.17. They should be avoided
when encipherment keys are being selected for critical situations, like master keys.

The semi-weak keys

In addition to the weak keys it can be shown that a further set of encipherment
keys have a somewhat analogous property. These are the 'semi-weak' keys8

which occur in pairs. For each pair of semi-weak keys the sets of sub-keys are
identical but in the reverse sequence. Thus k1 for the one encipherment key is
equal to k16 for the other key of the pair, and so on. The result of encipherment
with one key of a pair, followed by encipherment with the other key of the pair,
is to restore the original plaintext. There are six pairs of semi-weak keys, which
are listed in Figure 3.18. In the semi-weak keys, one or other of the C and D
registers contains a pattern of alternate ones and zeros ... 0101 ... Their pro­
perty is due to the symmetry of the shift patterns shown in Figures 3.10 and 3.11.

-- 84 --
MasterCard, Exh. 1004, p. 84

OJ. 0 FE :) :~ (1 :_

(I]_ FE 01 FE OL FE 0

J1r EO lF EO OE F1 OE 1

LEO lF EO 1F F1 OE Fl OE

{01
EO 01 EO 01 F1 01 F1

EO 01 EO 01 F1 01 F1 01

rF
FE 1F FE OE FE OE FE

FE 1F FE 1F FE OE FE OE

{01
1F 01 1F 01 OE 01 OE

1F 01 1F 01 OE 01 DE 01

{EO
FE EO FE F1 FE F1 FE

FE EO FE EO FE F1 FE F1

Fig. 3.18 The semi-weak keys of the DES

The semi-weak keys should also be avoided when selecting encipherment keys,
though it is unlikely that they represent such a security risk as do the weak keys.
Note that NBS uses the term 'dual keys' to embrace both weak and semi-weak
keys. 2

Further regularities in cycle keys are possible, in which some sub-keys are
repeated in the sequence. In 1983 an accoune was published in the journal
Science of an alleged analysis claiming to show that patterns arising in the cycle
keys led to serious deficiency in the strength of the DES algorithm. Here the term
'weak' was extended to include the keys we have called weak and semi-weak,
together with other keys exhibiting regularity of cycle key pattern. It was asserted
that cryptanalysis of the algorithm with any key was possible in 8 hours and that
with the strongest of a general class of weak keys cryptanalysis should be pos­
sible in 4 hours (the 'worst-case' from the cryptanalyst's point of view). The 8-hour
assertion is not dissimilar to that made by Diffie and Hellman and referred to
later in section 3.5; note that this assertion demands the existence of a very large
and powerful cryptanalytic machine. The size of the general class of weak keys
was not defined in the published article, but it was said to include 25 different
categories. Claims such as were made in the Science article would certainly be
very damaging to any confidence that users might have in the security of the
DES algorithm. We have seen no evidence to suggest that the claims made can
be substantiated. In section 3.6 we discuss some of the academic studies that have
been applied to the DES; none of the reported results makes claims remotely like
those of the Science article. Indeed the paper by Moore and Simmons, discussed
in section 3.6, gives an account of a detailed analysis of the significance of
regularities in the cycle keys.

Hamiltonian cycles in the DES

There remains to be described a regular feature in the permutations of the DES
algorithm. 8 We have seen how the strength of the whole algorithm depends on

-- 85 --
MasterCard, Exh. 1004, p. 85

and R is unJmportaTi
E that are significant but their the P followed by E (taken in
this order because the path from S-box back to S-box takes them in this order).

The identification of the inputs and outputs of an individual S-box is also mostly
insignificant. All the outputs are of equivalent status. The inputs, due to the nature
of E, divide naturally into three classes. Let us denote the six input bits of an
S-box as ABCDEF. The EF values of one S-box equal the AB of its neighbour to
the right, for example in the case of S-boxes 1 and 2, E1 = A2 and F1 = B2. For
our purpose, input bits A and B are not distinguishable because a permutation
of the bits of the L and R registers could interchange any pair of these, inter­
changing also the corresponding EF pair.

The significant feature of the product of the P and E permutations is therefore
not the bits they interconnect but the groups AB, CD and EF which they join.
These can be tabulated as in Figure 3.19, showing for each of the S-box outputs
which S-box input it affects, by way of the PE permutation. For example S-box
output bit 1 of S1 affects F2 and B3 on boxes S2 and S3 respectively .
. The way in which the outputs have been arranged in the DES obscured the

pattern which is already evident, namely that of the four S-box output bits, two
go round the loop to CorD inputs and two go to A, B, E or F inputs. The pattern
can be shown best as a graph with directed arcs pointing from S-box output to
S-box input. Figure 3.20 shows graphs separately for the CD and EF inputs. The
nodes of the graphs are the eight S-boxes.

The graph in Figure 3.20 for CD can be expressed as two Hamiltonian cycles
(87654321) and (84725163). The graph for EF has an identical form reflected about
a vertical line. Both are very regular graphs which seem likely to have been a
design intention. The apparent randomness of the permutation Pis due only to
the way that S-box inputs and outputs have been identified.

If the corresponding graph for the AB inputs is drawn on a pattern similar to
those for CD and EF, then Figure 3.21(a) is produced which is much less regular
than Figure 3.20. It can, however, be redrawn to show (Figure 3.21(b)), a less­
confused structure.

The permutations in DES are a fixed feature, not subject to the key, and their
purpose is to diffuse the effect of the substitutions so that a single bit change,
if it expands to four potential bit changes after the first round, will (potentially)

SJ S2 S3 S4

f2 f4 d6 d8 f3 e7 cl c5 e6 e4 c8 c2 c7 e5 c3 f8

b3 b5 b4 a8 a7 a5 a6 bl

S5 S6 S7 S8

e2 c4 f6 dl el f7 d3 d5 e8 e3 c6 d2 fJ d7 d4 f5

a3 b7 a2 b8 a! a3 b2 b6

Fig. 3.19 Interconnections between S-box outputs and inputs

-- 86 --
MasterCard, Exh. 1004, p. 86

Fig. 3.20 Directed arcs for 5-box CD inputs a11d EF i11puts

affect the inputs to fourS-boxes in the next round. We say (potentially) because
it would be wrong to expect all the S-box outputs to change value- approximately
half of them should do so. Also, some bit changes in the S-box outputs will affect
two S-boxes on the next round, due to the expansion permutation. The aim of
the permutation design (as reflected in our graphs) should be to spread the bit
changes as rapidly as possible to all boxes. In this respect the CD and EF graphs
are excellent, the AB graph less so. We can speculate that such considerations
as these led to the remarkable regularity of two of the graphs and that the third
graph is an unavoidable consequence of the first. Since they represent' spreading'
processes which operate in parallel, the good structure of two of the graphs is
not impaired in any way by the third one. We understand that these permutating
structures, though they were the consequence of a quest for good spreading, were
not designed as regular structures except perhaps for the outer Hamiltonian cycles
which are fairly obvious. Note also that our principle of ignoring the identity of
S-box inputs and outputs, though it cannot be questioned for outputs, does cut
across the stated design of the S-boxes as four separate bijections.

Fig. 3.21a Directed arcs for 5-box AB inputs

-- 87 --
MasterCard, Exh. 1004, p. 87

B

Fig. 3.2lb Figure 3.2la re-drawn

3.5. ARGUMENT OVER THE SECURITY OF THE DES

When the DES algorithm was first published in the spring of 1975, a considerable
amount of criticism was rapidly generated.9 This was based on two premises­
the length of the encipherment key was considered by some to be inadequate
and it was alleged that 'trapdoors' or deliberate weaknesses might have been built
into the S-box structures. These two criticisms are considered in turn.

Exhaustive search for a DES key

The length of the encipherment key is important when the security of the system
against exhaustive search for the key is evaluated. For exhaustive search the crypt­
analyst needs corresponding pairs of plaintext and ciphertext blocks; these may
have been obtained by some breach of security in handling legitimate texts (a
known-plaintext attack) or by deliberate introduction of text into the encipher­
ment device by the opponent (a chosen-plaintext attack). If partial knowledge
of the plaintext is all that is available to the cryptanalyst, perhaps in the form
of knowing that the plaintext characters enciphered have odd or even parity, then
his task is greater. In this case the search must list all the keys which yield pos­
sible plaintexts obeying the parity constraints; it is then necessary to repeat the

-- 88 --
MasterCard, Exh. 1004, p. 88

" 1-r'h·"'""'.""'+· the piOcess is k.novvn as a a match is
obtained between the and known then the current value
is that which is being sought. Clearly the time taken to exhaust the whole of the
key domain will depend on the time taken to carry out the DES encipherment.
If we assume that the time taken for the encipherment is 100 ms (the speed of
the slowest microprocessor implementation known to us), that other processing
times may be neglected, and that only one device is used, then we can calculate
the time required to test all possible keys to be 7.2 x 1015 s, or about 228 million
years. If we assume that the encipherment device is somewhat faster, with an
operation time of 5 JkS (a fraction slower than the fastest LSI implementation widely
available), then the total time required to exhaust the key domain is just over
11 000 years. Clearly these times are totally impracticable for a cryptanalyst.

The exhaustive search times only become practicable when we postulate key
searching which uses many DES devices in parallel, each of which is searching
a different part of the key domain. Diffie and Hellman 10 have considered in some
detail the design of a hypothetical machine constructed for this purpose. They
assume that the operation time for each DES device is as low as 1 JlS; this is
justified on the dual grounds of advancing technology and economy of input/out­
put. Since each special--purpose DES device need only be loaded once with the
known matching pair of plaintext and ciphertext and with the encipherment key,
then the overheads normally associated with input/output operations need not
be taken into account. The only output from the device occurs when the required
key has been found, when the fact of its recovery and its value will need to be
output. Diffie and Hellman further assume that 1 million such DES devices can
be assembled into one machine.

On these assumptions the time taken to exhaust the key domain can be
recalculated; the time is reduced to about 72 000 s or just over 20 h. On average
a key is found after testing half of the key domain, so the average time to find
a key should be about 10 h. Evidently this time is low enough for users of the
DES to be worried about the security of their data. We must, therefore, consider
whether the assumptions made in arriving at this figure were reasonable.

Concern about the suggestion that an exhaustive key search machine was pos­
sible led NBS to hold a workshop 'on estimation of significant advances in com­
puter technology' in August 1976. 11 This brought together experts who produced ·
a range of estimates for the cost of the machine. The outcome from this meeting
gave it a cost of $72 million and an expected availability date of 1990.

It was alleged that the mean time between failure of LSI devices is such that
one could not run the machine without failure for more than a very few hours.
Diffie and Hellman counter this by proposing a system of self-checking with an
automatic switch-over to a reserve machine segment when failure is discovered.
The cost of the machine has been estimated by Diffie and Hellman to be about
$20 million, based on a unit cost for each DES device of about $10; IBM have
put the cost at more like $200 million, based on a different unit cost. Diffie and

-- 89 --
MasterCard, Exh. 1004, p. 89

Hellma1 is ab J t:tt $5 OGC.
is evident tl'1at the constrtlctiorl of 2111 .::xhausti·ve-seaTch rnacl1in2 is a :ve:ty

UiildertcLkiJ.1g1 r"''""·~i-r,rc very resources. It has been that
the reason that chosen was no more than 56 bits was in order that
the key search machine should be viable. If the key length were 64 bits, an increase
in key search times of a factor of 256 would be obtained; the parity bits do not
seem to serve a particularly useful purpose. Against this it has been argued that
excessive security is unnecessary for the intended field of application (unclassified,
commerciat etc.) and that an increase in key length would increase the cost of
the DES chips.

Multiple DES endpherment

It has at various times been suggested13 that multiple-block encipherment under
different keys would increase the security of enciphered data. It might be thought
that an effective key length of 112 bits could be obtained by enciphering twice
with different keys. However, a time-memory trade-off reduces the effective key
length to 57 bits. 14 This is based on the assumption of a known plaintext attack
in which the known plaintext is enciphered under all possible keys, then the
known ciphertext is deciphered under all possible keys, giving two sets of data.
These data are sorted to order and then compared one against the other, so that
candidate key pairs can be identified. Note that the data unit for the sorting pro­
cess consists of two elements - the result of the DES operation (encipherment
or decipherment) and the key with which the result was obtained; this amounts
to 120 bits per item. Since it is likely that a large number of candidate key pairs
will be found (the theoretical number is 248 false key pairs), it is necessary to
check the candidate pairs against other pairs of plaintext and ciphertext blocks.
Given a second known plaintext block and its ciphertext, the probability of find­
ing a wrong key pair in addition to the correct pair is theoretically 2- 16 . This
attack has been called 'meet in the middle'.

Successive use of two encipherment keys can be made more secure by apply­
ing them in a more complex way. IBM use encipherment with key l followed
by decipherment with key 2, followed by encipherment with key 1.15 This is very
much stronger and is used by IBM for protection of master keys in some of their
cryptographic systems. A convenient feature of this system is that compatibility
with single-key encipherment can be achieved by making the two keys have the
same value. Even the degree of protection given by this triple operation has its
critics, 14 Merkle suggests that a chosen plaintext attack will yield the two keys
with about 256 operations and 256 words of memory. Note that this attack
requires a chosen plaintext, whereas the attack on simple double encipherment
with two keys requires only a known plaintext. Indeed the amount of chosen
plaintext material required corresponds to 256 DES operations; availability of this
amount of material is so unlikely that the method is not practical.

Merkle suggests that a worthwhile increase in security can be obtained by tri­
ple use of the algorithm with three different keys (triple encipherment was put

-- 90 --
MasterCard, Exh. 1004, p. 90

The criticism of the DES algorithm has also concerned the choice of S-boxes.
Hellman and others16 have investigated the S-box structure and have shown that
the security of a DES-like algorithm can be reduced by careful choice of S-boxes.
By replacing the DES S-boxes by others of their own design, they have shown
that it is possible to weaken the security of the encipherment while concealing
the weak S-box structure to some extent. The assertion is then made that the actual
DES S-boxes may themselves contain deliberate weaknesses put there in order
to make the algorithm subject to a 'trap-door' attack by those in possession of
the design information. On the other hand Hellman and his colleagues have
not been able to demonstrate weaknesses in the DES S-boxes, though they point
to certain unexplained systematic structure.

The permutation regularity which we discussed in the previous section of this
chapter is one of construction. It does not, to our knowledge, result in any regular­
ity of the DES function. The purpose of the permutations is to spread any change
among the S-boxes in as few rounds as possible. For this purpose the EF and
CD graphs are well chosen. For example a change in the input of S 1 spreads to
6 and 8, and, from then on, the S-boxes affected in successive rounds are 3457,
then 12345678, by which time all S-box inputs have been affected - on three
rounds only. Since only half of the 64 bits circulating in the L and R. registers
are changed at each round, in practice six rounds are needed to spread a single
bit change completely. The chosen graphs CD and EF are very efficient in this
respect. Reference to Figure 3.16 where the intermediate data are shown for each
round confirms this effect.

If the DES designers at IBM and NBS were able to set out their design crih:;ria,
then the kind of criticism which has been outlined in this section might well be
allayed. However, at the request of NSA the design criteria have been withheld
on the grounds that the designers came across principles of cryptographic design
which were considered to be of importance to national security. The same ban
on publication has been applied to the results of an IBM study of cryptanalysis
of the DES, said to have occupied seventeen man-years.

Senate investigation of the DES

Because of these bans on publication, the controversy of criticism of the DES has
been fuelled, rather than subdued. It has been alleged that NSA has exerted undue
influence in the matter. Allegations of this kind led the US Senate Select Com­
mittee on Intelligence to investigate the role played by various government bodies
during the design and development of the DES. The report of this committee
is unavailable as classified materiat but an unclassified summarl7 of its findings
was issued in 1979. NSA was exonerated from tampering with the design of the
DES in any way. It was said to have convinced IBM that a shorter key was ade­
quate, to have indirectly assisted in the development of the S-box structures and

-- 91 --
MasterCard, Exh. 1004, p. 91

3.6. RECENT ACADEl/IIC STUDIES OF THE DES
AND ITS PROPERTIES

During the public existence of the DES there has been a steady level of academic
interest in its security and general propertiesi this has led to publication of a
number of interesting results/ some of which have only emerged relatively
recently. A research group at the University of Louvain has published a series
of papers/ 18

•
19 giving an account of several investigations. In 1983 it was shown,

using various equivalent representations of the DES algorithm/ that is was pos­
sible to specify a totally iterative representation of the DES. It was also shown
that the algorithm could be described with one fewer internal table and that it
was related to the mixing transformation described by Shannon in his classical
paperi a link was also established to nonlinear feedback shift register theory and to
permutation networks. A successor paper in 1984 studied the degree of
dependence of the output of the algorithm on its input/ with particular attention
being paid to small avalanche characteristics. The 1984 paper drew attention to
some newly discovered properties of the S-boxesi the studies included tests with
some S-box input bits fixed and observations made of the effect of varying the
other inputs, whilst another test included complementation of certain input bits.
Attention was also paid to the key scheduling part of the algorithm, reducing
the number of internal cycles in order to simplify the study. Links between the
S-box structure and the performance of the algorithm were identified. The paper
is full of minor results, but the authors make no claim to have made cryptanalysis
of the algorithm any easieri they do assert that a better understanding of the
algorithm has been achieved.

Two papers20
•
21 published in 1985 by the MIT group led by Ronald Rivest gave

particularly interesting results. The general aim of the work was to determine .
whether the DES algorithm represented a group. The basis for this aim was the
suggestion that if the set of permutations describing the DES transformation was
closed under functional composition, then the DES would be vulnerable to a
known-plaintext attack with 228 steps on average, a possibly serious weakness.
The results obtained by Rivest and his colleagues show, with an acceptable level
of confidence, that the DES is not a group, therefore the basic supposition of DES
vulnerability on this score is not substantiated. However, in the course of
experiments carried out in this connection, a really surprising result was noted.
The particular work related to cycling tests on the DES for keys selected in various
ways/ random keys and alternate encipherment with all zeros and al11s as keys.
A cycling test is designed to discover when, after a series of operations of the
algorithm beginning from a recorded starting value/ an output value is reached
which has the same value as the start point. Encipherment with alternate keys
of all zeros and all 1s produced a cycle length of rather less than 233 operationsi
this was far less than that predicted according to analysis. It was estimated that
the probability of such an occurrence was less than 1 in 109 if the permutation

-- 92 --
MasterCard, Exh. 1004, p. 92

is the same as the DLlir,te:>:t
If one pictures a

it is immediately a-ooajrerlt
is the reversal of path thl~Oulgh message space that causes the start point to
be reached much earlier than would be expected. Again, this result does not aid
the task of the cryptanalyst. The discovery of the fixed points makes the case
for avoiding weak keys in practical applications all the stronger.

Another interesting empirical result was reported by Shamir23 in his paper
given at Crypto '85; this showed some remarkable structural patterns in the DES
S-boxes. If one divides the S-box outputs into those containing an even number
of 1s and those containing an odd number of 1s (in other words a classification
based on the parity of the outputs), the distribution of this classification in the
S-box rows is very striking. In almost all S-box rows there is a bias of output parity
either to the right or left half of the row; in most cases this bias is very marked,
the phenomenon being most apparent in S-boxes 1, 5 and 8. The input element
which selects the right or left half of an S-box row is the 'B' bit, using the nota­
tion expressed in section 3.4. The conclusion is that the 'B' input bit has a very
strong influence on the parity of the output pattern. Whilst Shamir did not explain
the significance of the phenomenon in his paper, he did consider that the un­
expected result demonstrated the deficiencies of current certification techniques,
arising from a lack of deep understanding of the nature of the DES algorithm.
Having discussed the result with Brickell and Coppersmith, Shamir suggests that
the observed properties of the S-boxes could be an unintentional consequence
of some of the design criteria. Shamir also notes that the phenomenon was also
reported independently by Franklin in a Berkeley MSc dissertation.

Further illustration was thrown on the effect of regularities in the DES cycle
keys by Moore and Simmons24 in 1987. Their study was prompted in part by the
1985 results of Rivest and his co-workers, followed by the interpretation put by
Coppersmith on these results. Moore and Simmons confirm the explanation
advanced by Coppersmith; they identify a class of cycles of the kind noted by
Rivest and call these 'Coppersmith cycles'. A formal derivation is provided of
the set of inverse DES key pairs that comprises the weak and semi-weak keys
as defined earlier in this chapter. The related phenomenon of palindromic and
anti-palindromic keys is investigated. Palindromic keys are those which give the
same sub-key sequence whether they .:m: read from sub-key 1 to sub-key 16 or
from sub-key 16 to sub-key 1, in other words sub-key 1 is equal to sub-key 16,
sub-key 2 to sub-key 15 and so on; only the weak keys have this property. Anti­
palindromic cycle keys are those where sub-key 1 is the complement of key 16,
sub-key 2 is the complement of sub-key 15 and so on; four of the twelve semi­
weak keys have this property. Another interesting result is a proof of the asser­
tion that each of the weak keys has exactly 232 fixed points; similarly it is proved
that the four anti-palindromic semi-weak keys have exactly 232 'anti-fixed' points,
where the result of encryption is the exact complement of the plaintext.

-- 93 --
MasterCard, Exh. 1004, p. 93

enci]:JhE~red with an unknown
of us in an work has an attack on the DES

which exploits the correlation between two bits of S-box input in neighbouring
S-boxes, due to theE permutation. In principle this provides inferences concern­
ing the bits of the key if enough plaintext-ciphertext pairs are given. The infor­
mation available from this method would amount to 16 bits of key and greatly
weaken the cipher. The analysis of the effect shows that the quantity of plaintext­
ciphertext pairs needed is comparable with 256, so the method does not improve
on a systematic key search. There is slight evidence that the S-boxes might have
been constructed to reduce this effect, but this is not conclusive. The analysis
was extended to include three adjacent S-boxes, with the same result.

3.7. IMPLEMENTATIONS OF THE DATA
ENCRYPTION STANDARD

Since the announcement and official launch of the DES in 1975 a number of
manufacturers of microprocessors and LSI devices have designed, made and
marketed devices embodying the DES. The performance spectrum has been
extremely wide, ranging from inexpensive microprocessor implementations
capable of carrying out the algorithm in 100 milliseconds to very fast LSI
implementations which perform the algorithm in less than 5 microseconds. Some
of the devices simply implement the algorithm in its basic block mode, whilst
others also offer the more complex modes of operation which we shall encounter
in our next chapter. The physical protection given to the devices also covers a
very wide range, from simple chips with no protection to tamper-resistant boxes
designed to withstand determined mechanical and/or electronic attack. There has
therefore been available a very wide spectrum of equipment embodying the DES
algorithm.

Not all the DES devices announced by manufacturers are still available. There
is an observable tendency for system designers to choose fast LSI devices rather
than the slower microprocessor implementations; the cost differential is no longer
as great as it once was. Some of the slower implementations may not now be
available as they are no longer considered commercially viable and have been
withdrawn. Equally there is little doubt that some DES implementations have
been extremely popular and these are found in many commercial systems for
ensuring data security.

3.8. THE IBM CRYPTOGRAPHIC SCHEME

International Business Machines have developed a sophisticated data security
system, using the DES, which caters for data in transit between terminals and

-- 94 --
MasterCard, Exh. 1004, p. 94

(a hardware the 3848 the
port Program Product to control it. At the terminals the
special hardvvare.

The maximum data transfer rate of the 3848 is 1.5 Mbytes/s. The unit enciphers
in CBC mode, using 64-bit data blocks. The encipherment operation is said to
be faster than the input/output channel can handle data, so it appears that the
equivalent block encipherment time is less than 5.3 J.I-S. Since the unit is not
intended for use on insecure sites, it is not heavily armoured. However, the master
key storage is arranged to delete the keys if attempts are made to access this
illegally.

A two-level key hierarchy is operated; the keys are classified as master and
operational. Entry of master keys into the 3848 is carried out using the same design

. of key entry module as that used for the 3845 and 3846 tamper-resistant boxes.
Entry of the master key into the 3848 requires operation of a physical lock. The
master key is double length, 128 bits (112 effective), in order to enhance the
protection given by master key encipherment to the operational keys. Operational
keys are protected by multiple DES operations under the control of the two halves
of the master key; if we call the latter ka and kb, each of normal length, then
the encipherment of operational keys follows the sequence

Encipher under ka
Decipher under kb
Encipher under ka.

Compatibility of the 3848 device with single-key encipherment is obtained by
giving identical values to ka and kb. Examination of the encipherment sequence
just quoted shows that this has the effect of encipherment once with the iden­
tical key value; thus the security given to the operational keys is reduced.

The same scheme of treble encipherment with two keys has been adopted
in the standards ANSI X9.17 and ISO 8732 described in chapter 6.

It is recommended that ka and kb be chosen by some random method such
as coin tossing. The keys entered must have correct parity, as the 3848 is pro­
grammed to reject keys with incorrect parity; calculation of parity depends on
the person generating the keys. As a further degree of protection the unit is pro­
grammed to reject any of the weak keys should these be input by the operator.
As the IBM key management system uses variants of the master key, calculated
by inverting selected bits, the unit also rejects variants of the weak keys. Tests
for the semi-weak keys are not carried out.

3.9. CURRENT STATUS OF THE DES

We have discussed in this chapter the early development of DES in the field of
US federal and national standardization. Before we leave the subject it is
appropriate to consider the current status of the algorithm.

-- 95 --
MasterCard, Exh. 1004, p. 95

this 1.Nitl1 rn.eE'lbers from so1ne of
the US of the US President to
encourage, advise and assist US private sector in achieving protection of some
communications. The executive agent for this group is the Director, National
Security Agency (NSA), acting as National Manager for Telecommunications
Security and Automated Information Systems Security.

Arising directly from NSDD-145 a Commercial COMSEC Endorsement Program
(CCEP), already implemented by NSA in the context of protection of government
information, was made available to the private sector. Under this program com­
munication security modules have been created that embody cryptographic
algorithms designed by or for NSA; mechanisms have been set up for supplier
approval. These NSA algorithms come in two types, I and II. Type I is used for
the protection of classified government information. Type II was originally
intended only for the protection of unclassified but sensitive national security
information, but its application is now extended to cover the commercial private
sector. Neither Type I nor Type II algorithms will be published, nor will either
be available for export from the USA.

One may now ask where this leaves the DES and its users. It was originally
intended that new equipment using the DES would not receive endorsement for
government purposes after 1 January 1988; existing endorsed equipment was to
be allowed to continue in use for an indefinite period. When this policy was
announced it was perceived that it might cause problems for the US Treasury
program for certification of electronic funds transfer authentication equipment.
Indeed the US banks were known to be using DES very widely for protection
of funds transfers of all kinds, some of which involved international traffic. Aris­
ing from concerns of this kind, discussions took place that resulted in a revision
of policy regarding the DES. On 22 January 1988 the US Department of Com­
merce issued a press release in which the National Bureau of Standards reaffirmed
use of the Data Encryption Standard for another five years, saying that it con­
tinued to be a sound method of protecting computerized data. However, for
federal non-financial applications the DES must now be regarded as superseded
by the algorithms developed under CCEP.

Fuller discussions of these developments can be found in Newman and
Pickholtz25 and in Howe and Rosenberg. 26 We shall consider the wider impact
of this US government policy on the international use of DES in chapter 11 on
security standards.

REFERENCES

1. Davis, R.M. 'The Data Encryption Standard in perspective', Computer Security and the
Data Encryption Standard, National Bureau of Standards Special Publication 500-27,
February 1978.

2. National Bureau of Standards Guidelines for implementing and using the NBS Data En­
cryption Standard, Federal Information Processing Standards Publication 74, April1981.

-- 96 --
MasterCard, Exh. 1004, p. 96

i('l

'"~/l.A.. Oss-~-=I'.,?

rernoleiy ?.·:cess2d clat3 sys::=rn', PrcJceE'diiF!S
An gust

5. Shannon! C.E. : Con1n1unication th:?ory of secrec1 SlsterrLs', Bell Technicr:l]oun1a/,
28, 656, October 1949.

6. National Bureau of Standards Data Encryption Standard, Federal Information Process­
ing Standards Publication '16, January 1977.

7. Kolata, G. 'Flaws found in popular code', Science, 219, 369, 28 Januiary 1983.
8. Davies, D.W. 'Some regular properties of the 'Data Encryption Standard' algorithm', Ad­

vances in Cn;ptology. Proc. Crypto '82, 39, August 1982.
9. Branstad, D., Gait, J. and Katzke, S. Report of the Workshop on Cryptography in Support

of Computer Security, National Bureau of Standards, Report NBSIR 77-1291, September
1977.

10. Diffie, W. and Hellman, M.E. 'Exhaustive cryptanalysis of the NBS Data Encryption
Standard', Computer, 10, 6, 74, June 1977.

11. Meissner, P. (Ed.) Report of the Workshop on Estimation of Significant Advances in Com­
puter Technology, National Bureau of Standards, Report NBSIR 76-1189, December 1976.

12. Hellman, M.E. 'DES will be totally insecure within ten years', IEEE Spectrum, 16,
7, 32, July 1979.

13. Diffie, W. and Hellman, M.E. 'Privacy and authentication: an introduction to cryp­
tography', Proc. IEEE, 67, 3, 397, March 1979.

14. Merkle, R.C. and Hellman, M.E. 'On the security of multiple encryption', Comm. ACM,
24, 7, 465, July 1981.

15. Tuchman, W. 'Hellman presents no shortcut solutions to the DES', IEEE Spectrum,
16, 7, 40, July 1979.

16. Hellman, M., Merkle, R., Schroeppel, R., Washington, L., Diffie, W., Pohlig, S. and
Schweitzer, P. Results of an initial attempt to cryptanalyze the NBS Data Encryption Stan­
dard, Stanford University, Centre for Systems Research, Report SEL 76-042, November
1976.

17. 'Senate Select Committee on Intelligence' New York Times, 13 April 1978; Computer­
world, 17 April 1978.

18. Davio, M., Desmedt, Y., Fossprez, M., Govaerts, R., Hulsbosch, J., Neutjens, P., Piret,
P., Quisqater, J-J., Vandewalle, J. and Wouters, P. 'Analytical characteristics of the
DES'. Advances in Cryptology. Proc. Crypto '83, 171, August 1983.

19. Desmedt, Y., Quisquater, J-J. and Davio, M. 'Dependence of output on input in DES:
small avalanche characteristics', Advances in Cryptology. Proc. Crypto '84, 359, August
1984.

20. Kaliski, B.S., Rivest, R.L. and Sherman, A.T. 'Is the Data Encryption Standard a
group?', Advances in Cryptology. Proc. Eurocrypt '85, 81, April 1985.

21. Kaliski, B.S., Rivest, R.L. and Sherman, A.T. 'Is the DES a pure cipher? (results of
more cycling experiments on DES)', Advances in Cryptology. Proc. Crypto '85, 212, August
1985.

22. Coppersmith, D. 'The real reason for Rivest's phenomenon', Advances in Cryptology.
Proc. Crypto '85, 535, August 1985.

23. Shamir, A. 'On the security of the DES', Advances in Cryptology. Proc. Crypto '85, 280,
August 1985.

24. Moore, J.H. and Simmons, G.J. 'Cycle structure of the DES for keys having palin­
dromic (or antipalindromic) sequences of round keys', IEEE Trans. on Software Engg,
SE-13, 2, 262, February 1987.

25. Newman, D.B. and Pickholtz, R.L. 'Cryptography in the private sector', IEEE Com­
munications Magazine, 24, 8, 7, August 1986.

26. Howe, C.L. and Rosenberg, R. 'Government plans for data security spill over to civilian
networks', Data Communications, 136, March 1987.

-- 97 --
MasterCard, Exh. 1004, p. 97

4

4.1. METHODS FOR USING A BLOCK CIPHER

Block encipherment operates on blocks of data of fixed size but a message to be
enciphered can be of any size. Encipherment is sometimes applied to a stream
of data, where the length of the stream may not be known when encipherment
begins. So a block encipherment algorithm seems, at first, to have some limita­
tions. Perhaps a stream encipherment algorithm might be closer to the real needs?

This reaction is probably wrong. A block encipherment method like the Data
Encryption Standard (DES) can be used in various 'methods of operation' which
cover all the practical requirements. Instead of being a limitation, the fact that
the DES operates on fixed-length blocks makes it a convenient starting point for
at least four different methods of operation which offer a very versatile set of
'tools' for encipherment.

Given a plaintext block x and a key k, the encipherment algorithm enables us
to compute the ciphertext blocky = Ek(x). This, in itself, is a 'method of opera­
tion' sometimes called the 'native mode'. It can be applied to any source _of
plaintext in 64-bit blocks. This is actually a frequent requirement, for example
when a DES key has to be enciphered. The DES key in its 64-bit form can con­
veniently be enciphered using the native mode of the DES algorithm.

A more general case is the encipherment of a message of arbitrary length perhaps
made up of many 64-bit blocks. We can think of such a message as having been
generated in a processor and stored ready for encipherment. We need a method
for enciphering such a multi-block message which is convenient and secure. For
this purpose there is a method of operation called 'cipher block chaining'.

The third case is the encipherment of a string of characters such as might come
from a teleprinter which is being operated continuously. For such a stream we
need a method of operation which enables each character to be enciphered as
it arrives and does not have to wait until several characters have arrived before
block encipherment can be carried out. This is a form of stream cipher and the
related method of operation which will be described is called 'cipher feedback'.

There is a fourth requirement, which will emerge later in this chapter, for which
another method of operation is used, called 'output feedback'.

The native mode of operation is called 'electronic code book' because, for a given
key, it associates with every value of the input block a unique value of the output
block and vice versa. Because of the large number of such values, 264

, the
codebook in question is a very large one, never likely to be enumerated in full.

-- 98 --
MasterCard, Exh. 1004, p. 98

1. Electronic Codebook (ECE)
one block.

2. Cipher Block Chaining (CBC) the use of the to a
message consisting of many blocks.

3. Cipher Feedback (CFB) the use of the algorithm to encipher a stream of characters,
dealing with each character as it comes.

4. Output Feedback (OFB) which is another method of stream encipherment with
its own properties, to be described later.

These four methods of operation are the result of some careful study since the
DES first became available. Other methods are possible but these four seem to
meet most requirements. They are defined in a US Federal Information Process­
ing Standard1 and an international standard. 2

The four methods can be used with any block cipher. In the descriptions which
follow, the DES will be used because it is easier to describe the methods by a
well-known example. It will be obvious how the methods can be used for any
block cipher, changing only the details according to the block size.

The limitations of the electronic codebook mode

It might seem that a message comprising many blocks could be enciphered simply
by dividing it into 64-bit blocks and enciphering each one separately. This is a
simple application of ECB encipherment- the native mode. Decipherment is
equally obvious. But, in general, ECB encipherment should not be used in this way
because of some severe security weaknesses which arise from the structure of
typical messages.

In all practical applications, fragments of messages tend to repeat. One message
may have bit sequences in common with another. Messages generated by com­
puters have their own kind of structure. The need for formal definition of proto­
cols and the desire for generality in their definition has made large parts of the
formats used by computer messages very repetitive. They may contain strings
of zeros or spaces. The protocol designer provides parameters which in practice
are rarely used and, therefore, take constant values. Computers often generate
messages in a fixed format, having the important data always in the same place.

If the ECB type of encipherment is used with this kind of traffic, an alert enemy
who intercepts collections of these messages will be able to detect the repetitions.
Figure 4.1 illustrates how ECB encipherment fails to conceal this structure.

Repeated phrases will not show through the ECB encipherment unless they
happen at the same phase relative to the block size. Cryptanalysts will search
for and exploit the occasional visible regularities. The commonest repeats, such
as strings of zeros, show up easily. The biggest danger arises when the signifi­
cant parts of the messages change very little and appear in fixed locations. Analys­
ing these parts becomes a 'codebook' exercise in which the number of code values
is small.

Suppose now that a set of messages has been analysed and some partial

-- 99 --
MasterCard, Exh. 1004, p. 99

1 T 60 99 d6 42 52 82 22

2 H A \1 E S E FF BF BC 77 BB BB F2 06

3 V E R A L A C OD 40 86 DE B6 CD 92 50

4 T I V E P E R 99 63 AB OF 32 03 E7 E9

5 M A N E N T v 10 49 1F 3B DE 67 21 B7

6 R T U A L c BD 2D 6D 61 42 08 C7 B8

7 R C U T S 19 F1 01 A4 89 6A AE 4C

8 A N D 0 R v 84 DB CC EC 35 18 58 9C

9 I R T U A L c BD 2D 6D 61 42 08 C7 BB

10 A L L S A T D4 3C D4 SA 9E OB AS ED

11 T H E S A M E 84 52 01 AC 2D FE 98 3A

12 T I M E 89 F1 89 E9 DB CC CB BB

Key 01 23 45 67 89 AB CD EF

Fig. 4.1 A weakness in ECB enciphemzent

understanding has been obtained of these parts of the messages. An enemy can
re-construct messages from the parts of the message he has intercepted. The ECB
mode of operation has not linked these blocks together, so they can be reassembled
in any order. For example, a bank payment message might have the payment
amount or the payee account number in fixed positions. Even if the enemy does
not know the precise amount, he might be able to deduce the payee. He may
also be able to find which are the large payments. He could exploit his knowledge
of the enciphered blocks by forging large payments for chosen accounts, simply
by reconstructing messages from known pieces.

The vulnerability of systems to 'code book' analysis is greatest at the beginning
of messages, where formal headers appear which contain the destination, serial
number, time etc. The problem of the 'stereotyped beginning' of messages has
to be considered carefully in all cipher systems.

The weakness of the ECB method lies in the fact that it does not connect the
blocks together. By enciphering each block separately it leaves them as separate
pieces which the cryptanalyst can analyse and assemble for his own benefit. What
we need is a method of enciphering successive blocks which makes the cipher
meaningless except in the given sequence. This is called 'chaining'.

4.2. CIPHER BLOCK CHAINING

Cipher block chaining uses the output of one encipherment step to modify the
input of the next, so that each cipher block is dependent, not just on the plaintext
block from which it immediately came, but on all the previous plaintext blocks.

-- 100 --
MasterCard, Exh. 1004, p. 100

i

, I

shown on the of the figure, has a feedback
back to plaintext input. Except for the first block, each successive block,
encipherment, is added to the ciphertext of the previous one and this makes the
nth ciphertext block C11 a function of all the plaintext blocks P1, P2, ... , P11 •

The figure shows on the right-hand side how this process is reversed for
decipherment. After decipherment of the ciphertext, a correction is made which
corresponds exactly to the operation carried out at the beginning, namely the
addition, modulo 2 of the previous ciphertext block.

The words 'addition, modulo 2' do not adequately express the function shown
by the circles in the figure. In fact, each bit of the input block P11 is added,
modulo 2, to the corresponding bit of the previous ciphertext C11 _ 1. In actual
implementations, the operations may be serial, or be carried out on one octet in
parallet according to the speed required or the DES implementation employed.
The figure shows the operations as though they take place with 64 bits in parallel.

In order to make quite clear the sequence of operations, the ciphertext block
is shown at both ends as entering a register where it remains between successive
operations. This clarifies the point that, at both ends, the quantity entering the
modulo 2 addition is the ciphertext of the block which preceded the one now being
processed.

The operation of the cipher block chaining can be expressed as follows

encipherment:

decipherment:

Q11 = Dk(C11) +2 Cn-1

In order to prove that the result of decipherment, Q1u is indeed the plaintext,
apply the operation Dlc to the first equation, giving

Dlc(C11) = pll +2 cn-1·

All lines corry 64 bit blocks

M
I
I
I
I
I
I
I
I

Ploin Cipher Ploin

Pn Cn Ou

I
I
I

Fig. 4.2 Cipher block chai11ing

-- 101 --
MasterCard, Exh. 1004, p. 101

T~~tere -:;vay to derrLrJnstr.~te this ir:ve:tse prop2rty vvhich derives
4.2. It l1..as /rnirror' syrn:rLetiy about the broken line

data flovvs. The flow of data through the enclp•ner­
ment/deciphenrtent is consistent with a symmetric pattern of data on
the lines, noting that modulo 2 addition is naturally symmetric because the flow
of data on the horizontal line can be reversed without changing the data values.
It follows that the right- and left-hand sides are symmetric about the line M in
the data values carried by the lines. From this it follows that the input and out­
put data are the same. This kind of argument is very useful for establishing quickly
the plausibility of systems employing a block encipherment algorithm, though
it should be checked by a more rigorous analysis and the timing or sequencing
of the operations should be checked. The 'mirror' argument is an appealing one
because it can be seen directly in a figure and we shall use it again.

The first and last blocks

To complete the definition of CBC operation, both the start and the finish of the
procedure must be detailed. At the beginning, the 'previous ciphertext block'
is not available so the initial contents of the registers in Figure 4.2 must be specified
otherwise. This is the quantity shown in the following equations as I. It is known
variously as the 'initializing variable' or 'initialization vector'. We shall call it the
initializing variable (IV). The choice of this value is important to the security of
the operation and it must be the same for the sender and receiver. The equations
for expressing encipherment and decipherment must be replaced, for n = 1, by

C1 = Ek(P1 +2 I)
Q1 = Dk(C1) + 2 I

and the equations given earlier hold for n=2,3,
When cipher block chaining is used in a communication system it is normal

to keep the IV secret. This can be done by transmitting the IV encipherment in
ECB mode using the same key that will be employed for data encipherment. More
important than the secrecy of the IV is its integrity. We want to prevent an enemy
from being able to make purposeful changes to the plaintext which emerges from
the encipherment system. With CBC encipherment this cannot be done by
manipulating the ciphertext because changes to the ciphertext will produce an
apparently random effect in the plaintext output. But changes to the initializing
variable would have the effect of making corresponding bit changes to the first
block of plaintext output. In this way the whole of the first block is vulnerable
to purposeful changes by an enemy. The problem is avoided by sending the IV
in enciphered form.

Given a message of arbitrary length, it may not divide neatly into 64-bit blocks
but leave something at the end. We can deal with the short end block in several
ways but the simplest is to pad out the message by adding some extra bits until
the block reaches the correct size. These padding bits could be zeros, because
the addition of the previous ciphertext block before encipherment prevents them

-- 102 --
MasterCard, Exh. 1004, p. 102

One convention is that the last octet of indicates a
indicator' octets, as shown in Ll.3. This method
requires that the existence padding be revealed earlier in the message format.
In a format that has been designed with encipherment in mind, special provision
for a padding indicator might be made.

For many applications the system designer must have a method of handling
the short end block which does not expand the message size. This would be
needed, for example, when a stored plaintext is being enciphered and put back
into the same store. For this purpose the scheme shown in Figure 4.4 is useful.

Lost block

----------- Dote ends __.... .,.._____Padding _____. PI

Example : last block has 3 octets, padding indicator 5

Fig. 4. 3 Padding in the last block

02

Partial

end block

Lines carry 64 bit blocks

except those marked 'm bits'

Fig. 4.4 A method for enciphering the end block

Ill bits

I'll bits

-- 103 --
MasterCard, Exh. 1004, p. 103

block process is enci:::JhE'red
used by modulo 2 addition to treat the last, short block. Its value is suffic:iently

random for this purpose. The first m bits of the pattern are used to
add, modulo 2, to the short block for transmission. A similar process at the receiv­
ing end generates the same pattern of m bits which deciphers the short block
by modulo 2 addition.

There is a weakness in any such additive encipherment. Although the enemy
may not know what is being enciphered, he can change it systematically. He can
choose individual bits in the last plaintext block and change their values simply
by changing corresponding bits in the ciphertext. This is not dangerous unless
the part of the message we are talking about contains essential information and
fortunately this is not usually the case. The end of a message usually carries sum
checks which cannot usefully be changed. When used with care, this method
of dealing with the short end block can be effective.

Transmission errors in CBC encipherment

The CBC method of operation can be characterized as feedback of ciphertext at
the sending end and feed forward of ciphertext at the receiving end. The feedback
process has the property of extending indefinitely the effect of any small change
in the input so that a single bit error in the plaintext message will affect the
ciphertext from the block in which it occurs and every succeeding ciphertext block
until the chain ends. This is not as important as it may seem because the decipher­
ment process restores the correct plaintext except for the error.

Errors in the ciphertext are more important and may easily result from a noisy
communication path or a malfunction in a storage medium. The effect of a single
bit ciphertext error on the received plaintext is shown in Figure 4.5.

The first effect is to change the input to the DES algorithm at the receiver. The
output of the algorithm is then/ for all practical purposes, random, because of
the good cipher properties of the algorithm. At the time of the next block, the
ciphertext error emerges from the register in the feedforward path and a single

I
One-bit error

Garbled block

On

Garbled
block

Fig. 4.5 One-bit error in cipher block chaining

0 n+l

One-bit error

-- 104 --
MasterCard, Exh. 1004, p. 104

say:
be affected, but the system recovers and continues

to work cmTe(:tly
In contrast to recovery from bit errors, the system does not recover

well from synchronization errors. it is possible for a bit to be lost or gained
in transmission so that blocks are now shifted one bit out of position, then the
receiving system will generate garbage indefinitely. The method of using cipher
block chaining must ensure that the framing of blocks cannot be lost indefinitely.
This will generally be achieved when it is used for data in storage or in conjunc­
tion with data-link protocols that use framing.

The property of converting brief errors in transmission into lengthier errors of
plaintext output is called 'error extension' or 'garble extension'. It is a nuisance
in communication systems and may play havoc with a nicely tuned error-control
procedure that depends on the statistics of error occurrences. For this reason,
error control should be applied directly to the ciphertext stream, not around the
larger plaintext loop which includes encipherment and decipherment. Figure 4.6
shows these two alternative locations of error control.

The error properties of CBC carry a security risk if they are not handled cor­
rectly. Errors randomize one block but they cause controlled changes to the next
block. A system which ignored the errors in one block (or allowed them to be
recovered later) and accepted the succeeding block would be vulnerable to
calculated changes being made by an enemy to the ciphertext.

For this reason, although CBC recovers fairly quickly from line errors, the way
in which it is used should abort any chain in which errors have occurred. Error
recovery procedure should be designed to repeat the whole chain and to accept
it only when it is all delivered correctly. For this reason, it is normal to provide
a sum check on the plaintext to detect these errors at the receiver. Any enemy
trying to modify bits in the chain would probably cause a random sum check
and this would be detected. In chapter 5 this is treated more fully.

Choice of the initializing variable

We described cipher block chaining as a method by which the blocks could be
linked together to prevent codebook analysis. This is achieved for all the blocks
after the first, but the encipherment of the first block cannot depend on earlier
blocks. If the initializing variable is kept constant for a series of chains, the repeti­
tion of patterns in the beginnings of the chains will show through. Using the
same IV and key, two messages which have the same plaintext string at the begin­
ning will have the same ciphertext until the point at which the two messages
diverge. This degree of transparency would be very unwise, so we must contrive
that either the beginning of the message or else the value of the IV differs on
each occasion.

For communication systems it is customary to use as chain identifier a serial
number at the start of the chain which does not repeat during the currency of

-- 105 --
MasterCard, Exh. 1004, p. 105

4.3. CIPHER FEEDBACK

Data are handled in many forms/ as complete messages/ or sequences of frames/
blocks/ 8-bit characters or binary digits. When messages must be treated character
by character or bit by bit/ another kind of chained encipherment is used which
is known as cipher feedback.

When we treat data as a stream of bits or characters we are at a low level in
the hierarchy of protocols which makes up the computer network architecture.
This is a level at which transparency is important. We must introduce encipher­
ment in a way which disturbs the existing system as little as possible. For exam­
ple/ consider a character terminal which sends out a stream of characters in the
ISO 7-bit code with an added parity bit. Each of these octets from the terminal
must be transmitted through a communication network at once and encipher­
ment must not cause a delay. So the encipherment method, although it chains
these octets together, must operate on each octet as it arrives and deliver it,
enciphered/ as soon as possible. The same requirement for immediacy applies
to the decipherment of the octet stream coming into the terminal.

The cipher feedback method is illustrated in Figure 4.6. Superficially it appears
similar to cipher block chaining but the important difference is that the DES block
encipherment operation takes place in the feedback path at the transmitting ter­
minal and in the feedforward path at the receiving terminal.

The encipherment of the character stream consists of adding, modulo-21 the
character derived from the output of the DES algorithm to the plaintext character
to form the ciphertext character and then at the receiving end adding the same
data into the ciphertext character to restore the plaintext. The design of the system
makes this added data stream pseudo-random and yet provides the same stream
at the sending and receiving ends.

Whereas cipher block chaining operates on whole blocks, cipher feedback

Error

Control

Error

Control

Data

Repeat
requests

Error

Control

Fig. 4. 6 Alternative locations for error C011trol

Error

Control

-- 106 --
MasterCard, Exh. 1004, p. 106

ElPY value of 1n _l_ rn
is the character size ased in the communication
can be 5 or 6 bits and in n10dem 7 or 8.)
choice of character size is the octet and this
character width.

The eight bits used to encipher the character stream by modulo 2 addition are
derived from bits 1 to 8 of the output of the DES algorithm. It is important to
realize that the DES algorithm is performing an encipherment at both ends of the
line. The input of this algorithm comes from a 64-bit shift register which contains
the most recent 64 bits transmitted as ciphertext. Every character which goes out
on the line at the sending end is shifted into the high-numbered bits of the shift
register, displacing a similar number of bits from the other end. The same thing
is done to the received ciphertext at the other end of the line. The argument of
symmetry which was useful in understanding cipher block chaining can be applied
to Figure 4. 7, but the layout of the figure is intended to make clear the number­
ing of bits into and out of the DES algorithm and this rather obscures its symmetry.

If the ciphertext is transmitted without error, the contents of the shift register
are the same at both ends. Therefore, the output of the DES algorithm is the same
at both ends and the same eight bits are added to the data stream. This ensures
that encipherment is correctly reversed by decipherment at the receiving end.

The sequence of operations as each character passes through the system is as
follows. The incoming plaintext character has added to it, modulo 2, the bits com­
ing from the DES algorithm. By this addition the character is enciphered and made
ready for transmission. At the same time as it is transmitted it is loaded into the
shift register, displacing the same number of bits from the left-hand or low­
numbered end. Now the shift register contains a new pattern of bits and the DES
algorithm is invoked to produce a new output. This output is ready for encipher-

Shift register Shift register

I I I I I I

8 8

8

Plain Cipher Plain

Fig. 4. 7 8-bit cipher feedback

-- 107 --
MasterCard, Exh. 1004, p. 107

block Chiotinmg
alg;onttliJm enophers 64 bits o£ users' da'[a. For this

reason, feedback throughput could limited by the speed of the DES
operation. Fortunately, the lower levels of network hierarchy, at which cipher
feedback is used, are often quite slow in operation so this speed limitation is not
important.

Like cipher block chaining, cipher feedback chains the characters together,
making the ciphertext a function of all the preceding plaintext.

Error exten§ion in cipher feedback

CFB operation is like cipher block chaining in having a feedback path at the send­
ing end and a feedforward path at the receiving end. Correspondingly, changes
in the plaintext affect all the succeeding ciphertext, and errors on the communica­
tion line are subject to 'error extension'. We can follow the effect of a single bit
transmission error in Figure 4.8. The first effect is to alter the corresponding bit
in the plaintext output of that character. The error also enters the shift register,
where it remains until the shift process pushes it off from the left of the register.
While the error is in the shift register, the output is garbled. In the case of 8-bit
cipher feedback which is illustrated, nine plaintext characters are affected by a
single error. The error properties are similar to those of CBC except that the 'con­
trolled' change takes place at the beginning of the error pattern instead of the

Ciphertext
single

bit error

\
ITl

I I

8

..,.__Shift 8

I I I I Error enters at time 1

garbled at times 2-9

8 garbled octets
f::: 4:::::::::t::::::::l:::::::::l::::::::t::::::l::];:::::::J

123456789

I 2 3 4 5 6 7 8 9
ll::::::::f:::::::f::<r ::t:'::::J:':::::::I:::::'l:':::::l

Errors in output

Fig. 4. 8 One-bit error in 8-bit cipher feedback

-- 108 --
MasterCard, Exh. 1004, p. 108

plcunte;<t sum
check would reveal as an error. A case occurs vvith the last character
of a message, where the characters never come. This matters little for
1-bit CFB and is unlikely to matter for 8-bit CFB since the 8 bits in question are
probably part of the sum check, but it could be serious with 64-bit CFB and, for
example, a 16-bit sum check. The enemy could alter the last 48 bits of the message
and correct the sum check to match. Of course, 64-bit CFB is unusual and CBC
is likely to be used instead.

Initializing with CFB

To start up the process of cipher feedback, the shift registers must be loaded with
an IV. It is customary to use a different IV for every chain during the lifetime
of a key, in order to mask any repetitions at the beginnings of the chains. These
IV values can be transmitted in clear form because they enter the process through
the encipherment algorithm.

In cipher block chaining the transmission of the IV is a procedure quite distinct
from normal message transmission because the IV is enciphered. The plaintext
IV which is sent at the start of CFB operation can be regarded as a preamble to
the message. It enters the shift register at both ends of the line and, when the
registers are loaded with the same data, secure transmission begins. This method
of start-up is characterized by random data being produced at the sending end
(to conceal any regularities in the starts of messages) and different random data
being produced at the plaintext output of the receiving end. In effect, the self­
correcting properties of this cipher method are being used for starting up.

More formal procedures for initializing are described in chapter 11, in which
a randomly chosen IV is sent before transmission of data begins. Each chain incurs
this transmission overhead. There are polling systems which use very short
messages, each message sent to a different station on a multi-station line. If CFB
encipherment is used with a different key for each station, then each of these
short mssages must be preceded by an IV. To avoid the full-length, 64-bit IV,
it is customary to send a shorter-length value and pad it on the left (most signifi­
cant) end with zeros to make up the 64-bit pattern in the shift register. Of course
the transmitted value should not be too short or the danger of code book analysis
of the starts of messages returns. For example, if an 8-bit IV is transmitted the
enemy has to construct 256 versions of the codebook. Suppose that the polling
message consisted of an address which was fixed for the station followed by a
command with only a few possible values, then it would not take long to analyse
these command values for a given station.

Endpherment of an arbitrary character set

Cipher feedback is used for enciphering a stream of characters, where each ·
character is represented by m bits. In such a character set a character is represented

-- 109 --
MasterCard, Exh. 1004, p. 109

chaTacter
which mean: start of start of tex(end of text, acl:Cn:JW'le(~[g(::meni:,
link escape etc. In many communication if we tried to send such a
chaTacter in a ciphertext stream it would have an unfortunate effect on the net­
work's procedure, so we have to restrict the transmitted characters to a 'safe'
set. In the ISO case this usually means the binary values representing the numbers
32 to 127, ninety-six values in all.

We could consider an arbitrary character set which does not even use a con­
secutive set of character values. Then the first step in encipherment would be
to map these characters into the consecutive values 0, 1, 2, ... n -1 where there
are n different character values in the allowable set. If n=2m, normal CFB opera­
tion qm be used. Otherwise m bits are needed to encode the character where
m is the smallest value for which n < 2111

•

Figure 4.9 shows how the cipher feedback method of operation can be modified
for the case of an arbitrary character set. 4 The process of encipherment in CFB
is the addition of a stream of m-bit characters coming from the least significant
m-bit positions of the DES output into the plaintext character stream. For dealing
with the arbitrary character set modulo 2 addition of bits is replaced by modulo
n addition of character values. Both these methods of encipherment are well
established in classical ciphers, where binary addition, modulo 2, characterizes
the Vernam method and modulo n addition characterizes the Vigenere method.

Cipher feedback has the useful property that the method of deriving the
character stream for encipherment can be chosen almost at will, provided the same
method is used by the receiver for decipherment. We must now show how a
character in the range 0, 1, 2, ... n -1 can be produced from the output of the
DES encipherment .

.,.__Shift m

m

Plain Cipher

Fig. 4.9 Modulo 11 cipher feedback, n<2'"

-- 110 --
MasterCard, Exh. 1004, p. 110

II10dtllD the

nr,~,Nori11-N'> for the ten character values 0, 1,
... 9 from a 4~bit output taken from the DES. This method is not recommended
because the values 0, 1, 2, 3, 4 and 5 will occur twice as often as the values 6,
7, 8 and 9. If the digits are not equiprobable in the plaintext there will be a distorted
distribution in the ciphertext, which can be exploited by a cryptanalyst. For general
use we need the additive character stream to give all the values 0, 1, ... n -1
with equal probability.

A useful method is illustrated in Figure 4.11 for the example of generating
decimal digits. The 64~bit output of the DES is divided into sixteen blocks of 4
bits each. Starting from the least significant end, the first four bits are examined
and if they lie in the permitted range 0 to 9 this value is used for the additive
encipherment. If not, the next block is tested in the same way. Since there are
sixteen possibilities, it is highly probable that one of them will generate a satisfac­
tory character and the first one to be reached is the one used for encipherment.
If, unfortunately, all the values happen to lie in the range 10 to 15 then we choose
some arbitrary prearranged value to add to the character for encipherment, say
5 for example. The probability that this arbitrary value will have to be used is
(6/16)16 which is approximately 1.53 x 10-7. Clearly the method is not perfect
since the probability of one particular character value (5) is very slightly larger
than the rest. To exploit this flaw, even if the plaintext stream had one very highly
probable character, the cryptanalyst would need to collect a very large sample
of text. For most purposes the method is adequate.

This slight flaw could be removed, at some expense. Instead of the default con­
dition when all sixteen tests fail, the DES output could be enciphered again to

Value of 4- bit

DES output

Modulo 10 value I 0 II I 2 I 3 14J5 J6 J7 I 8 J9 I
Probability J

1!8 J
11 8 J

1 18 J
1t8 J

1t8 l
1
/ 8 h6 1

1t, 6 J
1!16 J

1!1e,l
Fig. 4.10 The modulo 10 value - an uneven distribution

DES output Jl 0 I 0 I I 0 J 0 I I 0 J 0 0 I I 0 ~

Hexadecimal 10 13 3

Result Reject Reject Accept

Fig. 4.11 An improved rule for modulo 10

-- 111 --
MasterCard, Exh. 1004, p. 111

ment cannot he
sixteen tests can be made
of an indefinitely long process to a character, however rare
that event might be. For most practical purposes, sixteen tests followed by a default
procedure is adequate.

The probability of the default condition should be checked to make sure that
it does not weaken the system. Take another example, which is the 96-bit ISO
graphic set. Since this is a 7-bit code, there will be nine useful blocks in the DES
output and the probability of a default condition is (32/128)9 which is approx­
imately 3.8 x 10-6•

4.4. OUTPUT FEEDBACK

Of the three methods of operation that have been described, ECB, the 'native
mode', is for limited use and the two others CBC and CFB are general-purpose
methods. The fourth, output feedback, is intended for applications in which the
error-extension properties of the two general-purpose methods are troublesome.

Coded speech or video channels can withstand a small amount of random noise
in transmission or storage, basically because they are highly redundant. The
listener or viewer is not bothered by occasional clicks or spots due to faulty speech
samples or picture elements. If we required it, an automatic process could detect
and correct these errors, in the same way that blemishes in old films can be cor­
rected electronically. We do not want these occasional, isolated errors to be
magnified by the error-extension properties of a cipher method. For example a
standard speech channel with pulse code modulation (PCM) uses 8-bit speech
samples. A single error would be extended by encipherment to damage about
eight further samples. This could make a bad noise in the channel or, with
multiplexing, cause clicks in eight other channels.

Output feedback uses a cipher of the kind invented by Vernam; only the pseudo­
random source is new. In one respect it resembles CFB operation because it can
be applied to streams of m-bit characters for any value of m between 1 and 64.
It has the property of all additive stream ciphers (Vernam type) that errors in
the ciphertext are simply transferred to corresponding bits of the plaintext output.

Figure 4.12 shows OFB encipherment, working with m-bit characters and an
m-bit wide feedback path. It resembles CFB operation in all respects except the
place from which the feedback is taken. The pseudo-random stream is the result
of feedback applied to the DES cipher. ·

The non-error-extension property of additive stream encipherment carries dis­
advantages with it. An active attack on the channel can produce controlled changes
to the plaintext. Since OFB systems usually run continuously on a synchronous
channel, the enemy may have no knowledge of where each message starts and
ends, so the usefulness of this trick to the enemy might be limited.

Synchronization of the pseudo-random number generators at the two ends of

-- 112 --
MasterCard, Exh. 1004, p. 112

m

Plain Cipher Plain

Fig. 4.12 m-bit output feedback

the line is critical. If they get out of step the 'plaintext' output at the receiver will
be random. Whereas CFB operation can recover when character synchronization
is restored, OFB will not if characters have been gained or lost. A system employ­
ing OFB must have a method of re-synchronization after such a failure. This is
the same as restarting with a new IV.

To start up or resynchronize OFB, the shift registers must be loaded with iden­
tical values. The IV can be sent in clear form because knowledge of it does not
help the enemy to construct the pseudo-random stream. In the same way as
for CFB operation, the full 64-bit field need not be used. The IV sent over the
line can be padded on the left with zeros to fill the shift register. There is the
same trade off between IV overhead and security as in CFB initialization.

Key stream repetition

The pseudo-random stream which is added (modulo 2) to encipher and decipher
is called the key stream. If ever the key stream repeats it weakens the cipher. If
Xi is the key stream and it is used for two different plaintexts Ai and Bi, the two
ciphertexts are: Ai+Xi and Bi+Xi (modulo 2 addition). Adding these, modulo 2,
produces Ai + Bi, eliminating the key stream. The result is that which would have
been obtained by enciphering Ai with Bias a 'running key' cipher, or vice versa.
Solution of such ciphers is sometimes easy. The enemy may not know, at first,
where the key-stream repetitions occur, but if the messages are in natural language
there are statistical tests which distinguish their sum from the random stream
caused by Xi. Digitally coded voice and video have even stronger statistical pro­
perties. Sliding the enciphered messages and testing their sum will detect the
key repetition. Such repetitions must be avoided.

Output feedback, like any other pseudo-random generator, repeats its output
after a certain time, that is, it enters a cycle. The key-stream generator can be

-- 113 --
MasterCard, Exh. 1004, p. 113

\Nltich is ~ one-·
m<lpj:nng o£ x on toy. It pe:·l.Tt1_ltes the values o£ the state x.

it returns to its initial state. Permutahons can
be the and it is well knuwn that when all
the n! permutations are written out as cycles, the total length of all the
of any length c is exactly n!, whatever the value of c. In other words, starting
from an arbitrary state x0, the length of cycle is equally likely to take any one
of the values 0, 1, 2 ... n. In the case of OFB, where n=264

, the mean cycle
length (averaging over all keys and starting values- or with randomly chosen
starting values) is 263 +l This result depends on a significant assumption, which
is that the encipherment functions Ek(x) are effectively random choices among
the (264)! permutations.

A cycle length which is random and uniformly distributed is not as safe as a
cycle of known length, but at least the average length is high and the probability
of a very low cycle length is small. OFB with m = 64 is satisfactory.

The analysis of OFB with other values of m is more difficult. The function
xi+ 1 =f(xi) relating each state xi+ 1 to the previous state xi is not one-to-one. A
simplifying assumption can be made, according to which it is a random function
so that, until the cycle repeats, each new x value is effectively chosen at random.
A cycle begins when any x value repeats one that has already occurred. Although
this is not a good description of the OFB operation, it has been found experi­
mentally to give the correct cycle behaviour.5 The problem of finding cycle length
is similar to the solution of the famous 'Birthday problem' which is of such im­
portance in the analysis of data security that it is described in an appendix to
chapter 9, beginning on page 279. The solution of that problem indicates that
coincidence of two x values is likely to happen after about -Jn iterations, where
n=264 is the number of values from which the x values are randomly chosen.
A more careful analysis described in reference 5 shows that the average cycle
length for a random function is (1rn/8) Vz, which is close to 231

. The OFB function
is, however, not random and by a closer analysis it was possible to estimate the
way that the average depends on m.

The largest effect of non-randomness occurs form= 1 and m = 63 and it increases
the average cycle length by a factor -J2. The effect decreases form = 2, 3 ... and
m = 62, 61 ... so that the average (1rnl8)'1' is accurate for most values of m. The
average cycle length is always in the range 231 to 232

.

An average cycle length of this magnitude is not satisfactory in an encipher­
ment scheme intended for general use. For example, a digitized speech channel
at 216 bit/s rate would recycle on average after 216 s or 18 hours. There is a fur­
ther reason why a random function is not suitable for generating a key stream.
The average number of distinct cycles for such a function is very small, namely
-¥n n, which for 264 system states is only 22. The conclusion from these calcula­
tions is that OFB should be used only with full 64-bit feedback. The other feed­
back possibilities for OFB in Federal Information Processing Standard (FIPS)
publication 81 should be avoided. The effect of this on standards is described
in chapter 11 (page 349).

-- 114 --
MasterCard, Exh. 1004, p. 114

~.1\fe

than one block because of the
rP-r>o:>l-orl block values and the of messages

from When ECB is used to encipher a block of data, the 'Nay it
is used should prevent repetitions or make them very unlikely.

The most usual application of the ECB method is to encipher a key for
transmission. Since a key contains 56 bits of random data, the building up of a
codebook is impractical. Of course, the danger of a replay of old keys must also
be considered when the security is analysed.

If very short messages (such as acknowledgements) have to be sent which fit
into one block, codebook analysis should be defeated by making the block suffi­
ciently variable. There are several ways in which the variability can be achieved.
One is to add an initializing variable, effectively using cipher block chaining.
Instead of sending an IV, which must be protected from manipulation, the added
variable can be a serial number, incremented for each transmission. If the message
is short enough, the serial number can be incorporated in it, which is more con­
venient for checking and resynchronizing.

An alternative is to put a date and time in the message which can be checked
to detect a replay. Since a compact form of date and time, down to the second,
occupies 48 bits, there will be space for 16 bits of message. Another method is
to include with the message a random number. This prevents code book analysis
but does not easily guard against replays. Methods like these can be 'tailor-made'
for a particular application. Compared with general-purpose protocols these
methods can be more efficient and justify the special software that has to be writ­
ten. In most circumstances it is better to use general methods based on CBC or
CFB operation and accept their overheads.

Cipher block chaining is the recommended method for messages of more than
one block. This method avoids codebook analysis generally but not at the start
of the chain. Communication systems generally use chain formats which begin
with a serial number so that the first block differs for all chains using a given
key. In other applications the IV may be varied.

This method extends single bit errors in the ciphertext to affect two successive
blocks at the plaintext output. An enemy with control of the ciphertext can
introduce controlled errors into the second of these blocks, therefore the method
of error recovery should not trust chains in which errors are detected.

Cipher feedback is recommended for enciphering streams of characters when
the characters must be treated individually. Like CBC it operates on chains -
in this case chains of characters. The problem of codebook analysis at the starts
of chains is similar but in communication by CFB operation the variability of the
start of the chain is usually provided by varying the IV. Error extension is pre­
sent also in CFB but the security implications are different because it is the first
character of the error pattern in the plaintext output which is under the control
of the enemy, if he can introduce ciphertext errors. The chain format should not
allow important information to appear in the last character. This requirement is

-- 115 --
MasterCard, Exh. 1004, p. 115

th~rt t:heir error e~<ter.sion is L'JSS o£ Ol.Jck
SVl~tc!ucJnism in CFS causes an indefinite

is ar~o-:~h2r -vvay .Jf
nchrc:lnisrrc ill CB<= or

an with no bit It
is often regarded, in consequence, as the most of the methods. For-
tunately, cipher feedback is often applied with asynchronous, start-stop opera­
tion which restores the synchronism of characters immediately. Cipher block
chaining is often applied to data which is in storage or is transmitted by a link
procedure, such as HDLC, which restores synchronism at least in the next frame
after a synchronization error. So the normal error recovery procedures can deal
with the problem.

Output feedback is needed when error extension is undesirable. In this method
of operation, synchronization errors are not recovered. Therefore loss of syn­
chronism must be detected and notified in a signal back to the sender which causes
a new IV to be sent, in order to restore synchronism. As an alternative where
a return message is impossible, synchronization can be re-established so frequently
that the loss due to an error is very brief.

The four methods of operation are versatile enough for nearly all applications.
In order to guard against active threats the designer has to choose carefully the
methods of forming the IV and transmitting it. He may also need to provide
variability at the beginning of a chain by means of a serial number, a time and
date or a random number. The four modes of operation are a set of tools, extend­
ing the versatility of the block encipherment algorithm but still requiring to be
applied with some thought.

These methods do not exhaust the possibilities. We can construct other methods
for using the block cipher on chains of blocks. For an example, Figure 4.13 shows
how, operating on 64-bit blocks, encipherment can be incorporated into both the
feedfonvard and the feedback paths. The symmetry argument helps us to generate
such schemes. This one can be expressed by the equations

encipherment:

c/1

kz

Fig. 4.13 A 11011-standard chaining method

-- 116 --
MasterCard, Exh. 1004, p. 116

+2

per±onTtan"ce, syncl:wcJmzation etc., this method is like CBC but it uses
two k1 and k2 . To some extent these extra rather like the

double encipherment. v\fe claim no special virtues for this method.

4.6. SECURITY SERVICES IN OPEN SYSTEMS
INTERCONNECTION

The International Standards Organization has produced an architectural model
for networking which is defined in ISO 7498 entitled /Open Systems Inter­
connection - Basic Reference Moder. This OSI model is the framework for all
dependent ISO standards. Unfortunately, it is not universal because the IBM
systems network architecture (SNA) is the basis for many of today's networks.
Among other computer systems suppliers, OSI is gradually achieving a domi­
nant status. Though there is a general similarity in the approach taken by SNA
and OSI, there are basic problems in interworking between these two systems.
In this book we will follow the development of a systematic architecture for securi­
ty services in OSI. The model is contained in part 2 of ISO 7498.6

Open systems interconnection is structured in the well-known seven layers from
the physical layer at the bottom to the application layer at the top. The lower
three layers, physical, data link and network form the communications structure
and their standards have been put forward initially as CCITT recommendations.
The higher layers, transport, session, presentation and application employ the
communications facilities of the network layer. These upper layers can be con­
sidered as operating from end to end through the communications system. In
principle, security features could be built into any layer of the osr structure but
the security an;:hitecture is more specific than this and defines, for each security
service, those particular layers which can provide it.

The OSI security architecture makes a clear distinction between security ser­
vices and security mechanisms. For example, encipherment is a mechanism which
can be used as part of a number of services, of which the most obvious is that
of confidentiality. The emphasis in the OSI document is on the services rather
than the mechanisms, since the latter form part of dependent standards detail­
ing how these services can be provided at the various layers of the architecture.

Definition of security services

The security services fall into five groups: confidentiality, authentication, integ­
rity, non-repudiation and access control. Some of these can be broken down into
sub-types according to the method of communication and the details of the ser­
vice required. Definitions of the terms can be found in the Glossary starting on
page 360.

Data confidentiality ensures that information is not made available or disclosed
to unauthorized individuals, entities or processes. It can be applied either to the
whole of the message or to specific fields within a message, which is called selec-

-- 117 --
MasterCard, Exh. 1004, p. 117

o;_;c',~,'cclLlLCLl Sense \VliiC11 iS diff2t~r~"(
frorn fhe \/lay it h.as been_ 11sed in the f\ufhenticatio:n in OSI refe:t"S to the
~""""+"'in+u that the data received comes the In the context
of connectionless service the term used is data origin authentication and is defined
as 'corroboration that the source of data received is as claimed'. Where an associa­
tion has been set up between peer entities the meaning of authentication can be
strengthened and is contained in the term peer-entity authentication meaning' cor­
roboration that a peer-entity in an association is the one claimed'. The term
authentication is not therefore extended to include the integrity of the data which
are being transmitted.

Data integrity is treated as a separate concept, meaning the property that data
have not been altered or destroyed in an unauthorized manner. Outside the con­
text of OSI, this form of data integrity is sometimes called authentication but the
OSI distinction can be useful and will be maintained in the remainder of this
chapter.

In practice data integrity and data authentication are linked in two ways, they
usually employ the same mechanisms and they are usually both required together.

Concerning the need for both services, if it can be assured that the data received
come from the claimed source, this is not useful in practice if the data may have
been changed in an unauthorized way. Conversely, if we know the data have
been transmitted without any unauthorized changes, this is not useful unless
we know that the data came from the claimed source and not from an imposter.
Therefore, in practice, data integrity and authentication are required together
rather than separately.

The mechanisms by which these services are obtained are the subject of chapter
5 and depend on cryptographic processes using a secret key shared between the
communicating parties. In many cases, the possession of this key establishes the
authenticity of the data source and at the same time allows the integrity of the
data to be checked. Not all authentication mechanisms employ cryptography but
the more secure forms of authentication always do.

Data integrity services can vary according to whether the communication is con­
nectionless or employs a peer-entity association. Where an association exists the
data integrity mechanism can be provided with a form of recovery mechanism.
Data integrity services can be applied to the whole of the message or to selective
fields, as was the case for confidentiality.

Repudiation is defined as 'the denial by one of the entities involved in a com­
munication of having participated in all or part of the communication'. Non­
repudiation is a service which can be provided in the OSI architecture in two
forms, either with proof of origin or with proof of delivery. The concept of non­
repudiation will be understood better in the context of digital signatures, which
are the subject of chapter 9. Digital signature is one of the mechanisms by which
they can be provided, the other is notarization by a trusted third party.

In the case of non-repudiation with proof of origin, the recipient of data is pro­
vided with proof of the origin of the data which will protect against any attempt
by the sender to falsely deny sending the data or to deny its contents. A digital

-- 118 --
MasterCard, Exh. 1004, p. 118

the recipient to a vif-,H~~C i'~~~"f-''
to a trusted notarization authority.

The final category of security services recognized in OSI is access control and
this can be applied either near the source of a communication, at an intermediate
point or near the destination. Access control may be needed in order to protect
a network against deliberate saturation by an opponent, but normally it protects
an information service against unauthorized access and is therefore frequently
used at the application layer or above. Within the network layer, an access con­
trol service can provide protection for a sub-network, allowing only authorized
entities to establish communication within it. The transport layer can provide a
similar service.

A special form of confidentiality is traffic flow confidentiality which protects against
traffic analysis, namely the inference of information from the observation of traffic
flows. It is difficult to obtain complete protection against traffic analysis and a
number of mechanisms may be required simultaneously, such as encipherment
at the physical layer together with traffic padding to confuse observation of traffic
levels.

The mechanisms employed to provide these services include encipherment with
both symmetric and asymmetric algorithms, digital signature, integrity and
authentication mechanisms, traffic padding, routing control and notarization.
There are also pervasive mechanisms which can be applied at all levels of the OSI
architecture and three of these are distinguished. The first is trusted functionality
which means that the parts of the system which carry out security functions must
be both protected and trusted. The second is called event detection and handling
and includes the detection of attempts to break into the system and the way in
which this information is acted upon. The third category of pervasive mechanism
is the security audit trail which provides a record of what has happened and enables
the security of the network to be reviewed and action taken when trouble is found.

Security services in relation to the OSI layers

Many of the services envisaged in the OSI architecture can be provided as alter­
natives at different layers. Table 4.1 shows, for each of the defined services, in
which layers it may be provided. The session layer provides no security services
so this has been omitted from the table. Many of the services provided by the
application layer will actually employ security mechanisms within the presenta­
tion layer. For example, if the presentation layer changes the coding or format
of some messages this can only be done prior to encipherment; therefore encipher­
ment to provide confidentiality at the application layer may, in practice, be car­
ried out by the presentation layer after the recoding or reformatting has been
done. In this table we have combined the two forms of authentication, peer-entity

-- 119 --
MasterCard, Exh. 1004, p. 119

Lcoer OSI

2 "> 4 6 7 J

Confidentiality
Connection y y y y y y
Connectionless y y y y y
Selective field y y

Traffic flow confidentiality y y y
Authentication (both kinds) y y y
Integrity

Without recovery y y y
With recovery y y
Selective field y

Non-repudiation (both kinds) y
Access control y y y

OSI layers: 1, Physical; 2, Data link; 3, Network; 4, Transport; 6, Presentation; 7, Application.

and data origin authentication, and the two forms of non-repudiation service,
with proof of origin and with proof of delivery.

The letter Y in the table means that the service should be incorporated in the
standards for the layer so that the provider of this layer can include the security
services as an option. Where there is no Y the service cannot be provided.

For each of the OSI layers, work is proceeding to incorporate the security services
as an option. Some of the progress to date is described in chapter 11.

4.7. THE PLACE OF ENCIPHERMENT IN
NETWORK ARCHITECTURE

Even at a casual glance, a computer network can be seen to have a complex struc­
ture. It consists of switching centres, often called nodes, connected by communica­
tion links and joined to multiplexers or concentrators which provide the paths
to the network's host computers and terminals. In such a structure, encipher­
ment could be employed in many different ways. A more careful study of network
structure reveals that the complexity goes beyond its communication system. It
has further levels of structure incorporated in the host computers and the
terminals.

When encipherment is used in a network, the security properties it gives are
dependent on the layer at which it is applied. The OSI model shows that poten­
tially it can be applied at any of six layers and the effect is has depends on the
network structure and on the responsibility for operating different parts of the
network. For example, in a private network the nodes may sometimes be regarded
as trusted facilities whereas they would not be trusted in the shared use of a public
network.

The OSI view of network structure encompasses both the communications
system and the intercommunicating computers, terminals etc. For the present,
we take a less-detailed view and look at the main alternatives for using encipher-

-- 120 --
MasterCard, Exh. 1004, p. 120

Fig. 4.14 Network of nodes - switches, multiplexors, etc.

ment in the communications part of a network. For this purpose we shall describe
three ways in which encipherment can be employed, called, for the present pur­
pose 'link-by-link', 'end-to-end' and 'node-by-node'.

Figure 4.14 shows a network as a set of switching centres or 'nodes' connected
by communication lines.

The simplest place to apply encipherment is on the lines between the nodes.
These communication lines are the most vulnerable part of the system. This is
called encipherment 'link-by-link'. Since the lines are used for carrying bits or
characters from one node to another, the encipherment in principle need take
no account of the structure of the messages, such as the presence of headers.
Therefore some forms of this encipherment are very simple. Information must
be deciphered as it enters the nodes, because these nodes look inside the struc­
ture of the messages and must see the information in clear form. The informa­
tion is completely vulnerable to attack while it is in the node: in the OSI model
this form of encipherment is in layers 1 or 2.

Many users will require a different form of encipherment, which allows the
content of their data to remain enciphered whenever it is in the network, even
in the nodes. This can be achieved with 'end-to-end encipherment' in which the
communication network is regarded as a single entity which is transparent to the
enciphered message: in the OSI model this is encipherment in any of layers 3
to 7. The message content is enciphered at the point of entry to the network and
deciphered at the point of exit. This makes the data as secure inside the nodes
as elsewhere in the network.

We shall also consider another method of making data secure inside the nodes
which is called 'node-by-node encipherment'.

Link-by-link endpherment

The line is a path of communication betwen nodes and uses a protocol or pro­
cedure which operates over this line. To be more precise, both the physical and
data link layers of the architecture may be involved. Figure 4.15 illustrates link­
by-link encipherment.

-- 121 --
MasterCard, Exh. 1004, p. 121

are
enciphered

here

Fig. 4.15 Link-by-link enciphemzent

If we encipher at the lowest level, treating what passes over the link as a
sequence of characters or bits, then an enemy who taps the line will see nothing
of the structure of the information. He will therefore be unaware of the sources
and destinations of messages and may even be unaware whether messages are
passing at all. This provides 'traffic-flow security' whch means that we conceal
from the enemy, not only the information, but also the knowledge of where the
information is flowing and how much is flowing. By using the lowest level of
encipherment, traffic-flow security can be obtained.

Consider a synchronous communication line, carrying a stream of bits. This
stream can be enciphered using 1-bit cipher feedback. After the initialization, the
process can continue to run as long as the line is open, recovering automatically
from bit or synchronization errors. An enemy tapping the line will see only a
random sequence of bits, which does not reveal whether data messages are pass­
ing or not. The designer might have to consider whether the 'infill' between actual
messages should be a repetitive pattern or random. Having no knowledge of the
beginning or end of messages, the enemy could not attempt any useful active
attack. Supposing that he did change some of the information, this would appear
as unpredictable changes in the plaintext. Detection of these changes at the lowest
level of protocol would be difficult, but they should be detectable at a higher level
if the error control mechanism is well chosep.

The situation is less clear when asynchronous, start-stop communication is used.
In this case, also, the entire message content can be enciphered by 1-bit cipher
feedback or by character-wide cipher feedback, leaving the start and stop elements
unchanged. There remains one clue for the enemy, which is the rate at which
characters are passing. If this traffic information must be concealed, the system
requires an extra provision which sends dummy messages during quiet periods.
These dummies can be generated and absorbed within nodes. In packet switch­
ing networks a logical channel could be devoted to this purpose and made to
fill up a part of the unused capacity of the line.

What we have described belongs in the physical layer of the architecture. The
data link layer protocols, such as HDLC or BSC, define 'frames' which pass be­
tween the nodes. If the encipherment procedure is applied to the data content
of these frames, some more traffic information is given to an enemy tapping the
line. This illustrates that raising the level at which encipherment is carried reduces
the traffic-flow security. More details of the precise methods used for encipher­
ment at layer 1, the physical layer, are contained in chapter 11.

-- 122 --
MasterCard, Exh. 1004, p. 122

The lirnitations o£ this form of alJP23.r vvhen ~we look ac
level functions of the netvvork. The information contained in the nodes (the
ment, other than the lines or the link protocols) is in clear form. This
tolerated only in a private network in which the degree of care in physical
protection, personnel selection, maintenance etc. is just as high in the nodes as
it is at the terminals or in the operation of host computers. Network errors,
accidental program bugs or deliberate bugs introduced by an enemy might redirect
a message to the wrong destination. If all the users of the network trust each
other and have the same level of security clearance, this need not matter. However,
even in a private network, information owned by one department may have to
be withheld from another, so the kind of accident which might redirect messages
should be avoided. In a public network, few users could accept the possibility
of redirection of messages or the presence of clear messages in the switching or
concentrator nodes.

To summarize, the use of encipherment at a low level has the advantage of
providing traffic-flow security but the great weakness of protecting data only on
the communication lines, and not providing adequate separation between one
network user and another.

We therefore argue that the use of link-by-link encipherment should exploit
its advantages and the weaknesses should be dealt with by encipherment at a
higher level. When link-by-link encipherment is used in this way it should
preferably be done at the physical layer, that is, applied to the individual bits
or characters and without regard to the structure imposed by the link protocol.
The best kind of low-level encipherment is at the lowest level, when it is sup­
plemented by encipherment at a higher level.

End-to-end endpherment

Figure 4.16 depicts end-to-end encipherment, with an encipherment device
interposed between each terminal and the network. The encipherment process
must take into account the protocol of communication between the terminal and
the network. The purpose of a call from one terminal to another is to set up a

Network

Terminal
User data are enciphered

Terminal

D-©----- headers, control signals, framing

are in clear ----©-0

Fig. 4.16 End-to-end encipherment

-- 123 --
MasterCard, Exh. 1004, p. 123

To an ~we can see how this relates 'co the
use of an X.25 layer of X.25 interface is the physi~cal
with/ immediately above it/ the data link layer that provides a HDLC mechanism
for communicating packets. None of this changes when end-to-end encipherment
is used. All that happens is that these mechanisms carry some enciphered data.
At layer 31 in which packets are formed/ there are about twenty-six different packet
types. Most of these are concerned with call set up and clearing calls/ with flow
controt reset and restart. None of these packets is affected when enciphered data
is handled. Only the two packet types that carry users/ data need be affected/
the DCE data and DTE data packets. In these1 the header includes a logical chan­
nel number and the send and receive sequence numbers1 forming part of the
mechanism operated by the network itself to separate one virtual circuit from
another and to control flow. This header must remain in clear. The user data which
follows it is enciphered. The DTE and DCE interrupt packets also contain user data
which is not examined by the network so that this information can be enciphered
if the user wishes.

If encipherment is carried out by a unit interposed between the terminal and
the network1 as Figure 4.16 suggests/ this unit must interpret some part of the
X.25 protocol in order to find these two kinds of users/ data fields/ which are
the subject of encipherment. In practice/ encipherment might be carried out on
the data before they enter the X.25 mechanism of the terminat so avoiding much
of the complexity. It is also likely that the various virtual calls carried by a single
X.25 interface would have different keys/ since they probably concern different
users.

In order to specify exactly how encipherment of data over a virtual circuit would
take place/ additional protocol features are needed/ if only to let the destination
terminal know that a call is enciphered. In practice the protocol features associated
with security are moderately complex. They can be provided either by a special
security protocol or as an amendment or enhancement of one of the higher
protocol layers.

All the operations of the network which set up a virtual circuit are unprotected
by encipherment. The 1 call request' and I call accepted' packets can be observed
passing through the network and so the progress of each call and the quantity
of information carried can be monitored. There is no traffic-flow security in end­
to-end encipherment. The best overall approach is to use encipherment twice,
at a high level and again at a low levet because the virtues of high- and low-level
encipherment are complementary. End-to-end encipherment protects the users'
data everywhere in the network and link-by-link encipherment protects traffic
flow information on the lines.

It might seem unreasonable to ask for traffic-flow information to be protected
within the nodes/ because this is where routing decisions are made/ and they
require traffic information to be exposed. But there are ways in which even this
degree of protection can be achieved. It is done by providing in the network secure

-- 124 --
MasterCard, Exh. 1004, p. 124

nec2ssary tc deter~rtin:e
cessive destinations of tl-!e Irlessa.ges. This scl1erne h?Ls been studi2d tl<,eoJ~et.ically
but seems likely to have very use, when extreme traffic
is the prime consideration.

The

The encipherment and decipherment functions at both of the terminals in Figure
4.16 must have the same key. Therefore each pair of terminals that wishes to
exchange messages must somehow obtain a key for that purpose. If there are
N terminals, potentially there will be N(N -1)/2 possible keys. In chapter 6 we
shall see how session keys can be distributed using only N master keys, so the
problem is not as bad as it seems. Nevertheless, key distribution for end-to-end
encipherment has a degree of complexity which was not present in line encipher­
ment, where the keys for each line were the concern of only the two nodes at
the ends. The multiplicity of keys is a consequence of end-to-end encipherment' s
big advantage- it separates each call from all the others. If a packet goes astray
it arrives at a place where it cannot be deciphered and little harm is done. We
shall return to the key distribution problem in chapter 6.

Node-by-node encipherment

A hybrid method of enciphering in networks has been described under the name
'node-by-node' encipherment.8 This shares with link-by-link encipherment the
property that each key belongs to a particular line, so the key-distribution problem
is made easier. This has the corresponding effect that an error in the system could
deliver messages to the wrong destination. But if ease of key distribution is an
overriding factor, node-by-node encipherment might be attractive. It is used in
some EFT networks.

In this form of encipherment (unlike link-by-link encipherment) only the users'
data are enciphered, not the headers. This enables the switches, multiplexers or
concentrators to operate on the messages as though they were in clear form, but
without having access to the users' data.

There remains the problem of changing the encipherment from one key to
another as data come in on one line and go out on another. This function is car­
ried out in a physically secure module which is contained in the node but given
special protection. The secure module contains all the keys which the node must
use, one for each of its lines. Figure 4.17 shows the principle. In order to carry
out the re-encipherment the secure module must be told the identity of the input
and output lines, after the node has made its routing decision. With these data,
the module extracts the necessary keys, deciphers the data stream with the
incoming line's key andre-enciphers it with the outgoing line's key. Clear users'
data never exists in the less-protected part of the node and the risk associated
with line encipherment is avoided.

-- 125 --
MasterCard, Exh. 1004, p. 125

I
I
I
I
I

2

I II 3

i k 4 I
L _____ _j

Tamper
resistant

module

Fig. 4.17 Node-by-node enciphennent

Line 2

out

Line 3

Line 4

But in removing one of the risks of link-by-link encipherment, we have lost
its main virtue. All the headers and routing data are sent through the network
in clear. Therefore node-by-node encipherment achieves very little since it has
neither the main virtue of link-by-link encipherment, which is traffic security,
nor that of end-to-end encipherment, which is separation of the users' data .

. A best place for endpherment in network architecture?

A rule of thumb could be formed from the preceding arguments, saying that
encipherment is most useful at either a very low or a high level in network
architecture. The low level, possibly in or just above the physical layer, provides
traffic-flow concealment. The higher level, being one of the end-to-end protocol
layers, separately protects data flows. But there are other possibilities. For exam­
ple if link-by-link protection against active attack is needed encipherment at layer
2 may be preferred. For many commercial purposes, traffic flow security is not
important and an end-to-end encipherment method will be all that is required.

The backbone of data security will remain end-to-end encipherment, in spite
of the key-distribution problem.

REFERENCES

1. DES modes of operation, Federal Information Processing Standards Publication 81, National
Bureau of Standards, US Department of Commerce, December 1980.

2. Information processing- modes of operation for a 64-bit block cipher algorithm, International
Standard ISO 8372, International Organization for Standardization, Geneva, 1987.

3. 7-bit coded character set for information processing interchange, International Standard ISO
646, International Organization for Standardization, Geneva, 1973.

4. Guidelines for implementing and using the NBS data encryption standard, Federal Informa­
tion Processing Standards Publication 74, National Bureau of Standards, US Department
of Commerce, April 1981.

-- 126 --
MasterCard, Exh. 1004, p. 126

J.

7. ·Chaurn, D.L.
Comm. ACNI, 24, No. 2, 8L1-88,

8. C.M. 'Design and sp,eciticaticm
Magazine, 16, No.6, 15-19,

-- 127 --
MasterCard, Exh. 1004, p. 127

teclure,
1tion, ,Gen2v2, 1988.

llities', Commun. Soc.

5.1. INTRODUCTION

A piece of data, a message, file or document is said to be 'authentic' when it is
genuine and came from its reputed source. In a broader sense we may also mean
that the source had the authority to issue it. We might ask whether a payment
is authentic in the sense that it corresponds to a genuine invoice. The concept
of authentication is therefore very wide. For the purpose of this chapter we shall
limit the concept to the following kinds of situation.

1. A message passes from A to B through a communication network. A and B
may variously be persons, procedures or 'entities' in a hierarchy of protocols.
For a general term we will call them entities. We want B to know that the received
message came from A and has not been changed since it left A, in other words
that it is genuinely A's message. It is not reasonable to separate the authenticity
of the message from the identity of A if we believe there may be enemies about.
A message from A that has been undetectably modified is not different in its risks
from an unmodified message that seemed to come from A but did not.

2. A message that has been stored by A is later read from the store by A or by
B, a different entity. We want the reader of the data to know that it was stored
by A and was not changed by others before it was read. Since stored data can
be changed legitimately it may be necessary for the reader to know the originator
and all those entities which subsequently altered the data. We shall see that a
'version number' is sometimes needed in stored data to keep track of alterations.

3. Two entities A and B undertake a transaction in which messages pass between
them, alternately from A to B and B to A. For the transaction to be authentic,
A must verify the identity of B, B must verify the identity of A, and the contents
of each message in the interaction must be genuine as received - each after the
first must be a genuine reply to the last message sent.

Authentication is the procedure for ensuring authenticity in any of these situa­
tions. The word authenticator is used for the specially constructed items of data
used for this purpose. The question of secrecy of information can often be
separated conceptually from its authentication. Obviously encipherment protects
against passive attack (eavesdropping) whereas authentication protects against
active attack (falsification of data and transactions).

In the terminology of Open Systems Interconnection a distinction is made be­
tween authentication and data integrity. Authentication refers to the means by which
the parties to a communication verify each others' identities. If it is a two-way

111::

I'
i'lii''
ii'

-- 128 --
MasterCard, Exh. 1004, p. 128

l_j_

tions safe active actack. One
Furthermore, is quite usual for the same nH:ctlartisJn
cation and data integrity. It is quite common to use the word authentication in
the more general sense of providing all the protection needed against an active
attack. We shall therefore adopt the usage of Open Systems Interconnection in
the OSI context, but otherwise we shall use the term authentication in the more
general sense, to include integrity.

Active attack is much more complex than passive since there are many different
ways of altering data. Among the threats to be considered are; (a) alteration,
deletion, addition; (b) changing the apparent origin; (c) changing the actual
destination; (d) altering the sequence of blocks or items; (e) using previously
transmitted or stored data again; and (f) falsifying an acknowledgement.

It is noteworthy that encipherment, by itself, only protects against inserting
new data. Most of the attacks listed above can be carried out, in principle, using
old data that is available already in enciphered form. We shall detail in section
5.7 below the extra precautions needed for full protection. Since it is difficult to
protect a widespread system from enemy interference the most that can be ensured
is that these active attacks are detected.

In this chapter we shall first consider methods of protecting data against
accidental errors in preparation and transmission and then broaden the discus­
sion to examine methods of authenticating data both by encipherment and by
special authentication functions.

Papers and signed documents are an important part of business transactions,
usually setting out instructions or promises to perform actions. Because of this
reliance upon documents their integrity has assumed great importance. On the
other side, criminals have found much to gain from the successful falsification
of business documents.

The advent of digital communication networks is causing a revolution in com­
mercial practice. Transactions of a type which have in the past involved exchange
of paper documents are now conducted by network messages; this trend can be
expected to increase until the transport of messages by data networks dominates
commercial practice. The accuracy and integrity of transmitted messages are
therefore of very great significance ..

Recognition of a valid document has customarily relied upon the written
signatures of the parties to an agreement. The signature serves at least two pur­
poses - it indicates the assent of the signatory to the terms of the document and
it vouches for the accuracy of the document as signed. Indication of assent by
means of a signature is a kind of proof of origin for the document; we shall return
to this in detail in chapter 9. Here we are concerned with the proof of accuracy
of the document, which is one of the aspects of 'authentication'.

In the following sections we treat in tum defences against the various kinds
of error, leading up to message authentication which aims to provide data integrity
through the ability to detect deliberately introduced changes.

-- 129 --
MasterCard, Exh. 1004, p. 129

with automatic COlTIT-=lar:tson.
method, particularly relevant in the preparation of financial documents, is to use
a check digit or digits - a check field.

It is well known that keyboarding errors usually fall into well-defined classes,
such as single characters typed wrongly, adjacent characters transposed and
characters repeated or omitted. Where trailing zeros are involved the number of
zeros may be wrong. A check field provides a simple function of the numerical
characters in the important fields (date, amount, currency, account identity, trans­
action serial number etc.) of a document in such a way that it is highly probable
that mistakes of these kinds will be detected.

Before the data entry (keyboard) operation begins, the data to be entered must
be provided with a check field. Sometimes this is permanently attached; thus
part numbers or account numbers can be constructed in this way- usually with
a single check digit. After data entry the computer checks the correctness of the
check field and rejects those which indicate errors. In the case of entirely new
data the check field is provided by human effort, but this is not obviously better
than having two independent operators enter the data. Use of a check field is
not a substitute for the security provision of having af least two 'independent'
people involved in data entry. An operator could maliciously enter wrong data
as part of a fraud attempt, while giving the correct check field, since no secret
is used in forming it. The principle of 'dual control' is applied by having one per­
son enter the data and another check it, perhaps an inspector belonging to another
department. The value of a check field in this case is that it reduces the number
of genuine errors to be picked up by the inspector. It can also be argued that
the presence of a large number of errors to be corrected increases the opportunity
for fraudulent changes.

An excellent source of good check-field schemes is the International Organisa­
tion for Standardization (ISO) Draft Standard 70641 entitled Data processing -
check characters. The kinds of error that occur in data entry have been measured,
for example 80 per cent of all errors are single character errors and 6 per cent
are adjacent transpositions. Check digits to detect errors in numerical fields are
best calculated in modulo 11 arithmetic (since 11 is prime) and with different
weights in each column. One method using modulo 11 arithmetic is in turn to
add each digit, then multiply by 2. The process starts from the left with the initial
value 0 and the check digit is chosen so that the final value of 'balance' is 1. Here
is an example with the given number 530128; in the example the Roman symbol
X is used to represent the value 10 in modulo 11 arithmetic.

check
digit d 5 3 0 1 2 8 4
digit c 0 X4 8 7 7 8 C; = 2Yi-1
digit y 52 4 9 9 4 1 Y; = C;+d;.

The starting value of c is 0. The c digit is added to the given number's digit to

-- 130 --
MasterCard, Exh. 1004, p. 130

1, 2, 8, 5, X, 9, 7, 3, 6, 1, 2,

These values are 2i, modulo 11, for i = 0, 1, ... and it can he seen that 1,
so the weights repeat after 10 columns. The appendix to chapter 8 (page 245)
explains the mathematical basis for methods like this.

It is very important to note that use of a check field does not provide any pro­
tection against deliberate fraud. It is quite easy to generate a fraudulent version
of a document which yields the same value of check digits as the genuine ver­
sion. It is equally easy to create an entirely false document and generate a cor­
responding value for its check field, because the method of generating the check
field is not kept secret. Nevertheless the check field has a useful role to play in
handling data- to reduce genuine errors.

5.3. PROTECTION AGAINST ACCIDENTAL ERRORS IN DATA
TRANSMISSION

In any communication system, users need assurance that their messages are
delivered with neither accidental nor deliberate alteration. Accidental alteration
of a message transmitted over a noisy channel is so frequent that it must be
detected, and corrected either by retransmission or by application of a forward
error-correcting code.

To detect accidental errors in a communication system a range of techniques
is available; use of the eighth bit for parity in a 7-bit character code is perhaps
the best-known and simplest example. On a slightly more sophisticated level,
'longitudinal parity' may be applied to a message, providing check digits on
groups of characters by modulo 2 addition of successive words of 8 or sometimes
16 bits. Parity checks suffer from the serious defect that they may fail to detect
the occurrence of a group of errors. For this reason methods have been devised
to cope with a wider range of error patterns.

Cyclic redundancy checks

The best known error detection method is the cyclic redundancy check (CRC),
which operates by treating the binary patterns as polynomial forms, 'dividing'
a block of data at the transmitter by a predetermined polynomial and taking the
'remainder' of this arithmetic step as the check field which is appended to the
data and transmitted with it. At the receiver, the received data is subjected to the
same arithmetic process and the remainder from this operation compared with
that received as the transmitted check field. Agreement of the two shows that
it is highly unlikely that transmission errors have occurred. Recommendation V.41
of the International Telephone and Telegraph Consultative Committee (CCITT)2

defines a standard version of this process providing a 16-bit CRC for use on com­
munication lines; this is applied in line protocols such as HDLC. The CCIII V.41

-- 131 --
MasterCard, Exh. 1004, p. 131

is somewhat cun,bersome and is not often found in DnKt1ce
the degree of forward error correction, the the amount of data ex]Jai1SilJn,
and the overheads involved may be appreciable. An interesting proposal from
British Telecom3 brings forward error correction into after it has been
discovered that a particular channel is subject to serious noise, thus avoiding
unnecessary overheads when a channel is performing satisfactorily.

Though checks of this kind provide strong protection against the effects of
accidental error, they are not sufficient to protect transmitted data against active
attack because the method of creating the check data, including the parameters
of the CRC polynomial, is public knowledge. The active line tapper has only to
divert the transmitted message, make whatever alteration he desires and
recalculate the contents of the check field. The reconstituted message can then
be sent on its way to the intended receiver where it passes the prescribed check
and, in the absence of other evidence to the contrary, would be accepted as authen­
tic. A more effective method is required in order to detect deliberate alteration.

5.4. DATA INTEGRITY USING SECRET PARAMETERS

The weakness of the methods we have discussed so far, from the point of view
of secure authentication, is that they are based on parameters which are not secret
- anybody can forge the data in the check field accompanying a message.
Methods are needed which depend on a secret key known to sender and receiver
only, information which is denied to any third parties. The distribution of this
secret key represents problems like those of encipherment keys.

Figure 5.1 shows the principle of the method. It is based on a public algorithm
represented by the function A(k,M). The key k is known to sender and receiver,
but not to the enemy. The message M to be authenticated may be of any length
and the function A(k,M) must depend on every bit of the message. The function
A is the authenticator that accompanies the message to its destination. The receiver

Yes/no

A(k,M') A
Authenticator

A(k,M')

M M

Fig. 5.1 Principle of data integrity checking

-- 132 --
MasterCard, Exh. 1004, p. 132

fina:r1ci~J l'":"tessages serrt
COJll]:JUtaticJil hand

telex. VVith
the nature

of the based on table and addition, vvas matched to this
requirement. In order to simplify the only selected fields are subjected
to the algorithm. This is an example preprocessing the message, shown in the
figure by the function P. I£ a message is sent by a system that can change its coded
form, the preprocessing must be done in such a way that only the essential and
invariant features remain. For example a communication or storage system might
treat 'new line' as equivalent to 'space' or it might remove or insert spaces or
ignore the difference between upper and lower case letters. The preprocessing
would then replace the 'new line' character by a space, reduce multiple spaces
to one space and change lower-case letters to upper case. The message is transmit­
ted without these changes; the altered form enters the authentication function.
These operations carry a danger that significant distinctions may be obscured.
Data communication networks of recent design are usually 'bit-sequence
transparent', they preserve all details of the coded message - Teletex has this
property for example. We recommend in these cases that there should be no
preprocessing and that the unchanged message should enter the A(k,M) function.

The message conventions needed to complete the definition of authentication
are, (a) the precise extent of M, where it begins and ends, and (b) the way in
which the value A is formatted and located in the message as sent. A convention
sometimes used is to reserve a place for A in the message format and replace
it by a known constant value Q for the calculation of the authenticator. Figure
5.2 shows this method, where the fields Fv F2, •.• F11 comprise the message con­
tent. If Q, known to the sender and receiver, is otherwise kept secret, it becomes,
in effect, part of the key.

The size of the authenticator field is fixed by the function A(k,M) and is typi­
cally between 16 and 32 bits, which is usually much shorter than the message.
It follows that many messages have the same A value and this is a potential

Information fields

Fz

A(k,M)

Chosen
constant

Q Message
authenticated

Message
sent

Fig. 5.2 Using a constant value, Q, in the authenticator field

-- 133 --
MasterCard, Exh. 1004, p. 133

this is in many cases not
a large enough to be useful. times to have a useful
chance of success would alert the receiver to a serious attack on the system. The
customary size of the authenticator field is 32 bits.

An authenticator or cryptographic check value can be used on stored data in
the same way as for communications. Anyone reading the data and knowing the
key can check (with a very small chance of error) whether the stored data were
changed by an enemy.

Like encipherment, the use of an authenticator value does not itself detect a
replay attack, in which previously authenticated data are substituted, with the
authenticator employing the same key. For example, during the currency of one
key, data in a store may be changed by the legitimate user and the new authenti­
cator stored. An enemy can restore the old values together with their authenticator
and this interference is undetected by those legitimately reading and checking the
data. The extra precautions needed to complete the defence against active attack
are described later.

5.5. REQUIREMENTS OF AN
AUTHENTICATOR ALGORITHM

The requirements for a good authenticator algorithm (integrity check) closely
resemble those for a cipher but are somewhat easier to meet because there is no
need for the inverse function to exist, as it must for decipherment. Like a cipher,
the authenticator must protect its key from discovery, but this is not the full story
because the function could be discovered, in principle, without knowing the key.

Cipher strength can be measured either by the 'known plaintext' or the 'chosen
plaintext' criterion, and so can the strength of an authenticator. The most severe
test would be to allow the enemy to submit a large set of messages and be given
the corresponding A values. With this information, could he 'authenticate' a bogus
message of his own? To make the criterion very strict indeed, he should not be
able to find the A value for any message for which he has not been given it. In
practice, authentication facilities are carefully guarded to prevent A values being
given to unauthorized messages, so the 'chosen message' criterion is more severe
than practice suggests. Also the enemy is interested in authenticator values for
a specific class of bogus messages, not just any pattern of bits that suits his
incomplete knowledge of the authenticator function. However, using the strict
criterion is a good way to build in a large safety margin. The strict criterion may
be the only one that can be defined easily, since it is impossible to characterize
the set of 'good' messages for which A values will be 'supplied' to the enemy
and the set of 'bogus' messages that he would like to introduce.

It is possible to describe how a good authenticator should behave, though this
is not an effective criterion of strength. Changing any bit of message or key should
alter about half of the bits of the A value. The full range of key values should

-- 134 --
MasterCard, Exh. 1004, p. 134

' ~ i

is easy tc, st?tte
is no set of tests which can be said to of 2,n auth:'nticator.

As with a one of the methods of attack is an exhaustive search
for the key. Whenever a message with its authenticator can be read, 'known
plaintext' is presented to the enemy, but there are two reasons why key search­
ing for authenticators is harder than for ciphers.

First the authenticator value is a small number, typically between 16 and 32
bits in length. If each key value is tested and there are, say, 56 bits in the key
and 24 in the authenticator, the first message tested will pass about 232 key
values as candidates. A second message is needed and this reduces the number
to 28 and a third message reduces these to the one actual key.

Secondly, each test of a key involves the whole of one message. Consider, for
example, a 640-bit message using cipher block chaining (CBC) with the DES
algorithm and compare this with the authentication based on the same method.
There are ten blocks of message. Searching for the correct key out of 256

possibilities requires on average 255 tests. For the enciphered message, any block
will serve for the tests except the first (because the initializing variable (IV) is not
known). With one block alone, because it has 64 bits, there is a high probability
that only one 56-bit key will be found to fit the ciphertext. In the case of authenti­
cation, 255 tests on average must be made with the first message and each of
these employs DES operations. The 10 x 255 operations make a greater task for
the searcher. After this, 10 x 231 and 10 x 27 more operations are needed for the
test with a second and a third message. Clearly all candidates passing the first
test should be subjected at once to the other tests because the extra time involved
is small and this enables the correct key to be identified before all 256 key values
have been tried. Key searching is only a 'last resort' method when other methods
fail, nevertheless it is apparent that authentication is usually less vulnerable than
encipherment.

The biggest practical use of authentication has been for financial messages, such
as payments. For example the Society for Worldwide Interbank Financial Telecom­

. munications (S.W.I.F.T.) system4 (see page 289) uses an authenticator function
but does not publish it. Another well-known authenticator is the 'Data Seal'5

which is a proprietary system, also unpublished.
An ISO standard 87306 describes the way in which a Message Authentication

Code is formed, in particular the format options for the text, field delimiters and
character coding. There are optional rules for editing messages prior to authenti­
cation. ISO 87317 describes two approved algorithms. The first is the well-known
application of DES in the cipher block chaining mode. The second is called MAA,
for Message authenticator algorithm, described below.

The Decimal Shift and Add algorithm

A suggestion was made in 1980 by Sievi for a message authentication method.
Sievi' s method depends on the existence at sender and receiver of two secret ten

-- 135 --
MasterCard, Exh. 1004, p. 135

pa'VLie:<t messages
it is is ns eel to encode

2JJ=)tlanumE:nc character. The up into blocks of ten decimal
any block at the end message may be with zeros

on the right to bring it up to ten decimal digits. The works
in decimal arithmetic and is designed for use in a programmed decimal calculator
having at least ten digit capacity. The method is called Decimal Shift and Add
(DSA).

The blocks of the message to be authenticated are taken one at a time and enter
two parallel computations until the message blocks are exhausted; then follow
ten more cycles of the algorithm using zero blocks as input. The result of this
is to produce, in the parallel computations, two ten decimal outputs, z1 and z2,
and these are combined together to form the message authenticator.

The basic operation of the computations is a' shift and add', defined as follows.
Let D be a ten decimal digit number and x be a single decimal digit; R (x)D is
the result of a cyclic right shift of D by x places.

Thus:

R(3)(12 3 4 56 7 8 9 0} = 8 9 012 3 4 56 7.

Then the shift and add function is defined by

S(x)D = R(x)D + D (modulo 1010).

Thus, in our example:

D = 1234567890
R(3)D = 8 9 0 1 2 3 4 5 6 7.

Add, to produce

5 (3)D = 0 1 3 5 8 0 2 4 5 7.

Since the arithmetic is modulo 1010, carries beyond the tenth position are
ignored.

Let us now consider the authentication of a message of two blocks, respectively
m1, (1 5 8 3 4 9 2 6 3 7) and m2, (52 8 3 5 8 6 9 0 0). We select for b1 and b2
the values:

b1 = 5 2 3 6 1 7 9 9 0 2

and

b2 = 4 8 9 3 5 2 4 7 7 1.

The two parallel streams of computation begin by adding m1 to b1 and b2,
respectively, modulo 1010 .

STREAM 1

m1 1 5 8 3 4 9 2 6 3 7
+ b1 5 2 3 6 1 7 9 9 0 2

result p 6 8 1 9 6 7 2 5 3 9

STREAM 2

m1 1 5 8 3 4 9 2 6 3 7
+ b2 4 8 9 3 5 2 4 7 7 1

result q 6 4 7 7 0 1 7 4 0 8.

-- 136 --
MasterCard, Exh. 1004, p. 136

p=6819672 39
R(4)p = 2 53 9 6 8 1 9 6 7
S(4)p = 9 3 59 3 5 5 0 6

q=6LJ:7701 408
R (5)q = 1 7 4 0 8 6 4 7 7 0
s (5)q = 8 2 1 7 8 8 2 1 7 8.

Let us call these values r and s, and add the next message block, m2, in each
stream.

r=9359354506
+m2 = 52 8 3 58 6 9 0 0

result u = 4 6 4 2 9 4 1 4 0 6

5=8217882178
+m2 = 52 8 3 58 6 9 0 0

result v = 3 5 0 1 4 6 9 0 7 8.

These are the second intermediate results, u and v; there follows the second
shift and add operation. For stream 1 the number of places shifted this time is
determined by the second digit of b2, (8), and for stream 2 by the second digit
of b1, (2). So we have

U=4642941406
R (8)u = 4 2 9 4 1 4 0 6 4 6
S (8)u = 8 9 3 7 0 8 2 0 5 2

v = 3501469078
R (2)v = 7 8 3 5 0 1 4 6 9 0
S(2)v = 1 3 3 6 4 8 3 7 6 8.

At this stage, the message data having been exhausted, the construction of the
authenticator should properly involve ten more cycles with zero message blocks.
We omit these to shorten our description and take the two last results to rep­
resent z1 and z2. The algorithm concludes by adding z1 and z2, modulo 1010

z1 8 9 3 7 0 3 2 0 5 2
+ z2 1 3 3 6 4 8 3 7 6 8

result 0 2 7 3 5 6 5 8 2 0.

This authenticator has ten decimals but evidently it was considered that a six
decimal value is sufficient, giving a 10-6 probability of a false match. To reduce
the size while using all the ten digits, the number is 'folded' by having the top
four digits added modulo 106 to the other six, thus

565820
0273

result 5 6 6 0 9 3.

This final value is the message authenticator (except for the short-cut we made
for ease of explanation).

Successive digits of b1 and b2 control respectively the amount of shift in streams
2 and 1 at each stage. The number of steps is always more than ten because of
the added ten blocks of zeros. After each ten steps the digits of b1 and b2 are
used again in succession. Thus each key value enters in two ways. It forms the
starting value of one stream of calculation and controls the shift operations of
the other.

The methods by which this algorithm defeats an enemy can be looked at in
different ways. If all the calculation had been made with modulo 1010

, there

-- 137 --
MasterCard, Exh. 1004, p. 137

If the te~c were known this would no easy way to
calculate backvvards. The final set of ten zero blocks helps to reduce the vulnera­
bility of the final message block. Otherwise a single digit change of the final
message block would reveal the parameters in the last shift operation, which are
two of the key digits. The use of each key number in two distinct roles complicates
any attempt to separate out the influence of one key digit.

The DSA algorithm is well designed to exploit the abilities of a programmed
decimal calculator. It was considered as a possible international standard, but,
in the event not adopted. Small calculators employing the DSA algorithm are
now used in home banking both to provide a message integrity check and also
for the authentication of the user to the bank. This application is described in
chapter 7.

Message Authenticator Algorithm (MAA)

The ISO working group recognized that more than one type of authenticator
algorithm was needed and there seemed to be a need for an algorithm suitable
for programmed computers of the binary type. Though it is known that the
S.W.I.F.T. and Data Seal Algorithms meet this need, they are not available for
use as a published standard.

This requirement and the need expressed by some UK banking organizations
led one of us and a colleague to produce a proposal for an authenticator algorithm
suited particularly to binary computation. We called it a 'main frame' algorithm
because it is based on 32-bit arithmetic and logical operations which are tradi­
tionally found in a . main frame computer. The advancing powers of micro­
computers soon changed this situation. There are both hand-held calculators and
microprocessors which can conveniently implement this algorithm, but it was
primarily designed to give a combination of speed and security in any 32-bit com­
puter which can rapidly produce the double-length result of multiplying together
two 32-bit binary numbers. Its design was suggested by the DSA algorithm and
it employs the same general principles. It is now incorporated in the international
standard ISO 8731-2 and is known as MAA?

The 'shift and add' operation of the DSA algorithm is similar to a multiplica­
tion with modulus 1010 -1 in which the multiplier takes the binary form 10 ...
01, having an adjustable number of zeros between the two 1 bits. Using an actual
multiplication enables this same operation to be used for 'mixing' the digits be­
tween each introduction of a new block of message, with a less restricted multiplier
value.

This multiplication scheme presents two dangers, the possibility that the result
may become (and remain) zero and the property that, if the modulus has factors,
any of these which appear in the intermediate result will remain there through
the rest of the computation. To avoid the first of these problems the multipliers
were deliberately constructed with certain bits fixed as zeros and ones, and to

-- 138 --
MasterCard, Exh. 1004, p. 138

E:

= XOk"_(X,l'!li):

F: = ADD(E,Y);

F: = OR(F,A);

F: = AND(F,C);

X: = MULI(X,F);

= ,L\DD(E,X);

G: = OR(G,B);

G: = AND(G,D,);

Y: = MUL2A(Y,G)

T f

Modular multiplications, see text

Fig. 5.3 Tf1e basic loop of a 'main frame' authenticator calculation

avoid the second problem one of the parallel computations is done with modulus
232 -1 and the other with modulus 232 -2. The second of these is 2(231 -1) and
231 -1 is a prime.

Figure 5.3 shows the basic loop of the authenticator calculation with the two
streams of computation shown side by side. CYC(V) is a 1-bit cycle left shift of
V, MULl is multiplication modulo 232 -1 and MUL2A is multiplication modulo
232 -2. A, B, C and Dare constants which help to condition the multiplier values
F and G. The ADD operation is modulo 232 and the logical operations operate
irt parallel on the 32 bits. Each multiplier is derived from the other calculation
stream using also the value E which is derived from V and W and changes at
each step (repeating after 32 blocks).

As in the DSA algorithm, the final authenticator result is derived from both
streams of computation, in this case by an XOR operation applied to the final
results. A 32-bit authenticator is derived and it is left to the application to decide
the size of authenticator field needed and the way in which the 32 bits will be
used to generate this value.

The keys which control this authenticator are two 32-bit numbers J and K. These
are used in a 'prelude' which is a complex calculation, employing multiplications
with the same two moduli, and which generates six 32-bit numbers employed
to control the computation. Though the prelude is a relatively complex calcula­
tion, it is used only once when new keys are introduced. The six values can then
be stored and employed in any number of authenticator calculations. Two of these
values are the starting values for X and Y in the two streams of computation,
two of them are V and W used to derive the changing values E and two of them,
S and T, are used as final blocks appended to the given message to round off
the computation, this part of the procedure being known as the 'coda'.

The MAA algorithm derives its strength from the difficulty of analysis when
calculations are carried out with a number of moduli. Not only are there multiplica­
tions with two different moduli, but also arithmetic operations modulo 232 and
the logical operation XOR. Also, the logical operations which generate the
multipliers F and G are non-linear, so that any arithmetic analysis is exceptionally
complex. By deriving the six quantities from the key in a complex manner any
method of analysis which was capable of partly deriving one of these values would
be unlikely to give a clue to the others. It is particularly important that the final
blocks S and T which are appended to the message for authenticator purposes
are secrets derived from the key values.

The computation time for authenticator values is proportional to the message
size except for the small addition of blocks S and T. This makes it practicable to

-- 139 --
MasterCard, Exh. 1004, p. 139

"Wherever DES haidv;are is available it is convenient to use for authentication
and for this purpose 'modes of operation' have been defined in Federal Informa-­
tion Processing Standard (FIPS) 81 and in ISO 8731-1?'8 Any block cipher
algorithm could be used in these modes, but in practice the DES will normally
be employed. This is convenient only i£ a hardware DES function is available
because the algorithm is slow and inconvenient in software. There are two
authentication methods based respectively on the cipher feedback (CFB) and
cipher block chaining (CBC) methods used for enciphering messages (see pages
81-90). CBC operates always on 64-bit blocks, but a message can be padded
out with zeros to fill the last block. CFB operates on appropriate-sized characters
such as 8-bit bytes where ISO- or ASCII-coded character sets are used. The choice
between the alternative methods will depend on whether the data are presented
in characters or larger units. For use in financial messages a standard is available9

giving more detaiL
For the generation of an authenticator in CBC mode, the message to be authenti­

cated is enciphered as a chain of 64-bit blocks, any incomplete final message block
being padded out with zeros. The generated ciphertext is not transmitted. The
authenticator is derived from the final output block, taking the most significant
m bits. No additional DES operation is required at the end of the process because
it is not possible for an enemy to make a change in the plaintext and a compen­
sating change in the authenticator. Figure 5.4 shows how the process of CBC
authentication operates. All the cipher blocks except the last are used only for
feedback. The most significant m bits of the last block C 11 is used to provide the
authenticator. In US standards the authenticator is sometimes called the message
authentication code (MAC).

In CFB mode the text to be authenticated is subjected to a CFB encipherment
process. When all the data have been enciphered and the last unit of ciphertext
fed into the DES input register (completing the CFB operation as normally
understood), the DES device is operated once more, producing a new state of
its output register. From the output register, the most significant m bits are
extracted to form the authenticator. Figure 5.5 shows this method; note that if
the m bits of MAC were taken from the DES input register at the end of the text

n - block message

Fig. 5.4 Authentication by the cipher block chaining mode

-- 140 --
MasterCard, Exh. 1004, p. 140

k-

A

---+--____,-1 +z)-----'
Fig. 5.5 Authentication by the augmented cipher feedback mode

encipherment, then for large enough m it would be possible to make compen­
sating changes in the last plaintext character and the authenticator, hence the
extra operation of the DES. This CFB method is not much used. The CBC mode
is used in practice.

The number of bits used in the authenticator is subject to agreement between
the communicating parties; it should be as long as is practicable. For US Federal
telecommunications applications it is recommended8 that the authenticator
should be at least 24 bits in length. For financial purposes the US standard
recommendation9 is that m should be 32. m should be large enough that the risk
of a matching value occurring by accident with a bogus message, which is 2~ 111 ,

is small enough. Making m longer than necessary would add to the message
overhead due to the A value it carries.

The authenticator values obtained either by CBC or CFB mode depend on the
entire message stream or chain. In any application the start and finish points of
this stream or chain must be defined and also the location, size and format of
the authenticator field. The authentication depends also on the IV which is loaded
into the 64-bit register at the start of the operation. It is possible to use a secret
IV, as is customary for CBC encipherment. However, the purpose of the IV is
to prevent codebook attack on the first part of the ciphertext and this is not rele­
vant to authentication. The simplest convention is to use a zero IV and this is
adopted in several standards.

5.6. MESSAGE INTEGRITY BY ENCIPHERMENT

Encipherment of a message offers, in itself, a kind of integrity. If the sender and
receiver of a message share the secret key, receipt of an enciphered message which
deciphers into a sensible plaintext message gives the receiver some assurance that
the message has arrived without unauthorized changes and came from the other
owner of the key. 'Sensible' in this context implies that the message contains

-- 141 --
MasterCard, Exh. 1004, p. 141

IIl~~ss;1ge so:rnetimes c2Jlecl a
The choice of a lviDC values, vrhich is not a trivial

matter, is considered the next section.
An attempt an intruder to alter selected bits of ciphertext generated in CBC

mode leads to random changes in the deciphered message, which should be
obvious to the recipient. A single bit alteration in one ciphertext block will result
in random changes in the corresponding plaintext block; note, however, that the
exactly corresponding bit will be affected in the next plaintext block. A garbled
plaintext block in a CBC decipherment should be taken as a warning to mistrust
the plaintext of the next block. It is safer to discard the whole message and request
complete retransmission. If the transmission is in CFB mode, then the intruder
can also select the plaintext bit he wishes to alter, but his action should be apparent
to the receiver because of the error propagation property of CFB encipherment;
at least sixty-four following bits will be subject to unpredictable change. The final
character of a CFB transmission can be altered without detection since there are
no following characters to betray the change. It should never carry vital data.
In CFB the plaintext unit preceding a garbled section should be mistrusted and
retransmission is again the safest course.

Choice of the plaintext §Urn check method for authentication

Drafts of the Proposed Federal Standard 102610 which contai~ed a section on
encipherment at the data link layer proposed a sum check on plaintext called the
'manipulation detection code' (MDC). This check field would be produced by
splitting the message or 'chain' into consecutive 16-bit words (the last one padded
with zeros if necesary) and adding these words together modulo 2. The result
was a 16-bit field that was appended to the plaintext before encipherment; an
alteration to the ciphertext was expected to be very likely to upset the relation­
ship between text and MDC on decipherment, thus detecting an active attack.
The proposed FIPS for 'Data Integrity' made a similar proposal. Unfortunately
this choice of sum check method was bad and it will be replaced by a better
method. The reason for this weakness is instructive and will be described.

Consider first the CBC method, because this is the easiest to analyse. Figure
4.2 of chapter 4 shows how a ciphertext chain C1, C2, ... C11 is deciphered. If
the IV is I, the resultant plaintext chain is

I +2 Dk(C1), C1 +2 Dk(C2), ... C11-1 +2 Dk(C,z).

The modulo 2 sum of these 64-bit words is

n-1 11

I +2 r; ci +2 I: Dk(CJ
i~l i=l

If a modification can be made to the ciphertext chain which leaves this 64-bit sum­
check unaltered, it will also leave the modulo 2 sumcheck of 16-bit words

-- 142 --
MasterCard, Exh. 1004, p. 142

c;~:l1lc'rcf:xt bloc'< em b2 insert2cl
blocks CB.I1C,2l in_ bo·cll_ st~ms, fh~ seqt.1ence is avoided. ~L"~'"''~~u

this kind do not alter the 16-bit modulo 2 sum and will not be cletecte(~l.
feedback is a little more but an of a modification which

escapes detection can be given. Assume that 8-bit is so that eight
characters fill the shift register. Then the text consisting of the character sequence

ABCDEFGH

can be modified to

ABCDEFGXABCDEFGXABCDEFGH

without changing the 16-bit sumcheck. The proof of this is left as an exercise for
the reader. The method of proof we used for CBC will serve, but the eight
characters of IV must be assumed to precede the given character streams and
these will enter into the calculation.

It is a simple matter to avoid this problem by addition modulo 216 for the 16-bit
word, that is to say ordinary addition with suppression of carries beyond the six­
teenth bit. It is true that a ciphertext can be introduced if it is inserted 216 times,
but this is neither likely to be useful nor to go undetected.

It has not usually been suggested that a modulo 2 sumcheck can be applied
to the output feedback mode of encipherment, since compensating modifications
are so easy to produce. Nor will modulo 216 arithmetic avoid the problem entirely
because changes to the most significant bits of the 16-bit words add by modulo
2 addition without affecting other bits and these changes can be used freely if
an even number of them are changed. This problem can be overcome by using
modulo 216 -1 arithmetic, in which carries beyond the sixteenth bit are cycled
round to add into the least significant bit. To add with modulus 216 -1 the 16-bit
words are added into a register large enough to avoid losing carries. Assuming
that a 32-bit register is long enough, the final step is to add the top 16 bits to
the bottom16 bits. If a carry is produced this carry is added into the least-significant
bit (and no further carry is produced).

This example of the faulty MDC illustrates that it can be difficult to find a
system's vulnerabilities. The methods using modulo 216 and 216 -1 arithmetic
have some weaknesses, but not, we hope, serious ones ..

Endpherment or authentication?

We have seen that encipherment with a secret key provides one form of message
integrity; it is now fair to ask: Why should it be necessary to consider any other
method? Why not encipher with a secret key all messages that require authen­
tication? The reason is that, whereas authentication may be required in a given
context, encipherment may be an embarrassment.

Consider a system in which mesages are broadcast to many destinations, one
of which has the responsibility of monitoring authentication. Here transmission
must be made in plaintext, with an associated authentication field. One terminal
checks the authentication field and holds the key for this purpose. The other ter-

-- 143 --
MasterCard, Exh. 1004, p. 143

colnrr~~-lnciation_ irt l/lhic:-1
pnxe·ssing ~;:e~;pclnsibilities, such that

cle(:lpJher "ll received messages. Authentication is carried out
on a selective messages chosen at random for ch,2cl<:in:g.

Yet another very important application of authentication of a plaintext is that
of a computer program text. Here it is essential that the text shall be capable of
interpretation by a processor; decipherment each time the program was required
to run would be wasteful of resource, therefore authentication by full encipher­
mentis inappropriate. It is possible to authenticate the program text by append­
ing an authentication field. This can be checked whenever assurance is required
of the integrity of the program.

Authentication without a secret key

Neither encipherment nor authentication can be provided 'out of the blue'. The
methods we have discussed so far have depended on a secret key, common to both
sender and receiver. It is also possible to base authentication on an authentic
number. This is no more paradoxical than basing the secrecy of enciphered data
on the secrecy of a key because what has been achieved is that a large message
is authenticated by a much smaller one.

In place of the authenticator A(k,M) let us use a 'one-way function' A(M) of
the message alone. This must have the property that if a set of message~M is
known together with their A(M) values it is nevertheless exceptionally difficult,
given some other value A0, to find any message M such that A(M)=A0. A
necessary condition is that the value A must have a large range, for example it
could have 64 bits, large enough to prevent a table of messages being compiled
and sorted on their A values so th?.t for most A values a message could be found.
Such a function is sometimes called a 'hash function' but these 'pseudo-random'
functions are used for several purposes and some hash funcitons are not suitable
for authentication. An example of a suitable function appears in chapter 9
(page 264).

To authenticate message M, the quantity A(M) is calculated and sent to the entity
receiving or reading the message n such a way that A(M) is certainly authentic.
With its aid M can be checked to see if A(M) agrees with the authentic value.
If it does, M is pronounced authentic since it is assumed that no enemy could
have found a bogus M that fitted with A(M). Applications for this kind of authen­
tication are not widespread, but examples will appear later. Suppose, for example,
that Ann has sent Bill a large file of data and Bill wants to ensure its authenticity.
If both can agree on a one-way function A(M) then a telephone call will enable
Bill's A(Mb) to be checked with Ann's A(Ma). If they are equal it is a good bet
that Ma=Mb, so Bill can accept his version. The telephone call is assumed to confer
authenticity because each knows the other's voice and can chat about mutual in­
terests which would betray an impersonating enemy. Note that methods which
do not use a secret key are vulnerable to the 'birthday attack' described in chapter
9, section 9.3.

-- 144 --
MasterCard, Exh. 1004, p. 144

I'
~I

I

I

of the
cmn;c)licatE:s authentication.

message sequence or replacing a stored a value it held previously.
In this section we shall consider the set of messages which make up a transaction
between two communicating 'entities'.

The solution to the problem of replayed messages is quite simple in principle;
it requires that each message should be different from all preceding messages
using the same key and that the receiver should be able to test the 'newness'
of each message. Furthermore, the sequence of messages which together form
a transaction must be linked in some way so that their sequence can be checked.
Protection against message replay would be complete if each communicating entity
compared its received messages with all those it had previously received with
the same key and rejected any messages which were copies, but this would be
laborious and cannot be a general solution to the problem.

Authentication of transactions is basically a two-way requirement with each
entity needing to authenticate the other. There are applications in which one­
way authentication is sufficient, but the need for two-way authentication must
always be considered. There is no longer any economic reason for transactions
to do without two-way authentication.

In the conventional exchange of messages, each message is a response by an
entity to the previous message which it received from the other. Typical short
transactions employ one, two or three messages and there are circumstances in
which a three-message protocol is essential for two-way authentication.

Use of a message sequence number

Two entities which frequently exchange transactions can maintain a sequence
number n which increases by one for each message they exchange. Figure 5.6
shows how this number would be used in an exchange of messages M1, M2 ... ,

with authenticators in each message. Each message contains a sequence number
and each entity keeps a note of the next number it will send and the next number
it expects to receive. The authenticator is computed over the whole of the
remainder of the message, including the sequence number, so neither the message
content nor the sequence number can be falsified without detection. Since each
party knows which sequence number to expect next, deletion of messages, replay
of previously transmitted messages or changing the sequence of messages is
detectable by the receiver.

The requirement to link together the messages which make up a transaction
can be met in other ways. Figure 5.7 shows a scheme in which the authenticator
of each message is repeated in the following message. Message M2 contains a
copy of the authenticator A1. Its own authenticator A2 covers both the message
content and A1. For practical purposes, the authenticator is a random number
which links together or 'chains' the sequence of messages so thatit is extremely

-- 145 --
MasterCard, Exh. 1004, p. 145

n + 1 m

m

Scope of
authenticators A;

Fig. 5.6 Sequence numbering an exchange of messages

send transaction
sequence number

Scope of authenticator

rec.d transaction
sequence number

n -1
becomes n

Fig. 5. 7 Chaining messages by their authenticator values

unlikely that a false chain can be assembled by an enemy. The size for the link­
ing authenticator is chosen with the criterion that the probability of an enemy
finding a link by accident is too small to make it worthwhile to wait and search;
typically from 16 to 32 bits are used.

Where messages are enciphered this provides a convenient way in which
messages may be chained together by making the process of CBC run over from
each message to its response. Thus the final 64 bits of each message become the
initializing variable of the succeeding one. This form of chaining does not occupy
space in the message. A similar method of chaining can be used with CFB.

When messages are chained in one of these ways (by repeating the authen­
ticator or deriving the IV from the previous message) the sequence number n in
the first message identifies the whole transaction. Supposing that transactions

-- 146 --
MasterCard, Exh. 1004, p. 146

tion initiated by B.
The number can be initialized, for at zero, whenever new

diE;tribute(:L The field of n must be large enough to accommodate all the
transactions which can take place before the next key distribution. In many
systems this is an argument for changing the key frequently, to keep the size
of the n field reasonably small. If, due to a communication or processing error,
the sequence numbers held by the two entities get out of step, the
resynchronization procedure must not allow the undetected insertion of stored
messages by an enemy. This requires that the new value of n should be greater
than any previous value held by either of the entities. Resynchronization according
to this rule is simplified if the requirement of strictly incrementing n is dropped
and the receiver merely checks that n has increased with each transaction he
receives. This relaxed rule allows the sender, optionally, to hold a single sequence
number for use in all the transactions originated (or messages sent), but this does
not remove the need for each entity to keep a separate sequence number
corresponding to each source for checking all received transactions (or all received
messages).

The use of random numbers for entity authentication

In a large community, authentication can be based on session keys derived from
a key distribution centre (see chapter 6), so that each entity does not need keys
for all those -vvhich might communicate with it. Alternatively, public key ciphers
(see chapter 8) can be used to simplify the key-distribution problem. In these
circumstances, maintaining separate sequence numbers for each possible
communicating entity is not usually practicable. The need to make each message
different from others using the same key can be met (with high probability) by
including a random number. Consider, for example, the three-message transaction
shown in Figure 5.8. The originator of the transaction includes a random number
R, which is returned as part of the response. Each message has an authenticator

generute R

Check R
if correct:

return S

return R
generate S

check S

Fig. 5.8 Random numbers for wtity authentication

-- 147 --
MasterCard, Exh. 1004, p. 147

page
to be i".J transactions the randorr: number field should

than N 2 in order to reduce to a low value the of a
auti-t<~ntJccttlCln, the other entity includes in its response a random
this must be returned in the third message of the transaction as

an assurance that the transaction is newly initiated and not a repeat. Each entity
puts its own random number into the protocol in case the other is a masquerader.

Consider the possibility that M1 is a replay of an earlier initial transaction
message. The innocent receiver returns M2, including the correct response toR
and a new random numberS. If M3 is received in reply it must have come from
an entity which possesses the secret key needed to generate the new authenticator
value A3 . Could this be the genuine owner of the key if M1 were a fake? This
owner would not have accepted M2 as valid unless it sent M1. Therefore M1 must
have come from the genuine owner of the key and can be accepted as valid. But
it is important that M1 is not accepted as a valid message until M3 is received
and checked. For example, if M1 were a request to update a data base, this action
should be deferred until M3 arrived.

If the transaction were to continue with further messages it would be necessary
to chain them to the earlier ones by one of the methods we have described earlier.

Because of the Birthday paradox, the use of random numbers approximately
doubles the size of field required for a given life of key. This presents no problem
when a session key is used for just one transaction because the random numbers
then have to be no bigger than normal authenticators.

The use of date and time stamps

Transactions employing a single message are vulnerable and should be avoided
if possible. Where they are used, there is no possibility of the sender authenticating
the receiver, but the receiver should be sure that the message came from the sender
directly and was not a recording of an earlier message. A sequence number can
achieve this but, in a large group, maintaining sequence numbers could present
almost as much difficulty as storing all the received messages for comparison with
new ones.

Where message transmission is reasonably rapid, an assurance of the 'timeliness'
of the message is sufficient to prevent undetected message replay by an intruder.
Store and forward systems delay messages, but do not prevent this method of
checking if they can be relied upon to keep messages in sequence, since the time
and date stamp provide a kind of sequence number which is universal for all
messages received. Circuit-switched networks give delays less than 1 s and
modern packet-switched systems should not exceed this figure very often;
therefore, unless the rate of transactions is very high, a date and time stamp with
a precision of 1 s is adequate.

If the date stamp is allowed to repeat, there is a risk of replayed messages. A
very cautious view would be that no system is likely to be operating according

-- 148 --
MasterCard, Exh. 1004, p. 148

count of s,r::corH:is in l.NQl_~l-:-1

a date and tir.ne stamp wo-~11d
quartz clock maintainable 'Nith 1 s

accuracy, but, allowing for the need to correct it from time to time and the
combined tolerances of two clocks, a margin of 5 s is likely to be the tightest
criterion in general use. This can allow replays to be detected in all but the busiest
systems. If public data networks provide a digital date and time source, this does
not always mean that local clocks can be dispensed with, because of the risk that
an enemy might be able to interfere with the time signal received. The public
date and time source can safely be used to correct the local clock, with a warning
if the correction is too large. ·

In theoretical treatments of the synchronization problem, much trouble has been
taken to invent time criteria which do not require strict synchronization between
the co-operating entities. With modern clocks and communication networks, 'real­
time' can be re-instated.

In the very simplest terminals there may be cost criteria preventing the use of
clock time, otherwise it presents no great problem. Active tokens, such as
microcircuit cards, will usually have to accept a date and time value given by the
terminals into which they are inserted and the security implications of this trust
have to be examined.

Integrity of stored data

A file of data can be protected against illicit modification using authentication
techniques closely parallel to those used for transmitted data. Authenticator values
are calculated, using a secret key, and stored along with the parts of the file they
protect. Users of the stored data also hold the key value and can check the
authenticator.

The entire file could be protected by one authenticator, but any user would
have to make the calculation over the whole file before using any of its data. Any
change to the file, however small, would entail recalculating the authenticator
over the whole file. It is better to divide the file into convenient 'units' which
tend to be read or written at one time. Most files lend themselves to this kind
of subdivision. But then a new threat appears - the units could be rearranged
by an enemy if their authenticators are carried with them. If each unit has a built­
in identifier, like the name and address in a file of data about people, this may
not be a significant attack. If, however, a file is accessed by position (i.e. file
address) the rearrangement threat is real. It can be met by including the address
in the authenticated data. This does not require the address to appear in each
stored unit, the address is inserted only for the purpose of calculating and checking
the authenticator.

Messages and transactions are subject to the threat of a 'replay' during the
currency of one key. This has a counterpart for stored data in the threat of 'restore'.
After an item has been (legitimately) altered it can be restored by an enemy to

-- 149 --
MasterCard, Exh. 1004, p. 149

t}ds tlLreat \;\12 rteecl a s~c{t12Ttce nurnber or Ei elate ar~d tin-le
the units are da'ce and time is an excessive overhead, but it
be a natural part of their contents. The sequence nmnber becomes a version
which each unit carries in addition to its authenticator. If units are updated
piecemeal all their version numbers will be different and there would be no way
that a reader of the file would know that the latest version was being read. When
the date and time or sequence number are not natural parts of the file, yet
piecemeal updates are needed, there must be a separate 'update record'. This
is a record which has its own authenticator and includes a date and time stamp
to verify it has not been 'restored' by an enemy. It contains, for each unit in the
file, a note of the current version number. It is not necessary to store the version
number also in the item itself, but the number must be part of the authentication
function for that unit. Therefore checking the authenticity of one unit of the file
requires this procedure.

1. Check the authenticator and date/time stamp of the update record.
2. Read the version number of the required unit.
3. Format the version number (and the address, if used) with the contents of the

unit.
4. Check the authenticator of the unit.

The use of a separately authenticated update record illustrates an hierarchical
approach to authentication which we shall meet later in the application of digital
signatures - an advanced form of authentication which has particular relevance
to stored data.

5.8. THE PROBLEM OF DISPUTES

Authentication using a secret key is symmetrical - both parties know the key
and either can generate an authenticator value. The secrecy of the key protects
them both against third parties but not against each other. Disputes can arise
between them.

Ann may send Bill an authenticated message, but if Bill is dishonest he can
forge a different message and claim it came from Ann. The authenticator value
provides no evidence to resolve a dispute, for it could have been given by Bill
to a false message. Since it is feasible for Bill to falsify a message, Ann can deny
sending a message she really did send. Bill cannot prove it is genuine by producing
the authenticator value. Business is possible between honest people who trust
each other, but there is no way to adjudicate disputes, even if the judge is given
the value of the key. This problem- the inability to provide evidence to resolve
disputes - is called the 'problem of disputes'. To avoid this is the purpose of
the OSI service of 'non-repudiation'.

The most elegant solution to the problem of disputes is the 'digital signature'
described in chapter 9, which continues this account of authentication.

-- 150 --
MasterCard, Exh. 1004, p. 150

!eleo:-,n.ne l·.Jet-v;o:d<.: Se:L'ies \/ :?eco1n1nend~.tions', The
. Book, VIII. 1, Union, Geneva, 1977.

3. M.C., Barley, I.\N. and Smith, P.E. 'The effect of line errors on the maximum
throughput of packet type computer communication and a solution to the problem',
Proc. 6th International Conference on Computer Communication, London, 943, September
1982.

4. Nacamuli. A.I. 'Integrating the processing of foreign exchange dealings', Proc.
International Conference on Computers in the City, London, 317, May 1983.

5. Linden, C. and Block, H. 'Sealing electronic money in Sweden', Computers and Security,
1, 3, 226, 1982.

6. Banking- Requirements for Message authentication (wholesale), International Standard
ISO 8730, International Organization for Standardization, Geneva, 1987.

7. Banking- Approved algorithms for message authentication Part 2: Message authenticator
algorithm, International Standard ISO 8731-2, International Organization for
Standardization, Geneva, 1987.

8. National Bureau of Standards DES Modes of Operation, Federal Information Processing
Standards Publication 81, December 1980.

9. Financial Institution Message Authentication, ANSI Standards Committee on Financial
Services, ANSI StandardX9.9, August 1986.

10. National Communications System Telecomltlunications: interoperability and security
requirements for use of the Data Encryption Standard in the Physical and Data Link layers
of data communications. Federal Standard 1026, 3 August 1983.

-- 151 --
MasterCard, Exh. 1004, p. 151

6.1. INTRODUCTION

The security of encipherment depends on protecting the key. In effect, encipher­
ment concentrates the risk of discovery on the key in order that the data can be
handled more easily. For this reason, the management of cryptographic keys is
a vital factor in data security. Keys used for authentication and data integrity must
be handled with equal care. In this chapter we describe some key management
methods designed for the two main applications of encipherment, storage of files
and communication of messages. In order to cover the subject in reasonable depth
we have taken as examples two well-developed schemes, one coming from Inter­
national Business Machines (IBM)1 and the other an international standard.2

In a large network, messages are transferred between many terminals and hosts,
on behalf of many users. The essence of end-to-end encipherment is to keep these
users and these terminals separate so that they cannot read or interfere with each
other's messages except where they are allowed to, by the sharing of keys. There
will be many encipherment keys and their management is complex. Similar prob­
lems are presented by a host computer which stores files for different users and
is asked to communicate some of these, under strict control to other users. A
key management scheme should be able to handle a multi-user, multi-host and
multi-terminal situation and protect data both in storage and in the communication
network.

Key management includes every aspect of the handling of keys from their
generation to their eventual destruction. The main complexities occur in the
distribution of keys and their storage, so these will occupy most of our attention.

In order to move a key through a communication network, it must be enciphered
with another key. For example, if we have a key ks which is used to encipher
data and need to transport this key through the network, we use another key
kt to encipher it as Ekt(ks). There are advantages in using a data enciphering key
like ks for only a short period and then establishing a new one through the
network.

Since the key ks is typically used to encipher. data for just one session it is called
a session key. When the session key is being moved out to a terminat the key
kt used to encipher it for transit is called a terminal key. A terminal key is used
for a longer period than a session key and it may have to be stored at a host
computer with a number of similar keys for different terminals. In order to
minimize the amount of secure storage needed, all these can be enciphered under
yet another key km which is called a master key. Thus the storage of kt is in the
form Ekm(kt).

-- 152 --
MasterCard, Exh. 1004, p. 152

communical:ion netwmk. The whole
which therefore needs the n--,.-~"tod it is

hierarchies of the IBM and ISO 8732 schemes in a nl-•u~ir~dhl secure box.
will later.

6.2. KEY GENERATION

An ideal method of key generation would be one that chose the key at random
- with an equal probability of choosing any of the possible key values.
Unfortunately, this is difficult to achieve and we often have to make do with less.
Any non-randomness which could give an enemy some way of predicting a key
value or finding a value with higher than normal probability would reduce the
task of searching keys and make cryptanalysis easier. Fortunately, a completely
uniform distribution of key values is not essential; unpredictability is the essential
requirement.

A classic method of generating random numbers is tossing a coin or throwing
dice. It is perhaps surprising to find that methods like this, which are labour
intensive, are suggested by IBM3 for generating the top-level master keys. In fact,
the labour involved is not significant because these keys are very rarely changed.
The reason for choosing manual methods is to have them completely under the
control of a trusted individual. Any mechanism or algorithm that is provided for
generating keys carries with it a danger that someone has arranged the mechanism
or algorithm to generate predictable, though apparently random, numbers.
Tossing coins or throwing dice has the advantage that the operator has the whole
procedure under his control. A small bias that might be introduced by wear on
the coin or die would not significantly change the security. The IBM authors

1

publish a table for convenient conversion from the results of tossing a coin seven
times to the two hexadecimal characters which represent one octet of a DES key.
Fifty-six throws are needed for the whole key.

The top-level master key has such importance that the methods of double or
treble encipherment described in chapter 3 are sometimes used. By having
different people generate the various keys, the responsibility for safe generation
of the master key can be spread.

Manual key generation is not suitable for the large number of keys in the levels
below the master key. Some procedures need new keys very frequently. There
are two possible sources of the random numbers required for numerous keys,
a genuine physical source of random bits or pseudo-random number generators.

Random bit generators

Electrical noise is a problem in amplifier design but can be turned to good use.
All resistors generate noise (though less at very low temperatures) and a wide­
band amplifier will turn this noise into a signal which can switch a gate on and
off. One method of generating random bits uses the zero crossings of this signal

-- 153 --
MasterCard, Exh. 1004, p. 153

works ac,=or·cting
uncorrelated any other
to minimize bias or correlation.
the random data can be used as
unbiassed, uncorrelated results.
and the equipment cost is smalL

Pseudo-random number generators

There are many examples of mathematically determined sequences which generate
digits that are, to all appearances, random. Unfortunately, when a variety of
statistical tests are tried, many of these 'pseudo-random number generators' can
be shown to have a pattern in their output. Fortunately, a good cipher algorithm
helps greatly in generating pseudo-random sequences. If the algorithm works
well as a cipher then almost any method of using it to generate a sequence should
generate random numbers, otherwise there is a pattern in the cipher output which
would be a weakness in the cipher.

For example, if the key, k, is chosen then the result of enciphering the sequence
of natural numbers 0, 1, 2, ... should generate a sequence of random numbers,
each one unrelated to its predecessor. In other words, a random number sequence
R" can be generated as

Rn = Ek(n).

There is a danger that two sequences generated in this way might use the same
key and therefore be identical. This illustrates the rule that random number
generators should have random data to start them off. They use numbers called
'seeds' because a series of random numbers can be grown from them. A series
grown from seed values cannot be infinite in length but it can be very long. The
example we have just given does not stop generating random numbers until the
value n = 264 is reached.

The purpose of our random sequence is to generate key values (and perhaps
initializing variable (IV) values) for a key management scheme. The essential
requirement is that the keys it produces should be unpredictable, even if many
of the earlier keys are known. The simple random number generator we described
might not be able to conceal the value of n which entered into its calculation but,
if the security of the DES cipher is good enough, this still does not allow the seed
value k to be deduced and so none of the other random numbers can be found.
It would not be wise to keep a key generator of this kind operating indefinitely
with the same seed value. There must, therefore, be a source of seed values,
obtained by a more reliable random process, such as tossing coins, throwing dice
or the random noise source.

Most systems use random number generators that are a little more complex
than our example, using many different sources of randomness or unpredictability,
for extra safety. One source of unpredictability is a secret number which is already

-- 154 --
MasterCard, Exh. 1004, p. 154

ge:a21"atlng 'che ran.dor1c sequ2nce can
the master on a number

re1JrE~senting the current time"
A useful source of randomness is the statistical nature of the traffic handled

by a host computer. For example, the number of calls on the operating system
can be counted. It would be difficult to predict this number exactly from outside
the system. An unpredictable quantity can be obtained by timing an operator's
reaction. When the system is started, it can ask the operator to pause a while
and then press some convenient button. If the elapsed time before pressing this
button is measured in microseconds, the range of possible values certainly extends
over several thousand. By putting together a calculation employing as seeds a
number of unpredictable or random quantities like these, it is possible to generate
a number sequence which is for most practical purposes random.

An example of a pseudo-random number generator designed according to these
principles is given in reference 3. The notation has been changed to simplify the
appearance of the expressions. It has a starting value U0 and generates a
sequence U1, making use of cryptographic functions which employ two secret
master keys, shown here as k1 and lc2. The generation of the sequence employs
a further sequence of seed values Z; each derived from some real-time clock
readings with an input-output operation of unpredictable length between
successive clock readings. The calculation of the sequence U; employs these
relationships

Xi = Dk1(U1)
U;+1 = Ek2[DX;(Z;)].

The random number sequence R; is obtained from the U; by the relation

The complexity of this method makes it extremely unlikely that anyone could
predict its outcome or deduce anything useful from a sequence of R; values that
it creates. It is perhaps a matter of judgement how complex a random number
generator is needed in practice.

Figure 6.1 shows, in block diagram form, the operation of the random-number
generator we have described. The register is shown containing the value of U;
before returning it for the next iteration. The two compound operations shown
in the broken rectangles are the cryptographic functions employing the secret
master keys shown here as lc1 and k2. This is the operation which we shall meet
later in the IBM key management scheme and which is known as 're-encipher
to master key'. It is provided for a specific purpose in the key management scheme
and has been adopted in the random number generator simply because it employs
the master keys and is available to the operating system but not to the users of
the host computer.

-- 155 --
MasterCard, Exh. 1004, p. 155

z i --+,-c---1
I
I
I
I
I
I
I
I
I
I
L _________ J

Fig. 6.1 A pseudo-random number generator

6.3. TERMINAL AND SESSION KEYS

I
I
I
I
I
I
I

___ _j

Imagine a set of N terminals which we shall call Ti and that each terminal may
wish to communicate in secret with any other. If all the keys to provide for the
possible connections were produced in advance, each terminal would need to
store N -1 keys and, supposing that the same key could be used for both directions
of communication between a pair of terminals, there would bet N(N -1) keys
in total.

This method is clumsy and becomes more so as the population of terminals
increases. In practice, few terminals are actually communicating at any time. The
period of communication between two terminals is known as a session. It is better
to provide keys only for those sessions which are actually in operation and these
are the session keys. Then a procedure is needed to establish session keys whenever
they are required.

The use of a session key has a worthwhile bonus of security. Because it exists
only for the duration of one session, an enemy who could obtain one of these
keys gets limited value from it. Of course, the establishment of session keys
requires a key at a higher level in the hierarchy, in this case the terminal keys
kti are employed. These keys are, in fact, better protected than the session keys
because session keys can be attacked by a knowledge of the data that are being
communicated, but terminal keys are used only to encipher session keys, so the
information they encipher is both less in quantity and more random in nature
than the data handled by the session keys. Effectively, an attack on the terminal
keys would require a knowledge of the session key values so cryptanalysis must
be successfully carried out twice to reach a terminal key.

When a session key, ksif' is needed for the communication between terminals
Ti and T1 it can be transmitted through the network under two different
encipherments, for these two terminals, Ekti(ksif) and Ekt1(ksif) respectively.

-- 156 --
MasterCard, Exh. 1004, p. 156

i
i
I
I
I
I
I
I
I
I
I
I

I

Working
key

I k s I

L-------------------~------~
Fig. 6.2 Loading a session key at the terminal

These quantities are generated at some central point, which might be a host
computer responsible for the operation of these terminals, or in a wider network
there might be a specially appointed 'key distribution centre', 4 sometimes called
a network security centre when it takes on additional responsibilities.

Figure 6.2 shows how the arriving session keys are handled at the terminal.
The decipherment operation shown would typically employ a DES hardware
device or chip which was capable of storing two keys. One of them, kt, is regarded
in this context as the terminal's master key. It is held in a register where it can
be made available each time a session key is to be loaded. Then its value is copied
into the working-key register. This register supplies the key for the DES operation
used to decipher the incoming session key and produce the clear value ks. In a
well-designed chip, the value ks should not leave the device but be transferred
after the decipherment into the working-key register, where it displaces the value
kt. In this way, the physical security of the chip protects the session keys, since
they do not come out of the chip at any time.

There are two other key management operations at the terminal, the loading
of the terminal key and the destruction of the working key. Loading the terminal
key is part of the process of transporting this key to the terminal and is discussed
later. Destroying the session key could either be treated as a separate operation
or regarded as a special case of loading a session key in which a dummy value
such as 0 is loaded. It is useful for the destruction of the session key to be under
the control of the host or key distribution centre but, on the other hand, any
command from the centre can be stopped by an enemy, therefore, as a fallback,
the session key should be cleared locally at the end of the session if the centre
fails to do so.

Routes for distribution of session keys

Figure 6.3 shows a pair of terminals for which a session key ks is to be estab­
lished. The key distribution centre (which might be a controlling host) must share
a knowledge of the key kt1 in common with terminal 1, and the key kt2 in
common with terminal 2. The most direct routes for the session keys are those
shown on the left of the figure. These may be inconvenient in practice. One
terminal takes the initiative in setting up the communication path, in this case
we suppose it to be terminal1. Terminal 1 must first communicate with the

-- 157 --
MasterCard, Exh. 1004, p. 157

Fig. 6.3 Routes for session key distribution

distribution centre and request a session quoting the terminal2 as the target
for its future call. If the session keys are now distributed by the direct routes,
terminal 2 will receive the session key before it receives the call from terminal
1. In fact it may be engaged in interaction with another terminal or unwilling
to accept the call. At the time that it receives the enciphered session key it has
no knowledge of which terminal is about to call it. In a busy situation, there will
be a need for each terminal to be ready to receive several future session keys,
storing them until a call arrives, then it must associate the call with one of these
keys. Rules will be needed to decide the proper action in a number of error
situations, such as a breakdown of terminal 1 before the call is completed, or a
busy condition in the network which prevents the call. Time-outs could deal with
these problems but time-outs do not produce neat and reliable solutions.

For these reasons it is usually preferred to transfer the session key to the target
terminal (terminal2) by way of terminal1, as shown on the right of the figure.
Terminal1 must receive not only the enciphered form of ks for its own purpose
but also the value of ks enciphered with kt2, which it will pass on to terminal 2
when it is establishing the call. From the viewpoint of terminal1, setting up this
call has two phases, obtaining the key from the key distribution centre and then,
after making the call to terminal 2, transferring an enciphered form of the session
key to that terminal. In the figure we have shown that the key which is intended
for transfer, namely Ekt2(ks), is included with the value of ks in the message sent
to terminal 1 enciphered under kt1. To do this, kt1 should be used to encipher
these data as a chain, to prevent an enemy separating the two parts for his own use.

This apparently simple key distribution function has been the subject of several
security studies5•6 which have considered a number of possible attacks and
elaborated the protocol to frustrate them. There is a third possibility for routing
the session keys, which is to send both keys from the distribution centre to
terminal 2 and have terminal 2 relay the key required by terminal 1. Since the
procedure begins with terminal1 sending a request to the key distribution centre,
this produces a complete cycle in which messages are passed successively from
terminal1 to the key distribution centre to terminal2 and back to terminal1. This
circular route enables a random number chosen by terminal1 at the time of making
the request to be returned with the key he receives. By this means, a replay of
old keys is prevented and the timeliness of the session key in use is ensured.
This message sequence has not yet been elaborated and the examples we shall
give below are of the kind shown on the right-hand side of Figure 6.3.

Session key distribution protocol

The two phases of key distribution are the interaction between terminal 1 and
the distribution centre, called 'key acquisition' and the interaction between

-- 158 --
MasterCard, Exh. 1004, p. 158

communication links to take the
terminal 1 with a that was distributed earlier. This could be done without
knowing any of the keys, merely by repeating earlier messages. Another threat
is that an enemy terminal might impersonate terminal 1 to the distribution centre
and obtain a new key for calling terminal2. A third threat, which is more serious,
is that an enemy terminal might masquerade as terminal 1 in calling terminal 2,
using a key that had been transferred earlier.

The principal danger lies in an enemy re-establishing a session key that has
been used before, either by masquerading as the key distribution centre and
persuading terminal 1 to establish this key, or by masquerading as terminal 1
and establishing the old key for a fraudulent call to terminal2. The same messages
would be used that passed between the terminals when the key was used earlier,
so there is no need for the enemy to know kt1 or kt2 .

The trick of establishing an old key can be exploited in one of two ways. Suppose
that the enemy had obtained the value of ks, then at any time that he could
establish this value again, he could either listen in on a call between terminals
1 and 2 or impersonate terminal 1 in a call to terminal 2. Finding the value of
ks might be the result of cryptanalysis applied to an earlier session and the ability
to re-establish ks defeats one of the virtues of the session key which is that it
is used only for a short time. Another way of exploiting the masquerading trick,
even when ks is not known is to use it to replay an earlier interaction between
terminals 1 and 2. This might enable a transaction between these terminals to
be repeated with an advantage to the enemy. Of course, transactions have their
own protocol which usually employs checks to prevent transactions being
replayed. Nevertheless, it is legitimate to expect some help from the key
distribution protocol in preventing such abuses of the system.

Authentication at the key acquisition phase

When it calls the key distribution centre, terminal 1 should establish that it is
conversing with an intelligent device that knows its key value is kt1, and is not
simply an enemy repeating the data from an earlier transaction. This authentication
of the key distribution centre can be carried out by giving the centre a task
depending on kt1. The following interaction will do this:

Terminal 1 sends to key distribution centre in clear

av rl, a2.

Key distribution centre to Terminal 1

Ekt1 { r1, a2, ks, Ekt2(ks, a1) }.

The commas denote that the terms are parts of a continuous message. Where
the message is enciphered it is treated as a chain but the IV can safely be zero,
because each chain begins with a random number: a1 and a2 are the addresses

-- 159 --
MasterCard, Exh. 1004, p. 159

1nesscg::, bec~rLtse it irtclu~les
is tl1e i:rtcltlsio:rl the chain. u "-L;-'-"d C',ClQIE?oS al o£ the
terminal. \!Vhen this reaches terr.ninal 2, it to authenticate terminal 1 as the
source of the message, because its en(:ip.heJ:m;~nt with kt2 shows that it must have
come from the key distribution centre.

Does the key distribution centre need to authenticate terminal 1? Another
terminal could make the call and present the same data a1, r1 and a2 . In fact, it
would serve no useful purpose because in order to use the data from the centre
it would have to decipher them with kt1 which is a key known only to the key
distribution centre and terminal 1. An intruder could change the value a2 in the
request and thus divert the subsequent transaction but the repetition of a2 in the
enciphered reply allows this to be detected. So authentication in this 'key
acquisition' phase need only operate in one direction, in principle. But one factor
might make it desirable for the key distribution centre to authenticate the calling
terminals - the possibility that enemy terminals might overload it with bogus
calls. The distribution centre can authenticate the calling terminal only by variable
data, since fixed data can be replayed by masquerading terminals. The calling
message could be replaced by

av Ekt1(n1, r1, a2)

in this expression n1 is a serial number for all the calls from terminal 1 to the key
distribution centre since the key kt1 was established. Its presence in the
enciphered chain of this expression ensures that each call will be different and
that the distribution centre can check the serial number, after decipherment, to
verify that the caller possesses the key, kt1. Alternatively a date and time can be
used in place of n1. The address a1 must lie outside the encipherment so that the
centre can identify the caller and use the correct key for decipherment.

There are other methods for authenticating the terminal to the key distribution
centre but we question the need for further elaboration to solve this problem,
since the only risk is the extra load on the key distribution centre.

Authentication at the key transfer phase

There is a clear need for two-way authentication between the terminals 1 and
2 enabling each to be sure of the other's identity and certain that it is not receiving
a replay of earlier messages.

If terminal1 is certain, because it authenticated the key distribution centre, that
it received a new session key, ks, then the fact that the subsequent enciphered
conversation with terminal2 works will verify that terminal2 is responding. No
other terminal could respond sensibly because the establishment of the common
session key ks requires it to decipher the key transfer message with its own key
kt2• If terminal 1 wants to get this reassurance early it can send another random
number r2 in the form Eks (r2) and receive some function of r2 in an enciphered
message from terminal 2.

-- 160 --
MasterCard, Exh. 1004, p. 160

Worse still is case of the enemy discovering h\ because then he can obtain
from the key distribution centre a stock of ks values for future masquerading.
Even if terminal 1 changes its terminal key, the masquerade with old values of
ks can continue, as long as terminal 2 keeps its master key unchanged.

The solution to this problem proposed by Denning and Sacco7 is to time-stamp
the session key. They propose the following squence.

Request from terminal 1 to key distribution centre

Reply from key distribution centre to terminal 1

Ekt1(ks, a2, d/t, Ekt2(ks, a1, dlt)) .

Key transfer from terminal 1 to terminal 2

Ekt2(ks, av dlt).

In these expressions, d/t is the date and time.

The value of dlt supplied to terminal1 authenticates the key distribution centre.
Any terminal which makes calls to the centre at shorter intervals than 1 min must
keep a list of ks values for the last minute and check that these are not repeated.
There will rarely be a need for such checking.

The value of d/t supplied with the key transfer to terminal2 verifies the freshness
of the session key. Keys obtained from the distribution centre must be used at
once and cannot be stored for future use and the time required to establish calls
must be at most a few seconds if the scheme is to work well. This immediacy
should be easy with modern networks .. Either terminal will reject a key that is
too old, thus preventing replays.

Distribution of terminal keys

For the present, the possibility of non-secret methods of key distribution will be
ignored (these are described in chapter 8) and we will describe more traditional
methods using ciphers like the DES. Whatever key hierarchy is used, there must
be at least one key at each terminal that has not been sent through the network.
In the system we have just described this is the terminal key kt. Such keys must
be loaded into the terminals manually and they may have to be changed from
time to time for extra security. They must be physically transported to each
terminal.

The older method of loading a key into a terminal was by rotary switches or
a keyboard. This operation must be carried out only by trusted personnel,
therefore a lock was usually provided into which a physical key was inserted and
turned to allow the entry of a new key. Such key loading operations might be
spied on by an enemy. If the key is written down on paper for its journey to

-- 161 --
MasterCard, Exh. 1004, p. 161

6.4. THE IBM KEY MANAGEMENT SCHEME

In the remaining part of this chapter we shall describe two different key manage­
ment schemes, both of which have been worked out in some detail. They are
not only valuable as examples of comprehensive schemes, they also demonstrate

-- 162 --
MasterCard, Exh. 1004, p. 162

becatlse vve wanted to have a consistent notation thJroll?-;lcmit

reE;pects we have the scheme to make it easier without
changing its essential ±ea.t-m·es.

It is important to understand the environment for which the key management
method was devised. Though it is like the key distribution scheme we described
earlier, employing session keys and terminal keys, the environment is different
because the terminals do not communicate directly with one another through a
communication sub-network. Communication takes place through host
computers, each host being responsible for a group of terminals. The host acts
as a key distribution centre for its own group of terminals and encipherment is
used for messages passing between the terminal and the host. There may be
several hosts in a network and then the hosts organize the communication of
messages or files between them. A key management system has two functions
which the IBM scheme mostly keeps separate - the encipherment of messages
to provide communication security and the encipherment of files to provide file
security. Each of these functions has its own key hierarchy and the two key
hierarchies have close parallels. We shall describe first the communication function
and then the file security function, making comparisons between the two. The
functions come together when files are transported from one host to another.

Physical security requirements

The handling of keys at the terminal is like that described in Figure 6.2. Each
terminal contains a terminal key kt and at the start of a communication session,
a session key ks is delivered to it, enciphered under the terminal key.

The physical security requirement at the terminal is the protection of the two
keys. The loading of kt is a privileged operation. The key-management scheme
must provide the value of kt for this purpose, whether or not a key carrying
module is employed.

At the centre, the physical security requirements are much more severe. A
number of terminal keys must be stored safely and at any one time many sessions
may be in progress, so a number of session keys must be kept ready for use.
The host computer is provided with a special, physically secure module containing
all that secret information which must be protected. In the IBM papers it is called
the 'Cryptographic Facility' and it is typified by the IBM 3848 cryptographic unit:
we shall call it a 'Tamper Resistant Module' (TRM).

Both in the terminal and at the centre, the encipherment operation must be
carried out in an appropriately secure place. At the host all encipherment
operations occur inside the TRM. The TRM also contains the most important keys
which, once they have been loaded into it, can never be read again. In the same
way, none of the keys can be read from the hardware of the terminals.

The processing wo.rk of the host is carried out on behalf of many users, each
with his own rights of access to certain terminals or files. As in all multi-user

-- 163 --
MasterCard, Exh. 1004, p. 163

access another's is the
re~;pc1nsibillitv o£ the access control system. cannot improve on the
security of this access control, it merely the security to stored files and
distant terminals. An enemy within the system who can undermine the access
control mechanism can steal files or read messages illegally in spite of the use
of encipherment. Therefore, the key management system must rely on the access
control method to control access to keys.

There is always the possibility that one of the system's users could be an enemy
and could steal data from the system and pass it to an enemy outside. If he could
steal keys and pass these to an enemy outside, then various stolen storage media,
or ciphertext recorded from a line, could be deciphered and all the security of
encipherment with the stolen keys would be lost. It is, therefore, a cardinal
principle that the key management scheme should prevent anyone, including
legitimate users and system programmers, from obtaining any cryptographic key.
Therefore, cryptographic keys (with a few exceptions) are allowed outside the
TRM only when they have been enciphered by other keys. As a result of this
principle, the damage that can be done by an enemy within the system is confined
to the data he reads by misusing the access control system of the host. He cannot
steal keys that can be used outside the system. To put it another way, the barriers
inside the system between the various subjects are not strengthened by the use
of encipherment. The encipherment of data, together with key management,
places a firm barrier between what can be done inside the system and what can
be done outside.

The main principle is that no keys can be taken outside the TRM in their clear
form, the form in which they could be exploited by an enemy. The exceptions
to this rule are the terminal keys which must be in clear outside the TRM, at least
at the moment when they are loaded into the terminal. This operation of loading
terminal keys is carried out under careful discipline by trusted people. The
procedure for initializing the whole system by the creation of top-level master
keys and loading them into the TRM is another exception to the general rule and
it requires the greatest discipline and trust.

The key hierarchy

There is a three-level key hierarchy which will now be described as it applies to
the communications security part of the scheme. This description is intended only
to give a general picture and the details will follow later.

The three levels are shown in Figure 6.4. At the top level are two master keys,
kmO and kml. In the middle level are the terminal keys, denoted kt, one for each
terminal belonging to the host. The lowest level keys are the session keys, ks,
which are associated with terminals on a more temporary basis. Only the session
keys encipher data. The terminal keys, as we saw earlier, are used to encipher
session keys for transmission to the terminals.

-- 164 --
MasterCard, Exh. 1004, p. 164

ks S2:ssion keys encipher de1·i:a in trons:~~ission

Data

Fig. 6.4 The hierarchy of keys for conmnmication sec!Lrity

The two master keys in the host, called kmO and kml, are used, respectively,
to store all the session keys and all the terminal keys in the system. Because all
the session keys are enciphered under the key kmO whenever they are outside
the TRM, they can be stored in ordinary memory locations. The stealing from
the host of a quantity such as EkmO(ks) would not be disastrous because the master
key kmO is special to this one host so the enciphered value of ks is useless outside
it. Likewise, the terminal keys are stored as Ekml(kt) in ordinary memory locations.

The purpose of storing the terminal and session keys outside the TRM is two­
fold. First, it reduces the amount of store in the TRM and, secondly, it allows
the control of access to these keys to be the normal access control provided by
the operating system. There would be little point in having a duplicate or
alternative access control system for keys.

The existence of the master keys inside the TRM makes all the operations of
the TRM special to this one host. The various functions of the TRM are not all
equally available. Some, such as the loading of the master keys, take place rarely
and only with specially privileged people present. The operations of the TRM
used for distributing new terminal keys are accessible only to the operating system.
But at the lowest level, the operations of enciphering and deciphering data are
available to ordinary user's programs, provided that they can gain access to the
appropriate session key.

The endpherment and decipherment of data at the host

A program at the host computer can use the functions of the TRM to decipher
data coming from the terminal or encipher data going to that terminal, if it can
provide the TRM with the session key in use at that terminal. The operations
carried out in the TRM are illustrated in Figure 6.5. They are not simple encipher­
mentor decipherment because the key arrives in an enciphered form. The first
action is to decipher the key using the master key kmO which is stored in the TRM.
The resulting session key, ks, is then used for the encipherment or decipherment
operation. This function of the TRM is given the name 'Host Encipherment' (HE)
or 'Host Decipherment' (HD). In a sense, the host encipherment or host
decipherment of each individual host is different because of the different master
key contained in its TRM, so a session key taken from the store of one host cannot
be used in another host.

The two inputs to the HE or HD operations must be distinguished because one
is a key input and the other a data input. We have shown in our figure a small

-- 165 --
MasterCard, Exh. 1004, p. 165

HE HD

Fig. 6.5 Data encipherment and decipherment operations of the tamper-resistant module

circle where the key input enters the TRM by analogy with the notation used
for the block cipher itself.

Generation and distribution of a session key

Figure 6.6 illustrates the function of the TRM which is used for distributing a
session key. The new session key ks must be transmitted to the terminal in the
form Ekt(ks). Both kt and lcs must be protected by encipherment whenever they
are outside the TRM. The terminal key kt is stored under encipherment by the
master key kml and the first operation in this key distribution function is to
decipher it and produce the plaintext value, let. Then the stored session key EkmO(lcs)
can be deciphered inside the TRM by lcmO andre-enciphered by let to produce the
required quantity Elct(ks). This operation is known as 'Re-encipher from master
key' (RPM) since it changes the session key from encipherment by the master
key to encipherment by the terminal key. This function of key distribution is
carried out by the host's operating system, responding to a request from the

Session key as
stored and used

in the host

EkmO(ks) --1--.....-l

Generated as a
random number

RFM

Ekm1 (kt)

Session key as
distributed to

the terminal

1---+--__,,_ E k t (k s)

Fig. 6. 6 Session key distribution

-- 166 --
MasterCard, Exh. 1004, p. 166

that
geJ:1er·atC)T is to generate :1 nevv value of
the session key. The value of ks will then be a random number, no,~hor,tlu
suitable for its purpose. Generating the enciphered key Ekt(ks) at random is useless
because the RFM function works only one way, there is no function available
which will take Ekt (ks) and re-encipher it under the master key. It is important
that there should not be such a function, otherwise an enemy within the system
could obtain the session key by tapping the line while it was being transmitted
to the terminal and from it obtain EkmO(ks) which he could then exploit in the
HE or HD functions to encipher or decipher users' data taken from the line. So
the one-way property of the RFM function is essential.

In this operation there are two master keys, kmO and kml. If only one key were
used it would be possible, by misuse of the TRM operations, to expose a key in
its unenciphered form as shown in Figure 6.7. Suppose that the same master key,
kmO, was used to encipher both ks and let. Then the quantity EkmO(kt) could be
used as the key for the HD operation and applied to the value Ekt(ks) obtained
by tapping the line to the terminal during session key distribution. This trick would
produce the session key ks in plaintext form and this could be employed anywhere
to decipher users' data obtained from the line. The use of two different master
keys prevents this trick.

Generation and loading of a top-level master key is time-consuming, so the
need for loading two different master keys must be avoided (and as we shall see
later, a third is needed). In the IBM scheme this is achieved by deriving kml from
kmO simply by inverting a specific set of bits in the value of the key. Although
these keys are then closely related, their encipherment properties are completely
different and, since both are kept secret, their relationship is not of great
importance to the strength of the system.

Since the random value used for starting the key distribution is EkmO(ks) the
value of ks produced is a random block of 64 bits and does not have the correct

Ekt(ks)

Token from a

I ine top HD

EkmO(kt) -this does not exist
in the host's store

ks
exposed

Fig. 6.7 How ks could be exposed if kml =krnO

-- 167 --
MasterCard, Exh. 1004, p. 167

its correct
spare bits inst':'ad of frD.cd-;n,., thern as

Generation and distribution of the terminal

New session keys are produced frequently but the terminal key is changed less
often. When it is changed, the new key value has to be taken to the terminal
and loaded into it and for this purpose it must be available in its cleartext form,
kt. It is therefore an exception to the normal rule that cleartext keys are never
exposed. Since it is important that there should be no way of regenerating kt at
the host after it has been distributed, the only way to organize its distribution
is to generate the key in the cleartext form and this presents a new problem, how
to form the quantity Ekml(kt) which is the stored value of the terminal key. This
operation is, of course, carried out by the operating system and it uses the special
quantity Ekm l(kml).

A function is provided in the TRM for enciphering under the master key kmO
and this is known as 'Encipher under Master Key' (EMK). It is a privileged
operation which is given the quantity x and returns the quantity EkmO(x).

The quantity Ekml(kml) is produced when the system is initialized, then it is
stored away and kept only for use in the kt distribution process. To produce it,
kmO is used to produce kml, a trivial operation, and this is used with the EMK
function to generate EkmO(kml). This quantity is used as the key in the HE
operation with kml as data, as shown in Figure 6.8, to generate the special quantity
needed. After these processes, all stored values of the master keys are destroyed
except those in the TRM. A written copy of kmO is kept in a safe for disaster
recovery. If the system is destroyed, but enciphered files are available in a back­
up store, these would be useless unless the master keys could be retrieved.

Using the special quantity Ekml(kml), it is possible to complete the distribution
of the terminal key in two stages. First this key is enciphered under kmO using

Ekm0(km1)

km1 ---+------------~ Ekm1!km11

Acc:essible only to the system
HE

Fig. 6.8 An operation used at system initiation

-- 168 --
MasterCard, Exh. 1004, p. 168

E km 0 (kt) --f-__,.,.j
kt

Ekm1 (kt)

Stored terminal key
RFM

Fig. 6. 9 An operation used to prepare a new terminal. key, kt

the EMK function, then the RFM function is applied to this quantity, using as
key the special quantity Ekm1(km1), as shown in Figure 6.9. The result is the
quantity Ekm1(kt) which can then be kept in store and used for distributing session
keys as shown in Figure 6.6.

Notice that the intermediate quantity EkmO(kt) is one which earlier we said
should never exist, because it could be misused to expose session keys stolen
from the enciphered line. This means that terminal key distribution must be carried
out with extreme care, using trusted software and making sure that the
intermediate values cannot be accessed by another program.

The principles of file security in the IBM key management scheme

The hierarchy of keys used for file encipherment is very similar to the one used
for communication security and is shown in Figure 6.10. The data in the files are
enciphered by file keys, kf, and file keys are stored under secondary file keys,
denoted kg, which are held by the owners of the files. A single value of kg creates
a 'protection domain' which may contain a number of files each having its own
data enciphering key. The quantities Ekg(kf) need not be concealed because they
cannot be used unless kg is available. For example it may be convenient to store

kmO km2 Master keys encipher kf, kg in store

Secondary file keys encipher kf in files

kf File keys encipher data in files

Data

Fig. 6.10 The hierarchy of keys for communication security

-- 169 --
MasterCard, Exh. 1004, p. 169

groups of files +n~,-o;-;-,,-,-_­

of files to be communicated to anochei
user appear to be the main reasons •Nhy the
intermediate or secondaq file is included in the hierarchy.

At the top level of the hierarchy are the master keys. The key kmO is used for
enciphering file keys (as well as session keys) in the host. The key km2, derived
like km1 by a trivial operation on kmO, enciphers secondary file keys for storage
in the host.

The encipherment or decipherment of a file is allowed for any user or process
which has access to the secondary file key in its stored form Ekm2(kg). This can
be used, as we shall show later, to generate the file data encipherment key kf
in the form EkmO(kf) required for employment in the HE and HD functions. These
quantities EkmO(kf) are not stored in the system, they are simply recreated
whenever a file is to be deciphered. Thus the control for deciphering a file rests
in controlling access to the secondary file key kg.

Generating and retrieving a file key

Figure 6.11 shows the TRM function which is used when preparing to encipher
a file or retrieving a file key for decipherment. It is called 'Re-encipher to Master
Key' (RIM) and is almost a mirror image of the RFM function but using the master
key km2 instead of km1. At the top of the figure, the 'key' input is the secondary
file key in the enciphered form Ekm2(kg) in which it is stored in the host. The
data quantity entering the RIM function is a newly generated pseudo-random
number when the file is first enciphered. This gives rise to a random number
kf inside the TRM which is the file data encipherment key and is never exposed
outside. The result of the RIM function is the file key enciphered under the master

File key as

stored on file

Ekm2 (kg)

Ekg(kf) --1-...,...j

Generated as a

random number
RTM

File key as used
in the host

1---1---1- E km 0 (k ()

Fig. 6.11 Preparation to encipher or decipher a file

-- 170 --
MasterCard, Exh. 1004, p. 170

function.
The clever feature of the of this system is that it makes the RFM and

RIM functions almost the inverse of each other but different master keys,
kml and km2. employing one of these functions communication security
and the other for file security, it is made impossible to misuse these functions
in the wrong context. If kml and km2 were identical, RTM could be used to reverse
the effect of RFM and thus values of Ekt (ks) stolen from the line would be usable
to generate EkmO(ks) for decipherment.

We have described both the communication security and the file security
functions inside a single host. When two hosts are connected together in a
communication network, two further functions are required, the transfer of
messages under encipherment between hosts and the movement of files from
one host to another in an enciphered form. These are provided by extensions
to the key management scheme which will now be described.

Transfer of enciphered data between hosts

All we have described so far about the IBM key management scheme concerns
a single host. In order to extend this to a number of hosts which are nodes of
a network the keys in the system must have an additional index which will be
a superscript i or j. For example, the master keys are kmOi, kmli and kmi for the
ith node. A method of transferring data from node ito node j will be described.
For this purpose, all that is needed is to be able to establish as many session keys
as we need, which are known to both nodes. A session key would be created
in node i as EkmOi(ks) and then, in the ordinary way, the operation RFM would
be used (see Figure 6.6) to encipher this session key under a terminal key. The
session key can be sent to another node if there is a suitable 'terminal key' for
the purpose. The proper name for this key would be 'secondary communiction
key' but to avoid the change of notation we will call it ktii signifying that it serves
for moving session keys from node i to node j. It is important that this 'inter­
node terminal key' is directional; it can only function from node i to node j not
the other way round.

Figure 6.12 shows how the session key moves from its normal place of storage

Ekmoi(ks)

Randomly generated

Sending host i Receiving host

Fig. 6.12 Preparing a session key for inter-host communication

-- 171 --
MasterCard, Exh. 1004, p. 171

t12ms:te::recl fror.n one ;-1ode to
i:tans£er data i~1 either direction. The relates

to the movement of the session key. For ktii is used when a user
or process in node i takes the initiative in transferring the session key to node j.

The operation shown in Figure 6.12 is made possible because the inter-node
key is available in each node in a suitable form, using the km1 master key in the
second node and km2 master key in the receiving node. In this respect, the
receiving node is anomalous because a terminal key is not usually stored in this
fashion. Its existence in node j requires the use of the function RTM to be controlled
very carefully. The inter-node key ktii must be transported between the two
nodes outside the communication system, probably in a key carrier, and then
established in the appropriate enciphered form for storage at each node. We have
already seen how Ekm1(kt) can be established at a node in a privileged operation
using the secret number Ekm1(km1). A similar procedure can establish Ekm2(kt)
and for this purpose the secret number, Ekm1(km2), is needed. This is generated
when the system is initialized, immediately after the master key kmO has been
loaded, using a procedure like that shown in Figure 6.8. Obviously these functions
which operate on clear values of ktii and establish their appropriate enciphered
form at each host must be very carefully controlled, and they are not used very
often. When an inter-node key is established between a pair of nodes, it is available
for a relatively long period to transmit session keys. A different key, known as
ktii, is established for sending session keys in the opposite direction.

Transfer of enciphered files between hosts

To complete the description of the IBM key management operations, it remains
to show how a file can be transferred from node i to node j. This is illustrated
in Figure 6.13. The middle part of this figure is very similar to the operation shown
in Figure 6.12 but with the session keys replaced by file security keys. The
secondary file key kgii can be regarded as an 'inter-node file transfer key' for
sending files from node i to node j. Its establishment uses the procedure described
earlier.

The procedure in Figure 6.13 is more elaborate than the communications
procedure because the quantities EkmO(kf) do not normally exist in the system,
but are called into being when an operation is to be carried out on a file. The

Ekgi(kf)

Fig. 6.13 Moving an enciphered file from host i to host j

-- 172 --
MasterCard, Exh. 1004, p. 172

6.13 it ::rnerges en,:mheJrecl
in node j, the file

which is to receive the file. There is no change to the data since the
file key kf remains unchanged. All that is necessary at the receiving end is to
the new enciphered file key Ekgi (kf) in the appropriate place in the header the
file.

In this procedure the RFM operation which prepares the file key for leaving
node i is unusual, in that secondary file keys are not normally held under
encipherment by km1 and stored file keys, like EkmO(kf), cannot normally be
transferred to a new secondary file key by the RFM operation. Therefore, it is
important to control carefully the use of the RFM function in this context.

The security given by the IBM key management functions comes from limiting
the cryptographic operations provided by the TRM to a specific, small set of
operations each working with the appropriate set of keys. This restriction prevents
the exposure of keys in their clear form or the use of any stolen keys in a different
host from the one that they belong to. But the functions used for transferring
data or files from one node to another cannot not be made available to every user
and these are among the functions which must be controlled by the system in
order to maintain security. Other things that must be controlled are the key loading
functions and the use of the special numbers Ekm1(km1) and Ekm1(km2). Ulti­
mately, security depends on the control of access to storage and processing
functions within the host computers.

6.5. KEY MANAGEMENT WITH TAGGED KEYS

The IBM key management scheme uses encipherment by variants of the master
key in order to separate different kinds of keys and ensure that they are used
in the correct way. Three variants of the master key are needed so that functions
provided for data encipherment and decipherment, session key distribution and
file key retrieval cannot be misused for other purposes.

Jones8 has described a method of handling keys which achieves the same
separation of functions with only one master key. The separation of functions
in this new method can be applied to an extended key hierarchy without any
further complication. The principle employed is to attach a tag to each key in its
clear text form which identifies that key's function. The idea of tagging words
in a computer has often been used, for example to distinguish between capabilities
and other words in a capability-based computer. The tag is typically a short extra
field attachedto the word and preferably one which cannot be separated from
the word or altered by non-privileged users of the system. In this section we shall
describe the use of the eight 'parity bits', which are attached to the 56-bit DES
key, as a tag field. Later, we shall see that the number of tag bits needed is quite

-- 173 --
MasterCard, Exh. 1004, p. 173

them test patteTns.
national standard for DEAl in its draft forrn re)~arcled
undefined bits without specifying how were to be used. The ingenious aspect
of Jones's scheme is since are not outside a TRM in their clear
form, it is not possible for an enemy, even one with access to the computer, to
modify these tags.

To begin our description, assume that each type of key employed in the key
management system has its own tag value. The top level master keys are an
exception because they never leave the TRM so their method of use is entirely
controlled. The other key types are the communication keys, ks and kt, and the
file security keys, kf and kg. We denote the tags attached to these keys as Ts, Tt,
Tf and Tg respectively. The key values are concatenated with their tags to form
plaintext values which are then stored in enciphered form. A typical example of
a key in this system would be Ekm (ks; Ts). The semicolon denotes concatenation
where the tag is actually interleaved with the key, occupying the spare bits. Since
there is only one master key, we call it km.

In order to use the tags as part of the control of key management, each of the
operations of the TRM checks the tags of incoming keys and, where appropriate,
places the correct tags on outgoing keys. We shall now consider the action of
these various functions in turn, beginning with the encipherment and
decipherment of data.

There is little change to the functions depicted in Figure 6.5. The incoming
session key is tagged in the form (kg; Ts) and the HE and HD functions will only
accept a session key if it has the correct tag. With any other value of the tag, the
TRM must return a 'reject' signal.

The HE and HD functions are also used, with file keys kf, to encipher
and decipher files. For this purpose, the HE and HD functions should be
prepared to accept keys with either of the tags Ts or Tf. The essential restriction
on these operations is that they should only be used on data, not on keys.
So if an enciphered key-enciphering key were presented in place of the enciphered
session key at the 'key' input of one of these functions, it would be rejected.
Essentially, the Ts or Tf tags verify that a data enciphering key is being used,
making it safe to offer the encipherment or decipherment function to a user
or process.

Next, consider the RFM and RTM operations. These are operations entirely with
keys but the 'key' input of the function takes in an enciphered key-enciphering
key whereas the 'data' input takes an enciphered data-enciphering key. Figure
6.14 shows the RFM operation in its new form. It checks the types of the two
keys it is handling when their plaintext is exposed inside the TRM. The key which
enters at the data input leaves the module (under different encipherment) carrying
the value of tag with which it entered. Because of this checking of key types,
there is no need for the master key variants.

-- 174 --
MasterCard, Exh. 1004, p. 174

Ekm(ks,Ts)

No operation unl<!ss

Ts ,Tt ore found in

th111 deciphered key;

;..- Ekt(ks,Ts)

Fig. 6.14 The operation RFM with tagged keys

Generation of new tagged keys

New keys are produced by a random number generator but before they can be
used they must be correctly tagged and enciphered. The key enciphering keys,
kt and kg, present no problem because the processes which are allowed to generate
these keys have access to the 'encipher with master key' operation which, in this
key management scheme, could attach either the Tt or Tg tag, whichever is asked
for. But although a terminal key must be available to the system in clear form
for distribution to the terminal, the same is not true of a secondary file key, which
is only ever used in the enciphered form outside the TRM. It is, therefore, more
secure to insist that a new secondary file key be generated entirely within the
TRM, each such key generation starting with a new random number which is
not revealed outside the TRM. This prevents an enemy who has penetrated this
part of the system from generating identical keys with two different tags so that
a key value could be used in both the RFM and RTM operations, something which
the system is intended to prevent.

The generation of new session and file keys in the IBM key management scheme
is performed in such a way that different operations are used, RFM for the session
key and RTM for the file key. The starting point in each case is a random number
which represents an enciphered key. With the tagged-key method, a random
number will not create a key with the correct tag, so a different method of key
generation is needed. One possibility is to include in the operations of TRM, two
key generation functions designed for these types of keys. A session key is
generated in the form Ekm (ks; Ts) and can be used for any terminal. In order
to generate a file key, the secondary file key kg must be provided to the TRM
as Ekm (kg; Tg) and with this input a random key kf is chosen and its enciphered
form Ekg(kf; Tf) is supplied from the TRM. Thus each type of key requires a
function for generating it in the TRM, designed in such a way that the same key
cannot be generated with more than one tag value. Only kt keys begin their lives
in plaintext form.

-- 175 --
MasterCard, Exh. 1004, p. 175

No op~ero'tlon
Ts,Tt ore found in

the deciphered keys

..,.,.. Ekt(ks,Tsl

JUt before they can be
key enciphering keys,
:1re allowed to generate
Jeration which, in this
ag, whichever is asked
~ system in clear form
ondary file key, which
. It is, therefore, more
2d entirely within the
lorn number which is
10 has penetrated this
> different tags so that
ons, something which

r management scheme
d, RFM for the session
e is a random number
~y method, a random
Jerent method of key
>erations of TRM, two
7s. A session key is
ny terminal. In order
provided to the TRM
en and its enciphered
rpe of key requires a
ray that the same key
keys begin their lives

distinctive If we wanted to extend the
levels v1e would need to introduce new values the various
operations of the TRM, in particular the RFM and RTivl operations, to recognize
new combinations of tags which they will allow.

The proposal by Jones has a different and simpler scheme which allows the
key hierarchy to be extended without introducing new tag values. The main
distinction which it makes is between data enciphering and key enciphering keys.
Only data enciphering keys are allowed to enter the operations HE and HD. The
categories ks and kf that we have distinguished are both included in the data
enciphering category. All key enciphering keys belong to a second category, which
includes kt and kg, but these two types of key must be distinguished because
we only allow kt as a key input to RFM and kg as a key input to RTM. This
distinction is made by providing two bits in the tag field which determine whether
the key can be used for encipherment or decipherment or both. From Figure 6.6
it can be seen that kt is an enciphering key and from Figure 6.11 that kg is a
deciphering key. Therefore three bits form the complete tag; one distinguishes
data and key enciphering keys, the others allow encipherment and decipherment
respectively, or both. The operations RFM and RTM can be carried out at several
levels of an extensive key hierarchy because there are key encipherment keys of
several levels. Only data enciphering keys can be used in the operations HE and
HD.

The distinction between enciphering and deciphering keys has so far been
applied only to key-enciphering keys, leaving the data-enciphering keys such as
ks and kf marked for both encipherment and decipherment. But data-enciphering
keys can also be produced for a single role, either encipherment or decipherment.
Within a system controlled in this way it should be possible to generate
corresponding pairs of enciphering and deciphering keys. This makes possible
an asymmetric form of cryptography.

A particular session or file key, with its tag, can be transmitted throughout a
network of inter-connected nodes which employ the same tagged key
management system. Their security depends on the physical security of all the
TRMs in the system and in particular on the safe distribution of the 'inter-node
keys' such kgij and ktij_ The inter-node keys create a problem for the key
generation method which we described earlier because the same key is tagged
in two different ways in the two nodes it interconnects. We saw earlier that the
handling of inter-node keys requires privileged operations. In the tagged scheme
it seems to require that the inter-node key, generated as a terminal key for use
in RFM at one node, can be converted into a secondary file key for use in RTM
operations at the other node. The establishment of inter-node keys uses operations
that must be very carefully guarded, whether the IBM method or Jones's variant
is used.

-- 176 --
MasterCard, Exh. 1004, p. 176

-co protect xnessages. sco1oe kno-v'ln
Wlloies;:~le bainkj,ng includes rnessages between banks, betvveen banks and their
corporate customers or between banks and a government. This makes it clear
that messages of some consequence are being protected and that such applications
as home banking and point of sale transactions are not within its scope. The
standard is complex and occupies more than one hundred pages. It describes the
procedures for manually exchanging keys in order to initiate the system and then,
with the aid of these manually exchanged keys, the automatic exchange of the
keys which are used to protect the messages and, in particular, to provide message
authentication. The major part of the standard is concerned with the automatic
methods, giving their procedures, the contents of the messages and the detailed
coding.

For someone coming to this standard for the first time, the main problem is
the quantity of detail. Our account cannot be a substitute for the standard itself
and we therefore do not attempt to cover the detail but describe instead the main
principles, leaving out features where this does not prevent its principles being
understood. For example, we give little attention here to error messages or error
recovery procedures.

The standard is very significant because it is the first internationally agreed
principle for key management. Consequently, some of its notation and concepts
have already been adopted in other schemes, such as proprietary key management
procedures which do not follow ISO 8732 in detail but claim some similarity.
Departing from our usual terminology, we shall adopt the word encryption in place
of encipherment to align with the standard, where appropriate.

We begin our account by describing the key hierarchy and the way it uses keys
of both double length and single length. The standard was derived from the US
standard ANSI X9 .17 where the intention, at the time, was that the DES algorithm
would be used. For generality, the international standard does not specify that
DES shall be used, though the standard ANSI X3.92 (which describes the DES
algorithm) is quoted.

Each participating bank or other (corporate or government) organization is
expected to have a key management facility which includes the cryptographic
equipment and provides a secure environment in which the cryptographic
functions can be performed and the keys held. The standard does not describe
how secure arrangements can be made for the storage of the keys, though their
encipherment under some unspecified master key is implied. These are details
which are the concern of each user and they are not specified because they do
not affect the exchange of messages between the participants.

A short section of the standard, little more than one page together with an
example in an annex, deals with the manual distribution of keying material which
sets up the basic keys on which the key hierarchy depends.

We continue with a description of the three different environments under which

-- 177 --
MasterCard, Exh. 1004, p. 177

will make to have is
co:mrJromisc:;(j_, The standard the:: date and time at

becomes effective and for messages which vvithdravv
a key from service. How these tools will be used by individual banks is left to
their judgement. The user can also choose the type of hierarchy (within limits)
and whether to use double or single length keys for some of the functions
described. Thus a decision to use the ISO 8732 standard for key management
does not complete the agreement between users, who would then have to detail
the chosen options and the schedule of keys and key changes.

There are two technical features which are central to this standard, known as
notarization and key offset. Notarization employs the modification of a key using
the names of the source and destination of a communication as the modifying
data. This key is then used to encipher a subordinate key in a key management
message and the receiver of that message can only interpret it by using the correct
key modifications by the names employed by the sender. This prevents any
intruder diverting a key intended for one purpose into another purpose. There
are other ways to do this, but the notarization principle is used here. A similar
modification of the key encrypting key uses a counter which is incremented
throughout the whole life of that key. In this way, the subordinate keys sent with
this key encrypting key carry a built-in note of their sequence number and an
attempt to reuse an old key would be detected. Notarization and key offset are
generally used together.

These two features, and the general complexity of the standard make it
questionable whether it should have a wider validity than the scope for which
it was intended, but it is invaluable as an example of a fully developed key
management standard.

The key hierarchy

Figure 6.15 shows the two alternative key hierarchies employing two or three
layers of keys respectively. It also shows the notation for the three types of keys
employed.

A key used for enciphering or authenticating data is known as a data key (DK)
and is the lowest level, layer-:;_, of each hierarchy. These keys are used for either
encipherment or authentication but should not be used for both except when
the standard specifies this. Wherever data keys are distributed for use in protect­
ing banking messages, either one or two keys can be sent so that one can be used
for encipherment and the other for authentication. The encipherment function
of the data keys also includes the encipherment of initializing Values for use in
the standard modes of operation described in chapter 4. Data keys are always
single length keys.

For the distribution of data keys, a key encrypting key (KK or KKM) is used. In

-- 178 --
MasterCard, Exh. 1004, p. 178

!

T(·c::::-l·:ijS,
-----·-··

Sing!s/doubls

Loyer 1 Single

Data/ IV

Fig. 6.15 Alternative key hierarchies of ISO 8732, KKM, master (key encrypting) key: KK, key encrypt­
ing key, to encipher DKs; DK data key, to encipher data or IVs or authenticate messages

the two-layer hierarchy a master key is used, which has been established by
manual key distribution for this purpose. In the three-layer hierarchy any KK
which is used to encipher a data key for transmission can itself be distributed
using a master key encrypting key (KKM).

Since it is widely accepted that the 56-bit. key size of the DES algorithm weakens
it, under certain circumstances, there is sometimes a need for multiple encryption
to obtain an effectively longer cryptographic key. Where keys are in use for a
long time, the opportunity for an attacker to perform a key search is greater,
therefore this standard envisages the possible use of double-length keys at the
higher levels of the hierarchy. The method by which encipherment is performed
with these double-length keys is described in the next section.

The use of double-length keys is mandatory only for master keys which are
used for key management between a participant and one of the two kinds of key
management centre (either a key distribution centre or a key translation centre).
Apart from this requirement, key encrypting keys (KK or KKM) can be either
single or double length but a single length key must not be used to encipher a
double length key. The standard does not give any criterion for the use of double
length keys but we would expect a double length key to be used wherever the
life of the key exceeds about one month. The presence of a double length key
is signified by the notation * KK or * KKM.

Endpherment and decipherment with double length keys

Two single length keys each of 64-bit size can be concatenated to form a double
length key. Thus a double length key * KK is considered as being made up from
two single length keys KKl and KKr where the notation signifies the left and right­
hand halves of the concatenated double length key. The encipherment and
decipherment processes using these keys are shown in Figure 6.16. In each case
three cryptographic operations are employed. For double-length encipherment
these are encipherment, followed by decipherment, then by encipherment. Both
encipherments use the left-hand part of the key and the intervening decipherment
uses the right-hand part. This triple processing was chosen because the simpler
double process could be weakened by a 'meet-in-the-middle' attack, employing
a large amount of storage in order to reduce the computational task of key
searching.

-- 179 --
MasterCard, Exh. 1004, p. 179

Enciphennent·: Y = ede (X)

Decipherment' X ~ ded (Y)

.,. Fig. 6.16 Triple encipherment with a double length key

The corresponding decipherment function shown in the figure employs
decipherment followed by encipherment then decipherment with the same key
sequence. The notation for encipherment using this process is ede and correspond­
ingly for decipherment ded.

It is not entirely certain that the use of double length keys provides an effective
key length which is double that of a single length key, but the structure of DES
and the experimental evidence that it does not form a group supports the view
that multiple encipherment is more secure. There is, however, no need to use
multiple encipherment unless the threat of a key-search attack is significant.

Key distribution environments and messages

The simplest environment is that two banks wish to establish keys for the exchange
of messages and they already have in common a key encrypting key, either a
master key (KKM) or a key at layer two of a three-layer hierarchy (KK). Their
aim may be to distribute a KK for the three-layer hierarchy or to distribute data
keys or perhaps to do both. No other party is involved. This is the point-to-point
environment.

To avoid the need for banks to have master keys or key encrypting keys in
common with all their correspondents, it is possible to use a key management
centre which has an established cryptographic relationship with both parties to
the communication. Then, using the key already"~stablished they can obtain the
necessary material from the key management centre to establish contact. There
are two kinds of key management centre, one of which generates keys, called
a key distribution centre and the other which accepts a key from one party, re­
enciphers it and returns it in a form suitable for communication with the other,
called a key translation centre. Thus there are three environments in the standard,
known as point-to-point, key distribution centre and key translation centre. For
each of these there is a procedure for carying out the key exchange which we
shall describe with reference to Figures 6.17, 6.18 and 6.19 respectively.

In describing these procedures we do not detail all the messages which can
be used. In particular, any message may be in error and receive a response which

-- 180 --
MasterCard, Exh. 1004, p. 180

se~: o£ Irtte:tnational
Standard ISO 6L':6, ofcen known the ASCII code. The messages are coded in
a 'Nay which makes them readable ·when on the page. There is an intention
to introduce another version of the standard with coding of messages. In
the coding, both the message type and the tag for each field of the message is
a set of three capital letters. Within the message, the various fields are tagged
to indicate their significance and separated by space characters. Additional format
characters can be inserted to improve the ease of reading the message. For our
purpose, we shall not define the format and coding in detail.

Point-to-point distribution of keys

When two banks A and B already have a key encrypting key in common they
can use it to exchange other keys of the form KK or KD. The messages they use
are shown in Figure 6.17. For example, bank A can send a key service message (KSM)
to B containing a key or keys enciphered under the already established key. Bank
B will return a response service message (RSM) and this completes the exchange.
But suppose that bank B wishes to establish keys in this way and does not have
the ability to generate keys. It is then possible for bank B to send the optional
request service initiation message (RSI) shown by a broken line in the figuref which
stimulates bank A to begin the procedure already described.

All messages in this and the other protocols we shall describe contain three
particular fieldsf the first defines the message typef for example a key service
message would have a field MCLIKSM where MCL is the tag for the message
type. The other fields which all messages contain are the identities of the originator
and receiver of the message. We shall not repeat these fields because they occur
in all messages.

All messages also contain either an authenticator (MAC) or else an error
detection code (ED C). Whenever a message is of cryptographic importance and
a suitable authenticating key is available, a MAC is included. In the point-to-point
proceduref the KSM and its response RSM have MAC values but the RSI message
does not. This is because authentication always uses a data key and the purpose
of this procedure is to establish a data key (or keys) so the existence of such a
key cannot be assumed. The KSM and RSM messages both include a MAC using
the data key which has been transmitted in the key service message.

Request service initiation
----------- ---- B

RS1
Key service message

KSM
Response service message

RSM

Fig. 6.17 Basic messages in point-to-point key distribution

-- 181 --
MasterCard, Exh. 1004, p. 181

it does not also have a present;
the key used for authentication service message is formed from their
exclusive OR. The KSrvi may also contain an initializing value (IV) enciphered
with a data key, the second one if there are two present. The RSM also contains
the date and time at which the data keys become effective.

For each key encrypting key shared by the two banks, a counter is maintained
which starts at the value 1 when this key is first used to encipher KD values.
It is incremented for each subsequent use and the counter value is sent in the
message. The receiver checks the counter and responds with an error service
message if it is wrong.

Notarization is an optional feature in the procedure for point-to-point key
distribution. If it is used the field NOS/ with no parameters is included in the
message. In this case the KK is subject to a transformation by notarization and
key offset before it is used to encipher the data key.

The response message contains no more than the fields contained in all
messages, mentioned above and the MAC. The MAC is formed with the same
key that was used for the key service message, therefore the receiving bank must
decipher the KD value or values before using them to check the received
authenticator and generate an authenticator on the response. Reception of a correct
RSM by bank A, when its MAC value has been checked, verifies that the correct
KD was received and hence a correct KK, if one was sent. There is no
corresponding check on the correct receipt of the IV.

In addition to the messages shown in Figure 6.17 either bank may send the
other a disconnect service message (DSM) which, in addition to its standard fields
includes the identity of the key to be discontinued. The DSM also includes the
identity of a key used for authenticating it and a MAC value. The response to
the disconnect service message is an RSM containing the identity of the
discontinued key and a MAC using the same key as for the DSM. Note that the
content of a response service message varies according to the type of message
to which it responds.

Key distribution centre

If bank A does not have a data key in common with bank B it may be able to
establish such a key through the agency of a key distribution centre (CKD). For
this purpose, bank A first communicates with the distribution centre and obtains
from it a new data key in two forms. One of these it can interpret using a KK
which it holds in common with the distribution centre. The other it passes on
to the bank B which itself can interpret this using another KK which it has in
common with the same distribution centre. The scheme of messages used is shown
in Figure 6.18.

There is an optional request service initiation (RSI) from bank B to bank A, in

-- 182 --
MasterCard, Exh. 1004, p. 182

I I

RT:~

Response to
requesl RSI\11

Fig. 6.18 Basic messages using n key distribution cmtre (CKD)

case bank B wishes to stimulate bank A into carrying out this protocol. Normally,
bank A would initiate the protocol with an RSI sent to the distribution centre.
In this procedure, only the RSI messages use an error detection code, all the others
employ a MAC. The RSI from bank A indicates the service required and the
identity of the 'ultimate recipient' which is bank B.

The service provided by the key distribution centre is the supply of one or two
data keys and optionally an IV enciphered under a data key, the second one if
there are two. Note that a key distribution centre does not supply key encryption
keys. This contrasts with the key translation centre which is able to translate key
encryption keys if a superior master key encryption key exists.

The response to request (RTR) is returned by the distribution centre and contains
the usual three fields identifying the message type, the originator and receiver
and also a MAC using as key a data key or, if there are two, a key produced by
their exclusive OR. In addition, the RTR includes the identity of bank B, the data
key or keys in two forms, an optional IV and the date and time at which the data
keys become effective.

The key distribution centre maintains a counter which is incremented each time
it uses the key encrypting key, either the one for bank A or the one for bank
B. The two values of these counters (CTA and CTB) are sent in the message.
Concerning the data key or keys, these are provided in two forms called KD and
KSU, the first intended for bank A and the second for bank B. Each is notarized,
that is to say the KK used is modified according to the source and destination
of the key and it is also offset with the value of the counter CTA or CTB.

Bank A receives the RTR, extracts the KD value or values from their notarized
encipherment and verifies the MAC. It can then generate a MAC for the key
service message which it sends to bank B containing the keys in the form KTU,
together with the IV, date and time of effectiveness of the keys and the counter
for bank B (CTB). Bank B can then extract the KD value and verify the
authenticator, after which it returns the RSM. Both the KSM and the RSM contain
the identity of the key distribution centre. Finally, bank A verifies the MAC
received in the RSM.

Key translation centre

A more powerful facility is provided by the key translation service offered by a
key translation centre (CKT). In this scheme, bank A generates the keys it needs
and passes them to the translation centre for conversion to encipherment under
the keys held in common between that centre and bank B. The message which
initiates this procedure, request for service (RFS) contains the key values that will

-- 183 --
MasterCard, Exh. 1004, p. 183

Fig. 6.19 Basic messages using a key translation centre (CKT!

eventually arrive at bank B, see Figure 6.19. As before, the whole procedure may
optionally be initiated by bank B using an RSI message to prompt bank A into
starting the procedure. Apart from the RSI, all the other four messages in this
procedure are protected by authentication using a MAC based on a data key which
is transmitted (in enciphered form) with the message for that purpose. Though
the names of the messages are similar in these various procedures, the content
is different according to the procedure in which they take part. The handling of
the counters CTA and CTB is similar to that of the key distribution procedure,
so also are the identifying data, such as the identity of bank B in RFS and RTR
and the identity of the key translation centre in KSM and RSM. Effectively, each
important message holds the identity of all three parties.

The key translation centre translates either one KK or one or two data keys.
It never translates keys of both types. Keys to be translated are sent enciphered
under existing superior keys but not notarized. If a KK is sent for translation a
data key is also sent, enciphered under this KK, but is not intended for translation,
it is merely for calculation of the MAC values.

The response, RTR, contains the translated keys, either a KK or a KD or a pair
of KDs. They are notarized for transmission between the translation centre and
bank B, and offset using the counter CTB. The value of CTA is sent in the RFS
and returned in the RTR. Bank A receives the RTR and verifies its authenticator
using the data key it originally sent. It then transmits the notarized keys to bank
B, together with the CTB value received from the translation service.

If a key encrypting key has been translated, new data keys are generated by
bank A to include in the KSM, enciphered under the new KK. At least one
such data key is needed to provide the means for authentication of the KSM and
its response. Two data keys may be sent in the KSM and may subsequently be
used between the two banks as working data keys. In addition, bank A may
generate an IV and send this enciphered under a data key, the second key if there
are two of them. Bank A also decides the effective date and time (EDK) for the
new keys and includes that in the message. Bank B deciphers first the KK, if any,
then the data key or keys before verifying the authenticator and returning the
RSM, which contains only identifying data and a MAC. Finally bank A verifies
the authenticator of the RSM.

The full procedure for operation of the key translation centre includes error
service messages (ESM) and error recovery service messages (ERS) which help
to report and recover from loss of synchronism of the counters. As with the other
two environments any one of the parties can send a disconnect service message
(DSM) to terminate the operation of a specified key and receive a response to
verify that this has happened.

-- 184 --
MasterCard, Exh. 1004, p. 184

'
I I

Fig. 6.20 Using two key translation centres in tum

Consecutive use of two key translation centres

Suppose that bank A has a key relationship with translati0n centre CKTl. By key
relationship we mean that the two parties share a key encryption key. Suppose
also that CKT1 has a keying relationship with another key translation centre CKT2.
Bank A wishes to communicate with bank B for which the normal key translation
centre is CKT2. There is a scheme which enables bank A to communicate with
bank B by using the procedure shown in Figure 6.19 twice over. The method is
shown in Figure 6.20 in which, for convenience, bank A is shown twice.

In the first stage, bank A uses the normal procedure with key translation centre
1 to establish a key encrypting key in common with CKT2. Having done this,
bank A then interacts with CKT2, and since CKT2 has a key in common with
bank B, it is able to translate bank A's key for delivery in a KSM message to bank
B. At the end of these two stages, banks A and B have a key encrypting key in
common. They can then exchange data keys by the point-to-point procedure and
use these data keys to protect their messages.

It is clear that this principle could be extended to translate keys through a
number of translation centres which are linked by mutual KK values. A group
of translation centres could organize themselves to provide a comprehensive
service in a number of ways, for example appointing one of them to translate
keys between any of the others. These possibilities are not described in the
published standard, which quotes the arrangement of Figure 6.20 as an application
of the key translation procedure.

This extension to more than one centre is not possible with the key distribution
centres because they can distribute only data keys and therefore cannot establish
a new KK relationship.

Key notarization and offset

Key notarization and offset are applied to any keys supplied by a key distribution
centre and to the translated keys from a translation centre .. These keys are supplied
under encipherment by a superior key and the notarization and offset procedures
consist of modifying the superior key before using it for encipherment.
Notarization means that the key is modified according to the source and
destination of the message, offset means that the key is modified according to
a counter value, which provides a sequence number for the successive keys

-- 185 --
MasterCard, Exh. 1004, p. 185

standard
distribution and

ulc:•Luu•_uclulc, use of notatizatio~1 is 01YtloJ:1aL
6.21 shows the calculation involved in notarization and offset. We

begin with a key encrypting key of double length which has two parts, KI<l and
KKr. The application to single-length KK will be described later. The identities
of the source and destination of the key are given by double-length fields entitled
TO and FM. The two halves of TO are called TOl and T02 and similarly the two
halves of FM are called FMl and FM2. The figure shows how a combination of
encipherment and exclusive OR is used to combine these values to form a double­
length value called the notary seal (NS). This is the quantity which is used to
modify the key * KK before it is used for encipherment.

The figure also shows the use of key offset, in which the counter value CT is
combined by exclusive OR with each part of the notary seal before this is used
to modify the double-length KK which is to be used for enciphering the key. The
result of these operations is the double-length value * KN which is used in the
triple encipherment process ede to encipher the key for transmission. Normally
this transmitted key will be a data key, but it could be a key encrypting key
enciphered by a master key encrypting key. A similar procedure can be used with
single-length KK values employing the convention that KKr equals KKI. A single­
length notary seal value is generated by combining the 32-bit halves of the double­
length value as shown at the right of the figure. The subsequent operations are
applied to a single-length value to generate a single-length modified key KN used
for the encipherment of a transmitted key.

KKr KKt

~ ~

Single length KK•

___ N'"~F"l _____ ~

CT-cr Off"t rCT KKI • KK' • KK

KKr

Fig. 6.21 Notarization and key offset

-- 186 --
MasterCard, Exh. 1004, p. 186

n13J.Lagerrt2nt is still

'Jc:Hc:leu purpose cipher and modes of are now an estab-
lished fact but key management is tailored to applications. The need
for this adaption will become even clearer when we describe the special
circumstances of point-of-sale EFT in chapter 10. For all kinds of applications,
key management standards will become necessary and they will have some
features in common and many points of divergence. Progress in this field still
seems unclear. The international standard ISO 8732 includes some valuable
concepts and notation but should not be taken as a point of departure for all future
key management standards.

There is great potential for the use of public key cryptography in key
management. This technology is introduced in chapter 8 and the application of
these asymmetric algorithms to digital signature is described in chapter 9. Both
are valuable techniques for improving the security of key management.
Standardization in their key management role has not begun but ISO 8732
envisages that there will be, in due course, provision for the use of asymmetric
algorithms for key distribution. The most immediate use is to employ public key
cryptography to distribute keys for symmetric algorithms as typified by DES. The
security requirements for the safe use of public key cryptography are described
in chapter 8 and digital signatures, as described in chapter 9, provide a superior
method of checking the integrity of key distribution messages and resolving
disputes concerning messages sent and received.

Key management in electronic funds transfer systems (EFT) has been developed
both with symmetric algorithms and public key cryptography. Chapter 10 contains
descriptions of key management of both kinds.

REFERENCES

1. Ehrsam, W.F., Matyas, S.M., Meyer, C.H. and Tuchman, W.L. 'A cryptographic key
management scheme for implementing the Data Encryption Standard', IBM Systems
]., 17, No.2, 106-125, May 1978.

2. Banking-Key Management (Wholesale), International Standard ISO 8732, International
Organization for Standardization, Geneva, 1988.

3. Matyas, S.M. and Meyer, C.H. 'Generation, distribution and installation of crypto­
graphic keys', IBM Systems]., 17, No.2, 126-137, May 1978.

4. Heinrich, F. The network security center: a system level approach to computer network security,
NBS Special Publication 500-21, January 1978.

5. Needham, R.M. and Schroeder, M.D. 'Using encryption for authentication in large
networks of computers', Comm. ACM, 21, No. 12, 993-999, December 1978.

6. Popek, G.J. and Kline, C.S. 'Encryption and secure computer networks', Computing
Surveys, 11, No. 4, 331-356, December 1979.

7. Denning, D.E. and Sacco, G.M. 'Timestamps in key distribution protocols', Comm. ACM,
24, No. 8, 533-536, August 1981.

8. Jones, R.W., 'Some techniques for handling encipherment keys', ICL Technical]., 3,
No. 2, 175-188, November 1982.

-- 187 --
MasterCard, Exh. 1004, p. 187

7.1. INTRODUCTION

The security of a system often depends on identifying correctly the person at
a terminal. A familiar example is a bank's 'Automatic Teller Machine' which gives
cash to account holders that it can identify. Direct person-computer interaction
is good for efficiency, but it opens possibilities for fraud by a masquerade - the
adoption of a false identity. Access to computers and entry to buildings should
be controlled according to the identity of the person, but like many human skills
that we take for granted (such as language and vision) recognizing a person is
surprisingly hard for a computer.

Suppose that a bank has a million customers. If it is to recognize them by a
personal identification number (PIN), that number must have at least six decimals
and if instead it recognizes by a signature, the measurement of the signature must
separate each person's signature from all the others. The bigger the population,
the harder it is to make a positive identification. Fortunately for us, this is not
the problem usually presented. We assume that the terminal user wants to be
known. We can ask him his identity and it can be entered on a keyboard or from
a card he carries. We can use this claimed identity to access a file giving the
reference 'measures' of his signature or his reference PIN. If the given data match
the reference, we accept him. Suppose he is an impostor who does not have the
correct signature or password, then there is a small probability that he may be
lucky, for example a four-digit password, well-chosen, makes this probability
10-4• With the right precautions, this can be adequate because nobody would
risk being caught for such a small chance of success. Nevertheless, the probability
of a successful masquerade must be chosen according to the amount at stake -
an instant pay-off of £10 million is worth a 10-4 chance try if the risk of detec­
tion is small enough. The important characteristic of identity verification is that
the precision of the method need not be increased as the population increases.
It depends rather on the ratio of the potential illegal gain to the 'loss' value of
being caught. Practical systems do not identify the individual but do verify the
identity he claims to have.

Methods of personal identity verification can be divided into four broad
categories, though particular systems can contain elements of more than one
category. These categories employ, (a) something known by the person, (b)
something possessed by the person, (c) a physical characteristic of the person,
(d) the result of an involuntary action of the person.

A password and a passport are examples of categories (a) and (b). Categories
(c) and (d) are not always distinguished - we can quote a fingerprint as an

-- 188 --
MasterCard, Exh. 1004, p. 188

7.2. IDENTITY VERIFICATION BY SOMETHING KNOWN

Passwords

The best-known example of identity verification by something known is the
password. Passwords have been used very widely in identity verification in an
enormous range of contexts, from Ali Baba' s opening of the magic cave, through
military applications, to protocols for accessing computer systems. Much atten­
tion has been given to methods of generating and managing passwords. A stan­
dard for PIN management was published by ANSI in 1982.1

We can divide passwords into several categories, (a) group passwords which
are common to all users on a system, (b) passwords which are unique to individual
users, (c) passwords which are not unique to individual users, but serve to con­
firm a claimed identity, (d) passwords which change every time a system is
accessed. Each of these types of password has seen some use in our context.

Group passwords are sometimes used as part of the log-on procedure for a ser­
vice being accessed from a terminal. However, being common to all users, they
are likely to become known outside the circle for which they are intended.
Disclosure usually happens through a breach of security such as writing the
password on the wall by a terminat a regrettably widespread practice. In any
system where more than the minimal security is needed, group passwords should
be ruled out.

Passwords unique to each user potentially provide a much higher level of
security. If illegal access takes place, then a system log should be able to
show under what password the access took place. Control of this kind can
detect the use of a loaned password, disclosed by the user to some acquaintance.
On the other hand, careless security in storing or handling a password may lead
to its unintentional disclosure; this could also be said to be the fault of the person
to whom the password has been allocated. Good security practice entails memoriz­
ing the password and not keeping a printed copy. If unique passwords are
implemented, then a separate user identifier need not necessarily be used, though
an added confirmation of identity can be generated. In a user population which
is very large, as, for example, the users of a bank's automatic teller terminals,
use of unique passwords is impracticable - such a password would have to be
too long for easy memorizing.

This implies a third kind of password which is becoming increasingly common
- the non-unique password. Here a relatively short password, of, say, four
decimal digits, is allocated to each user. Identification of the user depends on
a much longer number which the user is not required to memorize - it may be
held on the magnetic stripe of a card, for example. The fact that the same password

-- 189 --
MasterCard, Exh. 1004, p. 189

token, for in such a vvay that the off--line ter-
minal can interpret it whilst the user intruder) is too dif-
ficult; this implies some kind of encipherment.

There is a fourth kind of password - one which changes every time the system
is accessed. To operate such a system it is necessary to prepare a list of passwords
and give a copy of the list to the user. At each access one password is used and
then becomes invalid for future access. This prevents an intruder from acquiring
a current password by tapping a communication line because the traffic on the
line gives no indication whatsoever of the next acceptable password. Clearly the
system is stronger than those systems which use the same password(s) repeatedly
and is useful where the highest security is required. However, there are certain
disadvantages; the user must protect his printed list of passwords and the
password list requires storage and protection at the central installation. The
amount of password material depends on the frequency of access. One-time
passwords of this type are in use in the Society for Worldwide Interbank Finan­
cial Telecommunications (S.W.I.F.T.) network of the international banking com­
munity described in chapter 10. For greater security the S.W.I.F.T. password
tabulations are prepared in two halves, so that each list contains only half
passwords. The two halves are sent separately to users, reducing the chance of
complete passwords being intercepted.

It is of course necessary to design the password handling by the system in such
a way that it is protected against disclosure. For this reason, any password that
is transmitted from a terminal to a central installation should be protected during
transit by encipherment, otherwise a passive line tap will suffice to betray it to
an intruder. Equally, the response from the central installation to the terminal
accepting the validity of the identity and password must be protected by encipher­
rnent. If this is not done, then the accepting response can be reorganized and
reproduced on the line by an intruder with an active line tap; if the terminal were
an ATM this would allow an intruder to defraud the system without actually
knowing any password. Furthermore, some variability must be included in both
request and reply (for example, serial number or time/date), otherwise a stan­
dard request or reply would lead to a standard enciphered format. All the intruder
need then do would be to record the standard message and replay it whenever
he chose; a replayed request would deceive the central system or a replayed reply
would deceive the ATM.

We have referred to lists of identities and passwords held at central installa­
tions. Such lists could easily become available to operational staff or systems pro­
grammers; on this account it is important not to store passwords in clear form.
The usual solution to this problem is to encipher the passwords in some way;
the original idea for using enciphered password lists is due to Needham, cited
by Wilkes. 2 If the encipherment is carried out with an algorithm such as the Data
Encryption Standard (DES), then the risk is transferred to disclosure of the

-- 190 --
MasterCard, Exh. 1004, p. 190

The f',Jeeclharn made use of a one-way
this is a function is easy to in on2 but very difficult to
invert. This of function is considered in detail in chapter 8. The Bell password
protection system made a novel use of the DES algorithm as a one-way function
in a programmed implementation. Instead of using a secret key to encipher the
password list, the first eight characters of each individual password were used
as a DES key to encipher a constant; the DES algorithm was iterated twenty-five
times and the resulting 64-bit field repacked to become a string of eleven print­
able characters. The result of this operation was stored in the password list. The
strength of this system was considered adequate until fast hardware implemen­
tations of the DES became available; it was feared that fast DES operation would
allow exhaustive search for passwords, using the enciphered forms from the
password list. For this reason the programmed algorithm was altered so that the
internal E permutation (see chapter 3) became dependent on a random number
chosen (and entered into the password file) at the time of registration of each
password. Thus standard DES devices could no longer be used for a systematic
attack on the password security.

Figure 7.1 shows the flow of variables in password checking with a one-way
function.

The Bell study considers the time taken to search for a password. On the
assumption that an intruder has the opportunity to program a system to try a
sequence of passwords without being detected and thrown off the system, it is
possible to predict how long it would take to test all possible passwords against
a given identity. On a PDP11/70 it took 1.25 ms to encrypt and test each poten­
tial password and compare the result with the password file. For a sequence of
four lower case letters the time taken to check all possible passwords was 10 min;
for a four-character sequence selected from ninety-five printable characters the
time was 28 h; for a sequence of five characters chosen from the set of sixty-two
alphanumeric characters the time was 318 h. Evidently a password consisting of

b'-[J--___ !_(~) __
Function of
password

Yes In?

--''----------- _I~e_12.ti.!Y __ ------l!o-1

Table of

Passwords

I (b) against I

Fig. 7.1 Password checking with a one-way function

-- 191 --
MasterCard, Exh. 1004, p. 191

to select char;;,cter sequences that are
sequences that consider to be memorable. The Bell casts a
fascinating light upon user habits when no constraints were placed on password
choice. Of 3 289 freely chosen passwords examined the character strings used
were as follows: 15 were a single American Standard Code for Information Inter­
change (ASCII) character, 72 were two ASCII characters, 464 were three ASCII
characters, 477 were four alphanumeric characters, 706 were five letters, all upper
case or all lower case, and 605 were six letters, all lower case.

They also discovered that favourite choices of passwords were dictionary words
spelt backwards, first names, surnames, street names, city names, car registra­
tion numbers, room numbers, social security numbers, telephone numbers, etc.;
to an intruder these are all worth testing before considering less-likely character
sequences. Of the 3 289 passwords the Bell authors collected, 492 fell into one
or other of these categories. Added to the list of short sequences already given,
this meant that 2 831 passwords, or 86 per cent of the sample, were either too
easily predictable or too easily searched for.

It seems from this evidence that the practice of leaving choice of password to
the user can result in the use of unsatisfactory passwords. An alternative is to
have the choice of password made by the system. For this purpose a series of
random characters can be generated, but the user will find it difficult to memorize
totally random character streams, even if the string length is limited to eight
characters, say.

Memorability is known to be enhanced if the character stream can be chosen
so as to be pronounceable, because users find syllables rriore easily memorable
than characters. Therefore a generator that is constrained to obey certain built-in
pronunciation rules may be able to produce passwords which are difficult to
predict but not impossibly difficult to remember. For example, 'SCRAMBOO',
'BRIGMERL', 'FLIGMATH' and 'LIDFRANG' are all nonsensical, but easily pro­
nounceable and therefore memorable. The total number of different eight-letter
character strings is about 2.1 x 1011

. One particular password generation
scheme4 produced a measure of the fraction of all possible eight-character strings
that were pronounceable; this was found to be about 0.027, giving a total popula­
tion of pronounceable eight-letter strings as 5.54 x 109. A large commercial
English dictionary would contain as many as 2.5 X 105 different words of all
lengths, so the random number generator used in this mode produces vastly more
potential passwords than are found in a dictionary; hence such passwords are
far less predictable.

The task of secure transmission of passwords from a central system to the users
deserves attention. Unless the passwords are transported securely, their value
is nullified. Encipherment is no solution because verifying the correct identity
of the receiver presents the same problem that the password is intended to solve.
It seems advisable to use some other means of transport such as the letter post
for password transmission. The banks use this technique when sending PINs to

-- 192 --
MasterCard, Exh. 1004, p. 192

open.
PnuP'In-r>P is with in transit, then this is ob;1ious to the intended reci­
pient, should he eventually receive it; any interference should lead to
the rejection of the password. In banking practice the PIN is used in conjunction
with a plastic card which is sent separately from the PIN; in order to receive a
PIN the authorized user must acknowledge safe receipt of the card to the bank.
An intruder must obtain both card and PIN before being able to secure any profit
from his action. A modest degree of security is obtained by this technique, but
it could not be applied where high security is called for. In the latter case it may
be necessary to use a trusted courier service to transport passwords or hand them
over personally to the user.

There is a school of thought that believes that the password should not be known
to the issuing organization. One system5 that allows a personal choice of
password unknown to the system makes use of a one-way function of a com­
bination of personal account number and password; the password is chosen by
the user on the occasion of a visit to the bank and keyed on a keyboard unseen
by any bank officiat combined with the personal account number and then stored
in the bank system. To identify the user at a subsequent visit to the bank, the
same one-way function is used. The password is not known by the bank at any
time; if the user forgets the password, then another personal visit to the bank
is necessary in order to choose and activate a new password. Since the passworc).
is not known to bank employees, manipulation of the account cannot take place
by normal system channels, though this does not rule out improper access by
privileged system operators, for example using the command to change to a new
password.

When the screen of a VDU requests 'Enter your password' and the user taps
his password on the keys, he is taking a risk. The system has not yet authen­
ticated itself to the user so he might·be seeing a masquerade of the actual system,
designed only for the purpose of capturing his password. This trick has been
widely used as a student prank. When a guard holding a gun asks for your
password you have no choice, it is an unequal situation. Perhaps this led to the
habit of using one-way passwords in computer systems. But if each party needs
to authenticate the other, there should be an exchange of passwords.

When system and user exchange passwords there is a dilemma. One party gives
his password before the other and he has no guarantee at that moment that the
other party is not a masquerader. This problem can be overcome in a way that
is illustrated in Figure 7.2. Here there are two parties, Ann and Bill, holding
passwords P and Q respectively. Each knows the other's password for checking
purposes. They do not directly exchange passwords but use a one-way function
to reply to a challenge from the other party. For example Ann challenges Bill by
sending the random variable x1 and Bill replies with a one-way function y1 of this
value, namely

-- 193 --
MasterCard, Exh. 1004, p. 193

Y1

does y1=0(Q',x1l?

X I

Y1 "O(Q, x1)

find random x2

y2

does y 2 = 0 (P ', X 2) ?

Fig. 7.2 Two-way password checking

The one-way function must be such that even when x1 and y1 are both known
it is not possible in practice to determine Q. Although Ann cannot determine
Q from this reply she can check her own value of Q against the value used by
Bill in applying the same one-way function to the value x1 which she created.
If this check is successful she accepts Bill as the genuine owner of the password Q.

In a similar way Bill issues the challenge x2 and receives the response y2 in the
form

y2 = O(P, x2).

This can also be checked so that Bill now has determined that Ann knows the
password P.

This method fails to be secure if the range of the passwords is insufficient. For
example, in banking practice the personal identification number is often only four
decimal digits long. The system described above using such a short password
is very weak because the 10 000 possible values can be checked and, for one of
them, the response will match the response received. The challenger can deter­
mine the password of the other party.

It might seem that this problem can be overcome by padding the password with
a random number and revealing the padding only after the challenges and
responses have been exchanged. For example, let the 16-bit password Q be con­
catenated with a 40-bit random number R1 to form a 56-bit variable and then let
Bill respond to the challenge x1 from Ann with

Y1 = O(QIIR1, x1).

In this expression, QIIR1 is the 56-bit concatenation of these two variables.
Suppose that each party has carried out this challenge and response, then it

remains for them to exchange the values of R1 and R2 so that they can verify the
responses and thus authenticate each other. But the problem has not been solved
because the dilemma 'Who should give the password first?' has been converted
into the dilemma 'Who should first reveal the random padding?' As soon as one
party reveals his random number, the other party can carry out a password search
to find his password.

-- 194 --
MasterCard, Exh. 1004, p. 194

method a
sequence of one number. It uses a one-way func-
tion y = O(x) and iterates this function times. We use the notation that
O"(x) is the result of operating the one-way fm1cbion n times, beginning with
the variable x. For example

0\x) = O(O(O(x))).

To establish the password sequence, Ann takes a random variable x and forms
the value y0 to send to Bill:

Yo = O"(x).

This transfer need not be made in secret since the seed value x cannot be
discovered.

For the first password Ann sends the value

y1 = on-\x).

Bill can easily check this since O(y1) = y0 and he has already received y0 as the
initializing value.

The sequence of passwords continues in this way. The ith password is

Yi = on-i(x).

Each password can be checked by its relation with the previous password, which
has itself been checked. The sequence terminates at the nth password which is
x itself.

If passwords are lost or an error occurs, provided that Bill has a recent authen­
tic password value P, a new offered password can be checked against this value
by repeated operation with 0 to cover the gap between the offered password
and P. In this way the system can re-synchronize after a failure such as might
be caused by a line error.

Questionnaires

Another method of identity verification makes use of information known to the
authorized user but unlikely to be known to others. On first introduction to the
system the user is asked a series of questions relating to such apparently irrele­
vant things as name of school headmaster, colour of grandmother's eyes, name
of favourite author or football team, etc., rather than to the more usual components
of a curriculum vitae, such as place and date of birth, maiden name of wife, etc.
Not all the questions need be answered, provided that enough are answered.
The user might add his own questions and answers, if the system allows this
feature. The selected items are such that the user is likely to find them easy to
remember, but an intruder is likely to find them difficult to discover. If desired,
the answers may be totally fictional, in which case an intruder may find them
even more difficult to discover. On later visits to the system for access, the user
is asked a selection of questions to which the system has stored the answers.

-- 195 --
MasterCard, Exh. 1004, p. 195

sorne l/-,-a;-
Tf~e systerr~ of ac:c::ss cor~;:rol has the ciCI~va;>t21<:rP

r.nemorable information, it does involve a rather
the user and the which may be found tedious some,
eslJec:ial.lv if It is hardly likely to be as the means of control-
ling access to a automatic teller terminal, for example. Furthermore/ if the
value protected in the computer by the access control system is great enough,
the determined intruder can take the trouble to research the background of the
authorized user sufficiently to provide the questionnaire answers. Therefore this
technique is not likely to be used in systems requiring a high level of security.

7.3. IDENTITY VERIFICATION BY A TOKEN

In the widest sense1 access control by means of something possessed by the
authorized user is very familiar. Nearly all of us possess keys to operate locks
in cars1 filing cabinets1 house doors etc. Computer system access may be made
dependent upon possession of a key which fits a lock installed in the computer
terminal. The first action of a user is to enable the terminal using his key1 after
which normal log-on procedure may follow. For adequate security the lock must
be of a complicated (and therefore expensive) type/ preferably 1 Unpickable'; there
must be a wide range of possible key variations (known in the locksmith trade
as I differs') to fit locks of the particular class in use, so that the intruder cannot
make use of a full set in his possession, trying each until one is found that will
fit. Unfortunately/ if a key is lost or loaned to someone, it is usually fairly easy
to copy it/ even though the lock mechanism may be complicated. Locksmiths have
agreements that keys of particular types are not copied without proper authoriza­
tion, but even this will not deter the determined intruder. The copied key may
be restored to its owner without the latter even being aware of its being missing.
A lock and key is a useful way to restrict access to one or two selected people,
such as those authorized to load cryptographic keys, but it is not of general use
for access control. The problem of 'copyability' is typical of all token-based iden­
tity verification.

Magnetic stripe cards

A token which is becoming as common as the physical key is the plastic card
with a magnetic stripe. Such cards are increasingly being used for identification
purposes/ for automatic teller machine (ATM) and point-of-sale operations, for
credit validation, for access control to secure sites etc. An International Organiza­
tion for Standardization (ISO) standard6 gives dimensions for card and stripe;
other proposed standards define the use to which each of the recording tracks
on the stripe shall be put, including the relevant data formats. The general card
dimensions and layout are indicated in Figure 7.3. Amongst other data the user
identity is stored on the magnetic stripe. Generally speaking the magnetic stripe
card is used in conjunction with a type of password called a personal identifica­
tion number (PIN). In off-line systems the PIN must also be stored on the stripe

-- 196 --
MasterCard, Exh. 1004, p. 196

0. 76 mm thick

5 66mm max
8.46mm min

8.97mm max

8 97mm m(!)(
8.46mm min

11.76mm min
12.27mm max 12.01 mm min

12.52mm max
Nearest parallel edge

15.32mm min
15.82mm max

\ Magnetic
) stripe

area

________ \ ___ -
Track 1
--------- ----- .
-------- ------- .
Track 2
------- ---------- .
------- ------------ -
_T~<:_C~-~-- -------------- _

Fig. 7.3 Layout of magnetic-stripe cards

in enciphered form. The recognition equipment reads the identity, deciphers the
PIN and compares the latter with the PIN keyed in by the user. In on-line systems
the reference PIN need not be carried on the card, but can be stored in the cen­
tral system; the claimed identity is notified to the central system together with
the offered PIN; if the latter agrees with the reference PIN, then access is
permitted.

As we have remarked already in our discussion of passwords, the user must
be educated to take proper care of his PIN. It is not unknown for users to write
their PIN on the card itself in order not to forget it; this is clearly asking for trou­
ble. There are also slightly more subtle forms of attack. Cards often carry the user
name imprinted so that an intruder can easily discover the user identity corre­
sponding to a stolen card. If the card is an ATM card, the enemy telephones the
user, claims to be representing his bank and asks for the PIN 'in order that we
may restore your card to our system'. If the card does not carry the user identity,
the latter may still be discovered because the bank national number and user
account numbers appear; these identifiers appear together with users' identity
on cheques.

Ideally, PINs should be memorized by their users and not written down in diary
or notebook. However, this may be asking too much of the average user, especially
if a large number of cards is carried. It is said that the average number of credit
cards carried by American businessmen is eleven, each of which may have its
distinct PIN.

Unfortunately it is very easy to copy the usual kind of magnetic stripe card.
Cards can be manufactured, without excessive difficulty, to resemble true cards
sufficiently well as to deceive most people having to deal with them. One widely
used method of hindering the production of forged embossed cards is the

-- 197 --
MasterCard, Exh. 1004, p. 197

tiGil

invented to imnrr'""'

described here.

Watermark

The Emidata/Malco system7 establishes a permanent, non-erasable, magnetic
encoding in the structure of the tape. The permanent recording is made during
the manufacture of the tape by exposing it to a sequence of magnetic fields whilst
the magnetic particles (held in suspension in a resinous lacquer) are still wet. The
particles in most tapes (for example gamma ferric oxide) are in the form of long
thin needles (acicular); to produce the watermark pattern the particles are first
aligned by application of a steady magnetic field at 45° to the longitudinal axis
of the tape. A pattern of current pulses is then applied to a special recording head
as the tape passes beneath it; when the current is present the particle orientation
is changed to the other 45° orientation. The tape then passes through a drier and
the orientation of the acicular particles is fixed permanently. Figure 7.4 shows
the arrangement of particles. Emidata use the trade name /Watermark/ for tape
prepared in this way.

To check the permanent record on a stripe with this structure a special reader
is required; in this reader the tape is exposed first to a constant magnetic field
and then the fixed recording is read by a head suicc.bly oriented. Because
the tape is first exposed to the constant field before reading1 this operation
is restricted to track 0 of the stripe/ a track which is not present on most
current magnetic stripes. On tracks 1 to 3 recording and reading is carried out
by heads with normal orientation; the normal recording and reading is not affected
by the presence of the underlying structure in the magnetic tape. It is, therefore,
possible to read a permanent pattern of ones and zeros from track 0 which is not
alterable by a forger; this recording pattern can be used to provide valid iden­
tification of the stripe and therefore of the card. It would be virtually impossible
for a forger to reconstruct the underlying recording in such a way as to deceive
a Watermark reader; any attempt to record the 45° pattern on normal tape would
be frustrated by the initial exposure of track 0 of the tape to the constant field
in the Watermark reader. The layout of the various tracks is shown in Figure 7.5.

The watermark contains 50 to 100 bits of data which are fixed and it is not easy
to code these to suit the user of each card. In many cases, random numbers are

Conventional Magnetics Watermark Magnetics

Fig. 7.4 Arrangement of 'Watermark' particles

-- 198 --
MasterCard, Exh. 1004, p. 198

Troc~·(

Fig. 7.5 Layout of 'Watermark' tape

used. If W is the watermark number and D the data on tracks 1 and 3 to be pro­
tected, an enciphered check field, C = Ek(W, D) can be stored on the magnetic
stripe as well as D. Thus the reader can verify this relationship if the secret key,
k, is used in its checking device. An enemy cannot compute C and therefore can­
not use one card to hold another's data, since their W values are different. The
data D can be changed in a device where k is available by altering C to match
the new data, but generally it is fixed data that are protected, such as the account
number and PIN validation data. It is a weakness that k must be available at all
places where the watermark is checked (the checking need not be done at the
terminal, however, if a link to a central place is available). The use of public key
ciphers (see chapter 8) makes it possible to check using only non-secret data, but
increases the data storage requirement a great deal.

The whole strength of the system depends upon the difficulty faced by a forger
in counterfeiting watermarked tape. The manufacturing process is such that a
forger would find it very difficult to do this, since the process requires significant
capital investment and unique technical skills.

Sandwich tape

An alternative to Watermark tape is the tape sandwich in which low- and high­
coercivity recording media are bonded together with the low-coercivity tape
nearest the recording heads. In order to write on such a tape so that the record
is made in both layers a head is required which will produce a high-intensity field.
In the tape reader, the tape first passes through an erase field such that any record­
ing in the low-coercivity layer is removed, but the recording in the high-coercivity
layer is not disturbed. The 'permanent' recording is then read in the usual way.
Figure 7.6 illustrates the structure of the tape and the nature of the recording.

Security of a system using sandwich tape is based on two premises; first, if
a forger uses ordinary tape in the manufacture of a forged card, this will be
frustrated by exposure of the card to the erase field in the reader; second, if a
forger seeks to use the sandwich tape on a stolen card and make a recording of
his own, he will find it difficult to create the high-intensity field required for writing
into the high-coercivity layer. There is no doubt that use of ordinary magnetic
tape is frustrated by this technique, but it seems that high-intensity recording
heads might not be too difficult to obtain. There is, therefore, some doubt whether
the sandwich tape provides an adequate solution to the problem of making the
recordings on plastic cards unforgeable.

-- 199 --
MasterCard, Exh. 1004, p. 199

)

Active cards

iiEld
l?COicJing

Low coercivilv
Hiah coercivitv

tacording

(rl Residual
recording

'-='

After erasure with low field

Fig. 7. 6 Structure of 'sandwich' tape

A recent development is the 'active' or 'smart' card, in which microprocessor
or store chips are embedded in the plastic card. This enables the card to extend
its storage capacity beyond what is possible on a magnetic stripe (about 250 bytes)
and to engage in some data pro.cessing. The problem until recently has been the
difficulty of introduction of the chip into the card. It has been seen as a require­
ment that cards of this type shall be of the same dimensions as the standard card
with magnetic stripe (8.57 em x 5.40 em X 0.76 mm); it is also desirable that the
chip card shall be as durable as the standard card. Developments in chip
technology have now advanced to the point where the chip is small enough to
fit into the required space, thickness being the critical dimension; new methods
of mounting and connecting to the chip allow sufficient flexibility. Contacts to
the circuitry are via plated areas on the card surface; power supply will almost
certainly be applied via this route so that the card is active when it is in a ter­
minal device.

At present the type of chip inserted in a card can be a processor with about
8 Kbytes of store in electrically alterable ROM; on the other hand, other cards
contain only memory. This of necessity limits the kind of operation that may be
carried out.

Information stored on the card may be semi-permanent, stored in ROM, in
which case it may have the same sort of function as that usually carried at pre­
sent on magnetic stripes - user identification, etc. Illegal alteration of the ROM
contents would almost certainly be much more difficult than alteration of a
magnetic stripe; therefore, security of such a card is enhanced. Such a card can
play a role in identity verification similar to that which we have already outlined,
though the additional security and amount of storage might allow more­
sophisticated systems.

One application of a card with stored data is for viewing pay-television. If the
television transmission is sent out enciphered, such that a decipherment key is
required in order to make it usable, then the decipherment key, changed every

-- 200 --
MasterCard, Exh. 1004, p. 200

intelLLgiiJie and used in the receiver.
so that a card becomes out of date and a nevv card mus·[be obtained.

If the card has capability, this can be invoked in an identity
verification procedure. The secret key is held on the card and each card issued
has a different key according to the user to whom it has been issued. Identity
verification can then be made to depend on the card making the correct response
to a challenge issued by the verification terminal; the terminal issues a test pat­
tern which the card encrypts and returns to the terminal; the latter checks the
response against the encipherment key which should be contained in the card,
correct response implying presence of the right key. This system has the advan­
tage that the response depends on the challenge and, therefore, an attempt by
a potential intruder to tap the channel between card and verification terminal
would yield little of use in making an attack upon the system.

If a system can be devised in which sufficient rewritable store can be established
on a plastic card, then many applications become possible. Bank customers may
be supplied with cards which allow them to make purchases in shops at point­
of-sale terminals; the card is initially 'charged' at the bank with value (debited
to the customer's account) which is decremented at the point-of-sale terminal,
the amount of the decrement being transferred as a credit to a corresponding
data store held by the retailer. When the customer's card is exhausted, it
is returned to the bank for 're-charging'. The retailer periodically takes his stored
data to the bank for credit to his account. This type of system is described in
chapter 10.

The physical security of data on a 'smart card' is improved by storing all the
sensitive data on the same chip that holds the processing and encipherment
facilities. Active or passive attack can be made difficult, but there is not yet
available an independent assessment of the level of physical security obtained.
The thin plastic card is not the only format for an 'intelligent token' containing
storage or processing chips. Tokens could be physically similar to a small calculator
or like a physical key that turns in a 'lock' which is really a reading terminal.
It is possible that greater physical security can be provided in enclosures a little
larger than a card.

Another development uses plastic cards which contain stores which are read
once and then erased. One such storage medium is the hologram. The kind of
application where a system of this type may be used is the purchase of a card
with a set initial value, to be used against the provision of a service, for example,
transport, telephone or pay-television; a recent example is the 'Cardphone' ser­
vice of British Telecom, which uses a holographic medium. As the service is used,
so the storage on the card is progressively read and erased, bit by bit; finally the
card has no more value. When the card is exhausted it is thrown away and another
card purchased. To the supplier of the service it is important that the erasure
of the card value is permanent, otherwise illegal 'refreshment' of the card may
take place with loss of revenue. It is also important that it is excessively difficult

