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PREFACE 

This publication presents a state-of-the-art survey of public­
key cryptography circa 1988 - 1990. In doing so, it covers a number 
of different topics including: 

1. The theory of public-key cryptography. 

2. Comparisons to conventional (secret-key) cryptography. 

3. A largely self-contained summary of relevant mathematics. 

4. A survey of major existing public-key systems. 

5. An exploration of digital signatures and hash functions. 

6. A survey of public-key implementations in networks. 

7. An introduction to zero-knowledge protocols and 
probabilistic encryption. 

8. An exploration of security issues and key sizes. 

The treatment of public-key cryptography in this publication 
includes both theory and practice. Much of the existing published 
work, including those documents listed in the references, treats 
either the theory or specific systems/implementations, but not 
both. The viewpoint here is that the theory and practice are 
inseparable. 

Any mention of commercial products is for purposes of 
explanation and illustration only. Also, the selection of 
cryptosystems and hash functions mentioned in this publication 
serve only to provide examples. Such identification does not imply 
recommendation or endorsement by the National Institute of 
Standards and Technology, nor does it imply that systems or 
functions identified are necessarily the best available for the 
purpose. 

The focus is on issues such as criteria for systems and 
protocols for usage. These are presumably long-term, in contrast, 
to the set of existing public-key systems which is more volatile. 
Thus we provide information which will hopefully be of use to 
implementors of systems, but the frameworks we develop are 
versatile enough to be relevant in a variety of settings. The 
latter may include, for example, both electronic mail systems and 
electronic fund transfer systems. 

The core of this exposition is sections 1 to 5. Sections 1 to 
3 cover the fundamentals of public-key cryptography and the related· 
topics Of hash functions and digital signatures. Extensive coverage 
of key management is also included, with a focus on certificate­
based management. Section 4 gives some examples of public-key 
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systems and hash functions. Section 5 gives some examples of actual 
or proposed implementations of public-key cryptography. The major 
example is the International Organization for Standardization (ISO) 
authentication framework. 

Section 6 gives a sample proposal for a local-area network 
implementation of public-key cryptography. It draws heavily on the 
work of ISO. 

A variety of topics are covered in the appendices, including a 
summary of relevant mathematics and algorithms. Also included is 
a brief introduction to zero-knowledge protocols, probabilistic 
encryption and identity-based public-key systems. 

In the following, letters refer to appendices; e.g. lemma G.2.1 
refers to a lemma appearing in section 2 of appendix G. 

The author wishes to thank Dr. Ronald L. Rivest, Dr. Gustavus 
Simmons, and Dr. Dennis Branstad for providing many comments and 
suggestions, and Dr. Burton S. Kaliski Jr. for providing 
information on implementations of the RSA public-key system. The 
paper was edited by Miles Smid. 

This paper was supported in part by the United States Department 
of Computer-Aided Logistics Supports, Department of Defense. 
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1. Cryptosystems and cryptanalysis. 

Cryptography deals with the transformation of ordinary text 
(plaintext) into coded form (ciphertext) by encryption, and 
transformation of ciphertext into plaintext by decryption. Normally 
these transformations are parameterized by one or more keys. The 
motive for encrypting text is security for transmissions over 
insecure channels. 

Three of the most important services provided by cryptosystems 
are secrecy, authenticity, and integrity. Secrecy refers to denial 
of access to information by unauthorized individuals. Authenticity 
refers to validating the source of a message; i.e., that it was 
transmitted by a properly identified sender and is not a replay of 
a previously transmitted message. Integrity refers to assurance 
that a message was not modified accidentally or deliberately in 
transit, by replacement, insertion or deletion. A fourth service 
which may be provided is nonrepudiation of origin, i.e., protection 
against a sender of a message later denying transmission, Variants 
of these services, and other services, are discussed in [IS0-87]. 

Classical cryptography deals mainly with the secrecy aspect. It 
also treats keys as secret. In the past 15 years two new trends 
have emerged: 

a. Authenticity as a consideration which rivals and sometimes 
exceeds secrecy in importance. 

b. The notion that some key material need not be secret. 

The first trend has arisen in connection with applications such 
as electronic mail systems and electronic funds transfers. In such 
settings an electronic equivalent of the handwritten signature may 
be desirable. Also, intruders into a system often gain entry by 
masquerading as legitimate users; cryptography presents an 
alternative to password systems for access control, 

The second trend addresses the difficulties which have 
traditionally accompanied the management of secret keys. This may 
entail the use of couriers or other costly, inefficient and not 
really secure methods. In contrast, if keys are public the task of 
key management may be substantially simplified. 

An ideal system might solve all of these problems concurrently, 
i.e., using public keys; providing secrecy; and providing 
authenticity. Unfortunately no single technique proposed to date 
has met all three criteria. Conventional systems such as DES 
require management of secret keys; systems using public key 
components may provide authenticity but are inefficient for bulk 
encryption of data due to low bandwidths. 

Fortunately, conventional and public-key systems are not 
mutually exclusive; in fact they can complement each other. Public­
key systems can be used for signatures and also for the 
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distribution of keys used in systems such as DES. Thus it is 
possible to construct hybrids of conventional and public-key 
systems which can meet all of the above goals: secrecy, 
authenticity and ease of key management. 

For surveys of the preceding and related topics see, e.g., 
( [BRAS88], [COPP87], [DENN83], [DIFF82], [DIFF79], [KLIN79], [KONHBl], 
[LEMP79], [MASS88], [MERK82], [POPE78], [POPE79], [SAL085], [SIMM79]). 
More specialized discussions of public-key cryptography are given, 
e.g., in ( [DIFFBBJ, [LAKS83], [MERKB2b]). Mathematical aspects are 
covered, e.g., in ( [KRAN86], [PATT87]). 

In the following, E and D represent encryption and decryption 
transformations, respectively. It is always required that D(E(M)) 
= M. It may also be the case that E(D(M)) .= M; in this event E or 
D can be employed for encryption. Normally D is assumed to be 
secret, but E may be public. In addition it may be assumed that E 
and D are relatively easy to compute when they are known. 

1.1 Requirements for secrecy. 

Secrecy requires that a cryptanalyst (i.e., a would-be intruder 
into a cryptosystem) should not be able to determine the plaintext 
corresponding to given ciphertext,· and should not be able to 
reconstruct D by examining ciphertext for known plaintext. This 
translates int'o two requirements for a cryptosystem to provide 
secrecy: 

a. A cryptanalyst should not be able to determine M from 
E(M); i.e., the cryptosystem should be immune to 
ciphertext-only attacks. 

b. A cryptanalyst should not be able to determine D given 
{E(Mi)) for any sequence of plaintexts {Ml,M2, ... }; 
i.e. the cryptosystem should be immune to known-plaintext 

attacks. This should remain true even when the 
cryptanalyst can choose {Mi} (chosen-plaintext attack), 
including the case in which the cryptanalyst can inspect 

(E(Ml), ... ,E(Mj)} before specifying Mj+l (adaptive 
chosen-plaintext attack) . 

Adaptive chosen plaintext attack is illustrated below. 

i 0 

I 
I I 
1/ i := i + 1 1/ 
1\ 1\ -/1\ 
I I 
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Figure 1. Adaptive Chosen Plaintext Attack 

To illustrate the difference between these two categories, we 
use two examples. First, suppose E (M) ~ M3 mod N, N = p ·k q, where 
p and q are large secret primes. Then (cf, sec. 4) it is infeasible 
for a cryptanalyst to determine D, even after inspecting numerous 
pairs of the form {M,E(M)}. However, an eavesdropper who intercepts 
E(M) = 8 can conclude M = 2. Thus a ciphertext-only attack may be 
feasible in an instance where known- or chosen-plaintext attack is 
not useful. 

On the other hand, suppose E(M) 5M mod N where N is secret. 
Then interception of E(M) would not reveal MorN; this would 
remain true even if several ciphertexts were intercepted. However, 
an intruder who learns that E(l2) ~ 3 and E(l6) ~ 4 could conclude 
N = 19. Thus a known- or chosen-plaintext attack may succeed where 
a ciphertext-only attack fails. 

Deficiencies in (a), i.e., vulnerability to ciphertext-only 
attack, can frequently be corrected by slight modifications of the 
encoding scheme, as in the M3 mod N encoding above. Adaptive 
chosen-plaintext is often regarded as the strongest attack. 

Secrecy ensures that decryption of messages is infeasible. 
However, the enciphering transformation E is not covered by the 
above requirements; it could even be public, Thus secrecy, per se, 
leaves open the possibility that an intruder could masquerade as 
a legitimate user, or could compromise the integrity of a message 
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by altering it. That is, secrecy does not imply authenticity/ 
integrity. 

1.2 Requirements for authenticity and integrity. 

Authenticity requires that an intruder should not be able to 
masquerade as a legitimate user of a system. Integrity requires 
that an intruder should not be able to substitute false ciphertext 
for legitimate ciphertext. Two minimal requirements should be met 
for a cryptosystem to provide these services: 

a. It should be possible for the recipient of a message to 
ascertain its origin. 

b. It should be possible for the recipient of a message to 
verify that it has not been modified in transit. 

These requirements are independent of secrecy. For example, a 
message M could be encoded by using D instead of E. Then assuming 
D is secret, the recipient of C = D(M) is assured that this message 
was not generated by an intruder. However, E might be public; C 
could then be decoded by anyone intercepting it. 

A related service which may be provided is nonrepudiation; i.e., 
we may add a third requirement if desired: 

c. A sender should not be able to deny later that he sent a 
message. 

We might also wish to add: 

d. It should be possible for the recipient of a message to 
detect whether it is a replay of a previous transmission. 

1.3 Conventional systems. 

In a conventional cryptosystem, E and D are parameterized by a 
single key K, so that we have DK(EK(M)) M. It is often the case 
that the algorithms for obtaining DK and EK from K a~e public, 
although both EK and DK are secret. In this event the security of 
a conventional system depends entirely on keeping K a secret. Then 
secrecy and authenticity are both provided: if two parties share 
a secret K, they can send messages to one another which are both 
private (since an eavesdropper cannot compute DK(C)) and 
authenticated (since a would-be masquerader cannot compute EK(M)) 
In some cases (e.g., transmission of a random bit string), this 
does not assure integrity; i.e., modification of a message en route 
may be undetected. Typically integrity is provided by sending a 



-- 14 --

REDACTED

MasterCard, Exh. 1005, p. 14

compressed form of the message (a message digest) along with the 
full message as a check. 

Conventional systems are also known as one-key or symmetric 
systems [SIMM79]. 

1.4 Example of a conventional cipher: DES. 

The most notable example of a conventional cryptosystem is DES 
(Data Encryption Standard). It is well-documented (e.g. 
[DENN83], [EHRS78], [NATI77], [NATI80], [NATI81], [SMIDSJ.], [SMID88b]) 
and will not be discussed in detail here, except to contrast it 
with other ciphers. It is a block cipher, operating on 64-bit 
blocks using a 56-bit key. Essentially the same algorithm is used 
to encipher or decipher. The transformation employed can be written 
P-l(F(P(M))), where Pis a certain permutation and F is a certain 
function which combines permutation and substitution. Substitution 
is accomplished via table lookups in so-called S-boxes. 

The important characteristics of DES from the standpoint of this 
exposition are its one-key feature and the nature of the operations 
performed during encryption/decryption. Both permutations and table 
lookups are easily implemented, especially in hardware. Thus 
encryption rates exceeding 40 Mbit/sec have been obtained (e.g., 
[BANE82], [MACM81]). This makes DES an efficient bulk encryptor, 
especially when implemented in hardware. 

The security of DES is produced in classical fashion: 
alternation of substitutions and permutations. The function F is 
obtained by cascading a certain function f(x,y), where xis 32 bits 
andy is 48 bits. Each stage of the cascade is called a round. A 
sequence of 48-bit strings {Ki) is generated from the key. Let L(x) 
and R(x) denote the left and right halves of x, and let XOR denote 
exclusive-or. Then if Mi denotes the output of stage i, we have 

L(Mi) R(Mi-1), 

R(Mi) L(Mi-1) XOR f(L(Mi),Ki). 

The hope is that after 16 rounds, the output will be 
statistically flat; i.e., all patterns in the initial data will be 
undetectable. 

1.5 Another conventional cipher: exponentiation. 

Pohlig and Hellman [POHL78] noted a type of cipher which 
deviated from the classical methods such as transposition and 
substitution. Their technique was conceptually much simpler. Let 
GCD denote greatest common divisor (app. G). Suppose p > 2 is 
a prime and suppose K is a key in [J.,p-1) with GCD(K,p-1) = 1 
(i.e., K is relatively prime to p-1). If M is plaintext in [J.,p-
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1], an encryption function E may be defined by 

E(M) MK mod p. 

Now the condition GCD(K,p-1) ,~ 1 implies (lem. G.1) that we can 
find I with I * K 6 1 (mod p-1). Note that I is not a separate key; 
I is easily derived from K or vice-versa (app. H). We may set 

D(C) = CI mod p. 

It may then be shown (cor. G.2.3) that D(E(M)) = M, as required. 
Furthermore, E(D(C)) =Cas well; i.e., E and Dare inverse 
functions. This makes exponentiation a versatile cipher; in 
particular, we can encipher with D as well as E. Later we will note 
that this can be useful in authentication. However, Pohlig and 
Hellman used the above only as an example of a conventional 
cryptosystem. That is, since I is easily derived from K, both E and 
Dare generated by the single, secret, shared key K. In section 4.1 
we will see that if p were replaced by a product of two primes, 
derivation of I from K would be non-trivial. This would cause the 
key material to be split into two portions. 

Despite the relative simplicity of the definitions of E and D, 
they are not as easy to compute as their counterparts in DES. This 
is because exponentiation mod p is a more time-consuming operation 
than permutations or table lookups if p is large. 

Security of the system in fact requires that p be large. This 
is because K should be nondeterminable even in the event of a 
known-plaintext attack. Suppose a cryptanalyst knows p, M, c, and 
furthermore knows that C = MK mod p for some K. He should still be 
unable to find K; i.e., he should not be able to compute discrete 
logarithms modulo p. At present there are no efficient algorithms 
for the latter operation: the best techniques now available take 
time (e.g., [ADLE7 9], [COPPS 6]) 

exp (c ((log p) (log log p)) 1/2). 

Computing modulo p is equivalent to using the Galois field 
GF(p); .it is possible to use GF(pn) instead (app. G). There are 
both advantages and disadvantages to the extension. Arithmetic in 
GF(pn) .is generally easier if n > 1, and especially so in GF(2n). 
On the other hand, taking discrete logarithms in GF(pn) is also 
easier. The case of small n is treated in [ELGA85b]. The greatest 
progress has been made for the case p = 2 (e.g., 
[BLAK84], [COPP84]). In [COPP84] it is shown that discrete 
logarithms in GF(2n) can be computed .in time 

exp (c * n1/3 * (log n) 2/3). 
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For a survey of the discrete logarithm problem see, e.g., 
[ADLE86] I [COPP87] I [MCCU89] I [ODLY84b]. 

1.6 Public-key cryptosystems. 

The notion of public-key cryptography was introduced by Diffie 
and Hellman [DIFF76b]; for a ·history see (DIFFBB]. Public-key 
systems, also called two-key or asymmetric (SIMM79], differ from 
conventional systems in that there is no longer a single secret key 
shared by a pair of users. Rather, each user has his own key 
material. Furthermore, the key material of each user is divided 
into two portions, a private component and a public component. The 
public component generates a public transformation E, and the 
private component generates a private transformation D. In analogy 
to the conventional case E and D might be termed encryption and 
decryption functions, respectively. However, this is imprecise: in 
a given system we may have D(E(M)) M, E(D(M)) = M, or both. 

A requirement is that E must be a trapdoor one-way function. 
One-way refers to the fact that E should be easy to compute from 
the public key material but hard to invert unless one possesses the 
corresponding D, or equivalently, the private key material 
generating D. The private component thus yields a "trapdoor" which 
makes the problem of inverting E seem difficult from the point of 
view of the cryptanalyst, but easy for the (sole legitimate) 
possessor of D. For example, a trapdoor may be the knowledge of the 
factorization of an integer (see sec. 4.1). 

We remark that the trapdoor functions employed as public 
transformations in public-key systems are only a subclass of the 
class of one-way functions. The more general case will be discussed 
in section 3,2.2. 

We note also that public/private dichotomy of E and D in public­
key systems has no analogue in a conventional cryptosystem: in the 
latter, both EK and OK are parameterized by a single key K. Hence 
if EK is known then it may be assumed that K has been compromised, 
whence it may also be assumed that OK is also known, or vice­
versa. For example, in DES, both E and D are computed by 
essentially the same public algorithm from a common key;. so E and 
D are both known or both unknown, depending on whether the key has 
been compromised. 

1.6.1 Secrecy and authenticity. 

To support secrecy, the transformations of a public-key system 
must satisfy D(E(M)) = M. Suppose A wishes to send a secure message 
M to B. Then A must have access to EB, the public transformation of 
B (note that subscripts refer to users rather than keys in this 

.context). Now A encrypts M via C = EB(M) and sends C to B. On 
receipt, B employs his private transformation DB for decryption; 
i.e., B computes DB(C) = DB(EB(M)) = M. If A's transmission is 
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overheard, the intruder cannot decrypt C since DB is private, Thus 
secrecy is ensured. However, presumably anyone can access EB; B has 
no way of knowing the identity of the sender per se. Also, A's 
transmission could have been altered. Thus authenticity and 
integrity are not assured. 

To support authentication/integrity, the transformations in a 
public-key system must satisfy E(D(M)) = M. Suppose A wishes to 
send an authenticated message M to B. That is, B is to be able to 
verify that the message was sent by A and was not altered. In this 
case A could use his private transformation DA to compute C = DA(M) 
and send C to B. Now B can use A's public transformation EA to find 
EA(C) = EA(DA(M)) = M. Assuming M is valid plaintext, B knows that 
C was in fact sent by A, and was not altered in transit. This 
follows from the one-way nature of EA: if a cryptanalyst, starting 
with a message M, could find C' such that EA(C') = M, this would 
imply that he can invert EA, a contradiction. 

If M, or any portion of M, is a random string, then it may be 
difficult for B to ascertain that C is authentic and unaltered 
merely by examining EA(C). Actually, however, a slightly more 
complex procedure is generally employed: an auxiliary public 
function His used to produce a digital signatureS= DA(H(M)) 
which A sends to B along with M. On receipt B can compute H(M) 
directly. The latter may be checked against EA(S) to ensure 
authenticity and integrity, since once again the ability of a 
cryptanalyst to find a valid 8' for a given M would violate the 
one-way nature of EA. Actually H must also be one-way; we return to 
this subject in section 3.2. 

Sending C or S above ensures authenticity, but secrecy is 
nonexistent. In the second scheme M was sent in the clear along 
with S; in the first scheme, an intruder who intercepts C = DA(M) 
presumably has access to EA and hence can compute M = EA(C). Thus 
in either case M is accessible to an eavesdropper. 

It may be necessary to use a combination of systems to provide 
secrecy, authenticity and integrity. However, in some cases it is 
possible to employ the same public-key system for these services 
simultaneously. We note that for authenticity/integrity purposes, 
Dis applied toM or H(M); for secrecy, E is applied toM. If the 
same public-key system is to be used in both cases, then D(E(M)) 
= M and E(D(M)) = M must both hold; i.e .. , D and E are inverse 
functions. A requirement is that the plaintext space (i.e., the 
domain of E) must be the same as the ciphertext space (i.e., the 
domain of D) . 

Suppose that in addition to E and D being inverses for each 
user, for each pair of users A and B the functions EA, DA, EB, and 
DB all have a common domain. Then both secrecy and authenticity can 
be accomplished with a single transmission: A sends C = EB(DA(M)) 
to B; then B computes EA(DB(C)) = EA(DA(M)) = M. An intruder cannot 
decrypt C since he lacks DB; hence secrecy is assured. If the 
intruder sends C' instead of C, C' cannot produce a valid M since 
DA is needed to produce a valid C. This assures authenticity. 

In actuality there are no common systems versatile enough for 
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the last usage without modification. In fact there is only one 
major system (RSA) which satisfies E(D(M)) = D(E(M)) = M. The lack 
of a common domain between two users creates a technical problem 
in using such a system for secrecy and authenticity. We discuss 
some approaches to this problem in section' 4.1. 

If the question of domains is ignored, the usage of a system 
satisfying E(D(M)) = D(E(M)) = M with a hash function His 
illustrated below. There EA,DA,EB,DB are the public transformations 
of A and B, respectively. 

A: B: 

\I 
compute H(M) /I\ /I receive (C, S) 

I I 
I I 
I I I 

\I/ I \I/ 
I I 

compute c EB(M) I I compute M' DB(C) 

I I 
I I I 
I I I 

\I/ I \I/ 
I 

compute s = DA(H(M)) I compute H' EA(S) 
I 

I I 
I I I 

\I/ I \II 
I I I I I 
I send (C,S) to B I I I verify H' = H(M') I 

I I I I I 
I I 
I I 

\I/ \I 
I 

Figure 2. Using Public-Key for Secrecy and Authenticity 

1.6.2 Applicability and limitations. 

The range of applicability of public-key systems is limited in 
practice by the relatively low bandwidths associated with public­
key ciphers, compared to their conventional counterparts. It has 
not been proven that time or space complexity must necessarily be 
greater for public key systems than for conventional systems. 
However, the public-key systems which have withstood cryptanalytic 
attacks are all characterized by relatively low efficiency. For 
example, some are based on modular exponentiation, a relatively 
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slow operation. Others are characterized by high data expansion 
(ciphertext much larger than plaintext). This inefficiency, under 
the conservative assumption that it is in fact inherent, seems to 
preclude.the use of public-key systems as replacements for 
conventional systems utilizing fast encryption techniques such as 
permutations and substitutions. That is, using public-key systems 
for bulk data encryption is not feasible, at least for the present. 

On the other hand, there are two major application areas for 
public-key cryptosystems: 

a. Distribution of secret keys. 

b. Digital signatures. 

The first involves using public-key systems for secure and 
authenticated exchange of data-encrypting keys between two parties 
(sec. 2). Data-encrypting keys are secret shared keys connected 
with a conventional system used for bulk data encryption. This 
permits users to establish common keys for use with a system such 
as DES. Classically, users have had to rely on a mechanism such as 
a courier service or a central authority for assistance in the key 
exchange process. Use of a public-key system permits users to 
establish a common key which does not need to be generated by or 
revealed to any third party, providing both enhanced security and 
greater convenience and robustness. 

Digital signatures are a second major application (sec. 3). They 
provide authentication, nonrepudiation and integrity checks. As 
noted earlier, in some settings authentication is a major 
consideration; in some cases it is desirable even when secrecy is 
not a consideration (e.g., [SIMM88]). We have already seen an 
example of a digital signature, i.e., when A sent DA(M) to B. This 
permitted B to conclude that A did indeed send the message. As we 
will note in section 3, nonrepudiation is another property 
desirable for digital signatures. Public key cryptosystems provide 
this property as well. 

No bulk encryption is needed when public-key cryptography is 
used to distribute keys, since the latter are generally short. 
Also, digital signatures are generally applied only to outputs of 
hash functions (sec. 3). In both cases the data to be encrypted or 
decrypted is restd.cted in size. Thus the bandwidth limitation of 
public-key is not a major restriction for either application. 

2. Key management. 

Regardless of whether a conventional or public-key cryptosystem 
is used, it is necessary for users to obtain other users' keys. In 
a sense this creates a circular problem: in order to communicate 
securely over insecure channels, users must first exchange key 
information. If no alternative to the insecure channel exists, then 
secure exchange of key information presents essentially the same 
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security problem as subsequent secure communication. 

In conventional cryptosystems this circle can be broken in· 
several ways. For example, it. might be assumed that two users can 
communicate over a supplementary secure channel, such as a courier 
service. In this case it is often the case that the secure channel 
is costly, inconvenient, low-bandwidth and slow; furthermore, use 
of a courier cannot be considered truly secure. An alternative is 
for the two users to exchange key information via a central 
authority. This presumes that each user individually has 
established a means of communicating securely with the central 
authority. Use of a central authorily has several· disadvantages as 
noted below. 

In public-key systems the key management problem is simpler 
because of the public nature of the key material exchanged between 
users, or between a user and a central authority. Also, 
alternatives to the insecure channel may be simpler; e.g., a 
physical mail system might suffice, particularly if redundant 
information is sent via the insecure (electronic) channel. 

2.1 Secret-key management. 

In a conventional (one-key) system, security is dependent on the 
secrecy of the key which is shared by two users. Thus two users who 
wish to communicate securely must first securely establish a common 
key. As noted above, one possibility is to employ a third party 
such as a courier; but as remarked there are various disadvantages 
to this implementation. The latter is the case even for a single 
key exchange. In practice, it may be necessary to establish a new 
key from time to time for security reasons. This may make use of 
a courier or similar scheme costly and inefficient. 

An alternative is for the two users to obtain a common key from 
a central issuing authority [BRAN75]. Security is then a major 
consideration: a central authority having access to keys is 
vulnerable to penetration. Due to the concentration of trust, a 
single security breach would compromise the entire system. In 
particular, a central authority could engage in passive 
eavesdropping for a long period of time before the practice was 
discovered; even then it might be difficult to prove. 

A second disadvantage of a central issuing authority is that it 
would probably need to be on-line. In large networks it might also 
become a bottleneck, since each pair of users needing a key must 
access a central node at least once. If the number of users is n 
then the number of pairs of users wishing to communicate could 
theoretically be as high as n(n-1)/2, although this would be highly 
unlikely in large networks. Each time a new key is needed, at least 
two communications involving the central authority are needed for 
each pair of users. Furthermore, such a system may not be robust: 
failure of the central authority could disrupt the key distribution 
system. 

Some of the disadvantages of a central authority can be 
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mitigated by distributing key distribution via a network of issuing 
authorities. One possibility is a hierarchical (tree-structured) 
system, with users at the leaves and key distribution centers at 
intermediate nodes. However, distributing key management creates 
a new security problem, since a multiplicity of entry points for 
intruders is created. Furthermore, such a modification might be 
inefficient unless pairs of users communicating frequently were 
associated to a common subtree; otherwise the root of the tree 
would be a bottleneck as before. 

Another alternative is a key translation center which requires 
only one key-encrypting key exchange through a certification 
authority. 

Some of these disadvantages can also be mitigated by a public­
key approach to key distribution. 

2.2 Public distribution of secret keys. 

It was noted by Diffie and Hellman [DIFF76b] and Merkle [MERK78] 
that users can publicly exchange secret keys. This is not related 
a priori to public-key cryptography; however, a public-key system 
can be used to implement public distribution of secret keys (often 
referred to as public key distribution) . The underlying public­
key system must support secrecy, for use in key encryption. 

The notion of public distribution of secret keys was originated 
in 1974 by Merkle, who proposed a "puzzle" system to implement it 
[MERK78]. However, even before this work was published it was 
superseded by a public-key scheme supporting public key 
distribution [DIFF76b]. This has come to be known as the 
Diffie/Hellman exponential key exchange. To begin with, users A and 
B are assumed to have agreed upon a common prime p and a common 
primitive root g modulo p (app. K). Then (lem. K.2) each number in 
[l,p) can be expressed as gx mod p for some x. Both p and g may be 
public. 

To establish a common secret key, A chooses a random x(A) in 
[O,p-1] and B chooses a random x(B) in [O,p-1]; these are kept 
secret. Then A computes 

y(A) gx(A) mod p 

while B computes 

y(B) gx(B) mod p. 

These need not be secret. Finally A sends y(A) to B and B sends 
y(B) to A. Now A knows x(A) and y(B) and can compute 
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K = y(B)x(A) mod p gx(B)x(A). 

Similarly, B knows x(B) and y(A) and can compute 

K = y(A)x(B) mod p = gx(A)x(B). 

The Diffie/Hellman algorithm is illustrated below. 

A: B: 

choose xA choose xB 

I I 
I I 

\I/ \I/ 

compute yA g**xA compute yB g**xB 

I I 
I I 

\I/ \I/ 
I I 

send yA to B 1------------->1 receive yA from A 
I I 

I I 
I I 

\ 1/ \I/ 
I I I 
I receive yB from B 1<-------------1 send yB to A 
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I 
I 

____ \I/ ___ _ 

compute K = yB**xA 

I 
I 

____ \I/ ___ _ 

compute K = yA**xB 

Figure 3. The Diffie/Hellman Key Exchange 

This establishes K as a secret common quantity which can be used 
in some agreed-upon fashion to generate a secret key. The secrecy 
of this scheme depends, as in section 1.5, on the difficulty of 
computing discrete logarithms. That is, knowing p, g, y and the 
fact that y = gx mod p for some x does not yield x. Thus, if an 
intruder knows p and g and intercepts y(A) or y(B) or both, he 
cannot find x(A) or x(B) and hence cannot compute K. 

A disadvantage of this scheme is lack of support for 
authenticity. If an intruder C intercepts y(B), sends y(C) = gx(C) 
mod p to Band B thinks he is receiving y(A), B will inadvertently 
establish a secret key with C. That is, the underlying public-key 
cryptosystem supports secrecy but not authentication. Thus it may 
be desirable to augment a secrecy-providing system with one which 
provides authentication. Examples of the latter will be given 
later. 

2.3 Management of public components in a public-key system,. 

Prior to using a public-key cryptosystem for establishing secret 
keys, signing messages etc., users A and B must exchange their 
public transformations (EA and EB in sec. 1.6), or equivalently 
their public components. The latter may be regarded as a key 
management problem. It is a simpler problem than establishment of 
secret keys, since public components do not require secrecy in 
storage or transit. Public components can, e.g., be managed by an 
on-line or off-line directory service; they can also be exchanged 
directly by users. However, authenticity is an issue as in the 
previous section. If A thinks that EC is really EB then A might 
encrypt using EC and inadvertently allow C to decrypt using DC. A 
second problem is integrity: any error in transmission of a public 
component will render it useless. Hence some form of error 
detection is desirable. 

Regardless of the scheme chosen for public component 
distribution, at some point a central authority is likely to be 
involved, as in conventional systems. However, it may not be 
necessary for the central authority to be on-line; exchange of 
public components between users need not involve the central 
authority. An example of how this can be implemented is given in 
section 2.5. We also note there that the implications of compromise 
of the central authority are not as severe as in the conventional 
case. 
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Validity is an additional consideration: a user's public 
component may be invalidated because of compromise of the 
corresponding private component, or for some other reason such as 
expiration. This creates a stale-data problem in the event that 
public components are cached or accessed through a directory. 
Similar problems have been encountered in management of multi­
cache systems and distributed databases, and various solutions have 
been suggested. For example, users could be notified immediately 
of key compromises or invalidations. This may be impractical, in 
which case either users should be informed within a given time 
period of changes needed for cached information on public 
components, or users should periodically check with a central 
authority to update validity information, 

2.3.1 Use of certificates. 

A technique to gain a partial solution to both authenticity and 
integrity in distribution of public components is use of 
certificates [KOHN78]. A certificate-based system assumes a central 
issuing authority CA as in the secret-key case. Again it must be 
assumed that each user can communicate securely with the CA. This 
is relatively simple in the present instance: it merely requires 
that each user possess ECA, the public transformation of the CA. 
Then each user A may register EA with the CA. Since EA is public, 
this might be done via the postal service, an insecure electronic 
channel, a combination of these, etc. 

Normally A will follow some form of authentication procedure in 
registering with the CA. Alternatively, registration can be handled 
by a tree-structured system: the CA issues certificates to local 
representatives (e.g., of employing organizations), who then act 
as intermediaries in the process of registering users at lower 
levels of the hierarchy. An example of such a system is given in 
section 5.4. 

In any case, in return A receives a certificate signed by the 
CA (see sec. 3 for a more thorough discussion of signatures) and 
containing EA. That is, the CA constructs a mess~ge M containing EA, 
identification information for A, a validity period, etc. Then the 
CA computes CERTA = DCA(M) which becomes A's certificate. The latter 
is then a public document which both contains EA and authenticates 
it, since the certificate is signed by the CA. Certificates can be 
distributed by the CA or by users, or used in a hierarchical system 
which we return to later. The inclusion of the validity period is 
a generalization of timestamping. The latter was not treated in 
[KOHN78], but Denning [DENNSl] notes the importance of timestamping 
in guarding against the use of compromised keys. 

In general, the problem of stale data is not wholly solved by 
timestamping: a certificate may be invalidated before its 
expiration date, because of compromise or administrative reasons. 
Hence if certificates are cached by users (as opposed to being re­
distributed by theCA each time they are used), theCA must 
periodically issue lists of invalidated certificates. Popek and 
Kline [POPE79] have noted that certificates are analogous to 
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capabilities in operating systems. Management of certificates 
creates analogous problems, such as selective revocation of 
capabilities. The public nature of certificates, however, a priori 
precludes an analogue of a useful feature of a capability system: 
users cannot be restricted to communicating with a subset of other 
users. If a selective capability feature is desired it must be 
implemented through a controlled distribution of certificates, 
which would be difficult and contrary to the spirit of public-key. 

2.3.2 Generation and storage of component pairs. 

Generation of public/private component pairs is an important 
consideration. If this service is offered by a central· facility, 
ic may result in certain advantages; e.g., keys might be longer or 
chosen more carefully. However, this introduces the same problem 
noted in section 2.1: a central authority holding users' private 
components would be vulnerable to penetration. Also, the central 
facility would have to be trusted not to abuse its holdings by 
monitoring communications between users. Both problems are ' 
circumvented if users generate and store their own private/public 
components. 

2.3.3 Hardware support for key management. 

If users store their own components, a management problem is 
created. One possibility is software storage, e.g., in a file with 
read protection. If greater security is desired, a second option 
is hardware keys ( [DENN79], [FLYN78], [RIVE78]). 

In the classical version of this scheme, each public/private key 
pair is stored on a pair of ROM chips. The public key is revealed 
to the owner of the keys. However, the private key need not be 
known to any user, including the owner. · 

There are two advantages to this mode of storage, namely the 
fact that neither the user nor a central authority need know the 
private component. We have previously noted the advantage of not 
having users reveal private keys to a central authority. Also, as 
noted in [FLYN78], it may also be desirable to protect keys from 
disloyal employees. Entering keys from a keyboard rather than from 
ROM may be insecure; moreover, the large size of public keys makes 
this impractical. However, there is also an obvious disadvantage 
to the ROM mode of hardware key storage, namely the fact that the 
party which loads a private key to ROM could retain a copy. An 
alternative, but still classical, scheme is for the user to be 
provided with a means of writing to a memory chip and then sealing 
it from further writing. 

A more modern ·and more secure hardware adjunct is a smart token, 
smart card or other device which contains both memory and a 
microprocessor. Such a device can both generate and store user 
keys. Ideally, it should be implemented via a single chip which 
stores both cryptographic algorithms and data. 
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In the classical case, encryption and decryption are handled by 
separate units in a hardware device acting as an interface between 
a user's computer and the network. As noted in [DENN79], this 
creates a security risk: an intruder may rig the device. 

If a token or smart card is used, it is possible (at least in 
theory; the technology is still evolving at the time of this 
writing) to generate and store keys on the same device which 
executes encryption and decryption algorithms. Again, security is 
optimal if all of these functions are combined onto one or a 
minimal number of chips. Use of such auxiliary devices mitigates 
some of the problems encountered in the classical case. However, 
a token or smart card may be stolen, permitting the thief to 
masquerade as the user. Passwords (PINs) or biometrics used to 
control access to devices can substantially lessen this threat. 

Capabilities such as signature generation should become feasible 
on devices such as smart cards in the near future. This will 
provide an excellent solution to the problem of using private 
components without exposing them. 

2.4 Using public-key systems for secret key distribution. 

As noted earlier, one of the major applications of public-key 
cryptosystems is in regard to public distribution of secret keys. 
Thus, a public-key system can be used in conjunction with a 
conventional system such as DES, We have already seen an example 
of a public-key cryptosystem implementing public key distribution 
in section 2.2. Both secrecy and authentication can be provided 
simultaneously in the distribution process via public-key systems. 
This may be achieved using a single public-key system if its 
encryption and decryption functions are inverses, or via a hybrid 
of two public key systems providing secrecy and authentication 
separately. 

The essence of this usage is very simple: a secret key is merely 
a particular form of message. Assuming that a system has been 
established for distribution of public components of users as 
discussed in the previous section, users can then establish secret 
keys at will by employing the public system for encryption and 
signing of secret keys. Thus the latter can be exchanged or changed 
without difficulty. This is in contradistinction to a system in 
which secret keys must be established via couriers or a central 
authority. 

The use of public-key cryptography thus reduces the problem of 
secret key distribution to the problem of binding user identities 
and user public keys. The latter is a simpler problem in that no 
communication of secret information is necessary. That is, users 
can generate their own pr~vate/public key pairs and need not expose 
their private keys to anyone, including themselves. However, it is 
critical that user public keys be properly authenticated. This is 
a nontrivial consideration in large networks. 
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Since only integrity and authenticity are considerations, users 
may be able to register their public components without use of a 
secure channel. In a large network this might require a distributed 
system of certifying authorities, arranged in hierarchical fashion. 
The feasibility of such an approach requires transitivity of trust. 
For example, a central certifying authority could certify a second 
level of certifying agents who in turn certify user public 
components. Other levels could be added as well. Thus a user is 
certified via an authentication path. Such a path need not require 
use of insecure channels if the nodes in the path can communicate 
securely. For example, a user might register with a local 
certifying authority in person. The local authority might be 
affiliated with an organization and may be able to use the user's 
organization ID to certify the user's public key. If the local 
authority can communicate securely with the central authority, the 
user's public key may then be forwarded to the central authority 
for distribution. 

Assuming that user public components can be certified and 
distributed, two users may use each other's public components to 
establish common keys for use in message encryption, again without 
resort to a secure channel. 

2.4.1 A protocol for key exchange. 

Suppose A and B wish to establish a shared secret key. Suppose 
further that they have obtained each other's public components. 
Some possible modes for binding user public keys to user identities 
and distributing certified user public keys are discussed in 
sections 5.3.1- 5.3.2 and 5.4.6. In any case, A may now generate 
a secret key K. For example, this may be a key-encrypting.key to 
be used to exchange session keys and possibly initialization 
vectors if, e.g., DES is used in cipher feedback mode or cipher 
block-chaining mode [NATI80]. Then A might form an expanded message 
which contains K and other data, which could include an 
identification for A, a timestamp, a sequence number, a random 
number, etc. This added material is needed for A to authenticate 
himself to B in real-time, and thus prevent replays. For example, 
Needham and Schroeder [NEED78] suggest a three-way handshake 
protocol: 

First of all A may send to B the message C EB(RA,IDA), where EB 
is B's public transformation, IDA is the identification of A, and 
RA is a random number. Now B can decrypt c and obtain IDA. Now B 
generates a random number RB and sends C' = EA(RA,RB) to A. Upon 
decryption of c•, A can verify in real time that B has received RA, 
since only B could decrypt C. Finally A sends C" = EB(RB) to B; when 
B decrypts C" he can verify in real time that A has received RB, 
since only A could decrypt C'. Thus A and B are authenticated to 
each other in real time; i.e., each knows that the other is really 
there. 

Now A sends EB(DA(K)) to B, who can decrypt to obtain K. This 
ensures both secrecy and authenticity in exchange of K. 
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The authentication stage of the preceding protocol is 
illustrated below. 

A: B: 

\I 
choose RA /I\ /I receive M from A 

I I 
I 

I I I 
\I/ I \I/ 

I 

compute M = EB (RA, IA) compute (RA,IA) EA(M) 

I I 
I I 

\I/ \i/ 

send M to B choose RB 

I I 
I I 

\I \I/ 

receive M' from B 1/ compute M' EA(RA,RB) 
1\ /I\ 

I I I 
I I I 

\I/ I \I/ 
-~-

I 
compute (RA,RB) DA(M') 1/ send M' to A 

\ 
I I 
I I 

\I/ \I/ 
\I 

verify RA /I\ /I receive M" from A 

I I 
I I I 
I I I 

\I/ I \I/ 
I 

compute M" EB(RB) I compute RB DB(M") 
I 
I I 

I I I 
\I/ I \I/ 

I 
send M" to B \I verify RB 

I 
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Figure 4. A Protocol for Real-Time Authentication 

2.5 Protocols for certificate-based key management. 

There are a number of different approaches to public-key 
component management and the application to secret key distribution 
(e.g., [KLIN79), [NEED78]). For simplicity we assume a certificate­
based system. We also assume that a system has been established for 
a central authority to create certificates. 

2.5.1 Certificate management by a central authority. 

In a certificate-based public-key system, one possibility is to 
have the central issuing authority manage certificate distribution. 
Suppose the authority CA has created certificates CERTA and CERTB 
for A and B, respectively. These contain EA and EB (or equivalently, 
the public components of A and B) as noted in section 2,3.1. 

We may assume that A and B have cached CERTA and CERTB, 
respectively. If A has exchanged certificates with B previously, 
A and B may have each other's certificates cached. If not, then 
there are two ways in which A could obtain B's certificate. The 
simplest is for A to request B's certificate directly from B; this 
is explored in the next section. The advantage of this simple 
approach is that on-line access to a central authority is avoided. 

On the other hand, if A requests B's certificate directly from 
B, or obtains it from a directory listing, security and integrity 
considerations arise. For example, the certificate A obtains may 
have been recently invalidated. 

Thus A may wish to access B's certificate through the CA, 
assuming that the latter is on-line, In this event A requests CERTA 
and CERTB from S. We recall that each CERT has the form DS(M) where 
M contains an E. Thus when A receives the requested certificates, 
he can validate CERTA by computing ES(CERTA) and recovering EA. This 
validates the source of the certificates, thus validating CERTB as 
well. Hence A may retrieve a duly authenticated EB from CERTB. The 
disadvantage is the requirement of an on-line central node; the 
advantage is that A is assured of the instantaneous validity of the 
certificate. Later we will note that this has implications for 
nonrepudiation. 

Caching of certificates implies that authentication involving 
the CA will not be done regularly. Thus the above procedure will 
only be necessary when two users first communicate, or when 
components are compromised or certificates invalidated, As long as 
the public components involved are valid, secret keys can be 
exchanged at will, although a handshake protocol may still be used 
to ensure real-time authenticity and integrity. 
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An advantage of this mode of key management is that the entire 
process is conducted over insecure channels with excellent 
security. A second advantage is that distribution of certificates 
by a central authority assures that certificates are valid at time 
of receipt. A prerequisite for the proper functioning of such a key 
management system is the existence of a system for binding user 
public keys and identities. Such a system requires distributed 
trust. 

A disadvantage of this mode of management is that as in section 
2.1 1 the central authority may be a bottleneck. The severity is 
mitigated by the fact that a secure channel is not needed, but the 
essential problem is similar. 

A more significant disadvantage arises from the concentration 
of trust in one entity [KLIN79] . The security of the central 
authority might be compromised, e.g., by penetration. The fact that 
the central authority does not generally access users' private 
components means that existing messages are not compromised, as 
might be the case in a secret-key system [DIFF82]. However, if an 
intruder accesses the central authority's private component, the 
intruder could forge certificates. Some scenarios for intrusions 
of this sort, explorations of consequences, and means for 
minimizing damage are explored in [DENN83b] and [DIFF88] , 

Merkle [MERK82b] has suggested a tree-structured system as a 
means of coping with the compromise of a central authority. 
However, this scheme is not practical for large networks since the 
tree must be restructured each time the user population changes. 

2.5.2 Decentralized management. 

Users may be responsible for managing their own certificates. 
In this event the protocol is much simpler. When A wishes to 
initiate communication (e.g., e~change of a secret key) with B, he 
sends a message to B containing A's certificate, A's 
identification, and other information such as a date, random number 
etc. as described in the protocol in the previous section. This 
message also requests B's certificate. Upon completion of· the 
certificate exchange, employing some protocol such as the handshake 
above, A and B will possess each other's authenticated 
certificates. A can validate the certificate CB by computing ES(CB) 
as usual. Then EB may be retrieved. The certificate must contain 
information properly identifying B to A, so that an intruder cannot 
masquerade as B. The certificate must also have a validity period. 
In turn B may proceed similarly. 

The central authority must periodically issue lists of 
certificates which have become invalid before their expiration 
dates due to key compromise or administrative reasons. It is likely 
that in a large system this would be done, e.g., on a monthly 
basis. Hence a user receiving a certificate from another user would 
not have complete assurance of its validity, even though it is 
signed by S. Thus this system trades higher efficiency for some 
security loss, compared to the previous scheme. 
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For greater assurance of validity, a user could access a 
centrally-managed list of invalid certificates; presumably these 
would be very current. This would require on-line access to a 
central facility, which would create the same type of bottleneck 
we have noted previously. However, the accesses would be very 
quick, since presumably only a certificate sequence number would 
be transmit.ted. 

Yet another on-line possibility would be for the central 
authority to enforce coherence by a global search of cached 
certificates each time a certificate i~ invalidated. Again there 
is a trade-off of validity assurance and efficiency. 

2.5.3 A phone-book approach to certificates. 

Some of the features of the previous schemes could be combined 
in a phone-book approach, using an electronic equivalent such as 
a floppy disk containing certificates. This would optimize ease of 
use since a user could communicate securely with another by 
accessing the latter's certificate very rapidly. However, again the 
central authority would have to issue "hot lists". Periodic 
distribution of the compilations of certificates would be a 
separate management process. 

Security of such a scheme is clearly in question [KLIN79]. 
Phone-book entries might contain errors, or entries could be 
altered. 

3. Digital signatures and hash functions. 

Digital signatures were introduced by Diffie and Hellman 
[DIFF7 6b]; for surveys see, e.g., [AKL-83], [POPE7 9], [RABI78] A 
digital signature is the electronic analogue of a handwritten 
signature. A common feature is that they must provide the 
following: 

a. A receiver must be able to validate the sender's 
signature. 

b. A signature must not be forgeable. 

c. The sender of a signed message must not be able to 
repudia-te it later. 

We have already seen an example of the usage of digital 
signatures, namely when a central authority signs certificates. In 
this section we are concerned with the signing of arbitrary 
messages. 
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A major difference between handwritten and digital signatures 
is that a digital signature cannot be a constant; it must be a 
function of the document which it signs. If this were not the case 
then a signature, due to its electronic nature, could be attached 
to any document. Furthermore, a signature must be a function of the 
entire document; changing even a single bit should produce a 
different signature. Thus a signed message cannot be altered. 

There are two major variants of implementation: 

a. true signatures. 

b. arbitrated signatures. 

In a true signature system, signed messages are forwarded 
directly from signer to recipient. In an arbitrated system, a 
witness (human or automated) validates a signature and transmits 
the message on behalf of the sender. The use of an arbitrator may 
be helpful in event of key compromise as noted below.' 

The notion of authentication by some form of signature can be 
traced back as far as 1952, as noted by Diffie [DIFF88]. 
Cryptography was used by the Air Force to identify friendly 
aircraft through a challenge/response system. The protocols 
utilized influenced the development of public-key cryptography by 
Diffie and Hellman [DIFF76b]. 

As we note below, hash functions are useful auxiliaries in this 
context, i.e., in validating the identity of a sender. They can 
also serve as cryptographic checksums (i.e., error-detecting 
codes), thereby validating the contents of a message. Use of 
signatures and hash functions can thus provide authentication and 
verification of message integrity at the same time. 

Numerous digital signature schemes have been proposed. As noted 
in [DAVI83], a major disadvantage of signature schemes in 
conventional systems is that they are generally one-time schemes. 
A signature is generated randomly for a specific message, typically 
using a large amount of key material, and is not re-usable. 
Furthermore, later resolution of disputes over signed documents 
requires written agreements and substantial bookkeeping on the part 
of the sender and receiver, making it more difficult for a third 
party to adjudicate. A conventional scheme was noted in [DIFF76b] 
(the Lamport/Diffie One-Time Signature) and is refined in [MERK82] . 
Some other conventional schemes are DES-based. 

Public-key schemes supporting authentication permit generation 
of signatures algorithmically from the same key repeatedly, 
although the actual signatures are of course different. That is, 
in a public-key scheme, signatures are a function of the message 
and a long-term key. Hence key material can be re-used many times 
before replacement. This obviates the necessity of special written 
agreements between individual senders and receivers. It also makes 
it easy for a third party to resolve disputes (e.g., involving 
repudiation) later, and simplifies storage and bookkeeping. As we 
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note below, the bandwidth limitation of public-key systems is 
minimized by the use of hash functions as auxiliaries. 

In passing we remark that Goldwasser, Micali and Rivest [GOLDBB] 
have proposed a nondeterministic public-key signature scheme which 
incorporates an aspect of conventional schemes: a message does not 
have a unique signature. This scheme is intended to deflect 
adaptive chosen-text attacks, in which an attacker is permitted to 
use a signer as an oracle. In such an attack, the attacker 
specifies a sequence of messages to be signed, and is able to study 
all previous signatures before requesting the next, In the GMR 
scheme, it can be proved that an attacker can gain no information 
by studying any number of signatures no matter how they are 
generated. 

However, this security gain is offset to some extent by data 
expansion (high ratio of signature to message size) and a negative 
effect on nonrepudiation. As in the case of the one-time schemes 
discussed earlier, the signatures generated in nondeterministic 
public-key schemes tend to be large in comparison to signatures 
produGed by deterministic public-key schemes (i.e., those which 
produce a unique signature for a given message). Adjudication of 
disputes is made difficult by increased bookkeeping and the 
necessity of storing large databases of messages and their 
signatures. 

In the following we discuss only deterministic public-key 
signature schemes, in which a message has a unique signature. 

3.1 Public-key implementation of signatures. 

We have noted previously that, like secret-key systems, public­
key systems can be used for authentication. There are several 
distinctive features of a public-key implementation of signatures, 
including: 

a. The possibility of incorporating both secrecy and 
authenticity simultaneously, assuming that the system 
supports both services. 

b. The re-use of key material in generating signatures 
algorithmically. 

c. Nonrepudiation of sending is essentially a built-in 
service. 

These features make public-key implementation of signatures very 
efficient and versatile. 

3.1.1 Signing messages. 
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There are several possible protocols for signing in public-key 
cryptography, depending on the services desired. In the simplest 
case, A simply signs a document M by sending S = DA(M) to B. 

If a hash function H is used, A computes S = DA(H(M)) and sends 
both M and S to B. B validates A's signature S by computing H(M) 
= EA(S). We also noted earlier that because EA is a trapdoor one­
way function, it should not be possible for an intruder to find S' 
such that H(M) = EA(S') for a given message M. Thus A's signature 
cannot be forged. Also, if A attempts to repudiate the M sent to 
B above, B may present M and S to a judge. The judge can access EA 
and hence can verify H(M) = EA(S); assuming the trapdoor DAis 
indeed secret, only A could have sent s. Thus a priori we have 
nonrepudiation (but see below). 

For both authenticity and secrecy, A could send 

M' EB(M,DA(H(M))) 

to B; B computes 

(M, DA(H(M))) DB(M') 

and then verifies that 

H(M) EA(DA(H(M))), 

The last protocol is illustrated below. 

A: B: 

\I 
compute H H(M) II\ II receive M' from A 

I I 
I I I 
I I I 

\II I \II 
I I 

compute s DA(H) I I compute (M, S) DB (M') 
I I 

I I I 
I I I 
II I \II 

I 
compute M' EB(M, S) I compute H' EA(S) 

I 
I I I 
I I I 

\II I \II -----
I 
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send M' to B verify H' H(M) 

I 
\I 

Figure 5. A Protocol for Signing with Hash Function and Secrecy 

For nonrepudiation in the last case, B retains DB(M') ~ 

(M,DA(H(M))), A judge can apply EA to DA(H(M)) and compare to H(M), 
This again assumes common domains for the E's and D's; in section 

· 4.1 we will note an example of how this point may be treated in 
practice. In passing we remark that the preceding schemes satisfy 
another desirable property: in the adjudication process, they do 
not compromise security by exposing private components to a judge. 

3.1.2 The issue of nonrepudiation. 

Nonrepudiation, i.e., preventing senders from denying they have 
sent messages, is contingent upon users keeping their private 
components secret (e.g., [NEED78], [POPE79]). In the above, if DA 
should be compromised, then A might be able to repudiate messages 
sent even before the compromise, On the other hand, as in the case 
of lost or stolen credit cards, A may still be held liable for 
messages signed before the compromise was reported to a central 
authority. This is an administrative issue, and ultimately a matter 
for litigation; hence it is beyond the scope of cryptography per 
se. However, some partial solutions have been proposed which can 
be ihcorporated into protocols. Most of these involve use of so~e 
form of arbitrator, as noted in [DEMI83]. 

For example, in [POPE79], notary public machines are employed 
as arbitrators. A general protocol for usage of an arbitrator A 
when U is sending a message M to R is given in [AKL-83]: 

a. U computes Sl ~ ER(DU(M)). 

b. U computes a header m ~ identifying information. 

c. U computes S2 ~ DU(m,Sl). 

d. U sends m and S2 to A. 

e. A applies EU to S2 and checks the identifying information 
in m, thereby verifying the origin of M. 

f. A computes M' (m,Sl,timestamp), 

g. A computes S' DA(M'). 

h. A sends S' to R. 
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As noted above, a copy of S' may also be sent to u. 

As noted in [POPE78], this type of scheme violates a desirable 
criterion for network protocols, namely point-to-point 
communication. It also requires trusted software, which is 
undesirable. 

In [BOOTBl] the use of a central authority is suggested for this 
purpose. In this scheme, the receiver of a message sends a copy to 
the central authority. The latter can attest to the instantaneous 
validity of the sender's signature; i.e., that it has not been 
reported that the sender's private component has been compromised 
at the time of sending. The value of such testimony is mitigated 
by the necessity of users rapidly reporting key compromise to the 
central authority. Also, the central authority becomes a 
bottleneck. 

Another partial solution involves timestamps ([DENNBl], 
[MERK82b]). This again may involve a network of automated 
arbitrators, but very simple in nature, since they need merely 
timestamp messages. In contrast to the notary publics above, 
however, in [MERK82b] it is suggested that receivers obtain 
timestamps. If a receiver needs to be sure of the validity of a 
signature, he may check. the validity of the sender's private 
component by checking with a central authority. As long as the 
received message is timestamped before the validity check, the 
receiver is assured of nonrepudiation. To be legally cohesive, 
however, this system requires the sender to be responsible for 
signing until a compromise of his private component is reported to 
the central authority. In analogy to lost credit cards, this may 
not be a desirable system. Also, it requires an on-line central 
authority and real-time validity checks and timestamps, which may 
again create bottlenecks. Furthermore, such schemes require a 
network-wide clock and are vulnerable to forgery of timestamps, as 
noted in [BOOTBl]. 

If users are permitted to change their components, a central 
authority should retain past components for use in disputes which 
may arise later. Neither compromise nor change of components of a 
user should cause catastrophic problems in practice, since credit 
card systems have established precedents for protocols, both 
administrative and legal. For example, as noted above, conventions 
have been established for treatment of cases of lost or stolen 
credit cards; presumably analogous procedures could be established 
for component compromise. 

3.1.3 The issue of proof of delivery. 

The literature on public-key protocols concentrates on the 
issues of validity of signatures and the effects of key compromise 
on nonrepudiation. However, DeMille and Merritt [DEMI83] note that 
the inverse of a signature, namely protection against the recipient 
of a message denying receipt, may also be a desired feature of a 
system. It is mentioned as an optional security service in [IS0-
87 J • 
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Both nonrepudiation and proof of delivery must be implemented 
via adjudicable protocols, i.e., protocols which can be verified 
later by a third party. In [DEMI83] it is noted that nonarbitrated 
adjudicable reception protocols are difficult to design. A simple 
handshaking protocol might proceed as follows: 

a. A computes X = EB(DA(M)). 

b. A sends X to B. 

c. B computes M EA(DB(X)). 

d. B computes y EA(DB(M)). 

e. B acknowledges receipt of M by sending Y to A. 

If this protocol is standard procedure then A can assume 
nonreception unless he receives acknowledgement from B. However, 
to serve as an adjudicable proof-of-reception protocol, B is 
required to acknowledge anything A sends. Then an intruder C could 
proceed as follows: 

a. c intercepts Y = EA(DB(M)). 

b. C sends Y to A. 

c. A thinks that this is a legitimate message from c, 

unrelated to his communication with B. Following protocol: 

c.l. A computes M' = EC(DA(Y)). 

c.2. A computes Z = EC(DA(M')). 

c.3. A acknowledges receipt of M' by sending Z to c. 

d. C computes EB(DC(EA(DC(Z)))) = EB(DC(M')) = EB(DA(Y)) = M. 

This of course occurs because of step c, in which A is required 
by protocol to acknowledge M' = gibberish. This shows that such an 
automatic protocol may be undesirable. On the other hand, selective 
acknowledgement might have an adverse effect on adjudicability. 

3.2 Hash functions and message digests. 

We noted that public-key systems generally encrypt more slowly 
than conventional ciphers such as DES. Other digital signature 
schemes are also relatively slow in general. Furthermore, some 
schemes produce signatures comparable in size to, and in some cases 
larger than, the messages they sign. This results in data expansion 
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and effectively lower bandwidth of transmission. Thus it is usually 
not desirable to apply a digital signature directly to a long 
message. bn the other hand, we remarke~ that the entire message 
must be signed. This is seemingly contradictory, but a heuristic 
solution can be obtained by using a hash function as an 
intermediary. 

A hash function H accepts a variable-size message M as input and 
outputs a fixed-size representation H(M) of M, sometimes called a 
message digest [DAVIBO]. In general H(M) will be much smaller than 
M; e.g., H(M) might be 64 or 128 bits, whereas M might be a 
megabyte or more, A digital signature may be applied to H(M) in 
relatively quick fashion. That is, H(M) is signed rather than M. 
Both M and the signed H(M) may be encapsulated in another message 
which may then be encrypted for secrecy. The receiver may validate 
the signature on H(M) and then apply the public function H directly 
to M and check to see that it coincides with the forwarded signed 
version of H(M). This validates both the authenticity and integrity 
of M simultaneously. If H(M) were unsigned only integrity would be 
assured. 

A hash function can also serve to detect modification of a 
message, independent of any connection with signatures. That is, 
it can serve as a cryptographic checksum (also known as an MDC = 

manipulation detection code or MAC = message authentication code) . 
This may be useful in a case where secrecy and authentication are. 
unimportant but accuracy is paramount. For example, if a key is 
sent in unencrypted form, even if the key is only a few hundred 
bits it might be useful to transmit a checksum along with it. 
Another instance where this case arises is when secrecy is provided 
by a system such as DES which does not provide a signature 
capability. An important distinction is that a hash function such 
as a MAC used in connection with a conventional system is typically 
parameterized by a secret shared key, although the latter may be 
distinct from the session key used in transmitting the message and 
its MAC. In contrast, hash functions used in connection with 
public-key systems should be public and hence keyless. 

Earlier we referred to the use of hash functions as a 
"heuristic" solution to the problem of signing long messages. This 
refers to the fact that the signature for a message should be 
unique, but it is theoretically possible that two distinct messages 
could be compressed into the same message digest (a collision). The 
security of hash functions thus requires collision avoidance. 
Collisions cannot be avoided entirely, since in general the number 
of possible messages will exceed the number of possible outputs of 
the hash function. However, the probability of collisions must be 
low. If a function has a reasonably random output, the probability 
of collisions is determined by the output size. 

A hash function must meet at least the following minimal 
requirement to serve the authentication process properly: it must 
not be computationally feasible to find a message which hashes to 
the same digest as a given message. Thus, altering a message will 
change the message digest. This is important to avoid forgery. 

In many settings this minimal requirement is regarded as too 
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weak. Instead, the requirement is added that it should not be 
possible to find any two strings which hash to the same value. We 
return to the distinction between these two criteria in section 
3.2.3. 

3.2.1 Usage of hash functions. 

In a public-key system augmented by a hash function H, A might 
send a message M to Bas follows: for simplicity ignore secrecy 
considerations. Then A sends M and S = DA(H(M)) to B. The latter 
uses EA to retrieve H(M) from S, then computes H(M) directly and 
compares the two values for authentication. For nonrepudiation, B 
retains M, H(M) and S. If A attempts to repudiate M, a judge can 
use the three items to resolve the dispute as before: he computes 
H(M) = EA(S) and recomputes H(M) from M. If B could find M' with 
H(M') H(M), B could claim A sent M'. A judge receiving M', H(M) 
and S would reach a false conclusion. 

3.2.2 Relation to one-way functions. 

Merkle [MERK82) defines a hash function F to be a transformation 
with the following properties: 

a. F can be applied to an argument of any size. 

b. F produces a fixed-size output. 

c. F(x) is relatively easy to compute for any given x. 

d. For any given y it is computationally infeasible to find 
x with F(x) = y. 

e. For any fixed x it is computationally infeasible to find 
X 1 p X With F (X 1 

) = F (X) • 

The most important properties are (d) and (e). In particular, 
(e) guarantees that an alternative message hashing to the same 
value as a given message cannot be found. This prevents forgery and 
also permits F to function as a cryptographic checksum for 
integrity. Actually (e) can be strengthened as we note momentarily. 

Property (d) states that F is a one-way function (e.g., 
[DIFF76b)). One-way functions are used in various other contexts 
as well. For example, we noted earlier that the security of public­
key systems depends on the fact that the public transformations are 
trapdoor one-way functions. Trapdoors permit decoding by 
recipients. In contrast, hash functions are one-way functions which 
do not have trapdoors. 

The concept of (non-trapdoor) one-way functions originated in 
connection with log-in procedures ([WILK68) p. 91): Needham noted 
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that if passwords were stored encrypted under a one-way function, 
a list of encrypted passwords would be of no use to an intruder 
since the original passwords could not be recovered. When a user 
logged in, the string entered would be encrypted and compared to 
the stored version for authenticity. Essentially the same system 
was rediscovered later in [EVAN74], 

Usage of one-way functions to produce message digests or encrypt 
passwords is very different from use of trapdoor one-way functions 
to generate encryption functions {EA} in a public-key cryptosystem. 
In the latter, (d) above becomes a dichotomy: it is computationally 
infeasible for anyone except A to find M from C = EA(M); but it is 
easy for A, the unique holder of the trapdoor DA, to compute M = 
DA(C), 

An example of functions which are not one-way are the private 
transformations in public-key systems: anyone can solve S = D(M) 
forM; i.e., M = E(S), This shows that signature schemes are not 
one-way functions; i.e,, they do not satisfy (d) above. On the 
other hand, a deterministic signature function S satisfies (e) 
above; i.e., messages have unique signatures. For example, if a 
signature is generated via S = D(M) where D is a decryption 
function of a public-key system, then D(M) = D(M') implies E(D(M)) 

M = E(D(M' )) = M', so (e) is trivially satisfied, 

Merkle's requirements above are that a hash function must be 
both one-way (d) and effectively collisionless (e), In order to 
satisfy (a) and (b) concurrently, collisions must exist; (e) 
requires that a cryptanalyst should not be able to find them. This 
notion is amenable to further refinement, 

3.2.3 Weak and strong hash functions. 

The security of hash functions can be refined further: we may 
distinguish between weak and strong hash functions. A function 
satisfying (a) - (e) of the previous section may be termed a weak 

'hash function, Property (e) characterizes weak hash functions; it 
states that a cryptanalyst cannot find a second message producing 
the same message digest as a fixed message, On the other hand, H 
may be termed a strqng hash function if (a) - (d) still hold, but 
(e) is modified as follows: it is computationally infeasible to 
find any {xl,x2} with H(xl) = H(x2), 

Strong and weak functions may often be obtained from the same 
class of functions. Strong functions are then characterized by 
larger message digests, which reduce the probability of collisions, 
Strong functions are thus more secure, but the longer message 
digests are likely to increase time needed to hash. 

Although the two definitions above are superficially similar, 
computationally they are quite different. For example, suppose H 
is a hash function with an 80-bit output. Suppose a cryptanalyst 
starts with a fixed message M and wishes to find a second message 
M' with H(M) = H(M'), Assuming that the 280 outputs of Hare totally 
random, any candidate M' has a probability of only 2-80 of meeting 
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the required condition. More generally, if the cryptanalyst tries 
k candidates, the probability that at least one candidate satisfies 
H(M) = H(M') ii 1-(1-2-BO)k which is about 2-BOk by the binomial 
theorem if the latter is small. For example, the cryptanalyst will 
probably have to compute H for about k = 274 = 1022 values of M' to 
have even one chance in a million of finding one M' which collides 
with M. Thus H is secure in the weak sense. 

Suppose for the same H the cryptanalyst merely seeks any values 
{Ml,M2} with H(M1) = H(M2). By example F.1, if he examines H(M) for 
at least 1.17 * 240 < 2 * 1012 random values of M, the probability 
of at least one collision exceeds 1/2. A supercomputer could 
probably find M1 and M2 with H(M1) = H(M2) in at most 'a few days. 
Thus H is not secure in the strong sense. 

The latter attack is called a birthday attack (app. F). It 
should be noted that finding a collision H(x) = H(y) gives the 
cryptanalyst no valuable information if x and y are random bit 
strings. For a purpose such as forgery an adversary may need to 
generate a large number (e.g. 1012 above) of variations of a message 
to find two which collide. Inclusion of timestamps or sequence 
numbers in messages, according to a fixed format, may make it 
computationally infeasible to find a collision of use to an 
adversary. 

3.3 Digital signatures and certificate-based systems. 

We previously noted that digital signatures can be employed for 
authentication in the process of distributing public components in 
public-key systems. In particular, if the system is certificate­
based, the central issuing authority can sign certificates 
containing public components. 

The notion of a central authority can be extended to a 
hierarchical (tree) structure. The central authority serves as the 
root of the tree; leaves represent users. Intermediate nodes may 
also be users. Typically the intermediate nodes will be arranged 
in several levels representing, e.g., organizations and 
organizational units. Each node of the tree is responsible for 
authenticating its children. Thus an authentication path is created 
for each node, ending at the root. For example, the central 
authority may certify an organization; the organization may certify 
a unit; the unit may certify an individual user. Certification may 
be accomplished by having a parent node sign a certificate for the 
child node. To validate another user's certificate, a user may 
request the entire authentication path. 

It is also possible for the tree to be replaced by a forest. For 
example, in a multinational system there may be a different tree 
for each country. In this event the roots must certify each other. 
An authentication path may then pass through two or more roots. 

More generally, an authentication structure can be an arbitrary 
directed graph, with a directed edge from A to B if A certifies B. 
Then authentication paths may be constructed by conjoining directed 
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paths from two users to a common trusted node; an example of this 
more complex structure is given in section 5.3. 

4. Examples of public-key systems and hash functions. 

Numerous public-key systems have been proposed. These may be 
divided into several categories: 

a. Systems which have been broken. 

b. Systems which are considered secure. 

b.l. Systems which are of questionable practicality. 

b.2. Systems which are practical. 

b.2.1. Systems suitable for key distribution only. 

b.2.2. Systems suitable for digital signatures only. 

b.2.3. Systems suitable for key distribution and 
digital signatures. 

From the standpoint of sheer numbers, most systems have proven 
to be insecure. This is unfortunate, since some of the techniques 
producing insecure systems have relatively high bandwidths, where 
bandwidth refers to rates of encryption/decryption. Knapsack 
ciphers are an example (sec. 4.2.1, app. E)) of high-bandwidth but 
generally insecure systems. Of the systems which have not been 
broken, many are regarded as impractical for reasons such as large 
key sizes or large data expansion (ciphertext much larger than 
plaintext). 

Only a relative handful of systems are widely-regarded as secure 
and practical. In particular, a cryptosystem is usually regarded 
as secure if breaking it is essentially equivalent to solving a 
long-standing mathematical problem which has defied all attempts 
at solution. 

Of the well-known systems which are generally regarded as secure 
and practical, some are limited to digital signatures and hence 
unsuitable for public key distribution (e.g. sec, 4.2.2), On the 
other hand, in instances such as the Diffie/Hellman exponential 
exchange scheme (sec. 2.2), public key distribution is supported 
but authentication is not. Such systems may need augmentation by 
a system which supports signatures. The only well-known system 
discovered to date which is secure, practical and suitable for both 
secrecy and authentication is described in section 4.1. 

Category (b.2.3) above could in theory be further subdivided 
into systems with relatively low and high bandwidths, but there are 
no well-known examples with high-bandwidths. There does not exist 
a secure, practical system suitable for key distribution and 
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digital signatures, and with high enough bandwidth to support bulk 
data encryption. Prospects for creating radically new systems seem 
dim; in fact, as noted in [DIFF88], most of the extant systems are 
based on a small number of hard mathematical problems: 

a. discrete exponentiation. 

b. knapsack problems. 

c. factoring. 

According to Diffie, discrete exponentiation was suggested by 
J. Gill, and the use of the knapsack problem by Diffie. A 
suggestion to use factoring was apparently made by Knuth to Diffie 
during the early years of public-key cryptography, but fact.oring 
was not incorporated into a cryptosystem until several years later 
(sec. 4.1), 

The knapsack problem is noted briefly in section 4.2.1. The 
other two mathematical problems above are easy to state (though 
also hard to solve) : 

a, If p is a given prime and g and M are given integers, find 
x such that gx o M (mod p), 

b. If N is a product of two secret primes: 

1. factor N. 

2. Given integers M and C, find d such that Md o C (mod 
N). 

3. Given integers e and c, find M such that Me o C (mod 
N). 

4. Given an integer x, decide whether there exists an 
integer y such that x o y2 (mod N). 

Gill's suggestion was based on (a), i.e., on the difficulty of 
computing discrete logarithms modulo a prime. This has generated 
systems (e.g. sec. 2.2) suitable for key distribution, and others 
suitable for signatures (e.g. sec. 4.2.2). 

Exploitation of the difficulty of factoring has proven to be the 
most versatile approach to design of public-key systems. Factoring 
is widely-regarded as very difficult. If a modulus has unknown 
factorization, various problems in modular arithmetic become 
difficult. For example, discrete logarithm ((b.2) above) is 
difficult, as is taking roots (b.3) and deciding quadratic 
residuosity (b.4). These problems have generated the most widely­
known public-key system (sec. 4.1) and various others. We re~ark 
in passing that the probabilistic scheme mentioned in section 3 and 
appendix Pare based on (b.4); more generally, quadratic 



-- 44 --

REDACTED

MasterCard, Exh. 1005, p. 44

residuosity forms the basis of many zero-knowledge schemes. 

Diffie's knapsack suggestion is one of many attempts to utilize 
NP-complete problems for cryptosystems. Such attempts have met with 
very limited success, We return to this topic and further 
discussion of the above problems later. In the meantime we discuss 
a few of the most well-known public-key systems, along with some 
hash functions. 

4.1 The RSA public-key scheme, 

Rivest, Shamir and Adleman [RIVE78] obtained the best-known and 
most versatile public-key cryptosystem. It supports both secrecy 
and authentication, and hence can provide complete and self­
contained support for public key distribution and signatures. 

A user chooses primes p and q and computes n = p * q and m = (p-
1) (q-1). He then chooses e to be an integer in [1,m-1] with 
GCD(e,m) = 1. He finds the multiplicative inverse of e, modulo m; 
i.e. he finds (app. H) d in [1,m-1] with e * d o 1 (mod m). Now n 
and e are public; d, p, q and m are secret. That is, for a user A, 
nA and eA constitute the public component, and dA, pA, qA the private 
component. 

After a user has computed p,q,e,d, the private transformation 
D and public transformation E are defined by (see app. M): 

E (M) Me mod n, 

D(C) Cd mod n. 

In the above, M and C are in [O,n-1]. As in section 1,5 we have 
D(E(M)) = M and E(D(C)) = C; i.e. D and E are inverses. Since dis 
private, so is D; and since e and n are public, so is E. This 
constitutes a cryptosystem which can be used for both secrecy and 
authentication. That is, for secrecy, A sends EB(M) to B as usual; 
for authentication, A sends DA(M) as usual. For both secrecy and 
authentication, suppose first that message digests are not 
employed. Assuming nA 6 nB, A computes 

C = EB(DA(M)) 

and sends C to B. Then B recovers M as usual by 

M EA(DB(EB(DA(M)))), 

This process is illustrated below: 

A: B: 
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Figure 6. Using RSA for Authenticity and Secrecy 

As noted in section 3.1.1, for nonrepudiation B may retain 
DA(M). 

This implementation only works because the range of DA is a 
subset of the domain of EB; i.e. [O,nA-1] is a subset of [O,nB-1]. 
In the event that nA 6 nB, Kohnfelder [KOHN78b] notes that A can 
instead transmit 

C' DA(EB (M)). 

Then B can recover M as 

M DB(EA(DA(EB(M)))). 

This works since the range of EB is a subset of the domain of DA. 
For adjudication of possible disputes, B must retain C' and M. Then 
to prove that A sent M, the judge can compute EA(C') and EB(M) and 
test for equality. 

However, in [DAVI83] and [DENN83b] it is noted that there is a 
disadvantage to this solution: A signs EB(M) rather than M. In 
section 3.1.1 the judge was able to apply EA to the stored quantity 
DA(M) and M is obtained. In Kohnfelder's protocol both C' and M 
must be stored, doubling the storage requirement. 
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The use of message digests eliminates the preceding problem. 
Suppose H is a hash function. Then to send M to B, A can create a 
new message M' containing M and DA(H(M)) and send C = EB(M') to B. 
This gives both secrecy and authentication; also, C may be retained 
for nonrepudiation. Moreover, M and DA(H(M)) are reblocked in 
forming M', so that no problem arises from the sizes of nA and nb. 

4.1.1 Choice of p and q. 

To use the RSA system, a user must first choose primes p and q. 
As noted in section 4.1.3, p and q should at least 75 to 80 decimal 
digits; for the sake of discussion we assume p and q to be on the 
order of about 100 digits. The user begins by choosing a random odd 
b of around 100 digits; b is a candidate for p. Now b is acceptable 
only if b is prime. There are two approaches to this problem. The 
deterministic approach decides with certainty whether b is prime 
(see below). An alternative is to use the probabilistic approach 
as implemented, e.g., by Solovay and Strassen [SOL077]: randomly 
choose a set of about 100 numbers in [1,b-1]. For each number a in 
the set, test to see if GCD(a,b) = 1, where GCD = greatest common 
divisor. If this condition holds, compute the Jacobi symbol (a/b) 
(app. J). Both GCDs and Jacobi symbols are easy to compute via 
well-known algorithms (app. H,J). Now check to see if 

(a/b) a a(b-1)/2 (mod b) 0 

If b is not prime, this check will fail with probability at 
least 1/2 (app. L). Thus, if 100 random a's are tested and all pass 
the above test, the probability of b not being prime is about 1 in 
2100. Hence it is possible to test in polynomial time whether b is 
probably a prime. The probability of b being prime is about 1 in 
115; hence repeated applications of the preceding algorithm will 
probably quickly yield b which is probably a prime. This can be 
taken to be p; a second application of the algorithm will yield q. 

The Solovay/Strassen algorithm is discussed further in appendix 
L, which also mentions alternative algorithms of Lehman [LEHM82] 
and Miller and Rabin ([MILL76], [RABIBO]). 

The advantage of such probabilistic algorithms is that the 
algorithms run in polynomial time. They do not guarantee a correct 
answer, but the possibility of error is'negligible as noted above. 
If absolute certainty were required, deterministic algorithms for 
primality testing could be used ([ADLE83], [COHE87], [COHE84]), These 
guarantee primality, but have runtimes of the form 

exp(c(log log n) (log log log n)). 

If a sufficient amount of computing power is available, 
primality of 100-digit numbers can usually be established 
deterministically in minutes. However, the code needed is 



-- 47 --

REDACTED

MasterCard, Exh. 1005, p. 47

complicated; moreover, most users will not have access to high­
performance computers. The probabilistic algorithms have acceptable 
run times even on small computers, particularly if hardware support 
is available. 

4.1.2 Further notes on implementation. 

Once p and q have been chosen, e is chosen to be relatively 
prime tom= (p-1) (q-1); i.e. GCD(e,m) = 1. For example, e can be 
chosen to be a random small prJ.me > 2. If e is relatively small, 
E(M) can be computed relatively rapidly; i.e. only a small number 
of modular multiplications are needed. The condition GCD(e,m) = 1 
presents no problem; in fact the probability that two random 
numbers are relatively prime is about 3/5 ([KNUT81] p. 324). Now 
d can be found in polynomial time; however, d may be large. Hence 
a version of the Chinese Remainder Theorem is employed for 
decryption (app. M). 

There are some restrictions on p and q in addition to the size 
specification mentioned above. Some of these are noted in section 
4.1.3.1. Also, the time and space requirements of RSA are 
considerably larger than, e.g., DES. Storage for each of p, q, and 
d will require at least 300 bits; n is about 600 bits. Only e can 
be chosen to be small. 

Exponentiation mod n is a relatively slow operation for large 
n, especially in software, Efficient algorithms for computing 
products mod n have been given, e.g., in [BLAK83], [BRIC82], 
[MONT85] and [QUIS82]. In particular, [BRIC82] shows how 
multiplication mod n can be done in m+7 clock pulses if n is m 
bits. In [MONT85] it is shown how modular multiplication can avoid 
division. 

At the present time RSA decryption (encryption is slower) with 
a 508-bit modulus has been performed at about 225 Kbits/sec in 
hardware [SHAN90]. Decryption with a 512-bit modulus has been 
effected at about 11 Kbits/sec in software [DUSS90]. 

4.1.3 Security of RSA. 

The security of the private components in the RSA cryptosystem 
depends on the difficulty of factoring large integers. No efficient 
algorithms are. known for this problem. Consequently, knowing n 
p * q does not yield p and q. Thus it is computationally infeasible 
to find (p-1) (q-1) = m, and hence the relation e * d a 1 (mod m) 
is useless for determining d from e. 

The difficulty of computing discrete logarithms (cf. sec. 1.5) 
deflects known-plaintext attacks. Suppose an intruder knows M, C 
and M = D(C) for some plaintext/ciphertext pair {M,C). To find d 
he must solve M = Cd mod n; i.e., he must find a discrete 
logarithm, 
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Ciphertext-only attacks are equivalent to taking roots modulo 
a composite number with unknown factorization, i.e. solving C =Me 
mod n for M. This is probably about as difficult as discrete 
logarithms, even in the case of square roots (e.g., [ADLE86]). In 
fact (lem. N.3.2; cf. [KNUT81] p. 389, [RABI79] ), taking square 
roots modulo such n is, loosely ~peaking, as hard as factoring n1 

It should be noted that the security of RSA is not provably 
equivalent to the difficulty of factoring or the other problems 
mentioned here. Also, security of RSA or other public-key systems 
does not preclude breaking specific protocols for their use; see 
e.g. [MOORBB] or [DOLE81]. An example of a protocol failure is 
given in [MOOR88] : suppose two users use a common modulus n and 
encryption exponents e and e' with GCD(e,e') = 1. If the same 
message M is sent to both, then let C = Me mod n and C' = Me' mod n, 
If both C and C' are intercepted, an intruder can find (app. H) r 
and s with r * e + s * e' = 1; now M = Cr * C's mod n. 

4.1.3.1 Restrictions on p and q. 

There are two major restrictions on p and q in order to foil 
attempts at factoring n = p * q: 

a. p and q should be about the same length. 

b. p and q should be at least 75 digits in length. 

Present factoring methods will be foiled by such a choice. For 
longer-term security, p and q should be, e.g., around 100 digits. 
Condition (a) is needed against the elliptic curve method (see 
below) . 

An attempt to predict the period of time for which a given 
modulus length will remain secure is necessarily guesswork. 
Intelligent guesses are the best that can be hoped for by 
implementors; these are connected with the status of progress in 
factoring, which is highly dynamic. 

4.1.3.2 Notes on factoring, 

Choosing n to be about 200 digits will foil any present attempt 
at factoring n. The most powerful general-purpose factoring 
algorithm is Pomerance's quadratic sieve [POME84] and its 
variations. Using a parallel version of the quadratic sieve, Caron 
and Silverman [CAR087] factored 90-digit integers in several weeks 
on a network of several dozen Sun-3's. Recently, 106-digit integers 
have been factored on a larger network [LENS89], using the multiple 
polynomial variant of the quadratic sieve, Recent announcements of 
work in progress indicate that integers of around 116 digits may 
be factored shortly, using the same network used in the 106-digit 
case and another variant of the quadratic sieve. 



-- 49 --

REDACTED

MasterCard, Exh. 1005, p. 49

Pomerance, Smith and Tuler [POME88] discuss a prototype of a 
special pipelined architecture, optimized for the quadratic sieve, 
which they claim is extensible to a machine which might factor 125-
digit integers in a year. However, this presents no threat to 200-
digit moduli, since all of the best general-purpose factoring 
algorithms known, including the quadratic sieve, run in time 
roughly 

exp(((log n)(log log n))l/2). 

The fastest present computers only execute on the order of 1010 
operations per second, at a cost of $10 million or more. Even if 
a future computer reached 1012 operations per second (and presumably 
a cost exceeding $100 million) it would take on the order of 1000 
years to factor a 200-digit number using existing algorithms. 

The strongest results on factoring obtained to date have 
utilized networks of computers. The power of such networks is more 
difficult to extrapolate than for supercomputers, since they are 
expandable and the power of personal computers and workstations has 
been rising at a higher rate than at the supercomputer level. In 
theory it would be preferable to know that a cryptosystem ·would be 
immune to an attack by an assemblage of every computer in the 
universe. It seems difficult to estimate the total amount of 
computing power this would bring to bear; furthermore, the question 
in practice is what fraction of this total amount can be 
realistically allotted to a given factoring problem (cf. app. B). 

It follows that implementors may have a high level of confidence 
in 200-digit moduli at the present. An interesting issue at the 
time of this writing is whether a modulus with a length between 150 
and 200 digits will provide security for a given length of time. 
It seems certain that 154-digit (i.e., 512-bit) integers will be 
factored eventually, but the question is when. If the preceding 
runtime estimate is used, the conclusion is that 154 digits is 
likely to be secure until the late 1990s, barring major algorithmic 
advances (cf. app. B). RSA moduli of around 512 bits are generally 
preferable to 200 digits (around 660 bits) from a hardware­
implementation standpoint. 

A potential qualifier to the preceding analysis is that the 
above runtime estimate is generic; in particular :Lt assumes that 
runtime :Ls essentially independent of the integer being factored. 
However, there are algorithms which have the above as their worst­
case time. For example, the Schnorr/Lenstra algorithm [SCHN84] 
factors n by using quadratic forms with discriminant -n. The 
equivalence classes of such forms form a group (the class group) 
whose order is denoted by h(-n). The algorithm factors n quickly 
:Lf h(-n) is free of large prime divisors. The algorithm is Monte 
Carlo in the sense that then's which will be factored quickly are 
evidently fairly random, No algorithms are known to generate class 
numbers with large prime divisors, although interestingly RSA comes 
close: class numbers h(-n) of discriminants n with one or two prime 
factors have a higher probability of having large prime factors 
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than the class numbers of discriminants with only small prime 
factors. 

The net result is that, e.g., perhaps one in 1000 n's will 
factor 1000 times more quickly than average. If this method were 
practicable it would argue for the 200-digit modulus in RSA. 
However, the Monte Carlo phenomenon has not produced noticeably 
lower factoring times in practice as yet. 

Some other factoring methods are applicable to numbers which do 
not have the form required for an RSA modulus. For example, the 
elliptic curve method [LENS87] is oriented to integers whose 
second-largest prime factor is considerably smaller than the 
largest prime factor. This motivates the condition that an RSA 
modulus should have factors roughly equal in size. A recent 
algorithm, the number field sieve [LENS90), applies to integers of 
the form rd + s or rd- s where r and s are small. Again this will 
not affect properly-chaser. RSA moduli. 

4.1.4 Low-exponent versions of RSA. 

A priori the encryption exponent e in the RSA scheme is 
arbitrary. However, it need not be random. It has been suggested 
that e be chosen to have a common value by all users of an RSA­
based system. Using e = 2 is not feasible per se, since 2 is not 
relatively prime to p-1 or q-1. However, extensions of this type 
have been made. These are of some theoretical interest, since Rabin 
[RABI79) and Williams [WILLBO] have noted modifications of RSA with 
exponent 2 for which successful ciphertext-only attacks are 
essentially as difficult as factoring the modulus (app. N). 

The exponent 3 can be used directly with RSA. It has the 
advantage of greatly simplifying the encryption (but not the 
decryption) process. In fact Knuth [KNUT81), Rivest [RIVE84) and 
others recommend its usage. However, 3 and other very low exponents 
suffer from some flaws. The case e ~ 3 is an illustration. For one 
thing, as Knuth notes, users must make certain that each block M 
to be encrypted satisfies M3 >> n. This is because C = M3 mod n 
becomes simply C M3 if M3 < n; in this event finding M reduces to 
the trivial problem of taking ordinary cube roots of integers. Thus 
the use of e = 3 causes the domain of E to be a subset of [O,n) 
rather than the whole interval as would be preferable. 

A related but more subtle flaw has also been noted if, e.g., e 
3 [HAST88). Suppose A sends the same message M to each of {Bi}, 

i = 1,2,3, Suppose Bi uses modulus ni, and M < ni for each i (this 
will be true, e.g., if the sender uses a modulus smaller than each 
of the {ni}). Assuming that each of {nl,n2,n3} is generated as a 
product of two random primes, the probability of duplicates among 
the 6 primes used is near zero. Hence it may be safely assumed that 
the {ni} are pairwise relatively prime. Let Ci = M3 mod ni. Suppose 
all 3 {Ci} are intercepted. Using the Chinese Remainder Theorem 
(app. I), the intruder can find x in [O,n'), n' = nl * n2 * n3, with 
x o Ci (mod ni), i = 1,2,3. Thus x o M3 (mod n'). But M3 < n', so M3 
= x, so M = xl/3 (ordinary cube root). Hence the plaintext M can be 
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easily recovered from the three ciphertexts. Thus the use of e = 
3 or other small exponents makes RSA vulnerable to ciphertext-only 
attacks. The sender may attempt to modify M for each recipient to 
deflect this attack, but Hastad shows that more generally, a low 
exponent is vulnerable to linear dependencies in portions of 
messages. 

4.2 Other public-key systems. 

Several public-key systems other than RSA have been proposed. 
These are briefly surveyed here. As noted earlier, most of these 
are either insecure, of questionable practicality, or limited to 
one of signatures/secrecy but not both. In some cases their 
security and/or practicality has not been established. None of 
these systems rivals RSA if a combination of versatility, security 
and practicality is the criterion. However, this does not preclude 
the use of the secure systems for specific applications such as 
digital signatures. 

4.2.1 Knapsack systems. 

These were proposed by Merkle and Hellman [MERK78b]. However, 
the essence is the use of NP-complete problems (e.g., 
[GARE79], [HOR078]) which had been suggested for use in designing 
public-key systems in [DIFF76b]. The Merkle/Hellman approach was 
to employ a superincreasing sequence (ai}, i.e., a sequence of 
positive integers for which 

ai > ai-1 + .. , + al. 

The associated knapsack problem [HOR078] is to find nonnegative 
integers (Mi} such that for a given Y, 

Y al * Ml + . , , + an * Mn. 

The above is an instance of integer programming, In the present 
context the (Mi} are binary; thus the above reduces to sum-of­
subsets. Solving the above is easy for superincreasing (ai}; in 
fact the solution is unique. However, even deciding existence of 
a solution of sum-of-subsets, or more generally integer 
programming,· is NP-complete ([GARE79], pp. 223, 245). Now for any 
w and u satisfying 

u > al + . . . + an, 

GCD(u,w) 1, 
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a disguised knapsack problem may be produced from {ai} by defining 

bi w * ai mod u. 

Then the associated knapsack problem 

C b1 * M1 + . . . + bn * Mn 

appears to a cryptanalyst to be hard since the {bi} appear random. 
In actuality, it is easily solved using the connection with the 
{ai}: since GCD(w,u) = 1, there exists W (app. H) such that 

w * W o 1 (mod u) . 

Then 

W * c o a1 * M1 + . . . + an * Mn (mod u). 

Since 0 6 Mi 6 1, 

0 6 a1 * M1 + ... +an* Mn < u, 

from which 

w * c al * M1 + .. , + an * Mn. 

As noted above, the latter knapsack problem has an easily-found 
unique solution, from which C may be retrieved. This is called a 
trapdoor; it permits a legitimate user to easily solve what appears 
to.be a hard problem. The above modular disguise can be iterated; 
i.e., new w' and u' chosen and the (bi} disguised, etc. 

The trapdoor knapsack yields a public-key system: if the binary 
representation of plaintext M is Mn ... M1, let 

E(M) b1 * M1 + ... + bn * Mn. 

If C = E(M) then decrypting Cis equivalent to solving what 
appears to be a general knapsack problem, although decryption is 
easy using the trapdoor, The public component is (bi} and the 
private component is u, w and {ai} (see [MERK78b] for details}. 

The advantage is that the arithmetic·is much quicker than in 
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RSA: about 200 additions are needed, as opposed to about 500 
squarings and 150 multiplications in RSA. In fact knapsacks may 
rival DES in speed [HENRBl], Unfortunately the above knapsack and 
most variations on the above have been broken (Appendix E) . 

It should also be noted that even if a knapsack approach proves 
to be secure and practical, such schemes are generally limited to 
support for either secrecy or authentication but not both. In 
contrast to RSA, the encryption and decryption functions are not 
inverses, although D(E(M)) = M. A trivial example suffices to show 
this: suppose 

E(M) 2Ml + 3M2. 

To be invertible a function must be both injective and 
surjective. However, E is not surjective (onto). For example there 
is noM such that E(M) = 1; hence D(l) is undefined. Thus we could 
not employ D for signatures as in RSA, since, e.g., 1 could not be 
signed by computing D(l). 

4.2.2 The ElGamal signature scheme. 

A signature scheme derived from a modification of exponentiation 
ciphers was proposed by ElGamal [ELGA85] . 

First of all a prime p and a base a which is a primitive root 
modulo p (app. K) are public. Now suppose A wishes to send a signed 
message to B. The private component of A consists of two portions, 
one fixed and the other message-dependent. The fixed portion is a 
random x(A) from [l,p-2]. The public component of A also has fixed 
and message-dependent components. The fixed portion is 

y(A) ax(A) mod p. 

Now for a given message Min [O,p-1], A chooses a secret kin 
[O,p-1] with GCD(k,p-1) = 1. Thus k is the message-dependent 
portion of A's private component. Also, A finds (app. H) I with 

k *I 51 (mod (p-1)). 

The message-dependent portion of A's public component consists 
of r and s, where 

r = ak mod p, 

so I * (M- r * x(A)) (mod (p-1)). 
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Now A sends M, r and s to B. For authentication B computes 

C = aM mod p, 

C' = y(A)r * rs mod p. 

We note that 

M o r * x(A) + k * s (mod (p-1) ) . 

Hence if M is authentic and valid, 

c (ax(a))r * (ak)s mod p C'. 

The ElGamal algorithm is illustrated below. 
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A: B: 

\I 
choose k /I\ /I receive (M, r, s) 

I I 
I I I 
I I I 

\I/ I \I 
I 

find I*k a mod p-1 I compute. c ~ a**M mod p I 
I 

I I 
I I I 

\I/ I \I/ 
I 

compute r ~ a**k mod p I compute C' yA**r 
I * r**s mod p 

I I 
I I I 
I i I 

\I/ I I 
I I 

compute s = I* (M-r*xA) I I 
mod p-1 I I 

I I 
I I I 
I I I 

----\I/ I \I/ -----
I 

send (M, r, s) to B I verify C' ~ c 
I 

I I 
I I 

\I/ \I 
I 

Figure 7. The ElGamal Signature Algorithm 

A different k must be chosen for each M; using any k twice 
determines x(A) uniquely, The security of the method then depends 
mainly on the difficulty of computing discrete logarithms in GF(p): 
suppose an intruder intercepts M, rands; a.and pare public. Let 
d = ar mod p and u * rs a 1 (mod p) . Then the intruder knows 

aM a y(A)r * rs (mod p). 

Hence 

u *aM a y(A)r (mod p). 

Thus 
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dx(A) o (ax(A) )r a y(A)r (mod p). 

Finally 

dx(A) a u * aM (mod p). 

Finding x(A), which permits the intruder to masquerade as A, is 
thus equivalent to the above discrete logarithm problem. It is easy 
to solve this problem if p-1 has only small factors [POHL78], hence 
p-1 should have a large prime factor as in RSA. An alternative 
approach is to seek k and m satisfying 

M r * x(A) + s * k + (p-1) * m, 

but this is underdetermined, so that there are an exponential 
number of possible solutions to check. A third approach at 
cryptanalysis seeks r and s satisfying 

aM 6 y(A)r * rs (mod p). 

This is presumably easier than discrete logarithm since r and 
s can both be varied, but it is not clear how much easier. 

In comparing this scheme to RSA, we note that both employ 
exponentiation, so that their speeds of encryption/decryption 
should be comparable. Generating keys in the two methods is 
similar; fin~ing appropriate primes is the main step in either. 
Security of ElGamal is more difficult to assess. The major attack 
against RSA, i.e., factorization, is a problem which has been 
studied for centuries. It is safe to say that far less time has 
been invested in attempts to cryptanalyze the ElGamal scheme. 

Cryptanalytically, the last attack (varying rand's 
simultaneously) may have a complexity substantially lower than 
factoring or discrete logarithm; hence security of ElGamal is at 
best no better than RSA, and possibly much inferior, with respect 
to secrecy of components (it must be emphasized that this is a 
conservative characterization; it could also turn out that no 
substantial advantage is gained by varying r and s simultaneously). 
The use of message-dependent portions of components is a plus and 
minus: it increases bookkeeping, and makes it more difficult for 
a third party to adjudicate a dispute. On the other hand it may 
produce greater security' against certain types of attacks. In fact 
the k above could be chosen differently for different blocks of one 
message. 

In passing we note that, like knapsacks, this scheme goes in one 
direction only: we have in effect 
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M E(r,s) (x(A) * r + k * s) mod (p-1). 

This maps the ordered pair (r,s) to a unique M. The condition 
GCD(k,p-1) = 1 guarantees that an (r,s) can always be found; i.e., 
E is surjective. But it is not injective (one-to-one): e.g., if p 
= 7, k = 5, x(A) = 5, then E(l,2) = E(2,1) = 3. Thus text M cannot 
be represented uniquely by a pair (r,s), which would lead to 
ambiguity in an attempt to use this scheme in two directions. 

Also, ElGamal notes that extension to GF(pn) (app. G) is 
feasible. However, it is not clear that extensions to finite fields 
are desirable (cf. sec. 1.5); gains in efficiency may be offset by 
lower security for comparable key sizes. 

4.3 Examples of hash functions. 

To be useful in conjunction with public-key systems, a hash 
function should ideally be keyless. This is in contradistinction 
to message authentication codes used in connection with secret­
key systems. Several hash functions have been proposed for use in 
public-key settings. A few are mentioned here, but it seems to be 
difficult to produce secure, keyless, efficient hash functions. 
Thus we include some examples of functions which have keys, are 
insecure, or both. 

4.3.1 Merkle's meta-method. 

Merkle ([MERK82], [MERK89]) has proposed a general technique for 
obtaining hash functions and digital signatures from existing 
conventional cryptosystems such as DES. Although secret-key systems 
are used as adjuncts, the resulting hash functions are keyless; 
keys needed for DES are generated from the message to be hashed. 
The hash functions are pre-certified in the sense that their 
security can often be proven to be the same as that of the 
underlying conventional function. 

Merkle assumes that encryption in a system such as DES defines 
a function EK, where K is a key, which produces a random output. 
This is technically impossible, and in fact .DES is not a random 
function since it is a permutation. Nonetheless, small deviations 
from randomness may be tolerable. Another requirement is that for 
a given key/plaintext (or ciphertext) pair, the ciphertext (or 
plaintext) returned will not vary with time. Normally a 
cryptosystem would meet this criterion. 

Assume that a function EK(M) is available which satisfies these 
requirements. In deference to the potential use of DES to define 
E, assume K is 56 bits, M is 64 bits, and EK(M) is 64 bits. Since 
E may be assumed to be an encryption function, it may be assumed 
that there exists a decryption function with EK(DK(C)) C. This is 
undesirable in producing one-way hash functions. This problem may 
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be mitigated as follows: given a 120-bit input x, write x = 

CAT(K,M) where CAT denotes concatenation, K is the first 56 bits 
of x, and M is.the last 64 bits. Let 

f(x) EK(M) XOR M, 

where XOR is exclusive-or. Then f hashes 120 bits to 64 bits. 
Furthermore, Merkle claims that f produces a random output even if 
x is chosen non-randomly. A strong one-way hash function, as 
defined in section 3.2.3, meets this criterion, Thus f might be 
termed a fixed-size strong one-way hash function, with "fixed­
size" referring to the fact that f does not accept arbitrary 
inputs. 

There are various ways in which f can be extended to a one-way 
hash function accepting arbitrary inputs (see [MERK89]). 
Furthermore, it is desirable to have a function which outputs more 
than 64 bits, to deflect "birthday" or "square root" attacks (app. 
F), which are based on the statistical phenomenon that the 
probability of collisions produced when hashing becomes significant 
when the number of items hashed is around the square root of the 
total number of ha~h function values. 

In section 3.2.3 we noted how such attacks affect the security 
of hash functions. For example, a 64-bit output (i.e., 264 hash 
values) would be vulnerable to an attack using only 232 = 4 billion 
messages. On the other hand, a 112-bit output would require 
exhaustive search of on the order of 256 values, producing a 
security level comparable to DES. Merkle discusses several 
constructions for producing an output exceeding 64 bits from f. 
Only the simplest construction will be discussed here. Given an 
input x of 119 bits, let 

CAT ( f (CAT ( "0" I X) ) I f ( CN[' ( "1" I X) ) ) CAT(y,z), 

where y is 112 bits. Then define FO (x) = y, In the above, " " 
denotes constant bit string. We note that FO hashes 119 bits to 112 
bits. This is not very efficient, but the 112-bit output will deter 
a birthday attack. The latter would require 256 = 7*1016 messages, 
which is computationally infeasible; more precisely, adequate 
computing power to effect a birthday attack would also break DES, 
t4ereby obliterating DES-based hash functions. 

This produces FO which is also a fixed-size strong one-way hash 
function. Finally FO is extended to a one-way hash function F 
accepting inputs of arbitrary size by cascading copies of FO. Given 
an input x, suppose 

x = CAT(x1, ... ,xn), 

where n is arbitrary and each xi is 7 bits (pad x with a few zeroes 
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if need be) . Let 

RO 0, 

Ri FO(CAT(Ri-1,xi)) ( 1 6 i 6 n), 

where in the first equation the right side is a string of 112 
zeroes. Let F(x) = Rn. 

Now Merkle claims that F is as secure as FO. That is, if x p x' 
can be found with F(x') F(x), then FO can also be broken. The 
proof is inductive: if n = 1 we have F(x) = FO(CAT(O,x)). If F(x) 
= F(x') and x p x' let z = CAT(O,x) and z' = CAT(O,x'); then FO(z) 
= FO(z') and z p z', so that FO is broken. Now suppose the claim is 
true for n. Suppose 

zi CAT(xl, ... ,xi) (1 6 i 6 n+l), 

X zn+l, 

zi' CAT (x1', ... , xi') (1 6 i 6 n+l), 

X ' zn+1', 

Ri F0(CAT(Ri-1,xi)) (1 6 i 6 n+l), 

Ri' FO(CAT(Ri-1',xi')) (1 6 i 6 n+l), 

where each xi and xi' is 7 bits. Suppose x p x' but F(x) = F(x'), 
i.e., Rn+1 = Rn+1'. Let y = CAT(Rn,xn+1) andy' = CAT(Rn',xn+l'). Then 
FO(y) = FO(y'). If xn+l p xn+l' then y p y' and FO is broken. Suppose 
xn+1. = xn+1'. Then Rn = Rn'; but zn p zn' since x p x'. Now we observe 
that by definition Ri = F(zi) and Ri' = F(zi'). Hence F(zn) = F(zn'). 
By the induction hypothesis, FO can be broken, completing the 
proof. 

A disadvantage of this F is that it hashes 7 bits per stage of 
the cascade, and each stage involves two DES calculations. Thus 3.5 
bits are hashed per DES calculation. Merkle gives other 
constructions which are more complicated but hash up to 17 bits per 
application of DES. 

4.3.2 Coppersmith's attack on Rabin-type functions. 

The Merkle meta-method is an attempt to use a conventional 
system as a· generator for hash functions. This type of approach has 
its origin in some predecessors which have been broken by 
combinations of birthday attacks and meet-in-the-middle attacks as 
formulated by Coppersmith [COPP85]. 

An early attempt to construct a hash function in support of 
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signature schemes was given by Rabin [RABI78]. ~et HO be random 
(Rabin uses 0) and suppose a message M is divided into fixed-size 
blocks Ml, ... ,Mn. Suppose E(K,N) represents encryption of block N 
with key K using a conventional system such as DES. Fori= 1, .. ,n 
let 

Hi E(Mi,Hi-1). 

Then a hash value is given by (HO,Hn). Coppersmith's attack 
assumes that an opponent knows HO and Hn. He then constructs a bogus 
message whose hash value is also (HO,Hn). Assume blocksize is 64 
bits. The opponent begins by specifying M1, ... ,Mn-2 using HO. He then 
generates 232 trial values X. For each X he computes a trial Hn-1 of 
the form 

H(n-l,X) E (X, Hn-2) . 

He sorts these 232 values and stores them. Now he generates 232 
trial values Y. For each Y he computes a trial Hn-1 of the form 

H'(n-1,Y) D(Y,Hn), 

where D is the decryption function corresponding to E. We note that 
H(n-1,X) is the value that Hn-1 would have if Mn-1 = X, and H' (n-
1,Y) is the value Hn-1 would have if Mn = Y. Each time the opponent 
tries a Y he searches through the sorted H-list (about 32 
operations per search) and tries to find an X andY with H(n-1,X) 
= H' (n-l,Y). By the birthday phenomenon (app. F), the probability 
of finding X andY is at least 1/2. If X andY are found, the 
opponent has obtained a bogus message with the proscribed hash 
value; furthermore this takes at most about 233 encryptions, 232 
storage and 64 * 232 comparison operations. This effectively breaks 
the scheme. Actually Coppersmith's attack was directed against a 
refinement by Davies and Price [DAVIBO]; Rabin's original scheme 
had been broken earlier. 

4.3.3 Quadratic congruential .hash functions. 

Another attempt to create hash functions, differing from both 
Merkle- and Rabin-type constructions, was made by Jueneman 
[JUEN82]. Unlike the Merkle meta-method this uses no external 
system as an adjunct. It is not keyless; an initialization vector 
is used, This limits the scope of usage; in particular, such a 
'function is useless for signature-only schemes. Nonetheless, 
quadratic congruential constructions are simple and efficient, and 
hence would be useful in some contexts if secure. Unfortunately it 
seems as though Coppersmith's attack applies to these as well. 

Jueneman uses the same partition into fixed-size blocks as 
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above, and again begins by choosing HO = 0. However, he also 
chooses a secret seed MO which is changed every message and 
transmitted as a prefix to the message. Thus Assuming 32-bit 
blocks (to use the Mersenne prime 231-1), fori= 0, ... ,n he 
computes 

Hi+l (Hi+ Mi)2 mod (231-1). 

Then the hash value is Hn. Coppersmith broke this first scheme. 
A revised scheme was proposed in [JUEN86], The text is split into 
128-bit blocks, which are further divided into 4 words. Recent 
results suggest that this scheme may be insecure also. This is 
especially unfortunate in light of the fact that a hash function 
given in Annex D of X.509 [CCIT87] is defined similarly, via 

Hi+l Mi + Hi2 mod n. 

Recent work calls this into question as well. 

4.4 Hardware and software support. 

As noted earlier, RSA and similar exponentiation-based 
algorithms suffer from relatively low bandwidths. At a minimum this 
implies that supporting software needs to be carefully designed; 
hardware support is probably a necessity in many settings, As noted 
by Sedlak [SEDL87], bandwidths of less than 64 kbps (kilobits per 
second) will degrade performance in many networks. Furthermore, 
arithmetic modulo numbers of an adequate number of bits (at least 
512) should be supported. Essentially the requirement is a chip (or 
chip set) that can quickly compute quantities such as a mod b, ai 
mod b, and perhaps multiplicative inverses or greatest common 
divisors. As Sedlak notes further, a single chip is preferable for 
security reasons. Since off-chip communication is slower than on­
chip, single-chip implementations should also yield higher 
bandwidths, 

4.4.1 Design considerations for RSA chips. 

Some general tradeoffs in such design schemes are discussed by 
Rivest [RIVE84]. He classifies architectures as serial (S), 
serial/parallel (S/P), or parallel/parallel (P/P). He then notes 
the following time and hardware costs: 

a. Multiplying two k-bit numbers modulo a k-bit number: 

1. O(k2) time and 0(1) gates on an S, 
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2. O(k) time and O(k) gates qn an S/P. 

3. O(log k) time and 0 (k2) gates on a P/P. 

b. Exponentiating a k-bit number modulo a k-bit number: 

1. O(k3) time and 0 (1) gates on an s. 

2. O(k2) time and O(k) gates on an S/P. 

3. O(k log k) time and O(k2) gates ·on a P/P. 

c. Key generation, k-bit primes: 

1. O(k4) time and 0 (1) gates on an s. 

2. O(k3) time and 0 (k) gates on an S/P. 

3. O(k2 log k) time and O(k2) gates on a P/P. 

This is a somewhat oversimplified version of [RIVE84] presented 
only for comparison purposes. Also, there are two basic assumptions 
used above: exponentiation is an inherently sequential process; and 
the 100 or so primality tests used in key generation are done 
sequentially. The first assumption seems intrinsic. However, the 
second is pragmatic: the tests all use the same hardware, and 
replicating the latter 100-fold for parallel execution would be 
highly cost-ineffective. Ri'vest uses the above to give some sample 
timings: 

a. Decryption rate, 200-digit modulus: 

1. 0.005 kbps on an s. 

2. 1.3 kbps on an S/P. 

3. 95 kbps on a P/P. 

b. Key generation, 100-digit primes: 

1. 1,200,000 ms = 20 minutes on an s. 

2. 5,000 ms 5 seconds on an S/P. 

3. 70 ms on a P/P. 

It may be seen that reasonably high bandwidths can be achieved, 
but the time/cost tradeoff is significant. 

4.4.2 Proposed designs for RSA chips. 

Various authors have proposed designs for chips supporting RSA. 
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Of course such chips could also support other exponential-based 
algorithms. 

Orton et. al. (ORT086] discuss an implementation of RSA in 2 urn 
CMOS which should encrypt at 40 kbps for 512-bit moduli. 

Sedlak (SEDL87] discusses a highly-optimized chip which makes 
substantial usage of lookahead. Thus the number of cycles required 
for exponentiation is not fixed; analysis of expected time is 
performed using a probabilistic finite state machine (see app. D). 
Supp9rt is provided not only for RSA but also for the ISO hash 
function (see above). Sedlak claims a deciphering rate of nearly 
200 kbps is achievable for 780-bit moduli using a single 160,000-
transistor chip with dual ciphering units, in 1.5 urn CMOS. He also 
claims a key generation time of 2 seconds. A 5,000-transistor, 5 
um CMOS prototype has been realized. 

In (BRIC89] it is noted that chips capable of up to 450 kbps are 
being designed. 

5. Implementations of public-key cryptography. 

We examine here some existing implementations of public-key 
cryptography, some implementations which are in progress, and some 
which have been proposed. 

5.1 MITRENET. 

One of the earliest implementations of public-key cryptography 
was in the MEMO (MITRE Encrypted Mail Office) system, a secure 
electronic mail system for MITRENET ( [SCHA82], [SCHABO]). MITRENET 
is a broadband cable system with a bandwidth of 1 mbps. It uses a 
carrier sense protocol (e.g., [TANE81]); i.e., each station can 
sense transmissions of all other stations. In fact the protocol 
requires all parties to monitor all communication, in effect 
requiring passive eavesdropping. A priori this provides no secrecy, 
authentication or integrity services. Furthermore it employs 
distributed switching, creating a potential for active intrusion. 
This is a good setting for a privacy enhancement testbed. 

The MEMO system is a hybrid public/private cryptosystem. DES is 
used for data encryption. The Diffie/Hellman exponential key 
exchange of section 2.2 is used for establishment of secret keys. 
To implement Diffie/Hellman, use of GF(2n), with 2n- 1 a prime 
(called a Mersenne prime), was chosen for efficiency of 
implementation via linear feedback shift registers. Unfortunately 
the MEMO implementors used n = 127; the work of Adleman (ADLE79] 
rendered this choice insecure even before the system was 
implemented. This is noted by Schanning; in fact the use of n 521 
is recommended in [SCHA82], suggesting that the MEMO system was 
intended mainly for experimental purposes. 

In the ~EMO system, a Public Key Distribution Center is a 
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separate network node containing public components in EPROM. 
Private components can' be generated by users or by the system. 

Each user workstation establishes secure communication with the 
Public Key Distribution Center. A session begins with the user 
requesting the file of public keys from the PKDC. The request is 
honored if it passes an identification test involving the user's 
private component. The file of public keys is then downloaded to 
the user's workstation, encrypted with DES to ensure integrity. 

When the user sends a message to another user, the workstation 
generates a random document key. The latter is used to DES-encrypt 
the message. The public key of the recipient is used to generate 
a key-encrypting key which is used to DES-encrypt the document key. 

There is no provision for lost keys. Some provision is made for 
detecting modifications to messages, using checksums. However, the 
use of Diffie/Hellman alone does not permit authentication to be 
introduced. 

5.2 ISDN. 

In [DIFF87] a testbed secure Integrated Services Digital Network 
terminal developed at Bell-Northern Research is described. It can 
carry voice or data at 64 kbps. Public-key cryptography is used for 
both key exchange and authentication, Reference to the 
Diffie/Hellman exponential key exchange is made. Evidently it is 
used in conjunction with DES. The article also alludes to 
signatures, but implementation is unclear. 

As noted in [DIFF88] 1 the use of public-key in conjunction with 
DES provides good security. In particular, the exponential key 
exchange permits a session key unique to each call. Thus if long­
term keys are compromised, recordings of calls made prior to 
compromise cannot be decoded. In conventional systems the 
compromise of a long-term key may compromise communications made 
previously with derived keys. 

Public key computations in the terminal are implemented via a 
DSP (digital signal processing) chip, while an off-the-shelf 
integrated circuit implements DES, which is used for data 
encryption. Key management ·involves keys installed in phones, 
carried by users, and exchanged electronically. 

Each BNR terminal incorporates a Northern Telecom M3000 
Touchphone. 

5.2.1 Keys. 

A public/private component pair is embedded in the phone; this 
pair is called the intrinsic key. The private component is 
contained in a tamper-resistant compartment of the phone. The 
public component serves as the name of the phone. These cannot be 
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altered. 

A second long-term public key stored in the phone is the owner 
key. This is used to authenticate commands from the owner. It can 
be changed by a command signed with the current owner key, thus 
permitting transfer to a new owner. 

A third long-term public key in the phone is the network key. 
This identifies the network with which the phone is associated. It 
validates commands signed with the private component of the 
network's key management facility. It can authenticate calls from 
network users. It can be changed by a command signed by the owner 
key. 

A short-term component pair stored in the phone is the working 
pair. These are embodied in a certificate signed by the key 
management facility. During the setup process for a call, phones 
exchange certificates. ·The network key is used to authenticate 
certificates. This permits station-to-station calls. 

Further information is needed for authenticated person-to­
person calls. This information is contained on a hardware "ignition 
key" which must be inserted into the phone. This key contains the 
user's private component encrypted under a secret password known 
only to the user. It also contains a certificate signed by the KMF 
which contains the user's public component and identifying 
information. The latter is encrypted as well. Decryption of the 
information on the ignition key is effected via a password typed 
on the telephone touchpad. 

Further certificates authorizing users to use particular phones 
are acquired by the phone from the key management facility; these 
are cached and replaced in FIFO fashion. 

5.2.2 Calling. 

A person-to-person call begins as follows: the caller inserts 
his ignition key and dials the number. The phone interrogates the 
ignition key to check the caller's identity. The phone then checks 
its cache for an authorization certificate for the caller. If not 
found it is acquired by the phone from the KMF. The phone then 
dials the number of the other phone. 

The two phones then set-up. This begins with an exponential key 
exchange. The calling phone then transmits its certificate and user 
authorization. The receiving phone authenticates the signatures on 
both of the latter using the network key. The receiving phone then 
employs challenges. It demands real-time responses to time­
dependent messages; the responses must be signed. This ensures that 
certificates are not played back from a previous conversation. One 
response is signed by the calling phone; another with the user's 
ignition key. A further level of security may be obtained via the 
ISDN D channel, which makes calling party identification available 
from the network without interrupting the primary call. 
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Now the called phone sends its certificates and responds to 
challenges as above. If the called party is home he inserts his 
ignition key. If the called phone does not have authorization for 
the called party to use the phone, it must obtain a certificate. 
Again this can be accomplished via the D channel without 
interrupting the call. The called party then undergoes challenge 
and response. Finally the conversation ensues. 

5.3 ISO Authentication Framework. 

Public-key cryptography has been recommended for use in 
connection with the ISO authentication framework, X.509 [CCIT87] 
This is based on the Directory, a collection of services and 
databases which provide an authentica·tion service. Authentication 
refers to verification of the identity of a communicating party. 
Strong authentication uses cryptography. The credentials of a 
communicating party may be obtained from the Directory. 

No specific cryptosystem or hash function is endorsed in support 
of strong authentication; however, it is specified in [CCIT87] that 
a cryptosystem should be usable for both secrecy and authenticity. 
That is, the encryption and decryption transformations should be 
inverses, as is the case with RSA. Multiple cryptosystems and hash 
functions may be used in the system. 

A user must possess a distinguished name. Naming Authorities are 
responsible for assigning unique names. The crux of the 
authentication framework is the binding of user names and public 
components. Assuming for the moment that such binding has occurred, 
subsequent authentication in the ISO framework consists of locating 
a chain of trusted points within the Directory. Such a chain exists 
if there is a common point of trust between two authenticating 
parties. 

5.3.1 Use of certificates. 

The X.509 public-component management system is certificate­
based. Binding of a user's name and public component occurs when 
a Certification Authority issues a certificate to a user. The 
certificate contains the user's public component and distinguished 
name, and the certificate's validity period. It is generated off­
line and signed by theCA using the CA's private component. 
Normally a user would generate his own public/private component 
pair and transmit the public component to the CA for inclusion in 
the certificate. At the user's request the CA may also generate the 
user's public/private component pair. 

The CA vouches for the binding of the user's name and public 
component. TheCA must not issue multiple certificates with one 
name. Also, a CA must keep his private component secret; compromise 
would affect not only the CA but also the integrity of 
communications involving users certified by the CA. 
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Obtaining a certificate from a CA requires a secure 
communication between the user and CA. In particular, the integrity 
of the user's public component must be assured. This communication 
can be on-line, off-line, or both for redundancy. 

The user receives a copy of the certificate obtained from the 
CA. This can be cached; e.g., a component pair could be stored on 
a smart card along with the user's certificate and theCA's 
certificate. Additionally, certificates are entered in the 
Directory. The user may place a copy of the certificate in the 
Directory, or the CA may be authorized to do this. A user's 
Directory entry may contain multiple certificates. A CA's entry in 
the DIT contains the certificates issued for it by other CAs, as 
well as certificates it issues for other nodes. 

Semi-formally a certificate may be defined as follows: 

certificate : := 

signature algorithm identifier; 
issuer name; 
validity period; 
subject name; 
subject information 
} 

validity period .. 
{ 
start date; 
finish date 
} 

subject information : := 
{ 
subject public key; 
public key algorithm identifier 
} 

This format permits usage of different algorithms. For a more 
formal description of relevant formats using ASN.l see annexes G 
and H of [CCIT87] . 

5.3.2 Certification paths. 

An associated data structure is the Directory Information Tree 
(DIT). Certification Authorities are otherwise undistinguished 
users who are nodes in the DIT. A user may have certificates issued 
by several CAs. Thus the authentication structure, despite the use 
of the term DIT, is not tree-structured. Instead it may be modeled 
as a directed graph. 

A certification path consists of certificates of nodes in the 
DIT. The public component of the first node is used to initiate a 
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domino-type process which ultimately unlocks the whole path, 
leading to recovery of the public component of the final node, The 
simplest path is of the form (A,B), where A is a CA for B. Then a 
knowledge of the public component of A permits recovery of the 
public component of B from the certificate issued by A for B, since 
the latter is signed using the private transformation of A. This 
is readily extended by recursion: in a certification path Al, ... ,An, 
knowing the public component of Ai permits recovery of the public 
component of Ai+l from the certificate for Ai+l issued by Ai. 

For a user A to obtain B's certificate involves finding a common 
trusted point, i.e., a node which has certification paths to the 
two users individually. Joining these two paths produces a 
certification path between A and B. The paths, if they exist, may 
be obtained from the Directory, 

Although there is no restriction placed on the structure of the 
authentication graph, an important special case is when it is tree­
structured. In this event the CAs are arranged hierarchically; 
hence each node (except the root) has a unique CA (its parent in 
the tree) . Then each CA stores the certificate obtained from its 
superior CA, as well as various certificates issued by it. The 
common trusted point for a pair of users is the root of the DIT. 
A user A may cache the certificates of nodes along the path from 
A to the root. The other half of the path to another user B is 
obtained by conjoining the path from the root to B. 

More generally, a user A who communicates frequently with users 
certified by a particular CA could store paths to and from that CA 
(these may be different in the non-hierarchical case) . Then to 
communicate with a given user B certified by that CA, A need only 
consult the directory entry for the CA and obtain the certificate 
of B. 

A related concept is cross-certification: if two CAs Cl and C2 
have certified users who communicate frequently, Cl and C2 may 
certify each other., Then the certificate issued by Cl for C2 can be 
stored in the directory entry of Cl and vice-versa. We note that in 
a hieratchical system, a priori a directory entry for a node 
contains only the certificate of a node's superior and the reverse 
certificate; if cross-certification is permitted then entries 
contain an indefinite number of certificates. 

A user may cache certificates of other users. A CA may add 
another's certificate to its directory entry. 

5.3.3 Expiration and revocation of certificates, 

When a certificate expires it should be removed from the 
Directory. Expired certificates should be retained by the issuing 
CAs for a period of time in support of the nonrepudiation service. 

Revocation of certificates may occur because of component 
compromise involving either the user or the issuing CA. Revocation 
may also be necessary for administrative reasons, e.g., when a CA 
is no longer authorized to certify a user. A CA keeps a time-



-- 69 --

REDACTED

MasterCard, Exh. 1005, p. 69

stamped list of revoked certificates which the CA had issued, and 
a list of revoked certificates issued by other CAs certified by the 
first CA. Entries for CAs in the Directory should contain 
revocation lists for users and CAs. 

5.3.4 Authentication protocols. 

Suppose A wishes to engage in communication with an 
authenticated B. Suppose further that A has obtained a 
certification path from A to B, e.g., by accessing the Directory, 
and has utilized the path to obtain B's public component. Then A 
may initiate one-, two-, or three-way authentication protocols. 

One-way authentication involves a single communication from A to 
B. It establishes the identities of A and B and the integrity of 
any communicated information. It also deflects replay in 
communication of authentication information. 

Two-way authentication adds a reply from B. It establishes that 
the reply was sent by B and that information in the reply had 
integrity and was not replayed. It also establishes secrecy of the 
two communications. Both one-way and two-way authentication use 
timestamps. Three-way authentication adds a further message from 
A to B, and obviates the necessity of timestamps. 

Let 

IA identity of A, 

IB identity of B, 

DA private transformation of A, 

EA public transformation of A, 

DB private transformation of B, 

EB public transformation of B, 

TA timestamp by A, 

TB timestamp by B, 

RA random number generated by A, 

RB random number generated by B, 

CA certification path from A to B. 

Identities refer to the distinguished names of A and B. A 
timestamp included in a message M includes an expiration date for 
M. Optionally, it also may include the time of generation of M. 
Random numbers may be supplemented with sequence numbers; they 
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should not be repeated within the expiration period indicated by 
a timestamp in the same communication. 

The one-way protocol is as follows: 

a. A: 

1. generates an RA. 

2. constructs message M = (TA,RA,IB,<data>) where <data> is 
arbitrary. The latter may include data encrypted under 
EB for secrecy, e.g., when A is sending a data­
encrypting key to B. 

3. sends (CA,DA(M)) to B. 

b. B: 

1. decrypts CA and obtains EA. Also checks certificate 
expiration dates. 

2. uses EA to decrypt DA(M), verifying both A's signature 
and the integrity of the signed information. 

3. checks the IB contained in M for accuracy. 

4. checks the TA in M for currency. 

5. optionally, checks the RA in M for replay. 

The one-way protocol is illustrated below, with CA denoting CA, 
RA denoting RA, etc. 

A: B: 

\I 
generate RA /I\ /I receive (CA,M') 

I I 
I I I 
I I I 

\I/ I \I/ 
I 

obtain TA,IB I recover EA from CA 
I 

I I I 
I I I 

\I/ I \I/ -----
I 

compute M' = I compute (TA,RA,IB) 
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DA(TA,RA,IB) I EA(M') 
I 

I I I 
I I I 

\I/ I \I/ 
I 

send (CA,M') to B I verify TA,RA,IB 
I 

I I 
I I 

\I/ \I 
I 

Figure B. One-Way Authentication Protocol 

The two-way protocol is: 

a. as above. 

b. as above. 

c. B: 

1. generates an RB. 

2. constructs M' = (TB,RB,IA,RA,<data>) where RA was 
obtained previously and <data> may include data 
encrypted using EA. 

3. sends DB(M') to A. 

d. A: 

1. decrypts DB(M'), verifying B's signature and the 
integrity of the enclosed information. 

2. checks the IA contained in M' for accuracy. 

3. checks the TB in M' for currency. 

4. optionally checks RB for replay, 

The three-way protocol is: 

a. A: 

1. generates an RA. 

2. constructs M = (TA,RA,IB,<data>). Unlike the previous 
cases, TA may be zero. 

3. sends (CA,DA(M)) to B. 
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b. B: 

1. decrypts CA and obtains EA. Also checks certificate 
expiration dates. 

2. uses EA to decrypt DA(M), verifying both A's signature 
and the integrity of the signed information. 

3. checks the IB contained in M for accuracy. 

4. optionally, checks the RAin M for replay. 

5. generates an RB. 

6. constructs M' = (TB,RB,IA,RA,<data>) where RA was 
obtained previously; TB may be zero. 

7. sends DB(M') to A. 

c. A: 

1. decrypts DB(M'), verifying B's signature and the 
integrity of the enclosed information. 

2. checks the IA contained in M' for accuracy. 

3. optionally checks RB for replay. 

4. checks the received version of RA against the version· 
sent to B. 

5. sends DA(RB) to B. 

d. B: 

1. decrypts DA(RB), verifying the signature and data 
integrity. 

2. checks the RB received against the value sent to A. 

Remarks: it has been noted that there are some potential 
problems with these protocols. For example, in the three-way 
version, it would be better to have A send DA(RB,IB) to B rather 
than just DA(RB). This would prevent a third party from intercepting 
random numbers and using them to subvert the protocol. 

Also, authentication tokens may be of the form M = (TA,RA,IB,RB, 
EB(encdata)). Then encrypted data is signed, which may cause 
problems. For example, suppose C intercepts DA(M) on its way to B. 
Then C may decrypt M and construct (TC,RC,IB,RB,EB(encdata)). In a 
communication between B and C, B may think that EB(encdata) was 
generated by C and inadvertently reveal encdata to c. In 
particular, encctata may have included a data-encrypting key to be 
used by A and B. A solution to this problem is to let M 
(TA,RA,IB,RB,encdata), M' = (TA,RA,IB,RB,EB(encdata)), and M" = 

(M', DA (M)), then send M". 
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5.3.5 Further notes. 

Authentication uses a hash function. Signed information includes 
identifications of the hash function used to produce the message 
digest and the decryption function used to generate the digital 
signature. Timestamps and random numbers are included in messages 
to prevent replays and forgery. 

Annex C of [CCIT87] mentions RSA as an example of a public-key 
system. A recommendation of a 512-bit modulus is made. It is also 
recommended that a common public exponent of e = 21.6 + J. be used 
(the fourth Fermat number). In particular it is noted that a 
smaller e would be vulnerable to ciphertext-only attacks; 

Other annexes specify a strong hash function as defined in 
section 4, and the ASN.l syntax for the authentication framework. 
Algorithm identifiers are included in ASN. 

5.4 DARPA-Internet. 

The Privacy and Security Research Group is in the process of 
developing a proposal for privacy-enhanced electronic mail for the 
DARPA-Internet community. Since this is work in progress we give 
only a very brief description here. Details on the current state 
of this project (at the time of this writing) may be found in 
[IAB-90], [LINN89]. 

Public-key cryptography has been recommended for distribution 
of secret keys and in support of digital signatures. DES will be 
used for encryption of messages and can be used for Message 
I·ntegri ty Check (MIC) computations. RSA has been recommended for 
key distribution and digital signatures. The hash functions 
currently supported are MD2 and MD4 [RIVE90] . Fields are included 
in messages to identify cryptographic algorithms and hash 
functions. It is specified that all implementations should support 
RSA and DES. 

Much of the authentication framework is based on a subset of 
X.509. In particular, the recommended public component management 
system is certificate-based. 

6. A sample proposal for a LAN implementation. 

We present here a sample proposal for the implementation of 
privacy enhancement in a packet-switched local area network, using 
public-key cryptography for key management and authentication. The 
main purpose is to explore the relevant decision-making process. 
In particular, some services will be needed in some settings but 
not others, and hence a monolithic structure incorporating all 
conceivable services would be inappropriate. One approach to the 
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design of a generic structure is layered, with a kernel consisting 
of the most basic services and outer layers added as desired. This 
is the paradigm we adopt here. The sample proposal presented here 
is not unique, and is intended for illustration purposes only. 

A hybrid of ,public-key cryptography and conventional 
cryptography presents advantages. The former is used for signatures 
and for distribution of secret keys used in the latter; the latter 
is used for bulk data encryption. In addition, a hash function is 
needed so that only a compressed form of long text need be signed. 
We do not endorse specific public-key systems or hash functions. 
The conventional system could be taken to be DES. 

6.1 Integration into a network. 

There are basically two modes of implementation of encryption 
in a network (e.g., (DIFF84], [DIFF86], [TANE81]), namely link and 
end-to-end. 

Link encryption provides good protection against external 
threats such as traffic analysis because all data flowing on links 
can be encrypted, including addresses. Entire packets, including 
addresses, are encrypted on exit from, and decrypted on entry to, 
a node. Link encryption is easy to incorporate into network 
protocols. 

On the other hand, link encryption has a major disadvantage: a 
message is encrypted and decrypted several times. If a node is 
compromised, all traffic flowing through that node is also 
compromised. A secondary disadvantage is that the individual user 
loses control over algorithms used. 

In end-to-end encryption, a message is encrypted and decrypted 
only at endpoints, thereby largely circumventing problems with 
compromise of intermediate nodes. However, some address information 
(data link headers) must be left unencrypted to allow nodes to 
route packets. Also, high-level network protocols must be augmented 
with a separate set of cryptographic protocols. 

Here we assume end-to-end encryption. In terms of the OSI model, 
encryption can occur at various levels, including application, 
presentation, network or transport. As noted in [IS0-87], the 
appropriate level depends on desired granularity of protection. In 
particular, high granularity refers to separate keys for each 
application or user and assurance of integrity. For this 
granularity the presentation or application layers are most 
appropriate. These two layers will be assumed here. In particular, 
integration at the application layer gives the individual user 
complete control over the algorithms used. 

6.2 Security threats. 

Some basic security threats (cf. ann. A of [CCIT87]) include: 
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a. masquerade 

b. replay 

c. interception of data 

d. manipulation of messages 

e. repudiation 

Masquerade refers to users representing themselves as other 
users. Replay refers to recording andre-sending a message at a 
later time. Interception of data refers to passive eavesdropping 
on communications. Manipulation refers to unauthorized insertions, 
deletions or other changes to messages. Repudiation refers to 
denial of sending (or possibly receipt) of a message. 

There are other threats which are outside the present scope per 
se. For example, mis-routing of packets naturally occurs in OSI 
layers 1-3, and we are restricting ourselves to higher layers. 

6.3 Security services, 

Again from annex A of [CCIT87], some of the most basic security 
services which can be provided include: 

a. authentication 

b. secrecy 

c. integrity 

d. nonrepudiation 

Authentication refers to verification of the identity of the 
sender or receiver of a communication. It can protect against 
masquerade. It may also provide protection against replay, 
depending on implementation. Secrecy refers to protection against 
interception of data. Integrity refets to protection against 
manipulation (including accidental) of data. Nonrepudiation refers 
to protection against denial of sending (or possibly receipt) of 
a message. 

The kernel of a proposed system would include basic support for 
the above services. This kernel could be standardized to a large 
extent. However, outer layers of an implementation would need to 
interface with various external frameworks as well, For example, 
a system is needed to bind user public components and user 
identities; this forms an important part of the authentication 
service. Also, support for nonrepudiation is a complex matter as 
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we have noted. A public-key signature system implements basic 
nonrepudiation of sending automatically, but does not a priori 

'protect against repudiation of sending due to comp~omised private 
components; nor does it provide proof of receipt. Thus (4) is an 
example of a service which relies heavily on an interface with an 
external system which most likely would be implementation­
dependent, since its structure depends on considerations such as 
contractual agreements which cannot be incorporated into a generic 
structure. 

There are other services which could be provided as well. One 
example is access control with differing capabilities for different 
classes of users. However, a public key system does not provide 
this type of service per se, since it would require restricted 
access to public components. This type of service is thus another 
example of a layer which could be added in a given implementation, 
e.g. by centralized key distribution which might be considered 
undesirable in many settings. 

·6.4 Security mechanisms. 

Once more we follow annex A of [CCITB7], which identifies some 
of the basic mechanisms which can implement security services. 
These include: 

a. encryption 

b. manipulation detection codes 

c. signatures 

d. authentication framework 

Encryption refers to application of cryptographic 
transformations to messages or keys; it implements secrecy. 
Manipulation detection can be effected via hash functions producing 
compressed versions of the text. Manipulation detection in 
conjunction with authentication implements integrity. Signature 
refers to application of private components to message digests 
(output of hash functions); it implements authentication and basic 
nonrepudiation, in concert with an authentication framework. The 
form of the latter is implementation-dependent. For example, a 
directory service might be provided, along with "hot lists" of 
compromised keys. 

The four mechanisms above may be regarded as the kernel of an 
implementation. Various other mechanisms which could be provided 
are noted, e.g., in [IS0-87]. For example, to guard against replay, 
timestamps using synchronized clocks might be provided. Another 
possibility is the addition of a handshaking protocol. For 
enhancement of the basic nonrepudiation mechanism (the signature), 
a notary system could be used. Again these auxiliary services are 
best added at the discretion of implementors. For example, 
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synchronized clocks may not be present, and notaries violate the 
desirable feature of point-to-point communication, and hence should 
not be included in standard specifications. 

6.5 Criteria for cryptosystems. 

There are various criteria which could be employed in selection 
of a cryptosystem (or systems) to implement key distribution and 
signatures. Logically these are separate functions and a hybrid of 
two separate systems could be used. Some relevant criteria 
(including suggestions from Dr. Dennis Branstad of NIST and Dr. 
Ronald Rivest) are: 

a. security 

b. versatility 

c. bandwidth 

d. data expansion 

e. key size 

f. key generation time 

g, patent restrictions/license fees 

h. software support 

i. hardware support 

j. number of pseudorandom bits needed 

k. interoperability 

Most of these are self-explanatory. The reference to 
pseudorandom bits in (j) is related to key generation, which 
requires a stream of pseudorandom bits generated from a random 
seed. Interoperability refers to the ability to communicate with 
other equipment designed to provide the same security mechanisms 
or functions. 

6.5.1 Security. 

The first and foremost criterion is of course security. It may 
take 5 years or more for a given method to be thoroughly 
cryptanalyzed, starting from the time it receives widespread public 
exposuie. 

One subcriterion in this regard is that a system should be 
published in an outlet such as a refereed journal with a reasonably 
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large circulation, or a book or conference proceeding which is 
present in libraries at larger academic institutions and research 
laboratories. This subcriterion is somewhat vague and not 
intrinsic, but may serve to avoid future embarrassment on the part 
of implementors. 

A second subcriterion connected with security deals with 
mathematical and computational infrastructure. For example, the 
security of systems such as RSA is connected with the problem of 
factoring. It is safe to assume that thousands (or perhaps 
millions) of hours have been spent on this problem. This does not 
preclude major advances over the next decade or so, but at least 
guarantees that such advances will not occur simply because experts 
have suddenly become aware of a problem. In particular, systems 
based on longstanding problems such as factoring, discrete 
logarithm and discrete root extraction have a certain degree of 
security in this regard. In contrast, for example, the ElGamal 
signature scheme can be broken if the "transcendental" equation c 
= brrs (mod n) can be solved for some r and s. This is easier than 
solving the logarithm or root.problem y = xa (mod n); and 
furthermore in all likelihood the ElGamal equation has not been 
studied as extensively. 

6.5.2 Numerical criteria. 

Quantitative criteria for cryptosystems include bandwidth 
(encryption and decryption rates), data expansion (relative sizes 
of plaintext and ciphertext), key size and key generation time, We 
have already noted the phenomenon that systems which appear to be 
secure are also characterized by low bandwidths. Exponentiation­
based methods such as RSA and the Diffie/Hellman exponential key 
exchange are examples. Other systems suffer from large data 
expansion, large key size or long key generation time. 

There seem to be some inherent tradeoffs in this regard. That 
is, it does not seem possible to construct a system which is secure 
and also scores well on all numeric counts. The classic example is 
key size; e.g., small key size in RSA would produce a high 
bandwidth, but would also produce insecurity. That is, in this case 
high bandwidth would produce low cryptanalysis time. Data expansion 
seems to have a similar impact. For example, in appendix E it is 
noted that Shamir's knapsack attack runs in time which rises as nd 
where d = expansion factor. Again high bandwidth produced 
insecurity. It would be interesting to know whether this trade-
off notion could be formalized. 

6.5.3 Other criteria. 

Versatility .is an important criterion. The RSA system is 
distinguished in this regard since it supports both key 
distribution and signatures. All other major systems are limited 
to one service or the other, although hybrids can achieve the 
capabilities of RSA. 
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Patent restrictions and license fees may be a major factor in 
practice. Software and hardware support is another important 
practical matter. 

6.6 Criteria for hash functions. 

In section 3.2 we discussed some of the characterizations which 
have been proposed for hash functions, including measures of 
security. some of the discussion of section 6.5 applies here as 
well. For example, a hash function should be widely publicized for 
a period of time before it is trusted. Bandwidth is also an 
important criterion. Software and hardware support is relevant as 
well. 

6.7 Example of.a LAN security framework. 

Finally we give a brief outline of a framework for incorporating 
public-key cryptography irito a local area network. 

6.7.1 Key management, 

The framework for key management described in this section is 
compatible with a subset of [CCIT87]. Public components of 
receivers are used as key-encrypting keys; private components of 
senders are used to encrypt. message digests. Data-encrypting keys 
are generated for individual sessions. These may be associated to 
an arbitrary conventional cryptosystem; DES is a possibility. The 
public and private components may be associated to different 
public-key systems if different algorithms are used for key 
encryption and signatures. 

Certificate-based key management is proposed. Since we are 
focusing on local-area networks, a simple tree structure is 
proposed, consisting of a root and one additional level containing 
all users. In particular, the root issues all certificates, 
Certification paths are thus trivial. 

6.7.2 Component generation and storage. 

It is proposed that users generate their own public/private 
component pairs, using trusted software or hardware supplied by the 
system. Key pairs could be stored on smart cards [HAYK88] or 
tokens, along with the user's certificate. Such kernel mechanisms 
could be augmented by involvement of a central key distribution 
facility. However, we have noted that this would negate a major 
advantage of public-key cryptography, since compromise of the 
central facility would compromise all keys of users who obtained 
their keys from it. 
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6.7.3 Secret-key generation. 

Numerous schemes exist for generation of data-encrypting keys. 
For example, in [MATY78] it is noted that keys can be generated by 
a conventional system such as DES. A master key might be used to 
encrypt data-encrypting keys or other key-encrypting keys. The 
master key, p~e~umably long-term, is generated randomly. Other key­
encrypting keys can be generated using DES as a pseudorandom 
generator. These are then encrypted under the master, which can 
also be involved in generation of other key-encrypting keys. A 
whole set of key-encrypting keys can be generated from a random 64-
bit seed, with every eighth bit adjusted for parity. Dita­
encrypting keys can be produced dynamically by pseudorandom number 
generators which are time-variant. 

An example of a generator for data-encrypting keys, as well as 
initializing vectors, is given in appendix C of [ANSI85]. Let 
E(K,Y) be encryption by DEA (essentially equivalent to DES) with 
key K. Let K be a DEA key reserved for usage in key generation and 
let VO be a 64-bit secret seed. Let T be a date/time vector, 
updated on each key or IV generation. Let 

Ri E(K,E(K,Ti) XOR Vi), 

Vi+l E(K,Ri XOR E(K,Ti)). 

Then Ri may be employed as an IV. To obtain a DEA key from R, 
reset every eighth bit to odd parity. 

Routines for generating DES keys are supplied with various 
products. Schemes for pseudorandom number generation include [AKL-
84], [BLUM84], [BRIG76]. The last gives a pseudorandom bit generator 
whose security is equivalent to discrete logarithm. 

6.7.4 Issuance and distribution of certificates. 

Public components are registered with the root. The root 
generates a certificate containing the user's public component and 
identifying information, and a validity period. Distribution of 
certificates by users is recommended; certificates may be cached. 
This eliminates the necessity of having the root be on-line. 

However, a user may wish to send a privacy-enhanced message to 
a user with whom he has not previously cow~unicated, and who is 
currently unavailable. Thus it may be desirable to augment this 
kernel mechanism with a supplementary sourc~ of certificates. There 
are disadvantages to any augmentation. For example, if a phone­
book approach to certificates is used, entries may be inaccurate 
or altered. If a central directory mechanism is involved in key 
distribution it must be on-line. On the other hand, a central 
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mechanism can provide instantaneous validity checks of public 
components and certificates. 

The root should maintain a list of old public components for a 
period of time in event of disputes, e.g., over attempted 
repudiation. 

6.7.5 Compromised or invalidated certificates. 

Assuming that certificates are cached, the root must 
periodically issue hot lists of invalidated certificates. This 
kernel service may be augmented in various ways to provide more 
current validity information. Again, however, additional mechanisms 
have drawbacks. As noted above, a central directory service could 
provide real-time validity checks, but it must be on-line. 
Furthermore, such checks a priori do not account for compromised 
private components, during the period following compromise but 
before a report is filed with the root. Even if users are required 
to report known compromises within a specified time period, a 
compromise may not become known to the user until later. As we 
noted, this creates an administrative/legal problem, since a user 
could disavow a signature on the basis of the latter type of 
compromise. A notary system can be used to add a layer of validity 
by having secondary signatures attest to the validity of senders' 
signatures, but this violates the desired criterion of point-to­
point communication. 

This is clearly an area in which solutions must be customized 
to some degree. For example, authentication in a system used for 
financial transactions may require more stringent controls than a 
kernel provides. 

The root should maintain a time-stamped list of revoked 
certificates. 

6.7.6 Authentication. 

A hash function is used to produce a message digest. This is 
signed with the private component of the sender. Timestamps and 
random numbers may also be included to prevent replay. If more than 
one hash function is permitted, identification of the function used 
should be included. 

Privacy-enhanced communication between two users begins when A 
requests the certificate of B. This initial message contains A's 
certificate. As noted above, it is desirable if this request can 
be met directly by B. In this event, B first validates A's 
certificate. This uses the public component of the root, which is 
assumed to be known to all users. Then B forwards his certificate 
to A, who validates it. Each may cache the certificate of the 
other. 
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Now A and B may communicate securely. If A sends a message to 
B, B uses A's validated public component, extracted from A's 
certificate, to decipher the message digesf. Then B may decrypt the 
key used for data encryption, using B's private component. Now B 
may decrypt the message text using this session key, then re­
compute the message digest and compare to the transmitted form. 

Appendix A. Mathematical and computational aspects. 

We discuss here some issues related to the computational 
complexity of public-key cryptography. The foundation of the 
security of such systems is the computational infeasibility of 
performing cryptanalysis, in contradistinction to the relative ease 
of encryption/decryption. We analyze some of the issues which arise 
in this context. Also included is some background theoretical 
computer science needed to discuss the issue of computational 
complexity of cryptography and cryptanalysis, as well as zero­
knowledge proofs and related schemes. 

This discussion may aid in understanding the security basis of 
public-key cryptography. It may also shed some light upon the more 
practical matter of choosing key sizes, i.e., the number of bits 
in private and public components. This section may safely be 
skipped by readers who do not wish to gain an in-depth 
understanding of such issues. 

A.l Computational complexity and cryptocomplexity. 

An ideal cryptosystem would have the property that encryption 
and decryption are easy, but cryptanalysis is computationally 
infeasible. In practice, this is commonly interpreted (e.g., 
[DIFF76b]) to mean that encryption/decryption should be executable 
in polynomial time, while ideally cryptanalysis should take 
exponential time. More generally, cryptanalytic time should be an 
exponential function of encryption/decryption time. 

Unfortunately, it is difficult to determine when this criterion 
holds in practice. This is because it is usually very difficult to 
determine a nonpolynomial lower bound for the time required for 
cryptanalysis (or computations in general), even in instances when 
this process reduces to simple and well-known problems. In some 
cases the latter problems have been studied for centuries, but 
their computational complexity is still unknown. 

In fact, whenever we try to determine the relative complexity 
of cryptanalysis and encryption, we encounter the problem of 
determining accurate lower bounds on computations. 

Also, an analysis of security and efficiency of public-key 
systems should take into account not only encryption/decryption 
time versus anticipated time for cryptanalysis, but also other 
parameters such as key size, key generation time, and data 
expansion, Developing a theory to characterize both security and 
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practicality of cryptosystems seems very challenging. 

A.2 Classical complexity theory. 

Here we briefly introduce some notions from the theory of 
computation. In Appendix C some of these notions are given a more 
formal treatment. 

One attempt to formalize the study of hard problems is the· 
theory of NP-completeness (e.g., [GARE79], [HOR078]). The class P 
is defined (loosely) to be the class of decision problems solvable 
in polynomial time via a deterministic algorithm. The latter is 
essentially an algorithm executable on an ordinary sequential 
computer. A nondeterministic algorithm is a more ephemeral concept: 
it is essentially executable on a machine with unbounded 
parallelism. This means that an unlimited number of possibilities 
can be explored in parallel. For example, suppose a set of n items 
is to checked for the presence or absence of a given item. The 
worst-case deterministic complexity is n, the number of operations 
needed by a sequential machine to check all n items. In contrast, 
the nondeterministic complexity is 1, since a machine with 
unbounded parallelism could check all n items in parallel 
regardless of n. 

The class NP is (loosely) the class of decision problems 
solvable in polynomial time via a nondeterministic algorithm. 
Perhaps the single most important problem in computer science is 
to decide whether P = NP. The NP-complete problems are the hardest 
subclass of NP, having the property that if one instance of the 
subclass is in P then P = NP. Many classical combinatorial search 
problems can be given NP-complete formulations, Traveling salesman 
and knapsack are examples (see [GARE79] for a long list). 

The class of NP-hard problems are those problems, decision or 
otherwise, which are at least as hard as NP-complete problems. Some 
NP-hard problems are so hard that no algorithm will solve them; 
they are undecidable. Such problems cannot be in NP. An example is 
the halting problem (e.g., [HOR078]). 

A more formal treatment of the classes P and NP requires a 
framework such as Turing machines (app. C). 

A.3 Public-key systems and cryptocomplexity, 

The use of NP-complete problems to generate public-key 
cryptosystems was suggested in [DIFF76b] , Later this approach 
materialized in the form of trapdoor knapsacks [MERK78b] . As we 
have noted, however, most knapsacks have been broken, despite the 
continuing intractability of the underlying NP-complete problem 
(integer programming) . There are two separate explanations for this 
phenomenon. First of all, in most cases it has not been proven that 
the security of the public-key system is equivalent to the 
intractability of the underlying problem. 
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Secondly, it is important to note that the classical theory of 
computational complexity has been founded around the cornerstone 
of worst-case complexity, with average-case complexity as a 
secondary criterion. As Rabin [RABI76] notes, these measures are 
of limited relevance in analyzing the complexity of cryptanalysis, 
since a cryptosystem must be immune to attack in almost all 
instances. 

Attempts to formalize the notion of "almost-everywhere hardness" 
have been made (e.g., [GROL88]). An early characterization was 
suggested by Shamir [SHAM79], who quantities this notion by 
defining a complexity measure C(n,a) for algorithms as follows: 
C(n,a) is a measure of an algorithm if at least a fraction a of 
problem instances of size n can be solved by the algorithm in time 
C(n,a). For example, an algorithm for finding one factor of n could 
have complexity C(n,l/2) = 0(1), since n has a 50% chance of being 
even. However, such investigations have thus far failed to produce 
a comprehensive framework, although they may be useful in a few 
special instances. 

Another simple example illustrates the difference between worst­
case and average-case complexity: as noted in [RABI76], algorithms 
to sort n items are often predicated on the assumption that the 
items are arranged in random order; i.e., all n! arrangements are 
equally likely. If the file has a real-world origin it is more 
likely that the file is already partially sorted. An·optimized 
algorithm might anticipate this and utilize an adaptive strategy. 

In practice, a cryptosystem for which cryptanalysis has an 
average-case polynomial complexity is generally worthless; in fact 
this remains true if any measurable fraction of all instances 
permits polynomial-time cryptanalysis (this is difficult to make 
precise, since the fraction may vary with key size). Thus there is 
no a priori connection between the breaking of a system and the 
difficulty of the underlying problem, since the latter is 
characterized in terms of worst-case complexity. For example, often 
there exists a heuristic technique which yields an approximate 
solution to an NP-complete problem. Such techniques may not 
converge in polynomial time to an exact solution, but may break the 
corresponding cryptosystem. 

In passing we remark that some authors (e.g., [WAGNB4]) have 
attempted to go beyond the Diffie/Hellman notion of utilizing NP­
complete problems to construct systems, by using the even more 
intractable class of undecidable problems instead. It would be 
interesting to know if such systems could be made practical. 

A.4 Probabilistic algorithms. 

Another important distinction between the classical theory of 
complexity and cryptocomplexity is that the classical theory of 
algorithms does not encompass probab~listic algorithms (e.g., 
[RABI76] ), which again may produce rapid solutions to problems in 

many instances but not even terminate in a few instances. They may 
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also produce answers which are probably but not necessarily 
correct. Such algorithms are inappropriate in many contexts, e.g., 
real-time control settings in which a response must be guaranteed 
in a fixed period of time, or where provable solutions are 
required. However, they are powerful tools in both cryptography and 
cryptanalysis. 

As noted in [RABI76], probabilistic algorithms cannot be 
measured by classical criteria, which focus on worst-case runtime. 
Instead, a probabilistic algorithm may involve a tradeoff between 
execution time and confidence. For example, most numbers have all 
small factors. If an algorithm exploits this fact it may terminate 
quickly for most inputs but take exponential time when large primes 
appear as factors. 

Gill [GILL77] models probabilistic computation by extending the 
classical Turing machine model (e.g., [HOR078]) to the 
probabilistic Turing machine (app. D). This has proven valuable in 
the analysis of cryptographic systems, and probabilistic encryption 
schemes in particular. 

A.5 Status of some relevant problems. 

The security of several major cryptosystems mentioned herein 
depends on the hardness of problems whose complexity status is 
unresolved. This includes factoring and discrete logarithm. The 
importance of the subclass of NP-complete problems emerges in this 
regard: if a problem is known to be in NP but is not known to be 
NP-complete, a solution to the problem in polynomial time (placing 
the problem in P) would not imply that problems such as traveling 
salesman are in P. The latter proposition is widely disbelieved. 

A second relevant class is co-NP, the complements of problems 
in NP. For example, the complement of deciding whether n is prime 
is deciding if n is composite. In fact, primality and compositeness 
are in both NP and co-NP. Some experts have speculated (e.g., 
[GARE79]) that Pis the intersection of NP and co-NP. For example, 
linear programming was known to be in both of the latter long 
before its status was resolved; eventually it was shown to be in 
P, via the ellipsoid method [KHAC79] . This illustrates that it 
would indeed be desirable to have available cryptosystems based on 
NP-complete problems (but see below) . 

Good surveys of the status of many problems important in 
security of public-key systems are given in [ADLE86] and [POME86]. 
Let 

L(n) exp( (l + o(l)) (ln n * ln ln n)l/2). 

Then Adleman notes that many algorithms for factoring n have 
probabilistic execution times believed to be of the form L(n)c 
(e.g., [SCHN84]). However, only the algorithm of Dixon [DIX081] has 
been rigorously analyzed. Similarly, various algorithms for 
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discrete logarithms mod pare believed to take time L(p). These 
results would be viewed with mistrust in the classical theory due 
to their probabilistic nature and lack of rigorous upper bounds for 
worst-case or average-case times. In contrast, Adleman [ADLE83] 
gives a deterministic algorithm for primality testing which 
executes in time 

O((ln n)c ln ln ln n). 

In the classical theory this result would be valuable, but we 
have noted that probabilistic algorithms are more efficient and far 
less complex, hence much more relevant in the present setting. 
Again this is indicative of the divergence between classical 
complexity and cryptocomplexity. 

The status of the problem of taking roots mod n, i.e., solving 
xe o c (mod n), depends on the parameters (e.g., [SAL085]). A 
polynomial-time probabilistic algorithm to find x exists if e, c 
aJd n are fixed and n is prime. If n is composite with unknown 
factors, no polynomial-time algorithm exists, even probabilistic, 
If e = 2 the complexity is essentially equivalent to factoring n 
(lem. N.3.2). If e > 2 the status is less clear; as a consequence 
it is not clear that the security of RSA is equivalent to 
factoring. 

Brassard [BRAS79] has shown that the discrete logarithm has an 
associated decision problem which lies in the intersection of NP 
and co-NP. Thus, if either factoring or taking discrete logarithms 
is NP-hard, it follows from the definition of this class that the 
associated decision problem is NP-complete and in co-NP. In turn 
this would imply NP = co-NP, which is widely disbelieved. 

More generally, in [BRAS83] a function f is called restricted 
one-way if f is easily computable, f-1 is not, and f is injective 
and polynomially bounded. It is shown that if restricted one-way 
functions exist then P is not the intersection of NP and co-NP as 
many believe; and if f is restricted one-way and f-1 is NP-hard then 
NP = co-NP. Discrete logarithm is thought to be restricted one-
way. 

We conclude that there is little hope for fulfilling the 
Diffie/Hellman quest for public-key systems based on NP-complete 
problems. The same may be true of the search for one-way functions 
to employ as hash functions. Prospects for use of NP-hard problems 
seem difficult to assess at this time. 

Appendix B. Algorithms and architectures. 

We briefly survey some of the considerations relevant to 
determining what type of hardware and software support for 
cryptanalysis, or to a lesser extent encryption, may be forthcoming 
from the creators of algorithms and architectures of the future. 
We also mention some examples already in existence. This represents 
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an excursion into high-performance computing, only a small fraction 
of which is applicable to cryptography. Nonetheless, in order to 
evaluate security of methods or ascertain key sizes, it is 
necessary to make some educated guesses as to how this field will 
progress over the next few decades. 

B.l Technology. 

Computing at present is silicon-based. Thus all estimates of 
achievable computer performance are geared to this technology. The 
question arises as to whether a radically different technology such 
as superconductivity or optical computing will make silicon-based 
performance standards obsolete, and if so, when this might occur. 
We have no idea, and hence we ignore these. 

Gallium arsenide technology is another matter. It has already 
been integrated into some existing supercomputers. Some of the 
differences between GaAs and silicon VLSI are (e.g., [MILU88]): 

a. GaAs gates have a higher switching speed. 

b. Off-chip communication in GaAs pays a relatively higher 
penalty. 

c. GaAs chips have lower density. 

Gate delays in GaAs (DCFL E/D-MESFET) may be as low as 50 
picoseconds, as opposed to at least 1 nanosecond in Silicon (NMOS) 
Similarly, on-chip memory access in GaAs may take as little as 500 
picoseconds, as opposed to at least 10 nanoseconds in silicon. This 
indicates that performance of GaAs-based computers could 
theoretically be as much as 20 times greater than even the fastest 
silicon-based supercomputers. However, GaAs levels of integration 
are currently much lower: at most about 50,000 transistors per 
chip, as opposed to 1,000,000 in silicon. This is due to problems 
in GaAs of power dissipation, yield and area limitations. Thus the 
number of chips necessary to build systems using GaAs is higher; 
minimizing chip count is important for high performance. 

Off-chip communication in GaAs is another factor at the system 
level. The peak performance of a computer system is limited by the 
bandwidth of the slowest subsystem [HWAN84] . Inter-chip signal 
propagation is not significantly different for silicon or GaAs, but 
the relative effect is different: off-chip communication is more 
of a bottleneck in GaAs because of its ratio to on-chip speed. 
Silicon solutions to the problem of CPU speed versus other 
subsystem speeds include cache and multilevel memory hierarchies; 
these may not carry over mutatis mutandis to GaAs. 

We conclude that at the moment, GaAs technology does not present 
a real threat to silicon performance standards. Furthermore, it 
does not appear likely that problems such as yield and integration 
will be solved in the near future. Thus, for the remainder of 
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appendix B we assume no radical change in technology from the 
present. 

B.2. Computing modes. 

Classically, computing was dominated by the Von Neumann model, 
with a single processor executing a single instruction scheme on 
a single data stream. This paradigm reached its peak with computers 
such as the Cray-1 [CRAYBO] and CYBER 205 [CONTBO]. However, the 
performance of a single processing unit is limited by its clock 
speed. It does not seem feasible to reduce major cycles much below 
1 ns with silicon technology. Furthermore, at these speeds memory 
access becomes a bottleneck, not to mention I/0. Thus it is not 
likely that uniprocessors will exceed 109 operations per second, 
barring radical new technologies. 

Two alternatives to the Von Neumann model are parallel and 
distributed computing (e.g., [HWAN84]), Parallel computing 
generally refers to processors in one box; distributed means each 
processor is in its own box. Parallel computers may (loosely) be 
subdivided into shared-memory, in which all processors share a 
common address space, and distributed-memory, in which each 
processor has its own address space. These modes remove the 
restriction on the number of instruction and/or data streams which 
may be processed concurrently. In theory these modes of computing 
can produce unlimited computing power, by splicing together single 
processing nodes and memory units (or processor/memory pairs) into 
a unified system. However, there are three major limitations in 
this regard: 

a. Cost-effectiveness. 

b. The interconnection network. 

c. Parallel algorithms. 

Cost-effectiveness alone has been a deterrent to the development 
of parallel systems. The Denelcor REP (e.g., [KOWAB5]), Floating 
Point T-Series [HAWK87] and ETA-10 [STEI86] are examples of 
parallel systems which have not proven to be commercially 
successful, Also, Cray and other supercomputer manufacturers have 
been reluctant to expand into large-scale parallelism, partially 
because of cost-related concerns. This creates an interesting 
situation from a cryptographic point of view: there may be cases 
where a computer powerful enough to break a given system could be 
built in theory. Security of the system might then rest on the 
assumption that no one will spend the money to build it, or that 
the only units built will belong to wealthy government agencies and 
be subject to tight controls. 

Even if computers with 1000 or more powerful processors are 
constructed, the question arises as to whether such a configuration 
can achieve computing power in proportion to the number of 
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processors, i.e., linear speedup. The mode of interconnecting the 
processors and memories is critical. If the shared-memory 
configuration is used, with a collection of processors accessing 
common memory partitioned into modules, interference in paths 
through the network or in simultaneous attempts to access a module 
will cause a bottleneck if a low-cost, low-bandwidth network such 
as a bus is used. If a high-bandwidth network such as a crossbar 
is used (i.e., with concurrent data transfers possible between many 
processors and memory modules), the number of units interconnected 
is limited by cost which rises as the square of the number of 
processors. Thus such systems seem to be inherently limited in the 
extent to which they can improve on uniprocessor performance. 

An alternative is to connect processor/memory pairs using a 
network such as a hypercube [SEIT85]. Machines of this type with 
up to 65,536 weak processing elements (e.g., the Connection Machine 
[HILL85]) or up to 1024 powerful processors (e.g., the NCUBE/10 
[HAYE86]) have been constructed, and systems with up to 32,000 
Cray-1 level processors have been proposed. There is debate (and 
some controversy) over the speedups which such distributed-memory 
machines can achieve. The latter consideration is related to cost­
effectiveness, which requires nearly-linear speedup. Also, the cost 
of interconnection in a hypercube-based system rises as O(n log n), 
where n is the number of processor/memory pairs. 

Another concern is algorithms. A problem must be highly 
decomposable to be amenable to parallel or distributed computation. 
Furthermore, algorithms for non-Von Neumann machines must be 
tailored to individual architectures to a much greater extent than 
their Von Neumann counterparts, adding to the cost of software 
development. 

Because of inherent tradeoffs between performance and cost, 
there may be a divergence between the computing power attainable 
in theory and that which is practical (and in the event of 
commercial machines, marketable) . Within 10 years it is conceivable 
that machines executing 1012 operations per second could be built 
with refinements of existing technology; the real question seems 
to be financing. 

An alternative to the single-machine approach is the use of 
networks for completely distributed computing (e.g., [LENS89]). The 
class of problems amenable to solution via networks (and wide-area 
networks in particular) is restricted, since the nodes must 
communicate infrequently (typically only at the beginning and end 
of a computation). Nonetheless, in section 4 it was noted that some 
of the strongest cryptanalytically-related results have been 
obtained by networks of computers. This is possible because many 
of the relevant cryptanalytic algorithms are fully decomposable 
into independent portions which do not need to 'interact. An example 
is the quadratic sieve. 

It may be possible to assemble more computing power in such a 
network than is present in any single computer. Once again, the 
constraints are largely pragmatic. Designers of cryptosystems must 
therefore attempt to anticipate not only advances i.n algorithms and 
architectures, but also the greatest amount of computing power 
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which might realistically be brought to bear against a given task. 

B,3 Some relevant algorithms and implementation. 

Most of the powerful algorithms for factoring and discrete 
logarithm are fairly new. As we have noted, most of them have not 
been fully analyzed for runtimes. Nonetheless, some standards have 
emerged in this regard. The best guess for the future can only 
amount to anticipation of improvements in the present algorithms. 

B.3.1 Quadratic sieve factoring algorithm. 

The quadratic sieve [POME84] provides an alternative to the 
earlier continued fraction factorization algorithm [MORR75]. 

As noted in [DAVI83b], the continued fraction approach uses 
considerable multiple p·recision division. The quadratic sieve works 
with larger residues but involves mainly single-precision 
subtraction. Both have runtimes of exp(sqrt(c ln n ln ln n)) but 
c = 2 for continued fraction, c = 9/8 for the quadratic sieve. 

In [DAVI84] the results of implementing the quadratic sieve on 
a Cray X-MP [CRAY85] are reported. Factorization of 70-digit 
numbers takes about an hour; 100-digit numbers should take about 
a year. The key to this match of algorithm and architecture is the 
utilization of the vector capability of the. Cray architecture. In 
particular, a steady stream of operands is necessary to take 
advantage of a pipelined, register-to-register machine. The loops 
in the sieve are amenable to streaming of operands, and about 75% 
efficiency was obtained. However, the multitasking capability of 
the X-MP was not utilized. Since Crays with up to 16 processors are 
expected in the near future, with even greater parallelism to be 
anticipated, it follows that the results of such experiments are 
probably too conservative. On the other hand, utilizing both vector 
and parallel capabilities of a system is nontrivial, partially as 
a result of memory bank contention. Furthermore, adaption of the 
algorithm to exploit both capabilities may be nontrivial. Hence it 
is not clear to what extent the preceding efficiency can be 
maintained as the degree of parallelism grows. 

An alternative is distributed computing: Silverman [SILV87] has 
used the quadratic sieve implemented via a network of 9 SUN 3 
workstations to factor numbers up to 80 digits in 8 weeks. Recently 
another network was used to factor 106-digit numbers [LENS89]. 

It should be noted ·that the results obtained via the quadratic 
sieve are directly relevant cryptanalytically, since the integers 
factored are general. Integers of up to 155 digits, but with 
special forms, have been factored, also by use of networks 
[SIAM90]. However, these results are only indirectly relevant to 
systems such as RSA, assuming moduli are properly chosen. 
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B.3.2 Computations in finite fields. 

This is a subject which has been explored fairly thoroughly 
(e.g., [BART63]), and we do not review it here. 

Multiplication of elements in GF(m) has classically been 
implemented at the circuit level using linear feedback shift 
registers. However, Laws [LAWS71] has noted the potential for using 
cellular arrays. These are highly amenable to VLSI implementation. 
A pipeline architecture for multiplication and inverses is proposed 
in [WANG85]. 

One class of algorithms of particular interest is for discrete 
logarithms in GF(pn). Still more particularly, the case n = 2 has 
been explored considerably ( [BLAK84], ['BLAK84b], [COPP84]). Since 
finite logarithms are easy to compute in GF(m) if m has only small 
factors [POHL7B], n should be chosen so that 2n ~ 1 is (a Mersenne) 
prime, e.g., n = 521. However, Odlyzko [ODLY84b] notes that a next­
generation supercomputer might break n = 521 in a year. A special­
purpose computer might attack n on the order of 700 in a year. 

Odlyzko also notes that with similar bounds on key size, GF(p) 
may be preferable to GF(2n); e.g., n = 2000 is roughly equivalent 
to p of about 750 bits. As noted above, this advantage may be' 
counterbalanced by implementation efficiency. 

B.3.3 Other algorithms. 

Many of the most fundamental operations in this setting seem to 
be characterized by inherent sequentiality. An example is 
exponentiation; computing the n-th power seems to take log n steps 
regardless of the number of processors available. 

Another classical example is greatest common divisor. Although 
some partial results are noted in [ADLE86], major improvement over 
Euclid does not seem forthcoming regardless of advances in 
architecture, 

Many of the powerful factoring algorithms are highly 
parallelizable (e.g., [SCHN84]). The main requirement is existence 
of appropriate architectures. 

B.4. Application-specific architectures. 

General-purpose architectures such as the Cray are of interest 
in this setting because of their immediate availability. At the 
other extreme, architectures closely matching the algorithms of 
interest could be constructed, but their over-specialized nature 
would virtually preclude their commercial distribution, In between 
are classes of architectures which are more versatile but not truly 
general-purpose. We note several examples of partly-specific 
architectures and a proposed highly-specific machine. 



-- 92 --

REDACTED
REDACTED

MasterCard, Exh. 1005, p. 92

B.4.1 Systolic and wavefront arrays. 

The notion of systolic arrays ([KUNG82], [KUNG78]) is an 
extension of pipelining, The idea is to have a collection of 
processors operate on data which is pulsed rhythmically through the 
array. If the original requirement of a synchronous mode of 
operation is relaxed, the result is a wavefront array [KUNG82b]. 
Both types were originally targeted at applications such as signal 
processing which are compute-intensive and involve repetitions of 
operations on many operands. 

A systolic array for the computation of GCDs is proposed in 
[BREN83]. It is very amenable to VLSI implementation because of its 
regular topology.. Furthermore it is linear, limiting I /0 
requirements which can constitute a bottleneck in VLSI 
implementations. Supporting algorithms are noted in [BREN83b]. 

It would be of interest to know what a more general-purpose 
linear systolic array such as the Warp [ANNA87] (which curiously 
more closely resembles a wavefront array) could accomplish on some 
of the problems discussed in this paper, and factoring in 
particular. The Warp is already in production. 

B.4.2 Proposal for a quadratic sieve machine. 

Pomerance et al. [POME88] describe a pipeline architecture which 
would efficiently execute the quadratic sieve. This notion is of 
considerable interest to anyone implementing an algorithm such as 
RSA, since such a machine could presumably factor numbers beyond 
the reach of present-day supercomputers. 

Cost-effectiveness is carefully analyzed, as is critical for an 
application-specific architect·ure. They speculate that a $50, DOD 
version of the architecture should factor 1DO-digit numbers in 
about 2 weeks; or 140 digits in a year on a $10 million version; 
or 200 digits in 1 year on a $100 billion version. It should be 
noted that the last is clearly predicated on the notion that the 
architecture and algorithm will scale linearly with the number of 
processing units; we noted earlier that various bottlenecks such 
as inter-processor communication and memory access make this 
somewhat dubious, Nonetheless the possibility arises that moduli 
approaching 200 digits may be necessary in RSA because of the 
potential existence of machines such as these. 

The crux of the architecture are the pipe and pipe I/O units. 
These should be custom and should be able to handle variable 
strides without the considerable loss of efficiency which usually 
accompanies nonconstant sr.ride. The two units should be chained 
together. The pipe should consist of stages, all of which are bus­
connected to the pipe I/O unit. The cycle time of memory should be 
the same as the processing elements. 
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It is interesting to note that this architecture bears a close 
resemblance to a linear systolic array. 

B.4.3 Massively parallel machines. 

An alternative to pipelined machines is to configure a large 
number of primitive processing elements in an array and have them 
execute the same instruction stream synchronously, processing a 
large quantity of data in parallel (SIMD mode). Such machines are 
generally applied to real-time image or signal processing, or to 
large-scale matrix operations. 

The MPP [BATC80] is an example. It consists of 16,384 processors 
in a square array. It was intended mainly for image processing of 
data from satellites; but in [WUND83] and [WILL87] it is used for 
an implementation of the continued-fraction factoring algorithm. 
Wunderlich [WUNDBS] also implements this algorithm on the DAP 
(e.g., [HOCK81]), another massively parallel machine with 4096 
processors. Unlike the MPP, the DAP has been marketed. 

Appendix C. The' classical theory of computation. 

In appendix A a number of topics from the classical theory of 
computation were mentioned. Here we give a more precise treatment 
of some notions from the classical theory (e.g., [LEWI81]). 

An alphabet is a finite set of symbols. A string is·a sequence 
of symbols from an alphabet. A language on an alphabet is a set of 
strings from the alphabet. If S is an alphabet, S* denotes the set 
of all strings from s, including the empty string. Concatenation 
of strings a and b is written ab. If A and B are subsets of S*, AB 
is the set of strings formed by concatenating elements from A and 
B. 

C.l Turing machines. 

A (one-tape, deterministic) Turing machine is a quadruple 
(K,S,D,s) where: 

a. S is an alphabet which contains a blank #, but not the 
symbols L or R which are reserved for tape movement to the 
left or right. 

b. K is a set of states which does not include the halt state 
h, which signals an end to computation. 

c. s = initial state; it is in K. 

d. D K x s -> (K + {h)) x (S + {L,R}) where + denotes 
union. 
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A Turing machine = M may be interpreted semi-physically as 
consisting of a control unit and a tape. At any time M is in some 
state 1 and the read/write head of the tape is over some symbol on 
the tape. If D(q 1 a) = (p 1 b) then initially the head is scanning a 
and M is in state q; its next move will be to enter state p. If b 
is in S the head will set a := b without moving; otherwise b = L 
or R in which case the head will. move to the left or right. M halts 
when state h is entered. or M hangs (the left end of the tape is 
surpassed). The tape has no right end. 

Input to M consists of a string. The string is padded by a i on 
each side and placed on the leftmost squares of the tape. The rest 
of the tape consists of i's. Initially the head is positioned over 
the i which marks the right end of the input. Initially M is in 
state s; its first move is thus D (s 1 i). 

At a given time M is in configuration (q 1 w,a,u), where: 

a. q state (element of K + {h)). 

b. w portion of the tape to the left of the head (element 
of s·"J . 

c. a = symbol under the head (element of S). 

d. u portion of the tape to the right of the head. 

If e denotes the empty string, u in (d) is required to be an 
element of (S*)(S-{i))+{e); i.e., either u e 1 meaning the tape 
has all i's to the right of the head, or the last symbol of u is 
the last nonblank symbol to the right of the head position, This 
gives the configuration a unique description. In particular, if the 
input toM is w then the initial configuration of M is (s,iw,i,e). 

M is said to halt on input w if some halted configuration (state 
h) is reached from (s,iw,i,e) in a finite number of steps; then 

it is said that (s 1 iw,i,e) yields a halted configuration. If M 
halts on input w, M is said to accept w. The language accepted by 
M is the set of strings w accepted by M. Conversely, a language is 
said to be Turing-acceptable if it is accepted by some Turing 
machine. 

Suppose S is an alphabet, T and W are subsets of s, and 
f: W -> T. Suppose there exists a Turing machine M = (K 1 S,D,s) such 
that for any win W, the configuration (s,iw,i 1 e) yields 
(h,iu 1 i,e), i.e., u is the output of M on input w, and furthermore 
u = f(w). Then f is said to be computed by M. 

Suppose alphabet A does not contain i, Y or N. Suppose L is a 
language in A* and X is its characteristic function, i.e., for w 
in A*, X(w) = Y if w is in L, X(w) = N otherwise. If X is computed 
by Turing machine M then M is said to decide (or recognize) L. 
Conversely, if X is the characteristic function of a language L and 
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X is Turing-computable, i.e., there exists a Turing machine which 
computes X, then L is said to be Turing-decidable. 

An extension of the basic model is to permit the control unit 
to control (a finite number of) multiple tapes. However, a language 
accepted by a multitape Turing machine is also accepted by a one­
tape Turing machine; i.e., additional tapes do not increase the 
computing power of Turing machines in terms of expanding the class 
of languages accepted. 

C.2 Nondeterministic Turing machines. 

The preceding Turing machines were deterministic; i.e., D was 
a function: if D(q,a) = (p,b) then the next state p and scanned 
symbol b were uniquely determined by the present state q and symbol 
a. A nondeterministic Turing machine is defined similarly except 
that D is now a relation on 

(K X S) X ((K + {h}) X (S + {L,R})). 

That is, D is now multiple-valued, so that the next 
configuration is no longer uniquely determined by the present. 
Instead, in a given number of steps a configuration may yield a 
number of configurations. Consequently an input may yield many 
outputs. A sequence of steps starting from a given input defines 
a computation; in general many computations are possible on one 
input. A nondeterministic machine is said to accept an input if 
there exists a halting computation on it. Agai·n the language 
accepted by a machine is the set of strings accepted by it. 
Trivially any language accepted by nondeterministic machines is 
also accepted by deterministic machines, which are merely special 
cases of the more general non.deterministic case. 

It is also true (but not as trivial) that any language accepted 
by a nondeterministic Turing machine is also accepted by a 
deterministic Turing machine. That is, nondeterminism does not 
increase the power of Turing machines insofar as the class of 
languages is concerned. 

Similar extensions hold for decidable languages, 

C.3 Computational complexity. 

The time complexity of Turing machines is measured by the number 
of steps taken by a computation. If T is a function on the 
nonnegative integers, a deterministic Turing machine M is said to 
decide language Lin timeT if it decides in time T(n) or less 
whether w is or is not in L, where w has length n. If T is a 
polynomial then L is said to be decided in polynomial time, If a 
language is decidable in polynomial time on a multitape 
deterministic Turing machine then it is decidable in polynomial 
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time on a one-tape Turing machine. 

A nondeterministic Turing machine M is said to accept w in time 
T if there is halting computation on w of T(n)' or fewer steps, 
where w has length n. M is said to accept language L in time T if 
it accepts each string in L in time T. 

The class of languages decidable in polynomial time on some 
deterministic Turing machine is denoted by P. The class of 
languages acceptable in polynomial time on some nondeterministic 
Turing machine is denoted by NP. 

It is not known whether P = NP. 

Appendix c. The classical theory of computation. 

In appendix A a number of topics from the classical theory of 
computation were mentioned. Here we give a more precise treatment 
of some notions from the classical theory (e.g., [LEWIBl]). 

An alphabet is a. finite set of symbols. A string is a sequence 
of symbols from an alphabet. A language on an alphabet is a set of 
strings from the alphabet. If S is an alphabet, S* denotes the set 
of all strings from s, including the empty string, Concatenation 
of strings a and b is written ab. If A and B are subsets of S*, AB 
is the set of strings formed by concatenating elements from A and 
B. 

C.l Turing machines. 

A (one-tape, deterministic) Turing machine is a quadruple 
(K,S,D,s) where: 

a. S is an alphabet which contains a blank = #, but not the 
symbols L or R which are reserved for tape movement to the 
left or right. 

b. K is a set of states which does not include the halt state 
h, which signals an end to computation. 

c. s = initial state; it is in K. 

d. D K x S -> (K +{h)) x (S + {L,R}) where+ denotes 
union. 

A Turing machine = M may be interpreted semi-physically as 
consisting of a control unit and a tape. At any time M is in some 
state, and the read/write head of the tape is over some symbol on 
the tape. If D(q,a) = (p,b) then initially the head is scanning a 
and M is in state q; its next move will be to enter state p. If b 
is in S the head will set a := b without moving; otherwise b = L 
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or R in which case the head will move to the left or right. M halts 
when state h is entered. or M hangs (the left end of the tape is 
surpassed) . The tape has no right end. 

Input to M consists of a string. The string is padded by a # on 
each side and placed on the leftmost squares of the tape. The rest 
of the tape consists of #'s. Initially the head is positioned over 
the # which marks the right end of the input. Initially M is in 
state s; its first move is thus D(s,#). 

At a given time M is in configuration (q,w,a,u), where: 

a. q state (element of K + {h)). 

b. w portion of the tape to the left of the head (element 
of S*). 

c. a = symbol under the head (element of S), 

d. u = portion of the tape to the right of the head. 

If e denotes the empty string, u in (d) is required to be an 
element of (S*) (S-{#})+{e}; i.e., either u e, meaning the tape 
has all #'s to the right of the head, or the last symbol of u is 
the last nonblank symbol to the right of the head position. This 
gives the configuration a unique description, In particular, if the 
input toM is w then the initial configuration of M is (s,#w,#,e), 

M is said to halt on input w if some halted configuration (state 
h) is reached from (s,#w,#,e) in a finite number of steps; then 

it is said that (s,#w,#,e) yields a halted configuration. If M 
halts on input w, M is said to accept w. The language accepted by 
M is the set of strings w accepted by M. Conversely, a language is 
said to be Turing-acceptable if it is accepted by some Turing 
machine. 

Suppose S is an alphabet, T and W are subsets of S, and 
f: W -> T. Suppose there exists a Turing machine M = (K,S,D,s) such 
that for any win W, the configuration (s,#w,#,e) yields 
(h,#u,#,e), i.e.,· u is the output of M on input w,. and furthermore 
u = f(w), Then f is said to be computed by M. 

Suppose alphabet A does not contain #, Y or N. Suppose L is a 
language in A* and X is its characteristic function, i.e., for w 
in A*, X(w) = Y if w is in L, X(w) = N otherwise. If X is computed 
by Turing machine M then M is said to decide (or recognize) L. 
Conversely, if X is the characteristic function of a language L and 
X is Turing-computable, i.e., there exists a Turing machine which 
computes X, then L is said to be Turing-decidable. 

An extension of the basic model is to permit the control unit 
to control (a finite number of) multiple tapes. However, a language 
accepted by a multitape Turing machine is also accepted by a one­
tape Turing machine; i.e., additional tapes do not increase the 
computing power of Turing machines in terms of expanding the class 
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of languages accepted. 

C.2 Nondeterministic Turing machines. 

The preceding Turing machines were deterministic; i.e., D was 
a function: if D(q,a) = (p,b) then the next state p and scanned 
symbol b were uniquely determined by the present state q and symbol 
a. A nondeterministic Turing machine is defined similarly except 
that D is now a relation on 

(K X S) X ((K +(h)) x (S + {L,R})). 

That is, D is now multiple-valued, so that the next 
configuration is no longer uniquely determined by the present. 
Instead, in a given number of steps a configuration may yield a 
number of configurations. Consequently an input may yield many 
outputs. A sequence of steps starting from a given input defines 
a computation; in general many computations are possible on one 
input. A nondeterministic machine is said to accept an input if 
there exists a halting computation on it. Again the lapguage 
accepted by a machine is the set of strings accepted by it. 
Trivially any language accepted by nondeterministic machines is 
also accepted by deterministic mactines, which are merely special 
cases of the more general nondeterministic case. 

It is also true (but not as trivial) that any language accepted 
by a nondeterministic Turing machine is also accepted by a 
deterministic Turing machine. That is, nondeterminism does not 
increase the power of Turing machines insofar as the class of 
languages is concerned. 

Similar extensions hold for decidable languages. 

C.3 Computational complexity. 

The time complexity of Turing machines is measured by the number 
of steps taken by a computation. If T is a function on the 
nonnegative integers, a deterministic Turing machine M is said to 
decide language 1 in timeT if it decides in time T(n) or less 
whether w is or is not in L, where w has length n. If T is a 
polynomial then 1 is said to be decided in polynomial time. If a 
language is decidable in polynomial time on a multitape 
deterministic Turing machine then it is decidable in polynomial 
time on a one-tape Turing machine. 

A nondeterministic Turing machine M is said to accept w in time 
T if there is halting computation on w of T(n) or fewer steps, 
where w has length n. M is said to accept language L in time T if 
it accepts each string in 1 in time T. 

The class of languages decidable in polynomial time on some 
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deterministic Turing machine is denoted by P. The class of 
languages acceptable in polynomial time on some nondeterministic 
Turing machine is denoted by NP. 

It is not known whether P ~ NP. 

Appendix D. The theory of probabilistic computing. 

Probabilistic algorithms are employed as adjunc~s in 
cryptosystems for purposes such as finding primes. They have also 
produced virtually all major practical cryptanalytic algorithms for 
factoring, discrete logarithm etc. Here we review an extension of 
the classical theory of computation which incorporates 
probabilistic computing. This extension has proven particularly 
valuable in the study of probabilistic .cryptosystems. 

An ordinary deterministic multitape Turing machine may be 
considered to have an input tape, an output tape, and read-write 
worktapes. A modification of the ordinary model (e.g., [GILL77]) 
is the probabilistic Turing machine. It has a distinguished state 
called the coin-tossing state, which permits the machine to make 
random decisions. In terms of languages recognized, these haye the 
same power as deterministic machines. However, time considerations 
are more subtle. In particular, a notion of probabilistic run time 
is needed, rather than measures such as maximum run time used for 
ordinary machines. 

A probabilistic Turing machine operates deterministically, 
except when it is in a special coin-tossing state (or states). In 
such a state the machine may enter either of two possible next 
states. The choice between these is made via the toss of an 
unbiased coin. The sequence of coin tosses may be considered to 
constitute the contents of an auxiliary read-only input tape, the 
random tape, which contains a binary string. Thus a computation by 
a probabilistic machine is a £unction of two variables, the 
ordinary input tape and the random tape. 

If the random tape is unspecified, the output of the computation 
of probabilistic.machine M, M(x), is a random variable (e.g., 
[MCEL77]): M produces output y with probability Pr{M(x) ~ y}. For 
a given input x, there may exist a y such that Pr{M{x) ~ y} > 1/2. 
Such a y is clearly unique if it exists, in which case we can write 
q(x) = y. This defines a partial function: q is undefined if no 
such y exists. The partial function q is said to be computed by M. 
The set accepted by M is the domain of q. 

If xis accepted by M let e(x) = Pr{M(x) != y}. It is direct 
from definition that e{x) < 1/2. Suppose there exists a constant 
c < 1/2 such that e(x) <= c for all x in the domain of e. Then it 
may be said that M has bounded error probability (the error 
probability e is bounded away from 1/2), another concept important 
in zero-knowledge frameworks. 

Again leaving the random tape unspecified, Pr{M(x} = y in time 
n} is the probability that probabilistic Turing machine M with 
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input x gives output yin some computation of at most n steps. The 
probabilistic run time T(x) of M is defined to be infinity if x is 
not accepted by M, i.e., if xis not in the domain of the partial 
function q computed by M. If xis in the domain of q, T(x) is the 
smallest n such that Pr{M(x) = q(x) in time n} > 1/2. This is 
somewhat analogous to defining the run time of a nondeterministic 
Turing machine to be the length of the shortest accepting 
computation. 

A function is probabilistically computable if it is computed by 
some probabilistic Turing machine. There are many important 
examples of functions which are probabilistically computable in 
polynomial probabilistic run time and bounded error probability, 
but are not known to be computable in polynomial deterministic 
time, i.e., in P. An example is the characteristic function of the 
set of primes, which is probabilistically computable in polynomial 
time (e.g., [SOL077]), but for which no deterministic algorithm is 
known. 

Let BPP be the class of languages recognized by polynomial­
bounded probabilistic Turing machines with bounded error 
probability. Letting < denote inclusion, it follows easily that P 
< BPP < NP. An important question, with implications for schemes 
such as RSA as well as zero-knowledge schemes, probabilistic 
encryption etc., is whether either of these inclusions is proper. 

Appendix E. Breaking knapsacks. 

We give a brief account of the demise of the Merkle/Hellman 
trapdoor knapsack public-key system and some of its variants. A 
much more complete discussion is given in [BRIC88]. 

We recall from section 4.2.1 that the security of this approach 
rests on the difficulty of solving knapsack problems of the form 

C bl * M1 + ... + bn * Mn, 

where the {bi} are obtained from superincreasing {ai} by modular 
"disguising:" 

bi w * ai mod u. 

Around 1982, several authors (e.g. [DESM83]) made the observation 
that if W * w o 1 (mod u), where W may be found as in appendix H, 
then for some {ki}, 

ai W * bi - u * ki. 

In particular 
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al w * bl - u * kl, 

and hence 

bi * kl - bl * ki (bl * ai- bi * al)/u. 

Since u > al + ... + an, bi < u, and al < ai, 

lbi * kl- bl * kil < uai/(al+ ... +an). 

Now it is easily shown that 

ai+j 6 2j-1 * (ai + 1), 

and hence 

lbi * kl- bl * kil < 2i+1-n * u. 

Thus 

lkl/ki - bl/bil < 2i+l-n*u/kibi < 2i+l-n*u/bi. 

This shows that the {ki} are in fact not random; they are 
determinable via the above inequalities if u is known. Shamir 
[SHAM84b] observed that an intruder merely seeks any trapdoor, as 
represented by any u, w, and {ai} which produce an easy knapsack. 
Thus the last inequality may be regarded as an integer programming 
problem. In this particular instance Shamir noted that the 
algorithm of Lenstra [LENS83] is applicable, together with 
classical methods of Diophantine. approximation. This yields the 
{ki}, and the system is then broken easily. 

Lenstra's.algorithm made use of the Lovasz lattice basis 
reduction algorithm [LENS82], one of the basic tools in "unusually 
good" simultaneous diophantine approximation [LAGA84] . This 
approach was utilized by Adleman [ADLE82] to break the 
Shamir/Graham knapsack, and by Brickell [BRIC84] to break the 
iterated Merkle/Hellman knapsack. The multiplicative version was 
broken by Odlyzko [ODLY84]. In fact all major proposed knapsacks 
based on modular disguises have been broken using this approach. 

It should be noted that the low-density attacks 
( [BRIC83], [LAGA83]) are successful where finding trapdoor's fails. 
These use a measure of density for a knapsack with coefficients 
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b1, ... ,bn defined by density= n/(log max {bi}). This type of attack 
is independent of whether the knapsack is a disguised version of 
another. Trapdoors, in contrast, are easiest to find for high­
density knapsacks. 

The concept of density is related to two important parameters 
of cryptosystems, namely information rate and expansion factor d. 
In [LAGA84] the :Lnformation rate is defined to be the ratio of the 
size of plaint~xt to the maximum size of the ciphertext. This is 
th~ reciprocal of d, i.e., ciphertext/plaintext. Information rate 
is essentially the same as density, although for the above knapsack 
and modulus u it is defined slightly differently, namely a~ n/(log 
nu) . Both definitions are derived from approximations to the actual 
ciphertext size, which is log(b1 * M1+ ... +bn * Mn). Lagarias notes 
that the attack in [SHAM84b] runs in time O(P(n)*nd) for a 
polynomial P. Hence the attack is feasible if d is fixed but not 
if the expansion factor d is large. This illustrates the 
interrelation between security and practicality. 

Appendix F. Birthday attacks. 

In section 4 we noted several usages of birthday attacks against 
hash functions. Here we give a brief summary of the relevant 
mathematics. 

Suppose H is a function which has m possible outputs, Whenever 
H outputs a value it is totally random and independent of any 
previous values which have been output. 

If H is evaluated k times, each output is akin to an obj~ct 
placed in one of m cells corresponding to the range of H. Since the 
k values of H are independent, any object could be placed in any 
of m cells; the total number of ways of distributing the k objects 
is mk. If no two objects are to be placed in any cell (i.e. if 
there are to be no collisions in applying H k times), the first 
object can be placed anywhere; the second can go in any of the m-
1 remaining cells; the third in m-2 cells; etc. The total number 
of ways of distributing the objects is m(m-1) ... (m-k+1) (sometimes 
called a falling factorial). The probability of no collisions is 
m(m-1) ... (m-k+1)/mk, Hence the probability of at least one 
collision is 

P(m, k) 1- (m-1) ... (m-k+1)/mk-1 

1- (1- 1/m).,, (1- (k-1)/m). 

This yields 

LEMMA F.1. Suppose the function H, with m possible outputs, is 
evaluated k times, where m > k > (2cm)1/2 for some constant c. Then 
the probability of at least one collision (i.e., x andy with H(x) 
= H(y) for some x,y) is at least 1- e-c, e = 2.718 ... 
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Proof: for 0 < x < 1, 

1- x < 1- x + x2(1- x/3)/2 + x4(1- x/5)/24 + ... 

e-x. 

For k < m this gives 

(1- 1/m) ... (1 - (k-1)/m) < e-1/m ... -(k-1)/m) 

e-k(k-1)/2m. 

Thus 

P(m,k) > 1- e-k(k-1)/2m 

The lemma follows. QED. 

EXAMPLE F.1. Suppose the H of lemma F.1 is evaluated k times 
where k > (2(ln 2)m)l/2 = 1.17 * m1/2. Then the probability of at 
least one collision is > 1/2. 

This suggests an attack on hash functions. Its name derives from 
the classical problem of computing the probability that two members 
of a group of people have the same birthday. 

Appendix G. Modular arithmetic and Galois fields. 

We. give a brief introduction to arithmetic modulo n where n is 
a positive integer. A ring structure may be imposed on Zn 
{0,1,, .. ,n-1} by doing addition, subtraction and multiplication mod 
n (e.g., [DENN83], [HERS64] or any book on elementary number 
theory). We use GCD for greatest common divisor; i.e., GCD(x,y) 
n if n is the largest positive integer dividing x and y. For n > 
1 let 

Zn* {X i Zn x > 0 and GCD(x,n) 1}. 

For example, ZlO* = {1,3,7,9}. That is, Zn* consists of the 
nonzero elements of Zn which are relatively prime to n. 

If a i Zn* let 
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a * Zn* {a * x mod n xiZn*}. 

For example, 2 * ZlO* = {2,6,14,18} mod 10 
{3,9,21,27} mod 10 = ZlO*. We have: 

LEMMA G.1. Suppose n > 1 and a i Zn*. Then 

{2,6,4,8}, 3 * Z10* 

a. For any x and y: a * x o a * y ( mod n ) iff x o y (mod 
n). 

b. a * Zn* = Zn*. 

c. a has a multiplicative inverse modulo n; i.e. 
there exists b i Zn* such that b * a o 1 (mod n) . 

Proof: if x o y (mod n) then trivially a * x o a * y (mod n). 
Conversely, suppose a * x o a * y (mod n). Then n I (a ·k (x - y)). 
But GCD(a,n) = 1, son I (x- y), i.e. x o y (mod n). Thus (a) 
holds. 

For (b): if x i Zn* then GCD(x,n) = 1, so GCD(a*x,n) = 1. Thus 
a* x mod n i Zn*. Hence a* Zn* is contained in Zn*. By (a), if a* 
x o a* y (mod n), then x o y (mod n). Thus a* Zn* consists of n 
distinct elements, and cannot be a proper subset of Zn*; (b) 
follows. In particular, since 1 i Zn*, there exists some b i Zn* such 
that a * b mod n = 1; {c) follows. QED. 

G.l The Euler Phi function. 

The cardinality of a setS is denoted by lSI. In particular, IZn*l 
is denoted by i(n), the Euler totient function. 

LEMMA G.l.l. 

a. If pis prime then i(p) = p-1, 

b. If n = p * q, p and q prime, then i(n) (p-1) (q-1). 

Proof: (a) is trivial, since Zp* = {1,,., ,p-1). 

For (b): let Yp = {p, ... , (q-l)p}, i.e., the nonzero elements of 
Zn divisible by p. Let Yq = {q,,, ., (p-1)q} 1 i.e., the nonzero 
elements of Zn divisible by q. If a * p = b * q, then p I b and q 
I a; hence a * p and b * q cannot be in Yp and Yq, respectively, 
Thus Yp and Yq are disjoint. Letting + denote disjoint union, 

Zn {0} + Yp + Yq + Zn*. 
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Taking cardinalities, 

p * q 1 + q-1 + p-1 + IZn*l. 

Then (b) follows. QED. 

G.2 The Euler-Fermat Theorem. 

LEMMA G.2.1 (Euler's Theorem), Suppose n > 0 and a i Zn*. Then 

ai(n) a 1 (mod n). 

Proof: if Zn* {rl, ... , rm} then a .restatement of (b) of lemma G.l 
is 

'{a*rlmodn, ... ,a*rmmodn} Zn*. 

Hence 

a ·• rl * . . . * a * rm a rl * . . . * rm (mod n) . 

Thus 

am * rl * , . . * rm o rl * * rm (mod n). 

By (a) of lemma G.l, each ri above may be canceled, leaving 

am a 1 (mod n) . 

Noting that by definition m i(n) gives Euler's Theorem. QED. 

COROLLARY G.2.1 (Fermat's Theorem). Suppose p is prime and a i 
Zp*. Then 

ap-1 a 1 (mod p) . 

Proof: use (a) of lemma G.l.l in lemma G.2.1. QED. 
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COROLLARY G.2.2. Suppose n > 0, a i Zn*, and x 6 1 (mod m) where 
m = i(n). Then ax 6 a (mod n). 

Proof: we have x m * y + 1 for some y. Now by lemma G.2.1, 

ax 6 (am)y * a 6 ly * a 6 a (mod n). 

QED. 

COROLLARY G.2.3. Suppose n > 0. Let m i(n). Suppose e and d 
are in Zm* and e * d 6 1 (mod m). Let E(M) =Me mod nand D(C) Cd 
mod n. Then D(E(M)) = E(D(M)) = M for any Min [O,n). 

Proof: 

D(E(M)) 6 (Me mod n)d mod n 6 Me*d mod n 6 M (mod n). 

The last step uses corollary G.2.2. Also 0 6 D(E(M)) <nand 0 
6 M < n, so D(E(M)) = M. Similarly E(D(M)) = M. QED. 

G.3 Galois fields. 

Lemma G.l shows that Zn* is an abelian group (e.g., [HERS64] p. 
27) under the operation of multiplication modulo n; Zn* is called 
the multiplicative group of units of Zn. 

In particular, if pis prime then Zp* = {1, ... ,p-1) is a group; 
i.e., each nonzero element of Zp has a multiplicative inverse 
modulo p. Thus the ring Zp = {0,1, ... ,p-1) is in fact a finite 
field (e.g., [HERS64] p. 84) with p elements. 

It can be shown (e.g., [HERS64] p. 314) that every finite field 
has pn elements for some prime p. These are called the Galois 
fields, and denoted GF(pn). We have already noted that GF(p) = Zp 
is defined by doing arithmetic modulo p. The elements of Zp are 
called the residues modulo p; i.e., each integer x has a unique 
representation x = q * p + r where r i Zp. To define GF(pn) we 
choose an irreducible polynomial f(x) of degree n in the ring of 
polynomials modulo p (e.g., [DENN83] p. 49). Now arithmetic may be 
defined on this ring of polynomials, modulo f(x); i.e., write g(x) 
6 h(x) iff f(x) is a divisor of g(x) - h(x). Each polynomial g(x) 
has a unique representation g(x) q(x)f(x) + r(x) for some 
polynomial r(x) of degree at most n-1. The residues modulo f(x) are 
the elements of GF(pn). These consist of polynomials of degree 6 n-
1 with coefficients from Zp. Each of the n coefficients of a 
residue has p possible values, accounting for the pn element count 
for GF (pn) . 
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Appendix H. Euclid's algorithm. 

On a number of occasions we referred to Euclid's algorithm, 
which can be used to find greatest common divisors and 
multiplicative inverses, We give some versions of it here. These 
versions are recursive, and minimize storage requirements. 

Suppose x and y are arbitrary positive integers. Their greatest 
common divisor GCD(x,y) can be computed in O(log max{x,y}} steps 
by recursively employing GCD(s,t) = GCD(s,t mod s). This is 
Euclid's algorithm: 

function GCD(x,y) returns integer; 
/* return greatest common divisor of x > D and y > D */ 
s := x; t := y; 
while (s > D) do 

div := s; s := t mod s; t div; 
end while; 
return (div); 

end GCD; 

This is readily generalized to 

function Multi GCD(m; x : array[O .. m] ); 
/* for m > 0 return greatest common divisor of 

x1, ... ,xm > 0 */ 
if (m 1) return(x1) 
else return(GCD(xm,Multi_GCD(m-1,x))); 

end Multi_GCD; 

The above runs in O(m *log max{xi)) time. 

For x i Zn*, with latter as in appendix G, a simple extension of 
GCD yields the multiplicative inverse of x modulo n, :L.e., u with 
x * u o 1 (mod n). With [y] denoting the largest integer 6 y, the 
extended Euclid algorithm to find u is: 

function INVERSE(n,x) returns integer; 
/* for n > 0 and x i Zn* return u i Zn* 

with u * x o 1 (mod n) */ 
procedure Update(a,b); 

temp := b; b := a - y * temp; a := temp; 
end Update; 
g := n; h := x; w := 1; z := D; v := 0; r 1; 
while (h > 0) do 

y : = [g/h); Update(g,h); Update(w,z); Update(v,r); 
end while; 
return(v mod n); 

end INVERSE; 
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For example, for n 18, X 71 this gives the values 

g: 18 7 4 3 1 
h: 7 4 3 1 0 
w: 1 0 1 -1 2 
z: 0 1 -1 2 -7 
v: 0 1 -2 3 -5 
r: 1 -2 3 -5 18 
y: 2 1 1 3 

Finally u = -5 mod 18 ~ 13 is returned. This is equivalent to 
finding the sequence 7/18, 2/5, 1/3, 1/2, 0/1 in which each 
neighboring pair is a pair of Farey fractions; a/b and c/d are 
Farey fractions (e.g., [RADE64]) if a* d-b* c = fi1. We have 
found 2 * 18- 5 * 7 = 1, so that -5 * 7 a 1 (mod 18), or 
equivalently 13 * 7 a 1 (mod 18). Thus finding multiplicative 
inverses modulo n can also be done in O(log n) steps. 

This will also finds with u * x + s * n 1: take s 
* x) I n. More generally we have (with GCD(x) ~ x): 

(1 - u 

procedure Coeffs(m; x : in array[1 .. m]; u : out array[1 .. m] ); 
/*given m > 0 and x1, ... ,xm > 0 with GCD(x1, ... ,xm) = 1, 

find u1, ... ,urn with u1x1 + ... + umxm = 1 */ 
if (m = 1) return(x1) 
else 

g =Multi GCD(m-1,x); 
for i := l to m-1 do yi := xi/g; 
Coeffs(m-1,y,u'); 
urn := INVERSE(g,xm); 
b := (1 - um*xm)/g; 
fori := 1 to m-1 do ui b*ui'; 

end else; 
end Coeffs; 

This runs in O(m*log max{xi}) time. 

Appendix I. The Chinese Remainder Theorem. 

The Chinese Remainder Theorem is useful for purposes such as 
simplifying modular arithmetic. In particular we note in a later 
appendix that its use increases the efficiency of decryption in 
RSA. 

We begin with a special case: with Zn as in appendix G, we have 

LEMMA I.1. Suppose p and q are primes and p < q. Then: 
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a. For arbitrary a i Zp and b i Zq, there exists a unique 
X i Zpq with 

X a a (mod p), 

X a b (mod q) , 

b. If u * q a 1 (mod p), the X in (a) is given by 

x = (((a- b) * u) mod p) * q +b. 

Proof: we note that for any y and s, 0 6 y mod s 6 s-1. Thus if 
x and u are as in (b), 0 6 x 6 (p-1) * q + q- 1 = p * q- 1. Hence 
X i Zpq. Trivially x a b (mod q) . Also 

x a (((a- b) * u) mod p) * q + b 

a (a - b) * u * q + b 

a (a - b) * 1 + b 

a a (mod p) . 

Thus x is a solution to the simultaneous linear system in (a) . 
To show that it is unique, suppose x' a a (mod p) and x' a b (mod 
q). Then for some k and m, x - x' k * p = m * q. Thus k = q * k' 
foi some k'; hence x- x' = p * q * k', i.e., x' = x- p * q * k'. 
Since 0 6 x 6 p * q - 1, if k' > 0 then x' < 0; if k' < 0 then x' 
o p * q. Hence x' i Zpq iff k' = 0, i.e., x' = x, QED. 

We note that in (b) above, u can be found via the INVERSE 
function of appendix H. 

The condition p < q is arbitrary, but useful in noting 

COROLLARY I.l. Suppose p and q are primes, p < q, 0 6 x < p * 
q, and a = x mod p, b = x mod q. Then 

a. x (((a- (b mod p)) * u) mod p) * q + b 
(a o b mod p) 

b, X (((a+ p- (b mod p)) * u) mod p) * q + b 
(a 6 b mod p) 

Proof: immediate from lemma I.1. QED. 

The corollary provides an optimal framework for representing x 
via a and b, i.e., the residues of x modulo p and q, respectively. 

Although the most general case of the Chinese Remainder Theorem 
is not used in this exposition, we remark that the above can be 
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extended: 

THEOREM I.l. Given pairwise relatively prime moduli (pl, ... ,pn) 
and arbitrary {al, ... ,an), there exists a unique xi [O,pl* .. *pn) 
satisfying x a ai (mod pi) for each i. 

Proof: a straightforward generalization of the above (e.g., 
[ DENN 8 3] p . 4 7 ) . 

Appendix J. Quadratic residues and the Jacobi symbol. 

Quadratic residues play a role in primality testing as we note 
in a later appendix. In appendices 0 and P we also note their usage 
in encryption. 

Let Zn* be as in appendix G. For a positive integer nand a i Zn*, 
a is called a quadratic residue modulo n if x2 a a (mod n) for some 
x; otherwise a is a quadratic nonresidue. 

LEMMA J.l. Suppose n > 0 and a is a quadratic residue modulo n. 
Then every y with y2 a a (mod n) has the form y = x + k * n where 
k is an integer and xi Zn*. 

Proof; suppose y2 a a (mod n). Let x = y mod n. Then x i [O,n). 
Also, x2 a a (mod n). Now x2 =a+ j * n for some j. Suppose for 
some m we have m > 0, m I x and m I n. Then m I a, so m = 1 since 
GCD(a,n) = 1. Hence x i Zn*; also y = x + k * n for some k. QED. 

Thus the square roots of a quadratic residue modulo n can be 
taken to be elements of Zn*; all other square roots are obtained by 
adding multiples of n to these. 

J.1 Quadratic residues modulo a prime. 

If p is prime and 0 < a < p, a is a quadratic residue modulo p 
if and only if x2 a a (mod p) for some x with 0 < x < p. For 
example, the quadratic residues modulo 7 are 

{12,22,32,42,52,62} mod 7 { 1, 2, 4). 

The quadratic nonresidues modulo 7 are {3 1 5,6}. 

Given a prime p, lets= (p-l)/2 and 

Sp {x2 mod p O<x6s). 
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Then Sp is a set of quadratic residues modulo p. In fact we have 

LEMMA J.1.1. Suppose p > 2 is prime. Lets= (p-1)/2. Then 

a. The elements of Sp are precisely the quadratic residues 
modulo p. 

b. There are s quadratic residues modulo p. 

c. There are s quadratic nonresidues modulo p. 

Proof: as noted above, Sp is a subset of the set of quadratic 
residues modulo p. Furthermore, if x2 6 y2 (mod p) then p I x2-y2; 
hence p I x-y or p I x+y. If x andy are in (O,s] then 1 < x+y < 
p; thus p I x-y; hence x = y. It follows that Sp contains distinct 
elements. QED. 

Now suppose a is a quadratic residue, x2 a a (mod p), and xi 
Zp*. We note 

(p - x)2 a p2 - 2 * p * x + x2 6 a (mod p). 

Since 0 < x < p, either x or p - x is in (O,s]. It follows that 
a i Sp. Thus the set of quadratic residues modulo p is contained in 
S. Hence the two sets are identical, establishing (a). Since ISpl 
= s, (b) follows. Also, the complement of Sp in Zp* is the set of 
quadratic nonresidues modulo p. Since I Zp* I = 2s., the complement of 
Sp also has cardinality s; (c) follows. QED, 

J.2 The Jacobi symbol. 

If p is a prime > 2 and 0 < a < p, the Legendre symbol (a/p) is 
a characteristic function of the set of quadratic residues modulo 
p (e.g., [RADE64]): 

a. (a/p) 1 if a is a quadratic residue mod p. 

b. (a/p) -1 if a is a quadratic nonresidue mod p. 

More generally, if k > 1 is odd and h is in Zk*, the Jacobi 
symbol (h/k) may be defined as follows: 

a. The Jacobi symbol (h/p) coincides with the Legendre symbol 
if p is prime. 

b. If k = p1* ... *pm with pi prime, (h/k) (h/p1) * ... * (h/pm) . 
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An efficient mode for computing the Jacobi symbol is via the 
recursion: 

a. (1/k) = 1. 

b. (a*b/k) (a/k) (b/k) 

c. (2/k) 1 if (k2-1) /8 is even, -1 otherwise. 

d. (b/a) ( (b mod a) /a). 

e. If GCD(a,b) 1: 

i. (a/b) (b/a) = 1 if (a-1) (b-1) /4 is even. 

ii. (a/b) (b/a) = -1 if (a-1) (b-1)/4 is odd. 

The key step in the recursion is (e), which is Gauss' law of 
quadratic reciprocity (e.g., [RADE64]). The above shows that the 
Jacobi symbol (a/n) can be computed in O(log n) steps. 

J.3 Square roots modulo a prime. 

Regarding solutions of x2 a a (mod p), i.e., the square roots of 
a modulo p, we have: 

LEMMA J.3.1. Suppose p > 2 is prime. Let s 
a is a quadratic residue modulo p. Then 

(p-1)/2. Suppose 

a. a has exactly two square roots modulo p in Zp*. One of 
these lies in (O,s] and the other in (s,p-1]. 

b. the square roots of a modulo p can be found in 
probabilistic polynomial time. 

Proof: by lemma J.1.1 we know that a i Sp as defined in J.1; 
hence there exists a unique x in (O,s] with x2 a a (mod p). Then y 
= p- x satisfies y2 a a (mod p), andy is in (s,p-1]. Conversely, 
suppose y is in (s,p-1] and y2 a a (mod p). Then x = p - y is in 
(O,s], and x2 a a (mod p), Hence y is unique. Thus we have (a). 

For (b) we invoke a probabilistic polynomial-time algorithm for 
finding square roots modulo a prime (e.g., [PERA86] or p. 22 of 
[KRAN86]). QED. 

J.4 Quadratic residuosity modulo a prime. 
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Deciding quadratic residuosity plays a role in both primality 
testing and probabilistic encryption. For a prime p > 2, to decide 
whether a given element a i Zp* is a quadratic residue modulo p, 
define 

ep(a) as mod p (s (p-1)/2). 

Then we have 

LEMMA J.4.1. If p > 2 is a prime and a :l. Zp*, ep(a) 1 if and 
only if a is a quadratic residue modulo p; ep(a) = p - 1 if and 
only if a is a quadratic nonresidue modulo p. 

Proof: by the Euler/Fermat Theorem (cor. G.2.1), ep(a)2 a 1 (mod 
p). By lemma J.3.1, 1 has exactly two square roots modulo pin Zp*, 
namely 1 and p - 1. Hence ep(a) = 1 or p - 1. If a is a quadratic 
residue modulo p, then a = x2 mod p for some x with 0 < x < p. Then 
ep(a) = xp-1 mod p. Again by Euler/Fermat, ep(a) = 1. Thus all s 
quadratic residues a satisfy as - 1 = 0 (mod p). An s-th degree 
congruence modulo p has at most s solutions (e.g., [RADE64] p. 21). 
Thus all quadratic nonresidues b must have ep(b) = p - 1. QED. 

Also, ep can be evaluated in O(log p) time. Thus quadratic 
residuosity mod p can be decided in O(log p) time. 

Appendix K. Primitive roots and discrete logarithms. 

The use of primitive roots was noted in sections 2.2 and 4.2.2. 
We also observed that the security of exponentiation-based 
cryptosystems depends in part on the difficulty of computing 
discrete logarithms. Here we briefly explore these topics. 

Let Zp* be as in appendix G. Suppose p is a prime and a i Zp*. 
Suppose m > 0, am a 1 (mod p), but ar !a 1 (mod p) for any r with 
0 < r < m. Then we say that a belongs to the exponent m modulo p. 
The existence of m is guaranteed by the Euler/Fermat Theorem (cor. 
G.2.1), which shows m < p. Let 

Cp(a) {ax mod p 6 x < m}. 

Then we have 

LEMMA K.l. Suppose pis prime, a i Zp*, and a belongs to the 
exponent m modulo p. Then: 
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a. Cp(a) contains distinct elements; i.e. ICp(a) I m. 

b. Cp (a) is a cyclic subgroup of Zp"·. 

c. m I p-1. 

Proof: suppose Cp(a) does not contain distinct elements. Then 
for some (k,j} in [O,m) with k < j we have aka aj (mod p). Thus 
aj-k o 1 (mod p), contradiction. This gives (a). Now suppose x and 
y are in [O,m) and x + y ~ k * m + r where r is in [O,m). Since am 
o 1 (mod p), ax* ay mod p = ar mod p. Thus Cp(a) is closed under 
multiplication, and forms a subgroup of Zp*; this is called the 
cyclic subgroup generated by a (e.g., [HERS64]). This gives (b). 
The order of a subgroup divides the order (= p - 1) of the whole 
group Zp* (ibid). This gives (c), QED, 

If g belongs to the exponent p - 1 modulo prime p, g is called 
a primitive root modulo p. 

LEMMA K.2. Suppose p is a prime and g is a primitive root modulo 
p. Then Cp(g) = Zp*; that is, each y i [1,p) has a unique 
representation y = gx mod p for some x i [O,p-1), 

Proof: Cp(g) is a subset of Zp*. The result follows from lemma 
K.1, which shows ICp(g) I p- 1 = IZp*l. QED. 

The x in lemma K.2 is the discrete logarithm, or index, of y 
modulo p with base = g. However, the range of the logarithm can be 
any interval of length p- 1. We have used [O,p-2], but, e.g., we 
could also take x to lie in [1,p-1] . 

A restatement of lemma K.2 is that the cyclic subgroup generated 
by the primitive root g modulo pis the whole group Zp*. Thus g is 
a generator of Zp*. 

LEMMA K.3. Suppose p > 2 is prime and p-1 has k distinct prime 
factors which are known. Then: 

a. The number of primitive roots modulo pis i(p-1), where 
i is the Phi function (app. G.1). 

2. Testing a given a to determine if it is a primitive root 
modulo p can be done in time O(k *log p) O((log p)2). 

Proof: for (a) see, e.g., [RADE64] p. 49. For (b), if the 
exponent of a modulo p ism, then m I p-1 by lemma K.1. Now m < p -
1 iff m I (p-1)/q for some prime factor q of p, whence a(p-1)/q a 1 
(mod p). Thus a is a primitive root modulo p iff a(p-1)/q !a 1 (mod 
p) for each prime factor q of p. This condition can be tested for 
each of the k factors in O(log p) time. Clearly k = O(log p). QED. 
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In particular, if p has the form 2q + 1 for prime q, it is easy 
to find the exponent m modulo p for a given a, since m = 2, q, or 
2q. It is also easy to find primitive roots modulo p: i(p-1) = q-

1 = (p-3)/2; thus for large p, a random element of Zp* has about 
a 1/2 probability of being a primitive root. 

LEMMA K.4. Suppose p > 2 is prime and g is a primitive root 
modulo p. Lets= (p-1)/2. Then: 

a .. gs il -1 (mod p). 

b. g is a quadratic nonresidue modulo p. 

Proof: for (a): we note gO il 1 (mod p). Since g is a generator 
of {1,g, ... ,gp-2) and 0 < s < p-1 we thus know gs !il 1 (mod p). Also, 
g2s il 1 (mod p}, so that gs is a square root of 1 modulo p. By lemma 
J.3.1, 1 has exactly two square roots modulo p, namely 1 and -1. 
Thus gs il -1 (mod p) . 

For (b): suppose x2 il g (mod p). Now x il gr (mod p) for some r; 
hence g2r il g (mod p}, and g2r-l il 1 (mod p). Thus 2r- 1 il 0 (mod p-
1), impossible since p- 1 is even. QED. 

Appendix L. Primality testing. 

Testing large integers to determine whether they are prime plays 
a major role in key generation in RSA and other public-key systems. 
We give a few examples of algorithms to effect this. 

It is well-known (e.g., [KNUT81] p. 366) that if the number of 
primes between 1 and xis f(x}, then with ln denoting natural 
logarithm (to base e = 2.718 .. ), 

f(x) x/(ln x) + O(x/(ln x}2}. 

The number of primes between x and x +his f(x +h) - f(x}, and 
hence the probability that a number between x and x + h is prime 
is roughly 

(f (x+h} -f (x}} /h f' (x) 1/(ln x} - 1/(ln x}2. 

That is, roughly ln x numbers must be tested before a prime is 
found near x; but the evens may be ignored, so that roughly (ln 
x)/2 odd numbers need be tested. For example, about (ln 10100)/2 = 
115 odd numbers must be tested to find a prime of about 100 digits. 
If multiples of small primes > 2 are eliminated, even fewer numbers 
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need be tested before a prime is found (e.g., [GORD84]). 

A number of tests have been given to establish the primality of 
a candidate. Proving primality deterministically (i.e., with 
certainty) is less difficult than factoring or .computing discrete 
logarithms, but is nonetheless nontrivial. For example, the 
algorithms of [ADLE83] or [COHE84] could be used; but they have a 
run time on the order of 

(log n)c log log log n. 

Such deterministic algorithms are computationally infeasible or 
inadvisable unless high-performance computers are used for key 
generation. This may be undesirable even if a high-performance 
computer is available, since it may not constitute a 
cryptographically secure environment. For key generation on, e.g., 
personal computers or smart cards, which is preferable from a 
security standpoint, more efficient algorithms are desirable. Thus, 
probabilistic tests may be used in practice to make an "educated 
guess" as to whether a candidate is prime. 

Often a Monte Carlo approach is employed. In this event there 
is a slight possibility of an erroneous conclusion; however, the 
error probability can be made arbitrarily small. Typically, a 
sequence of "witnesses" attest to the primality or compositeness 
of a number. Agreement among a group of about 100 witnesses is 
generally sufficient to reach a conclusion beyond any reasonable 
doubt, although evidently the legality of this procedure has not 
been tested in the courts. 

L.l The Solovay/Strassen test. 

One example of a probabilistic polynomial-time primality test 
is the Solovay/Strassen test [SOL077] mentioned in section 4.1.1 
(although this approach is commonly attributed to Solovay and 
Strassen, it was noted implicitly by Lehmer [LEHM76]; cf. 
[LENS86]). If n is an odd positive integer and a i Zn*, with the 
latter as in Appendix G, let 

e(a,n) e a(n-1)/2 (mod n), -1 6 e(a,n) 6 n- 2. 

For convenience we have e(a,n) take on the value -1 instead of 
the usual n - 1. 

If pis prime we have e(a,p) a ep(a) (mod p) with ep as in 
appendix J.4. Lemma J.4.1 shows that e(a,p) = (a/p), where the 
latter is the Jacobi symbol (app. J.3). The latter equality thus 
provides evidence of primality. That is, if p is prime and a i Zn* 
then e(a,p) = (a/p). Per se this is useless, but the contrapositive 
provides a proof of compositeness: if (a/n) p e(a,n) then n is 
composite. Also, both (a/n) and e(a,n) can be computed in O(log n) 
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steps, so this proof of compositeness runs in deterministic 
polynomial time. The converse is more subtle. Suppose n is an odd 
positive integer and 0 < a< n. If GCD(a,n) > 1 then n is certainly 
composite. Let 

G {a i Zn*: (a/n) e (a,n)}. 

Now the Jacobi symbol is multiplicative·; i.e., 

(a*b/n) (a/n) * (b/n) . 

Also 

e(a*b,n) a e(a,n) * e(b,n) (mod n). 

That is, e is also multiplicative. It follows that G is a 
subgroup of Zn *. The order of G must di vj_de the order of Zn * (e.g., 
[HERS64] p. 35). Thus if G p Zn*, G has cardinality at most (n-
1)/2. Solovay and Strassen showed that indeed G p Zn* if n is 
composite, Hence if n is composite and a is chosen at random, the 
probability that a is in G is at most 1/2. We thus test as follows: 

function Solovay_Strassen(a,n) returns charstring; 
/* for n > 2, n odd, a i Zn, decides probabilistically 

whether n is prime */ 
if (GCD(a,n) > 1) return("composite") 
else 

if ((a/n) e(a,n)) return("prime") 
else return("composite"); 

end Solovay_Strassen; 

We will certainly reach a correct conclusion in any of the 
following cases: 

a. n is prime. 

b. n is composite and GCD(a,n) > 1. 

c. n is composite, GCD(a,n) = 1, and (a/n) p e(a,n). 

In the remaining case, i.e. n is composite, GCD(a,n) 1, and 
(a/n) = e(a,n), n "masquerades" as a prime due to the perjury of 
a. But such an a is in G above; hence the probability of false 
testimony from an a is at most 1/2 in this case. If 100 random a's 
are used as witnesses, we conclude n is prime or composite with 
probability of error zero if n is prime, and at most 2-100 otherwise. 
At most 6 * log n operations are needed (see [SOL077]). 
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L.2 Lehman's test. 

Lehman [LEHM82] noted that the Jacobi function is not needed in 
Monte Carlo testing for primality. He defines 

e' (a,n) = a(n-1)/2 mod n, 

G = { e ' (a, n) : a i zn *} • 

We note that e' differs only slightly from e, taking on the 
value p - 1 instead of -1, 

He shows that if n is odd, G = {l,p-1} iff n is prime. Again 100 
a's are tested, but only a(n-1)/2 mod n is computed. If anything 
except 1 or -1 is found, n is composite, If only 1's and -1's are 
found, conclude n is prime if any -1's are found; otherwise 
conclude n is composite. Again the probability of error is at most 
2-100. 

L.3 The' Miller/Rabin test. 

Another Monte Carlo test was noted by Miller [MILL76] and Rabin 
[RABIBO]. If n - 1 = u * 2k where u is odd and k > 0, let exp(i) = 
2i, 0 6 i 6 k - 1. If a p Zn* then a is a witness to the 
compositeness of n if au !o 1 (mod n) and au*exp(i) !o -1 (mod n), 
6 i 6 k- 1. Again, e.g., 100 witnesses may be tested; if none 
attest to compositeness of n then n may be assumed prime. 

When n o 3 (mod 4) this test is similar to Lehman's. 

Appendix M. Mathematics of RSA and other exponential systems. 

In section 1.5 the basic exponential cipher was introduced; 
i.e., E(M) = Mk mod p, D(C) = CI mod p, where K *I a 1 (mod p-1). 
We recall (appendix H) that I can be computed from K using Euclid's 
algorithm in O(log p) time. Also, by lemma G.1.1 we have i(p) = p­
l. Thus, by corollary G.2.3 we have D(E(M)) = M and E(D(C)) =c. 

The RSA system is analogous: we have E(M) =Me mod n, D(C) = Cd 
mod n, n = p * q, e *dol (mod m), m = (p-1) (q-1), By lemma G.l.l 
we have i(n) = m, so once again corollary G.2.3 gives D(E(M)) = M 
and E(D(C)) =C. 

We have noted in appendix L how the Solovay/Strassen or Lehman 
tests can be used to choose p and q efficiently, i.e., in O(log n) 
steps. However, these involve multiple-precision arithmetic 
[KNUT81] , Hence the total time can be significant, especially in 
software. 
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Once p and q have been chosen, e is chosen easily; then d is 
computed via e * do 1 (mod m). This can be done in O(log n) steps 
using INVERSE from appendix H. Thus key material can be generated 
in linear time. 

Encryption is easy since e can be chosen small. However, 
efficient decryption requires the Chinese remainder theorem. 
general we have 

(y mod n) mod p y mod p, 

(y mod n) mod q y mod q. 

Suppose we are given ciphertext C; we wish to efficiently 
compute 

M Cd mod n. 

To use the machinery of appendix I, let y Cd and x M 

n. Then 

a = Cd mod p, 

b Cd mod q. 

In 

y mod 

Also, suppose d 
theorem, 

k * (p - 1) + r. Then by the Euler/Fermat 

a= (Cp-1)k * Cr mod p 1k * Cr mod p (C mod p)r mod p. 

Similarly if d * (q - 1) + s, 

b (C mod q)s mod q. 

Also r = d mod p-1 and s = d mod q-1. Thus by corollary I.l, an 
algorithm for decryption [QUIS82] is as follows: 

a. Compute 

i. a= (C mod p)d mod (p-1) mod p, 

ii. b (C mod q)d mod (q-1) mod q. 

b. Find u with 0 < u < p and 



-- 120 --

REDACTED

MasterCard, Exh. 1005, p. 120

u * q a 1 (mod p). 

c. Use one of 

i. M= (((a- (bmodp)) *u) modp) *q+b 

ii. M 

(a b b mod p), 

(((a+ p- (b mod p)) * u) mod p) * q + b 
(a < b mod p). 

These represent roughly optimal formulae for deciphering. Again 
u is found easily using INVERSE, and M is easy to compute once a 
and b have been found. Finding a and b requires at most 2 log p and 
2 log q multiplications, respectively ([KNUT81] p. 442). Thus both 
encryption and decryption can be done in O(log n) operations, i.e., 
linear time. Nonetheless, these operations are relatively time­
·consuming (though elementary), since they involve multiplications 
and divisions of numbers of about 100 digits. For efficiency this 
requires hardware support. 

Appendix N. Quadratic residuosity modulo a composite. 

Deciding quadratic residuosity modulo a composite played a major 
role in appendices 0 and P. In particular, suppose N = p * q where 
p and q are large primes. Deciding quadratic residuosity modulo 
such N when p and q are unknown is regarded as computationally 
intractable. This forms the basis of many probabilistic encryption 
and zero-knowledge schemes. 

Also, it was noted by Rabin that finding square roots modulo N 
in this event has essentially the same complexity as factoring N, 
the intractability of which forms the basis for RSA. This was 
exploited by Rabin (cf. sec. 4.1.4) to obtain a modification of RSA 
which is provably equivalent to factoring. Essentially his scheme 
was to encrypt via 

EN(x) x2 mod N. 

Let ZN* be as in appendix G. 

N.l Characterizing quadratic residues. 

The basic extension of quadratic residuosity modulo a prime to 
the composite modulus case is: 

LEMMA N.l.l. If N p * q, p and q primes > 2, then: 
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a. Suppose z i ZN*. Then z is a quadratic residue modulo 
N iff z mod p is a quadratic residue modulo p and z mod 

q is a quadratic residue modulo q, 

b. A quadratic residue z modulo N has exactly four square 
roots of the form {x,N-p,y,N-y) in ZN*. 

c. If z is a quadratic residue modulo N, and p and q are 
known, then the square roots of z modulo N can be found 
in probabilistic polynomial time. 

Proof: suppose z i ZN*, z mod pis a quadratic residue modulo p, 
and z mod q is a quadratic residue modulo q. Then for some r and 
t in Zp* and Zq*, respectively, we have r2 6 z (mod p) and t2 6 z 
(mod q). By the Chinese Remainder Theorem (app. I) there exists w 
in ZN with.w 6 r (mod p) and w 6 t (mod q). Then w2 6 z (mod p or 
q), so w2 6 z (mod N). Thus z is a quadratic residue modulo N. This 
proves one direction of (a). 

Now suppose z is a quadratic residue modulo N. Let zp = z mod p 
and zq z mod q. Then z i ZN*, and hence zp i Zp* and zq i Zq*, Also, 
w2 6 z (mod N) for some win ZN*. Thus w2 6 z (mod p or q) and hence 
w2 6 zp (mod p) and w2 6 zq (mod q). Thus zp and zq are quadratic 
residues modulo p and q, respectively, proving (a) in the other 
direction. 

Furthermore, by lemma J.3.1, zp has exactly two square roots 
{xl,x2} in Zp*, and zq has exactly two square roots {yl,y2} in Zq*. 
Hence w 6 xi (mod p) and w 6 yj (mod q) for some i and j. There are 
four possible pairs (i 1,2 and j = 1,2). 'l'he Chinese Remainder 
Theorem shows that w is uniquely determined in ZN by a given i and 
j; hence z has at most four square roots modulo N in ZN*. 
Conversely, by the Chinese Remainder Theorem once again, w can be 
found for each (i,j) pair. Thus z has exactly four square roots 
modulo N in ZN*. Let x denote one root. Then N -xis another. If 
y is a third, then N - y is the fourth. This proves (b). 

By lemma J.3.1, {xi} and {yj) can be found in probabilistic 
polynomial time; the corresponding w's can then be found in 
polynomial time. This proves (c). QED. 

COROLLARY N.l.l. Suppose N p * q, p and q primes > 2. Then: 

a. EN is a four-to-one function. 

b. If p and q are known and z is a quadratic residue modulo 
N, the four values of x for which EN(x) = z can be found 
in probabilistic polynomial time. 

Proof: immediate from the previous lemma. QED. 

N.2 The Jacobi symbol once more. 
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Suppose N = p * q where p and q are primes> 2. Then for x in 
ZN*, the Jacobi symbol (x/N) is given by 

(x/N) (x/p) (x/q). 

If the Jacobi symbol (x/N) = -1, then (x/p) or (x/q) -1. Hence 
x mod p and x mod q are quadratic nonresidues modulo p and q, 
respectively. By lemma N.1.1, xis a quadratic nonresidue modulo 
N. Since (x/N) can be evaluated in O(log N) time, (x/N) = -1 is a 
deterministic polynomial-time test for quadratic nonresiduosity of 
x modulo N, N p * q. The interesting case is (x/N) = 1, whence 
no conclusion can be drawn regarding quadratic residuosity of x 
modulo N. To study this further, ZN* may be partitioned into four 
subclasses, according to the Jacobi symbols (x/p) and (x/q): 

(x/p) (x/q) class (x/N) 

1 1 QOO(N) 1 

-1 -1 Qll (N) 1 

1 -1 QOl(N) -1 

-1 1 Q10(N) -1 

LEMMA N.2.1. Suppose N p*q, p and q primes> 2. Then: 

a. The {Qij (N)} partition ZN* into disjoint classes. 

b. QOO(N) is the set of quadratic residues modulo N; the 
other Q's contain nonresidues. 

c. Fori= 0 or 1 and j = 0 or 1, [Qij(N)l (p-1) (q-1)/4. 

Proof: (a) is trivial, and (b) is immediate from lemma N.l.1. 
For (c), let g and h be generators for Zp* and Zq*, respectively. For 
w i ZN*, suppose w 6 gr (mod p) and w 6 hs (mod q), where 0 6 r < p-
1 and 0 6 s < q- 1. Then r and s are unique. Conversely, any such 
pair (r,s) uniquely determines w, by the Chinese Remainder Theorem. 
Let f(w) = (r,s). Then f is a bijection from ZN* to Zp x Zq. Also, 
if f(w) = (r,s) then 

(w/p) (gr/p) (g/p)r, 

(w/q) (hs/q) (h/q)s. 
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By lemma K.4, g and hare quadratic nonresidues modulo p and q, 
respectively. Thus (w/p) = (-l)r and (w/q) = (-l)s. Let i = r mod 
2 and j = s mod 2. Then (w/p) = (-1)i and (w/q) = (-1)j. Hence w is 
in Qij (N). For k = 0,1 let Zpk and Zqk be the subsets of zp·* and Zq*, 
respectively, which contain elements = k (mod 2), Then fori= 0,1 
and j = 0,1, f is a bijection from Qij (N) to Zpi x Zqj. The latter 
has cardinality (p-1) (q-1)/2; this gives (c), QED. 

Thus exactly half of the elements of ZN* have (x/N) = -1; these 
are nonresidues modulo N. The other half have (x/N) = 1. Of the 
latter, half (i.e., QOO(N)) are quadratic residues and half (i.e., 
Q11(N)) are nonresidues. The quadratic residuosity conjecture is 
that determining which of the elements of ZN·* with (x/N) = 1 are 
quadratic residues modulo N is not solvable in probabilistic 
polynomial time, for N a product of two primes, This is in 
contradistinction to the case of one prime p, for which we have 
noted that quadratic residuosity is decidable in deterministic 
polynomial time. 

LEMMA N.2.2. Suppose N p * q, p and q primes > 2. Then: 

a. For x,y i ZN*, x * y is a quadratic residue modulo N if and 
only if x and y are in the same Qij (N) . 

b. The product of quadratic residues is a quadratic residue. 

c. The product of a quadratic residue and a nonresidue is a 
n6nresidue. 

Proof: suppose x i Qij (N) andy i Qrt(N). Then (x/p) = 
(-1) i, (x/q) = (-l) j 1 (y/p) = (-1) r, (y/q) = (-1) t. Hence (x*y/p) = 
(-1)i+r and (x*y/q) = (-1)j+t. Now x * y mod N will be a residue if 
and only if i = r and j = t. This gives (a), In particular, x * y 
mod N is a residue if both are in QOO(N), yielding (b). If xis a 
residue andy a nonresidue, xis in QOO(N) but y is not; (c) 
follows. QED. 

Thus the quadratic residues modulo N form a subgroup of ZN*. 

N.3 Quadratic residuosity and factoring. 

We note the connection between quadratic residuosity and 
factoring observed by Rabin [RABI79]. 

LEMMA N. 3 .1. Suppose N p >· q, p and q prime, x and y are in 
ZN*, x2 o y2 (mod N), andy !6 x or -x (mod N). Then possession of 
x andy permits factoring N in deterministic polynomial time. 

Proof: we have x- y !o 0 (mod N) and x + y !6 0 (mod N), so 
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GCD(N,y+x) < N and GCD(N,y-x) < N. Now x2 - y2 6 (x-y) (x+y) 6 0 (mod 
N) . Hence (x-y) (x+y) 6 0 (mod p) . Thus p I y-x or p I y+x; also p 
I N. If p I y-x, p I GCD(N,y-x) < N, sop = GCD(N,y-x). The latter 
can be found via Euclid's algorithm (app. H). If p I y+x, p I 
GCD(N,y+x) < N, sop = GCD(N,y+x). QED. 

LEMMA N.3.2. Suppose N = p * q, p and q prime. Suppose there 
exists an algorithm to find in probabilistic polynomial time a 
square root of a quadratic residue modulo N, which works for at 
least a fraction 1/logc N of quadratic residues, c a constant 
positive integer. Then N can be factored ln probabilistic 
polynomial time. 

Proof: let m =loge N. Choose x1, ... ,xm randomly in ZN* and 
compute zi = xi2 mod N, i = 1, ... ,m. If any zi has a square root w 
computable in probabilistic polynomial time via the hypothetical 
algorithm, find w. The probability that w !6 xi or -xi (mod N) is 
1/2. In this event possession of xi and w factors N by lemma N.3,1. 
Tie probability that some zi has a computable square root is at 
least 1/2. Thus the probability of fafCtoring N is at least 1/4. If 
this procedure is repeated m times, the probability of success is 
at least 1 - (3/4)m. Also, the problem size is log N, so m is a 
polynomial in the problem size. QED. 

COROLLARY N.3.2. If N = p * q, p and q prime, and the 
factorization of N is computationally intractable, then the Blum 
encryption function EN above is a trapdoor one-way function, with 
(p,q) forming the trapdoor. 

Proof: by the previous theorem, an algorithm to invert EN would 
yield an algorithm to factor N. QED. 

N.4 Quadratic residuosity and Blum integers. 

Suppose N = p * q where p 6 3 (mod 4) and q o 3 (mod ·4). Then 
N is called a Blum integer (normally p and q are specified to have 
roughly the same size). For example, N = 77 is used in appendix o. 

LEMMA N.4.1. If p,q o 3 (mod 4) then (-1/p) (-1/q) -1. 

Proof: in lemma J.4.1 take a= -1. We recall that (-1/p) = 1 if 
and only if -1 is a quadratic residue modulo p. Thus (-1/p) = (-
1) (p-1) /2 (mod p) and similarly (-1/q) = (-1) (q-1) /2 (mod q). The result 
follows. QED. 

LEMMA N.4.2. If N = p * q is a Blum integer then (-x/p) 
(x/p), (-x/q) = - (x/q), (-1/N) = 1, and (-x/N) = (x/N). 
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Proof: the first two are immediate from the previous lemma; also 
(-1/N) = (-1/p) (-1/q). QED. 

LEMMA N.4.3. Suppose N = p * q is a Blum integer, x andy are 
in ZN*, x2 o y2 (mod N), and x !6 y or -y (mod N). Then (x/N) =­
(y/N) • 

Proof: x2 6 y2 (mod p), so (y-x) (y+x) 6 0 (mod p), soy 6 d * x 
(mod p) where d = 1 or -1. Similarly y 6 e * x (mod q) where e = 
1 or -1. Now (x/N) = (x/p) (x/q) and (y/N) = (y/p) (y/q) = 
(d*x/p) (e*x/q) = (d/p) (e/q) (x/N). Since (1/p) = (1/q) = 1, by lemma 
N.4.1, (y/N) = e * d * (x/N). If e = d then yo d * x (mod q or p), 
soy o d * x (mod N). But y !6 x or -x (mod N), contradiction. Thus 
e p d and e * d = -1. QED. 

LEMMA N.4.4. If N = p * q is a Blum integer and z is a quadratic 
residue modulo N, then z has a square root in each Q).j (N), i = 0, l, 

0,1. 

Proof: let {x,N-x,y,N-y) be the square roots of z in ZN*. Since 
N-x o-x (mod p), by lemma N.4.2, (N-x/p) = -(x/p). Similarly (N-
x/q) = -(x/q), so if xi Qij(N), N-x i Q1-i,l-j (N); similarly for y and 
N-y. Now x2 o y2 (mod N) andy !o x or -x (mod N). Since by lemma 
N.4.3, (y/N) = -(x/N), y cannot be in the same Q as x. By lemma 
N. 4. 2, ( (N-y) /N) (y /N), so N-y cannot be in the same Q as x. Thus 
y and N-y must be in Qi,l-j (N) and Q1-i,j (N) in some order. QED. 

For Blum integers we can restrict the function EN to QOO(N); 
i.e., let BN : QOO(N) -> QOO(N) by BN(x) = x2 mod N. Then we have 

LEMMA N.4.5. If N = p * q is a Blum integer then: 

a. BN is a permutation on QOO(N), i.e., on the set of 
quadratic residues modulo N. 

b. If the factorization of N is computationally intractable 
then BN is a trapdoor one-way permutation, with (p,q) 
constituting the trapdoor. 

Proof: by corollary N.1.1 we know that if p and q are known and 
y is in QOO(N), the equation EN(x) = y has exactly four solutions 
which can be found in probabilistic polynomial time. By lemma 
N.4.4, exactly one of these, xOO, lies in QOO(N); xOO is easily 
extracted from the set of four since only it satisfies (x/p) = 

(x/q) = 1. Hence xOO is the unique solution of BN(x) = y. Thus BN is 
a permutation on QOO(N) whose inverse may be computed in 
probabilistic polynomial time with knowledge of the trapdoor (p,q). 
On the other hand, lemma N.3.2 shows that an algorithm to invert 
BN can be converted to an algorithm to factor N. QED. 
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LEMMA N.4.6. If N = p * q, p and q prime, then it is possible 
to find x in Q1l(N), i.e., xi ZN* such that xis a quadratic 
nonresidue modulo N and (x/N) = 1, in probabilistic polynomial 
time. 

Proof: choose a in Zp* and evaluate a(p-1)/2; if the latter is not 
1 then choose a new a, etc. The prob.ability of failure each time 
is 1/2, so that the probability of not finding an a with a(p-1)/2 
1 (mod p) in n tries is 2-n. Hence a can be found in probabilistic 
polynomial time (in n = length of p), Now (a/p) = 1. Similarly, 
find b with (b/q) = 1, also in probabilistic polynomial time. Use 
the Chinese Remainder Theorem to find y in ZN* with y 6 a (mod p) 
andy 6 b (mod q), in polynomial time (in length of N). QED. 

Appendix 0. An introduction to zero-knowledge. 

The notion of zero-knowledge proofs was introduced in [GOLD89] , 
The essence of zero-knowledge is that one party can prove something 
to another without revealing any additional information. In 
deference to the depth and scope of this area, we give only an 
illustrative example in this section. However, there is a close 
connection between zero-knowledge schemes and probabilistic public­
key encryption. Further~ore, some zero-knowledge schemes which have 
drawn attention because of applicability to smart card 
implementations, such as the one used as the basis of the example 
in this section, use Shamir's notion of identity-based public-key 
systems. Thus the reader desiring a more formal introduction to 
these topics may wish to skip to appendix P. 

Suppose that Alice knows a fact P. She wants to convince Bob 
that she knows P, but she does not trust Bob. Thus, Alice does not 
want to reveal any more knowledge to Bob ~han is necessary. What 
Alice needs is a zero-knowledge proof of P. 

For example, suppose that Alice wants to prove to Bob that she 
really is Alice. Suppose for convenience that there is some 
authority which verifies identities. One possibility is that the 
authority could issue Alice an identification. If this were 
contained on a device such as a smart card, Alice could simply show 
it to Bob. However, if Alice and Bob are communicating over a 
network, then Alice's identifying information would have to be 
transmitted to Bob over the network. Upon receiving it, Bob could 
use it to impersonate Alice. Even if Bob were trusted, an 
eavesdropper such as Alice's adversary Carol could do the same. 

This situation also arises commonly in computer access control: 
Bob might then be a host computer or network server, and Alice's 
identification might be a password. If Alice uses her password to 
identify herself, her password is exposed to the host software as 
well as eavesdroppers; anyone who knows this password can 
impersonate Alice. 

It is thus desirable for Alice to be able to prove her identity 
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without revealing any private information. More generally, we need 
a scheme through which Alice can prove to Bob that she possesses 
something (e.g., a password) without having to reveal it. Such a 
scheme is an example of a zero-knowledge proof. In fact, this 
example is the major practical usage of zero-knowledge which has 
been suggested to date. 

Here is one way that such a system could be organized: the 
authority decides on a number N used for everyone; e.g., takeN 
77. Everyone knows this number, The authority may then choose, 
e.g., two numbers which form an ID for Alice. Suppose these are 
{58, 67}. Everyone knows Alice's ID, 1'he authority then computes two 
other numbers {9,10} which are given to Alice alone; she keeps 
these private. The latter numbers were chosen because 92 ·k 58 o 1 
(mod 77) and 102 * 67 o 1 (mod 77) . 

Now Alice can identify herself to Bob by.proving that she 
possesses the secret numbers {9,10) without revealing them. Each 
time she wishes to do this she can proceed as follows: she can 
choose some random numbers such as {19,24,51) and compute 

2 

192 

242 

512 

Alice 
matrix 

E 

0 53 (mod 

0 37 (mod 

a 60 (mod 

then sends 
of D's and 

0 1 
1 0 
1 1 

77) 1 

77) 1 

77) . 

{53,37,60) to Bob. Bob chooses a random 3 by 
J.'s, e. g.' 

Bob sends E to Alice. On receipt, Alice computes 

19 * 90 * 101 a 36 (mod 77), 

24 * 91 * 100 o 62 (mod 77), 

51 k 91 * 101 o 47 (mod 77). 

Alice sends {36,62,47) to Bob. Finally, Bob can check to see 
that Alice is who she says she is. He does this by checking that 

362 * 580 * 671 a 53 (mod 77), 

622 * 581 * 670 a 37 {mod 77), 

472 * 581 * 671 a 60 (mo<;i 77). 
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The original numbers {53,37,60} that Alice sent reappear. 
Actually, this doesn't really prove Alice's identity; she could 
have been an impersonator. But the chances of an impersonator 
succeeding would have only been 1 in 64. 

In an actual system, the number N would have been much larger 
(e.g., 160 digits). Also, Alice would have been assigned an ID 
consisting of more numbers, e.g., 4, by the authority, with a 
secret also consisting of 4 numbers. Furthermore, Alice would have 
generated more random numbers, e.g., 5, to send to Bob. The ID 
numbers, secret numbers, and random numbers would have been about 
as large as N. This would have reduced an impersonator's chances 
of cheating successfully to about 1 in a million (more precisely 
2-20) if 4 and 5 are· the parameters, which certainly would have 
convinced Bob of Alice's identity, 

Why does this work? Because the authority chose {58,67} and 
{9,10} so that 

92 *58 6 1 (mod 77), 

102 * 67 61 (mod 77). 

This says that 92 and 58 are multiplicative inverses modulo 77, 
as are 102 and 67. 

Thus 

362 * 580 * 671 6 192 * 92*0 * 580 * 102*1 * 671 

6 192 * (92 * 58)0 * (102 * 67) 1 

6 192 6 36 (mod 77), 

622 * 581 * 670 6 242 * 92*1 * 581 * 102*0 * 67 0 

6 242 * (92 * 58)1 * (102 * 67)0 

6 242 0 37 (mod 77), 

472 * 581 * 671 0 512 * 92*1 * 581 * 102*1 * 671 

0 512 * (92 * 58)1 * (102 * 67)1 

0 472 0 53 (mod 77). 

Thus the checks that Bob uses serve their purpose properly; 
i.e., Alice is identified, Also, Bob has learned nothing that would 
permit him to masquerade as Alice; nor has Carol, who may have been 
eavesdropping, Either would need to know that 92 and 102 are the 
multiplicative inverses of 58 and 67, respectively, modulo 77. To 
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see this, suppose Carol tries to convince Bob that she is really 
Alice; i.e., Carol pretends that {58,67} is her own ID. For 
simplicity, suppos~ Carol tries to identify herself as Alice by 
generating the same random {19,24,51}. Then she sends {53,37,60} 
to Bob. Again for simplicity suppose Bob generates the same E and 
sends it to Carol. Now Carol is in trouble; she doesn't know the 
numbers 9 and 10 1 and can only guess them. The protocol requires 
Carol to send three numbers, say {x,y,z}, to Bob. Then Bob will 
check: 

x2 * 580 * 671 o 53 (mod 77), 

y2 * 581 * 670 a 37 (mod 77), 

z2 * 581 * 671 o 60 (mod 77). 

Carol will have succeeded in her masquerade if she chose {x,y,z} 
to make these checks come out right, But 67-1 a 102 o 23 (mod 77) 
and 58-1 o 92 o 4 (mod 77), so x2 o 53* 23 a 64 (mod 77), y2 o 37 
* 4 o 71 (mod 77) and z2 a 60 * 23 * 4 o 53 (mod 77). Could Carol 
solve these quadratic equations to find, e.g., x = 36, y = 62, z 
= 47? For a small value of N such as N = 77, she could indeed. 
However, if N is a product of two appropriately-chosen large primes 
(e.g., each 80 digits or more), and if these primes are kept secret 
by the authority, then the answer is no. That is, computing square 
roots modulo a composite is computationally infeasible (app. N). 
Thus, anyone who does not know Alice's secret ({9 1 10} in the above) 
cannot impersonate her when N is large. 

Another possibility is that Alice's interaction with Bob might 
give Bob information which could allow impersonation of Alice, at 
least on one occasion, by replay. Suppose Bob tries to convince 
Carol that he is really Alice, Bob might tr-y to imitate Alice by 
sending (53,37,60} to Carol to start the protocol. Now Carol 
doesn't necessarily select the E above. Suppose she selects 

F 
1 1 
0 0 
0 1 

and sends F to Bob. Now Bob is in trouble; he might try to imitate 
Alice again by sending {36,62,47} to Carol. Then Carol will check 

362 * 581 * 671 a 71 (mod 77) 0 

Since 71 p 53 (mod 77) 1 Carol knows Bob is a fraud even without 
the other two checks. Can Bob send some {r,s,t} instead of 
{36,62,47} ? This will only work if 



-- 130 --

REDACTED

MasterCard, Exh. 1005, p. 130

r2 * 581 * 671 o 53 (mod 77), 

~2 * 580 * 670 o 37 (mod 77), 

t2 * 580 * 671 o 60 (mod 77). 

As before, this gives r2 o 58-1 * 67-1 *53 o 25 (mod 77), and 
similarly s2 o 37 (mod 77), t2 o 71 (mod 77). As above, Bob can 
solve these quadratic equations to find r,s,t because N = 77 is 
small, but could not do so if N were large. Also, in the above 
there is one chance in 64 that Carol would choose F = E, in which 
case Bob's deception would go unmasked; but for larger parameters 
such as 4 and 5 instead of 2 and 3, this would again be improbable 
(one chance in a million (2-20) instead of 64). 

Another possibility is that when Alice identified himself to 
Bob, she may have inadvertently revealed some information which 
could enable Bob to learn h:Ls secret, :L.e., {9,10}, wh:Lch would 
permit impersonation. For this protocol to be zero-knowledge th:Ls 
should not be possible. Can Bob deduce the numbers {9,10} from the 
two sets of numbers {53,37,60} and {36,62,47}, and E? He knows that 
Alice started with three numbers {a,b,c}, but he doesn't know these 
were {19,24,51}. He knows that Alice's secret is {u,v} but doesn't 
know these are {9,10}. He knows that the authority computed u and 
v from 

u2 o 58-1 o 4 (mod 77), 

v2 o 67-1 o 23 (mod 77). 

He also knows that Alice computed 

a2 0 53 (mod 77) 1 

b2 0 37 (mod 77) 1 

c2 0 60 (mod 77) 1 

a * uO * vl 0 36 (mod 77) 1 

b * u1 * vO 0 62 (mod 77) t 

c * u1 * v1 0 47 (mod 77) . 

This gives Bob 8 equations from which to deduce {u,v}. However, 
the last 3 are redundant, and as we have noted, the first 5 cannot 
be solved when N is large. 

This shows informally that the above protocol works: 

a. It identifies Al:Lce by proving that she possesses the 
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secret {9,10}. 

b. It identifies Alice uniquely: anyone who doesn't know 
this secret cannot impersonate Alice. 

c. Alice's secret is not revealed in the process of 
proving she possesses it. 

Actually, (a) means that the possessor of {9,10) is identified 
as the system user who has ID = {58,67} assigned by the authority. 
Also, no matter how many times Alice proves her identity, her 
secret will not be revealed (if N is sufficiently large); i.e., (c) 
states loosely that the protocol is zero-knowledge. All of this 
depends on the assumption that equations of the form x2 o y (mod N) 
cannot be solved if N is the product of two large primes which are 
not known, but can be solved easily if the primes are known (app. 
N) . Such equations lie at the heart of most concrete zero-knowledge 
schemes. 

The formal definition of zero-knowledge is more complicated (see 
[GOLD89]), but the above example demonstrates its essence in a 
context which has been proposed as a candidate for actual 
implementation in smart-card based identification schemes. 

Appendix P. Alternatives to the Diffie/Hellman model. 

The text of this treatise has been based on the work of Diffie 
and Hellman [DIFF76b]. This model of public-key cryptography 
includes two characteristics which have received some criticism: 

a. Security of Diffie/Hellman type systems is generally 
established empirically, i.e., by failure of 
cryptanalysis, 

b. Security of Diffie/Hellman type systems is dependent upon 
a superstructure which binds user IDs and public 

components. 

In appendix A we noted that it has proven to be difficult to 
develop a comprehensive axiomatic framework in which to establish 
the security of Diffie/Hellman type public-key systems in some 
provable sense. For example, it is difficult to guarantee that 
partial information about plaintext (e.g., its least significant 
bit) cannot be recovered from the corresponding ciphertext even 
when the entire plaintext cannot be found. 

In section 5 we noted some examples of authentication frameworks 
(e.g., use of certificates) which bind user IDs and public keys. 
Without such a superstructure a public-key system is useless, since 
a user would not be certain that he was employing the correct 
public key for encryption or decryption. The security of the 
public-key system thus depends on proper functioning of the 
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authentication framework, which is a priori unrelated to the 
underlying cryptosystem. 

In this section we briefly examine two modifications of the 
basic Diffie/Hellman model. In one case the goal is to incorporate 
the binding between a user ID and public key directly into the 
cryptosystem, thereby eliminating the separat_ion between the 
cryptosystem and the authentication framework. The other scheme 
addresses the Bubject of knowledge concealment; it is closely 
related to zero-knowledge proofs. Both schemes have received 
considerable attention not only because of possibly enhanced 
secur·i ty 1 but also because of their potential relevance to smart­
card implementations of public-key cryptography. 

P.l Probabilistic encryption. 

Goldwasser and Micali [GOLD84] note that the public-key systems 
of Diffie and Hellman are not provably secure. They observe that 
use of a trapdoor function f to generate such systems does not 
exclude the possibility that f(x) = y may be solvable for x without 
the (original) trapdoor under certain conditions. Also, even if x 
cannot be found from f(x), it may be possible to extract partial 
information about ·x. One problem is that such trapdoor systems 
proceed block by block. This makes it difficult to prove security 
with respect to concealment of partial information such as least 
significant bit. 

In [GOLD84] Goldwasser and Micali suggest an alternative to 
trapdoor-based public-key systems. Their procedure is to encrypt 
bit by bit. They call this probabilistic encryption. It introduces 
several advantages, namely uniformly difficult decoding and hiding 
of partial information. Their scheme has the following properties: 

a. Decoding is equivalent to deciding quadratic residuosity 
modulo a composite N, whose factorization is not known to 
an adversary, 

b. Suppose a predicate P has probability p of being true in 
message space M. For c > 0, assuming intractability of 

quadratic residuosity, an adversary given ciphertext 
cannot decide with probability > p + c whether the 
corresponding plaintext satisfies P; i.e., the 

adversary does not have a a-advantage in guessing P. 

In (a) the reference is to the problem of deciding for a given 
x whether there is a y such that y2 a x (mod N) . As in the case of 
computing discrete logarithms or extracting roots, this is 
computationally infeasible if the factorization of N is unknown 
(app. N). 

An example of (b) : if the messages consist of uniformly 
distributed bit strings and Pis "least significant bit= 0," then 
p = 1/2. If the Goldwasser/Micali scheme is employed, an adversary 
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cannot guess the least significant bit of plaintext with 
probability greater than 1/2 + c. It may be very difficult to 
verify that traditional public-key systems conceal such partial 
information. 

The public-key system proposed by Goldwasser and Micali is as 
follows: a user A chooses primes p and q and makes public N = p*q; 
p and q are private. Also, A selects a random y with (y/N) = 1 
(app. N.2) with y a quadratic nonresidue modulo N; y is public. By 
lemma N.4.6, y can be found in probabilistic polynomial time. 

To send the binary string m = (ml, ... ,mk) to A, B randomly 
selects {xl, ... ,xk} in ZN* and computes 

zi xi2 mod N (i 1, ... ,k). 

Then B sets ei = zi if mi = 0, ei = y * zi otherwise. The encoding 
of mise= (el, ... ,ek), which B sends to A. To decode e, A sets mi 
= 1 if ei is a quadratic residue modulo N, and mi = 0 otherwise. 
This can be effected by A in polynomial time since A knows p and 
q (lemmas J.4.1, N.l.l}. It is correct because y * zi, the product 
of a quadratic nonresidue and residue, is a quadratic nonresidue 
modulo N (lemma N.2.2) . 

. The security of partial information follows from the fact that 
each bit of the message m is encoded independently. A disadvantage 
of the technique is data expansion: if INI = n, then n bits are 
transmitted for each bit of a message. 

One application is coin flipping by telephone: A randomly 
chooses r in ZN* with (r/N) = 1, .where (r/N) is the Jacobi symbol 
(app. N.2). Then B guesses whether or not r is a quadratic residue 

modulo N; B wins if and only if he guesses correctly. The 
probability of the latter is 1/2; i.e., exactly half of the 
elements of ZN* satisfying (r/N) = 1 are quadratic residues modulo 
N (lemma N.2.1). The correctness of B's guess can be checked by A; 
the result can be verified by B if A releases the f~ctorization of 
N to B. 

A second application is to mental poker (e.g., [DENN83b] pp. 
110-117). Goldwasser and Micali show that their implementation 
corrects some deficiencies in hiding partial information in a 
scheme of Shamir, Rivest and Adleman. 

Quadratic residuosity modulo a composite is an example of a 
trapdoor function. Yao [YA0-82] showed that under certain 
conditions, trapdoor functions in general can be used to construct 
provably secure probabilistic public-key cryptosystems. An 
important role is also played by probabilistic encryption in zero­
knowledge proofs, especially for problems in NP. 

We remark briefly that the above scheme is only one of a class 
of encryption schemes which Rivest and Sherman [RIVE82] term 
randomized encryption techniques; various other schemes are 
summarized there. We have characterized schemes such as the above 
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as bit-by-bit; more generally, a randomized scheme is any scheme 
in which a ciphertext for a given plaintext is randomly chosen from 
a set of possible ciphertexts. Rivest and Sherman also develop a 
classification for such schemes. A major aspect of randomized 
schemes is often significant data expansion. For example, the 
Goldwasser/Micali scheme would probably have ciphertext around 512 
times as large as the plaintext. On the other hand, probabilistic 
schemes may be much faster than their deterministic counterparts, 
an attractive feature for smart-card implementations. 

P.2 Identity-based schemes. 

In [SHAM84], Shamir suggests yet another modification of 
traditional public-key systems. In Shamir's framework a user's 
public key coincides with his system ID. This eliminates the need 
for any superstructure for distribution of public keys. It also 
trivializes the authentication of public keys. However, unlike a 
traditional public-key scheme this modification requires a trusted 
key generation center. · 

The center issues a smart card to each user, containing the 
user's private key. Thus the "private" key is re~lly a. shared 
secret key. A card can generate the user's digital signature. The 
center does not maintain a database of keys; in fact it need not 
even keep information beyond a list of user IDs (needed to ensure 
that there are no duplicate IDs) . 

Security for such a system differs from the usual requirement 
that a user keep his private key a secret. The latter condition is 
retained, in that a user must guard his card. As in a certificate­
based traditional system, the center must ascertain a user's 
identity before issuing a card. In addition, however, the 
cryptographic function used by the center to generate private keys 
from IDs must be kept secret. Typically this function would employ 
trapdoor information such as the factorization of a modulus. The 
requirement is that computing the private key from an ID is easy 
if the trapdoor information is known, but knowing any polynomial 
number of public/secret pairs should not reveal the trapdoor. 

A weakness in such a scheme is that anyone (intruder or insider) 
possessing the trapdoor information can forge the signature of any 
user. This is in contradistinction, e.g., to a credit-card scheme 
in which a transaction is generally valid only if accompanied by 
a user's physical signature. Also, the center is not required to 
maintain any information on lost or stolen cards; thus the loss of 
a card is disastrous since the possessor can forge the legitimate 
user's signature indefinitely. Furthermore, the center may find 
itself involved in litigation produced by any such security 
problems, since it is providing the means by which users generate 
signatures. Again this in contrast to the credit-card situation: 
if a credit card is stolen, the thief cannot forge the legitimate 
holder's physical signature, providing a means of distinguishing 
between legal and illegal usage of the card. Use of passwords 

, (PINs) with cards could largely eliminate the problems accruing 
from lost or stolen cards, but compromise of the trapdoor·would 
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still be disastrous. 

Shamir's notion was later ([FEIG87], [FIAT86]) incorporated into 
zero-knowledge schemes. One of these was used as the basis for the 
example in appendix 0. 
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