
MO·DERN

DATABASE

MANAGEM:ENT

Fifth Edition

Fred R. McFadden

jeffrey A. Hoffer

Mary B ·

Petitioners' Exhibit 1026, Page11

• In memory of my valued colleague Daniel Couger. - F. R. M.

• To Patty, for her sacrifices, encouragement, and support.
To my students, for being receptive and critical, and challenging me to
be a better teacher. - J. A. H.

• To Larry, Mike, and Ivan. Their love and support provide a foundation
to my life which makes efforts such as writing this book possible. And
to Jeff and Fred, who gave me the opportunity to write with them and
patiently provided invaluable guidance along the way. - M. B. P.

Executive Editor: Michael Roche
Developmental Editor: Maureen Allaire Spada
Assistant Editor: Ruth Berry
Edjtorial Assistant Adam Hamel
Senior Marketing Manager: Tom Ziolkowski
Senior Marketing Coordinator: Deanna Storey
Senior Production Supervisor: Patty Mahtani
Manufacturing Buyer: Sheila Spinney
Design Director: Regina Hagen
Cover Designer: Linda Manly Wade
Text Designer: Sandra Rigney
Composition and Project Coordination: Elm Street Publishing Services, Inc.
Cover Image: (i) Mick Tare! for Artville

Library of Congress Cataloging-in-Publication Data

Mc.Fadden, .Fred R., 1933-
Modern database management I .Fred R. McFadden, Jeffrey A. Hoffer,

Mary B. Prescott. - 5th ed.
p. em.

Includes bibliographical references and index.
ISBN 0-8053-6054-9
l. Database management.

III. Title.
QA76.9.D3M395 1999
005.74-dc21

I. Hoffer, Jeffrey A.

Reprinted with corrections, May 1999

U. Prescott, Mary B.

Copyright© 1999 by Addison-Wesley Educational Publishers, Inc.

98-4120
CIP

All rights reserved. No part of this publication may be reproduced, stored in a retrieva) system,
or transmitted, in any form or by any means, electronic, mechanicaJ, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the United States of

America.

5 6 7 8 9 10 WCT 02 01 00

Petitioners' Exhibit 1026, Page 2

CHAPTER

Distributed Databases

..
. . . ~ :. . . . "'· ' - i ' s~~iithe .. asynchronciuS data •
. ·r.~pl icaclon and p~utitionif~g as: tt:iree major approacheS for distributed

database cksign. · · ·

• Outline the steps involved in processing a query in a distributed database
and several approaches used to optimize distributed query processing.

• Explain the salient features of several distributed database management
systems.

INTRODUCTION

When an organization is geographically dispersed, it may choose to store its data
bases on a central computer or to distribute them to local computers (or a combina
tion of both). A distributed database is a single logical database that is spread

Distributed database: A
single logical database that is
spread physically across
computers in multiple
locations that are connected by
a data communications link

417

Petitioners' Exhibit 1026, Pagel 3

II I

J#M41 ·' ·r '·
J ! .

418 Chapter 11 - Distributed Databases

Decentralized database:
A database that is stored on
computers at multiple
locations; however. the
computers are not inter
connected by a network, so
that users at the various sites
cannot share data.

physically across computers in multiple locations that are connected by a data com
munications network. We emphasize that a distributed database is truly a database
not a loose collection of files. The distributed database is still centrally administered
as a corporate resource while providing local flexibility and customization. The net
work must allow the users to share the data; thus a user (or program) at location A
must be able to access (and perhaps update) data at location B. The sites of a distrib
uted system may be spread over a large area (such as the United States or the world),
or over a small area (such as a building or campus). The computers may range from
microcomputers to large-scale computers or even supercomputers.

A distributed database requires multiple database management systems, run
ning at each remote site. The degree to which these different DBMSs cooperate, or
work in partnership, and whether there is a master site that coordinates requests
involving data from multiple sites distinguish different types of distributed data
base environments.

It is important to distinguish between distributed and decentralized databases. A
decentralized database is also stored on computers at multiple locations; however,
the computers are not interconnected by a network, so that users at the various sites
cannot share data. Thus a decentralized database is best regarded as a collection of
independent d atabases, rather than having the geographical distribution of a single
database.

Various business conditions encourage the use of distributed databases:

• Distribution and autonomy of business units Divisions, departments, and facilities
in modem organizations are often geographically (and possibly internationally)
distributed. Often each unit has the authority to create its own information
systems, and often these units want local data over which they can have controls.

• Data sharing Even moderately complex business decisions require sharing data
across business units, so it must be convenient to consolidate data across local
databases on demand.

• Data communications costs and reliability The cost to ship large quantities of
data across a communications network or to handle a large volume of transac
tions from remote sources can be high. It is often more economical to locate
data and applications close to where they are needed. Also, dependence on
data communications can be risky, so keeping local copies or fragments of data
can be a reliable way to support the need for rapid access to data across the
organization.

The ability to create a distributed database has existed for over <! decade. As
you might expect, a variety of distributed database options exist (Bell and Crimson,
1992). Figure 11-1 outlines the range of distributed database environments. These
environments are briefly explained by the following:

I. Homogeneous The same DBMS is used at each node.

A. Autonomous Each DBMS works independently, passing messages back and
forth to share data updates.

B. Non-autonomous A central, or master, DBMS coordinates database access
and update across the nodes.

II. Heterogeneous Potentially different DBMSs are used at each node.

A. Systems Supports some or all of the functionality of one logical database.

Petitioners' Exhibit 1026, Page 4

'

.l

Distributed database environments

Homogeneous Heterogeneous

/ " / " Autonomous Non-Autonomous Systems GatewaY-s

/ " Full DBMS functionality Partiai-Multidatabase

/ ·"-:·
Federated Unfederated

/ ""' loose integration Tight integration

1. Full DBlv1S Functionality Supports all of the functionality of a distrib
uted database, as discussed in the remainder of this chapter.

2. Partiai-Multidatabase Supports some features of a distributed database,
as discussed in the remainder of this chapter.

a. Federated Supports local databases for unique data requests.

i. Loose Integration Many schemas exist, for each local database, and
each local DBMS must communicate with all local schemas.

ii. Tight Integration One global schema exists that defines all the data
across all local databases.

b. Unfederated Requires all access to go through a central coordinating
module.

B. Gateways Simple paths are created to other databases, without the benefits
of one logical database.

A homogeneous distributed database environment is depicted in Figure 11-2.
This environment is typically defined by the following characteristics (related to the
non-autonomous category described above):

• Data are distributed across all the nodes

• The same DBMS is used at each location

• All data are managed by the distributed DBMS (so there are no exclusively
local data)

• All users access the database through one global schema or database definition

• The global schema is simply the union of all the local database schemas

It is difficult in most organizations to force a homogeneous envirorunent, yet hetero
geneous environments are much more difficult to manage.

Introduction 419

Figure 11·1
Distributed database
environments (adapted from
Bell and Grimson, 1992)

Petitioners' Exhibit 1026, Pagel s

l

II l 1111

)

f.
'

~·
I
!

t ·

4!20 Chapter 11 - Distributed Databases

Figure 11·t
Homogeneous distributed
database environment
(adapted from Bell and
Grimson, 1992)

Figure 11·3
Heterogeneous distributed
database environment
(adapted from Bell and
Grimson, 1992)

Node:

DBMS
Sonware

Global User

DBMS
Software

Global User

DBMS
Software

....

Global
Schema

DBMS
Software

n

As listed above, there are so many variations of heterogeneous distributed data
base environments. In the remainder of the chapter, however, a heterogeneous envi
ronment will be defined by the following characteristics (as depicted in Figure 11-3):

• Data are distributed across all the nodes.

• Different DBMSs may be used at each node.

Local User

DBMS-1 DBM$-2

Global User

Distributed
DBMS

Local User

Glo~al

Petitioners' Exhibit 1026, Pagel s

• Some users require only local access to databases, which can be accomplished by
using only the local DBMS and schema.

• A global schema exists, which allows local users to access remote data.

Objectives and Tradc-offs

A major objective of distributed databases is to provide ease of access to data for users
at many different locations. To meet this objective, the distributed database system
must provide what is called location transparency, which means that a user (or user
program) using data for querying or updating need not know the location of the data.
Any request to retrieve or update data from any site is automatically forwarded by
the system to the site or sites related to the processing request. Ideally, the user is
unaware of the distribution of data, and all data in the network appear as a single log
ical database stored at one site. In this ideal case, a single query can join data from
tables in multiple sites as if the data were all in one site .

A second objective of distributed databases is local autonomy, which is the capa
bility to administer a local database and to operate independently when connections
to other nodes have failed (Date, 1995). With local autonomy, each site has the capa
bility to control local data, administer security, log transactions, and recover when
local failures occur, and provide full access to local data to local users when any cen
tral or coordinating site cannot operate. In this case, data are locally owned and man
aged, even though they are accessible from remote sites. This implies that there is no
reliance on a central site.

A significant trade-off in designing a d istributed database environment is
whether to use synchronous or asynchronous distributed technology. With a syn
chronous distributed database technology, all data across the network are continu
ously kept up-to-date so that a user at any site can access data anywhere on the
network at any time and get the same answer. With synchronous technology, if any
copy of a data item is updated anywhere on the network, the same update is imme
diately applied to all other copies or aborted. Synchronous technology ensures data
integrity and minimizes the complexity of knowing where the most recent copy of
data are located. Synchronous technology can result in unsatisfactorily slow response
time since the distributed DBMS is spending considerable time checking that an
update is accurately and completely propagated across the ne~ork.

Asynchronous distributed database technology keeps copies of replicated data
at different nodes so that local servers can access data without reaching out across the
network. With asynchronous technology, there is usually some delay in propagating
data updates across the remote databases, so some degree of at least temporary
inconsistency is tolerated. Asynchronous technology tends to have acceptable
response time since updates happen locally and data replicas are synchronized in
batches and predetemtined intervals, but may be more complex to p lan and design to
ensure exactly the right level of data integrity and consistency across the nodes.

Compared to centralized databases, there are numerous advantages to either
form of a distributed database. The most important are the following:

• Increased reliability and availability When a centralized system fails, the database
is unavailable to all users. A distributed system will continue to function at some
reduced level, however, even when a component fails. The reliability and
availability will depend (among other things) on how the data are distributed
(discussed in the following sections).

Introduction 421

Location transparency: A
design goal for a distributed
database, which says that a
user (or user program) using
data need not know the
location of the data.

Local autonomy: A design
goal for a distributed
database, which says that a
site can independently
administer and operate its
database when connections to
other nodes have failed.

Synchronous distributed
database: A form of
distributed database
technology in which all data
across the network are
continuously kept up-to-date
so that a user at any site can
access data anj'\vhere on the
network at any time and get
the same answer.

Asynchronous distributed
database: A form of
distributed database
technology in which copies of
replicated data are kept at
different nodes so that local
servers can access data
without reaching out across
the network.

Petitioners' Exhibit 1026, Pagel ?

I I I 11111

4 \II

I ,

Chapter 11- Distributed Databases

• Local control Distributing the data encourages local groups to exercise greater
control over "their" data, which promotes improved data integrity and adminis
tration. At the same time, users can access nonlocal data when necessary.
Hardware can be chosen for the local site to match the local, not global, data
processing work.

• Modular growth Suppose that an organization expands to a new location or
adds a new work group. It is often easier and more economical to add a local
computer and its associated data to the distributed network than to expand a
large central computer. Also, there is less chance of disruption to existing users
than is the case when a central computer system is modified or expanded.

• Lower communication costs With a distributed system, data can be located closer
to their point of use. This can reduce communication costs, compared to a central
system.

• Faster response Depending on how data are distributed, most requests for data
by users at a particular site can be satisfied by data stored at that site. 1bis
speeds up query processing since communication and central computer delays
are minimized. It may also be possible to split complex queries into subqueries
that can be processed in parallel at several sites, providing even faster response.

A distributed database system also faces certain costs and disadvantages:

• Software cost and complexity More complex software (especially the DBMS) is
required for a distributed database environment. We discuss this software later
in the chapter.

• Processing overhead The various sites must exchange messages and perform
additional calculations to ensure proper coordination among data at the different
the sites.

• Data integrity A by-product of the increased complexity and need for coordina
tion is the additional exposure to improper updating and other problems of data
integrity.

• Slow response If the data are not distributed properly according to their usage,
or if queries are not formulated correctly, response to requests for data can be
extremely slow. These issues are discussed later in the chapter.

OPTIONS FOR DISTRIBUTING A DATABASE

How should a database be distributed among the sites (or nodes) of a network? We
discussed this important issue of physical database design in Chapter 7, which intro
duced an analytical procedure for evaluating alternative distribution strategies. In
that chapter we noted that there are four basic strategies for distributing databases:

1. Data replication

2. Horizontal partitioning

3. Vertical partitioning

4. Combinations of the above

Petitioners' Exhibit 1026, Pagel a

1

I i
I;

!.
; ~
I ~

b

Options for Distributing a Database 423

Acct_Number Customer_Name Branch_Name Balance

200 Jones Lakeview 1000
324 Smith Valley 250
153 Gray Valley 38
426 Dorman Lakeview 796
500 Green Valley 168
683 Mcintyre Lakeview 1500
252 Elmore Lakeview 330

We will explain and illustrate each of these approaches using relational databases.
The same concepts apply (with some variations) for other data models, such ashier·
archical and network

Suppose that a bank has numerous branches located tluoughout a state. One of
the base relations in the bank's database is the Customer relation. Figure 11-4 shows
the format for an abbreviated version of this relation. For simplicity, the sample data
in the relation apply to only two of the branches (Lakeview and Valley). The primary
key in this relation is account number (Acct_Number). Branch_Name is the name of
the branch where customers have opened their accounts (and therefore where they
presumably perform most of their transactions).

Data Replication

An increasingly popular option for data distribution is to store a separate copy of the
database at each of two or more sites. Replication may allow an IS organization to
move a database off a centralized mainframe onto less expensive, departmental or
location-specific servers, dose to end users (Koop, 1995). Replication may use either
synchronous or asynchronous distributed database technologies, although asyn
chronous technologies are more typical in a replicated environment. The Customer
relation in Figure 11-4 could be stored at Lakeview or Valle~ for example. If a copy is
stored at every site, we have the case of full replication (which may be impractical
except for only relatively small databases).

There are five advantages to data replication:

1. Reliability If one of the sites containing the relation (or database) fails, a copy
can always be found at another site without network traffic delays. Also,
available copies can all be updated as soon as possible as transactions occur,
and unavailable nodes will be updated once they return to service.

2. Fast response Each site that has a full copy can process queries locally, so
queries can be processed rapidly.

3. Possible avoidance of complicated distributed transaction integrity routines ,
Replicated databases are usually refreshed at scheduled intervals, so most
forms of replication are used when some relaxing of synchronization across
database copies is acceptable.

4. Node decoupling Each transaction may proceed without coordination across
the network. Thus, if nodes are down, busy, or disconnected (e.g., in the case of
mobile personal computers}, a transaction is handled when the user desires. In

Fisurc 11·4
Customer relation for a bank

II I IIIII

Petitioners' Exhibit 1026, Pagej g

i
!
I

I
I
' I
t
r.~~

{·~.,~. : /.
·J~
.J'

; ' l·

i

. i

'

424

'· i

I .

Chapter 11- Distributed Databases

the place of real-time synchronization of updates, a behind-the-scenes process
coordinates all data copies.

5. Reduced network traffic at prime time Often updating data happens during Prime
business hours, when network traffic is highest and the demands for rapid
response greatest. Replication, with delayed updating of copies of data, moves
network traffic for sending updates to other nodes to non-prime time hours.

Replication has two primary disadvantages:

1. Storage requirements Each site that has a full copy must have the same storage
capacity that would be required if the data were stored centrally. Each copy
requires storage space (the cost for which is constantly decreasing), and
processing time is required to update each copy on each node.

2. Complexity and cost of updating Whenever a relation is updated, it must
(eventually) be updated at each site that holds a copy. Synchronizing updating
near real time can require careful coordination, as will be clear later under the
topic of commit protocol.

For these reasons, data replication is favored where most process requests are
read-only and where the data are relatively static, as in catalogs, telephone directo
ries, train schedules, and so on. CD-ROM and DVD storage technology has promise
as an economical medium for replicated databases. Replication is used for "noncol
laborative data," where one location does not need a real-time update of data main
tained by other locations (The, 1994).ln these applications, data eventually need to be
synchronized, as quickly as is practical Replication is not a viable approach for
online applications such as airline reservations, automated teller machine transac
tions, and other financial activities-applications for which each user wants data
about the same, nonsharable resource.

Snapshot Replication Different schemes exist for updating data copies. Some appli
cations, like those for decision support and data warehousing or mining-which do
not require current data-are supported by simple_ table copying or periodic snap
shots. This might work as follows, assuming multiple sites are updating the same
data. First, updates from all replicated sites are periodically collected at a master or
primary site, where all the updates are made to form a consolidated record of all
changes. With some distributed DBMSs, this list of changes is collected in a snapshot
log, which is a table of row identifiers for the records to go into the snapshot. Then a
read-only snapshot of the replicated portion of the database is taken at the master
site. Finally, the snapshot is sent to each site where there is a copy (it is often said that
these other sites "subscribe" to the data owned at the primary site). This is called a
full refresh of the database (Edelstein, 1995a). Alternatively, only those pages that
have changed since the last snapshot can be sent, which is called a differential refresh.
In this case, a snapshot log for each replicated table is joined with the associated
base to form the set of changed rows to be sent to the replicated sites.

Some forms of replication management allow dynamic ownership of data, in
which the right to update replicated data moves from site to site, but at any point in
time, only one site owns the right. Dynamic ownership would be appropriate as
business activities move across time zones, or where the processing of data follows a
work flow across business units supported by different database servers.

A final form of replication management allows shared ownership of data. Shared
updates introduces significant issues for managing update conflicts across sites. For

Petitioners' Exhibit 1026, Page11 0

I
I
r

Options for Distributing a Database 425

example, what if tellers at two bank branches try to update a customer's address at
the same time? Asynchronous technology will allow conflicts to exist temporarily.
This may be fine as long as the updates are not critical to business operations, and ·
such conflicts can be detected and resolved before real business problems arise.

The cost to perform a snapshot refresh may depend on whether the snapshot is
simple or complex. A simple snapshot is one that references all or a portion of only
one table. A complex snapshot involves multiple tables, usually from transactions
that involve joins (such as the entry of a customer order and associated line items).
With some distributed DBMSs, a simple snapshot can be handled by a differential
refresh whereas complex snapshots require more time-consuming full refreshes.
Some distributed DBMSs support only simple snapshots.

t4ear Re.ai-Time Replication For near real-time requirements, store and forward
messages for each completed transaction can be broadcast across the network inform
ing all nodes to update data as soon as is possible, without forcing a confirmation to
the originating node (as is the case with a coordinated commit protocol, discussed
below) before the database at the originating node is updated (Schussel, 1994). One
way to generate such messages is by using triggers (discussed in Chapter 9). A trigger
can be stored at each local database so that when a piece of replicated data is updat
ed, the trigger executes corresponding update conunands against remote database
replicas (Edelstein, 1993). With the use of triggers, each database update event can be
handled individually and transparently to programs and users. If network connec
tions to a node are down or the node is busy, these messages informing the node to
update its database are held in a queue to be processed when possible.

Pull Replication The schemes explained above for synchronizing replicas are all
examples of push strategies. Pull strategies also exist. In a pull strategy, the target, not
the source node, controls when a local database is updated. With pull strategies, the
local database determines when it needs to be refreshed, and requests a snapshot or
the emptying of an update message queue. Pull strategies have the advantage that
the local site controls when it needs and can handle updates. Thus, synchronization is
less disruptive and occurs only when needed by each site, not when a central master
site thinks it is best to update.

Database Integrity with Replication For both periodic and near real-time replica
tion, consistency across the distributed, replicated database is compromised. Whether
delayed or near real-time, the DBMS managing replicated databases still must ensure
the integrity of the database. Dedsion support applications permit synchronization
on a table-by-table basis, whereas near real-time applications require transaction-by
transaction synchronization. But in both cases, the DBMS must ensure that copies are
synchronized per application requirements.

The difficulty of handling updates with a replicated database also depends on
the number of nodes at which updates may occur (Froemming, 1996). In a single
updater environment, updates will usually be handled by periodically sending read
only database snapshots of updated database segments to the nonupdater nodes. In
this case the effects of multiple updates are effectively hatched for the read-only sites.
This would be the situation for product catalogs, price lists, and other reference data
for a mobile sales force. In a multiple-updater environment, the most obvious issue is
data collisions. Data collisions arise when the independently operating updating
nodes are each attempting to update the same data at the same time. In this case, the
DBMS must include mechanisms to detect and handle data collisions. For example,

Petitioners' Exhibit 1026, Page 11

II I ~I l l .

¥ 1 F I

426 Chapter 11 -Distributed Databases

the DBMS must decide if processing at nodes in conflict should be suspended until
the collision is resolved.

When to Use Replication Whether replication is a viable alternative design for a
distributed database depends on several factors (Froemming, 1996):

1. Data timeliness Applications that can tolerate out-of-date data (w hether this be
for a few seconds or a few hours) are better candidates for replication.

2. DBMS capabilities An important DBMS capability is whether it will support a
query that references data from more than one node. If not, then replication is a
better candidate than the partitioning schemes, which are discussed in the
following sections.

3. Performance implications Replication means that each node is periodically
refreshed. When this refreshing occurs, the distributed node may be very busy
handling a large volume of updates. If the refreshing occurs by event triggers
(for example, when a certain volume of changes accumulate), refreshing could
occur at a time when the remote node is busy doing local work.

4. Heterogeneity in the network Replication can be complicated if different nodes
use different operating systems and DBMSs, or, more commonly, use different
database designs. Mapping changes from one site to n other sites could mean n
different routines to translate the changes from the originating node into the
scheme for processing at the other nodes.

5. Communications network capabilities Transmission speeds and capacity in a
data communications network may prohibit frequent, complete refreshing of
very large tables. Replication does not require a dedicated communications
connection, however, so less expensive, shared networks could be used for
database snapshot transmissions.

Horizontal Partitioning

With horizontal partitioning (see Chapter 7 for a description of different forms of table
partitioning), some of the rows of a table (or relation) are put into a base relation at
one site, and other rows are put into a base relation at another site. More generally,
the rows of a relation are distributed to many sites.

Figure 11-5 shows the result of taking horizontal partitions of the Customer rela
tion. Each row is now located at its home branch. If customers actually conduct most
of their transactions at the home branch, the transactions are processed locally and
response times are m.ini.m.ized. When a customer initiates a transaction at another
branch, the transaction must be transmitted to the home branch for processing and
the response transmitted back to the initiating branch (this is the normal pattern for
persons using automated teUer machines, or ATMs). If a customer's usage pattern
changes (perhaps because of a move), the system may be able to detect this change
and dynamically move the record to the location where most transactions are being
initiated. In summary, horizontal partitions for a distributed database have four
major advantages:

1. Efficiency Data are stored dose to where they are used and separate from
other data used by other users or applications.

2. Local optimization Data can be stored to optimize performance for local access.

Petitioners' Exhibit 1026, Page 12

1

, ...
: _.; Options for Distributing a Database 427

200
426 '.
683 ;:.
252 ·.

(.... _ ... _, .. ,:'

: BrancJ:l:_Mame."· ·:;: Ir~1,1ce

. ~i~::: ..•.. · ::.;:~·~.~ ::·
.-. -........... .

·· Acct_Nu~be~_:_·.: : Cilstome: __Name . . . Brrut~~~~~:·.·_}~/~~l~ce .·.

·•:.,:.· .,:~~~:~.• '. , ·:,. . ,·;. ~:~·:.~~~~F·;~~i[:'~.
3. Security Data not relevant to usage at a particular site are not made available.

4. Ease of querying Combining data across horizontal partitions is easy since
rows are simply merged by wtions across the partitions.

Thus, horizontal partitions are usually used when an organizational function is dis
tributed, but each site is concerned with only a subset of the entity instances (fre
quently based on geography).

Horizontal partitions also have two primary disadvantages:

1. Inconsistent access speed When data from several partitions are required, the
access time can be significantly different from local-only data access.

2. Backup vulnerability Since data are not replicated, when data at one site
become inaccessible or damaged, usage cannot switch to another site where a
copy exists; data may be lost if proper backup is not performed at each site.

Vertical Partitioning

With the vertical partitioning approach (again, see Chapter 7), some of the columns of
a relation are projected into a base relation at one of the sites, and other colunms are
projected into a base relation at another site (more generally, columns may be pro
jected to several sites). The relations at each of the sites must share a common
domain, so that the original table can be reconstructed.

To illustrate vertical partitioning, we use an application for the manufacturing
company shown in Figure 11-6. Figure 11-7 shows the Part relation with Part_Number
as the primary key. Some of these data are used primarily by manufacturing, while
others are used mostly by engineering. The data are distributed to the respective
departmental computers using vertical partitioning, as shown in Figure 11-8. Each of
the partitions shown in Figure 11-8 is obtained by taking projections (that is, selected
columns) of the original relation. The original relation in tum can be obtained by
taking natural joins of the resulting partitions.

In summary, the advan tages and disadvantages of vertical partitions are iden
tical to those for horizontal partitions, with the exception that combining data
across vertical partitions is more difficult than across horizontal partitions. This

fi!urc 11-5
Horizontal partitions

(a) Lakeview Branch

(b) Valley Branch

II I illl

Petitioners' Exhibit 1026, Page113

!:.
~
i:
f .
t-

1
•

:; fl

... .

428 Chapter 11 - Distributed Databases

Engineering
computer

CAD/CAM workstations

Figure 11·6

Engineer
ing

database

Corporate
mainframe

Manufacturing
computer

Gateway

Local area
network

Database
server

Manufac-

Distributed processing system for a manufacturing company

Figure 11·7
Part relation i?m. Number Name Cost Drawin~Number Qty_on Hand

P2 Widget 100 123-7 20
P7 Gizmo 550 62~-0 100
P3 Thing 48 174-3 0
Pl Whatsit 220 ~16·2 16.
P8 Thumzer 16 321~0. .. ~.0. :
P9 Bob bit . 75 4.90(} .. ()' ..

125·
. .

P6 Nailit ~>29~4 . 29,0>.
.. .. . ·.

;.•. "

difficulty arises from the need to match p rimary keys or other qualifications to join
rows across partitions. Horizontal partitions support an organizational design in
which functions are replicated, often on a regional basis, while vertical partitions are
typically applied across organizational functions with reasonably separate data
requirements.

Petitioners' Exhibit 1026, Page114

1
I

. :J.

Options for Distributing a Database 429

Fi9ure 11-8 Vertical partitions

(a) Engineering (b) Manufacturing

Part_N~ber Drawing_Nwn:tier

:. . . :. ::.:: , ' ·~

· . Part_N~ber . ;)~a~e · ... _-_·: .·;; 'cpst- · .. Qn;.,:~j{~d ·:·;:;.
P.2: >123'-7
P7 621-0
P3 ·174-3
Pl 416-2
P8 321c0

' :p9 400:.1
. P6 129-4:-.

:· ri" ... :·: ~idget ·:·.·_,, ,.::.)~o : .,/ :::· .. ,::>({iir;:.:':, :;:.>·:
· P7 · · :.··· Gizmo · · · · 55Q:··. · "· lOOt. -.,., ... ~·

. P3 · ··, Thing· '·· ··._, · ; 4~ · · .. >" •.. • ., ._ :. · _o:._:·. _: :_ · , :
· 1'1·· ·· · Whatsit · '., no; ·. ~ ·. · · ··16; .. ·
r~ . :_:· ThurnZei.: ~·:,{ 16.:·.::-:_:·/ : . :~o~ :.: ... <~·
P9 . Hobbit.. ·: · ' 75 -'· · .. : (}. .
:P6 · Nam(12s>.· · : .. · : 2oo

' ·~ :, : . . . '.. ~. . '.
~· :. '·:~. ,, ~ .. , :

combinations of Operations

To complicate matters further, there are almost unlimited combinations of the pre
ceding strategies. Some data may be stored centrally, while other data are replicated
at the various sites. Also, for a given relation, both horizontal and vertical partitions
may be desirable for data distribution. Figure 11-9 is an example of a combination
strategy:

1. Engineering Parts, Accounting, and Customer data are each centralized at
different locations.

2. Standard parts data are partitioned (horizontally) among the three locations.

3. The Standard Price List is replicated at all three locations.

San Mateo Tulsa

~San Mateo F==1 Tulsa LJ Parts l_j Parts

U ~~~~eeringu Accounting U customers

~ Standard r::==1 Standard
l_j Price List l_j Price List

Figure 11·9
Data d istribution strategies
(Source: Copyright ©
Database Programming &
Design, April 1989, Vol. 2,
No. 4. Reprinted by
permission of Miller Freeman
Publications.)

Petitioners' Exhibit 1026, Page115

I I I 1111

if .. sq .;u

430 Chapter 11 - Distributed Databases

TABLE 11-1 Comparison of Distributed Database Design Strategies

Strategy

Centralized·

Replicated
with
snapshots

Synchronized
replication

Integrated
partitions

Decentralized
with
independent
partitions

Communications Data
Reliability Expandability Overhead Manageability Consistency

POOR: POOR: VERY HIGH: VERY GOOD: EXCELLENT:
Highly Limitations are High traffic to one One, monolithic All users
dependent on barriers to site site requires little always have
central server performance coordination same data

GOOD: · VERY GOOD: LOW to MED IUM: VERY GOOD: MEDIID.-1:
Redundancy Cost of additional Not constant, but Each copy is like Fine as long as .
and tolerated copies may be periodic snapshots every other one delays are
delays less than linear can cause bursts of tolerated by

network traffic business needs

EXCELLENT: VERY GOOD: MEDIUM: MEDIUM: MEDIUM to
Redundancy Cost of additional Messages are Collisions add VERY GOOD:
and minimal copies may be constant, but son;te some complexity Close to precise
delays low and delays are tolerated to manageability consistency

synchronization
work only linear

VERY GOOD: VERY GOOD: LOW to MEDIUM: DIFFICULT: VERY POOR:
Effective use New nodes get Most queries are Especially Considerable
of partitioning only data they local but queries difficult for effort, and
and need without which require data queries that inconsistencies
redundancy changes in from multiple sites need data from not tolerated

overall database can cause a distributed
design temporary load tables, and

updates must
be tightly
coordinated

GOOD: GOOD: LOW: VERY GOOD: LOW:
Depends on New sites Little if any need to Easy for each No guarantees
only local independent of pass data or queries site, until there is of consistency,
database existing ones across the network a need to share in fact pretty
availability (if one exists) data across sites sure of

inconsistency

The overriding principle in distributed database design is that data should be stored
at the sites w here they will be accessed most frequently (although other considera
tions, such as security, data integrity, and cost, are also likely to be important). The
data administrator plays a critical and central role in organizing a distributed data
base in order to make it distributed, not decentralized.

Selecting the Right Data Distribution Strategy

Based on the prior sections, a distributed database can be organized in five unique
ways:

1. totally centralized at one location accessed from many geographically distrib
uted sites

2. partially or totally replicated across geographically distributed sites, with each
copy periodically updated with snapshots

Petitioners' Exhibit 1026, Page 16

1
I
I
!
I

!

3. partially or totally ~ep~cated across geographically distributed sites, with near
real-time synchroruzation of updates

4. partitioned into segments at different geographically dis.tributed sites, but still
within one logical database and one distributed DBMS

5. partitioned into independent, nonintegrated segments spanning multiple
computers and database software.

None of these four approaches is always best. Table 11-1 summarizes the comparative
features of these five approaches using the key dimensions of reliability, expandabil
ity for adding nodes, communications overhead or demand on communications net
work, manageability, and data consistency. A distributed database designer needs to
balance these factors to select a good strategy for a given distributed database envi
ronment. The choice of which strategy is best in a given sihtation depends on sever
al factors.

• Organizational forces funding availability, autonomy of organizational units,
and the need for security

• Frequency and locality or clustering of reference to data In general, data should be
located close to the applications that use those data.

• Need for growth and expansion The availability of processors on the network will
influence where data may be located and applications can be run, and may
indicate the need for expansion of the network.

• Technological capabilities Capabilities at each node and for DBMSs, coupled with
the costs for acquiring and managing technology, must be considered. Storage
costs tend to be low, but the costs for managing complex technology can be great.

• Need for reliable service Mission-critical applications and very frequently
required data encourage replication schemes.

DISTRIBUTED DBMS

To have a distributed database, there must be a database management system that
coordinates the access to data at the various nodes. We will call such a system a dis
tributed DBMS. Although each site may have a DBMS managing the local database at
that site, a distributed DBMS is also required to perform the following functions
(Elmasri and Navathe, 1989):

1. Keep track of where data are located in a distributed data dictionary.

2. Determine the location from which to retrieve requested data and the location
at which to process each part of a distributed query.

3. If necessary, translate the request at one node using a local DBMS into the
proper request to another node using a different DBMS and data model, and
return data to the requesting node in the format accepted by that node.

4. Provide data management functions such as security, concurrency and dead
lock control, query optimization, and failure recovery.

5. Provide consistency among copies of data across the remote sites.

Distributed DBNIS 431

Petitioners' Exhibit 1026, Page 17

., ·-1

ll I IJI!I

. .

t
' ~

432 Chapter 11 -Distributed Databases

(To other sites)

Application
programs

Communications
controller

Application
programs

--------- ---- ---- -

Fi,urc 11·10
Distributed DBMS
architecture

Local
DBMS

Local transaction: In a
distributed database, a
transaction that requires
reference only to data that are
stored at the site where the
transaction originates.

Global transaction: In a
distributed database, a
transaction that requires
reference to data at one or
more nonlocal sites to satisfy
the request.

Local
DBMS

Database

site n

User
terminals

Conceptually, there could be different DBMSs running at each local site, with one
master DBMS controlling the interaction across database parts. Such an environment
is called a heterogeneous distributed database, as defined earlier in the chapter. Although
ideal, complete heterogeneity is not practical today; limited capabilities exist with
some products when each DBMS follows the same data architecture (for example,
relational).

Figure 11-10 shows one popular architecture for a computer system with a dis
tributed DBMS capability. Each site has a local DBMS that manages the database
stored at that site. Also, each site has a copy of the distributed DBMS and the associ
ated distributed data dictionary/directory (DD/D). The distributed DD/D contains
the location of all data in the network, as well as data definitions. Requests for data by
users or application programs are first processed by the distributed DBMS, which
determines whether the transaction is local or global. A local transaction is one in
which the required data are stored entirely at the local site. A global transaction
requires reference to data at one or more nonlocal sites to satisfy the request. For local
transactions, the distributed DBMS passes the request to the local DBMS; for global
transactions, the distributed DBMS routes the request to other sites as necessary. The
distributed DBMSs at the participating sites exchange messages as needed to coordi
nate the processing of the transaction until it is completed (or aborted, if necessary).
This process may be quite complex, as we will see.

The DBMS (and its data model) at one site may be different from that at another
site; for example, site A may have a relational DBMS, while site B has a network
DBMS. In this case, the distributed DBMS must translate the request so that it can be
processed by the local DBMS. The capability for handling mixed DBMSs and data
models is a state-of-the-art development that is beginning to appear in some com
mercial DBMS products .

In our discussion of an architecture for a distributed system (Figure 11-10), we
assumed that copies of the distributed DBMS and DD/D exist at each site (thus the
DD/D is itself an example of data replication). An alternative is to locate the distrib-

Petitioners' Exhibit 1026, Page 18

l
I
I
I
I
!

uted DBMS and DD !Dat a central site, and other strategies are also possible. However,
the centralized solution is vulnerable to failure and therefore is less desirable.

A distributed DBMS should isolate users as much as possible from the complex
ities of distributed database management. Stated differently, the distributed DBMS
should make transparent the location of data in the network as well as other features
of a distributed database. Four objectives of a distributed DBMS, when met, ease the
construction of programs and the retrieval of data in a distributed system. These
objectives, which are described below, are the following: location transparency, repli
cation transparency, failure transparency, and concurrency transparency. To fully
understand failure and concurrency transparency, we also discuss the concept of a
commit protocol. Finally, we describe query optimization, which is an important
function of a distributed DBMS.

Location Transparency

Although data are geographically distributed and may move from place to place,
with location transparency users (including programmers) can act as if all the data
were located at a single node. To illustrate location transparency, consider the dis
tributed database in Figure 11-9. This company maintains warehouses and associated
purchasing functions in San Mateo, California; Tulsa, Oklahoma; and New York City.
The company's engineering offices are in San Mateo and sales offices in New York
City. Suppose that a marketing manager in San Mateo, California, wanted a list of all
company customers whose total purchases exceed $100,000. From a terminal in San
Mateo, with location transparency the manager could enter the following request:

SELECT *
FROM CUSTOMER
WHERE TOTAL_SALES > 100,000;

Notice that this SQL request does not require the user to know where the data are
physically stored. The distributed DBMS at the local site (San Mateo) will consult the
distributed DD/D and determine that this request must be routed to New York.
When the selected data are transmitted and displayed in San Mateo, it appears to the
user at that site that the data were retrieved locally (unless there is a lengthy com
munications delay!).

Now consider a more complex request that requires retrieval of data from more
than one site. For example, consider the Parts logical file in Figure 11-9, which is
geographically partitioned into physically distributed database files stored on com
puters near their respective warehouse location: San Mateo parts, Tulsa parts, and
New York parts. Suppose that an inventory manager in Tulsa wishes to construct a
list of or ange-colored parts (regardless of location). This manager could use the fol
lowing query to assemble this information from the three sites:

SELECT OISTI NCT PART_NUMBER , PART_NAME
FROM PART
WHERE COLOR = 'Orange'
ORDER BY PART_NO;

In forming this query, the user need not be aware that the parts data exist at various
sites (assuming location transparency) and that therefore this is a global transaction.
Without location transparency, the user would have to reference the parts data at each
site separately and then assemble the data (possibly using a UNION operation) to
produce the desired results.

Distributed DBMS 433

II I IIIII

Petitioners' Exhibit 1026, Page 19

! ; I
' ,.....-- '

434 Chapter 11- Distribu ted Databases

Replication transparency:
A design goal for a distributed
database, which says that
although a given data item
may be replicated at several
nodes in a network, a
programmer or user may treat
the data item as if it were a
single item at a single node.
Also called fragmentation
transparency.

If the DBMS does not directly support location transparency, a database admin
istrator can accomplish virtual location transparency for users by creating views (see
Chapter 9 for a discussion of views in SQL). For the distributed database of Figure 11-
9, the following view virtually consolidates part records into one table:

CREATE VIEW ALL_PART AS
(SE LECT PART_NUMBER . PART_NAME FROM SAN_MATEO_PART

UNION
SELECT PART_N UMBER, PART_NAME FROM TU LSA_PART
UNION
SELECT PART_NUMBER . PART_NAME FROM NEW_YORK_PART):

where the three part table names are synonyms for the tables at three remote sites.
The preceding examples concern read-only transactions. Can a local user also

update data at a remote site (or sites)? With today's distributed DBMS products, a
user can certainly update data stored at one remote site, such as the Customer data in
this example. Thus a user in Tulsa could update bill-of-material data stored in San
Mateo. A more complex problem arises in updating data stored at multiple sites,
such as the Vendor file. We discuss this problem in the next section.

To achieve location transparency, the distributed DBMS must have access to an
accurate and current data dictionary I directory that indicates the location (or loca
tions) of all data in the network. When the directories are distributed (as in the archi
tecture shown in Figure 11-9), they must be synchronized so that each copy of the
directory reflects the same information concerning the location of data. Although
much progress has been made, true location transparency is not yet available in most
systems today. ·

Replication Transparency

Although the same data item may be replicated a t several nodes in a network, with
replication transparency (sometimes called fragmentation transparency) the program
mer (or other user) may treat the item as if it were a single item at a single node.

To illustrate replication transparency, see the Standard Price List file (Figure 11-9).
An identical copy of this file is maintained at all three nodes (full replication). First,
consider the problem of reading part (or all) of this file at any node. The distributed
DBMS will consult the data directory and determine that this is a local transaction
(that is, it can be completed using data at the local site only). Thus the user need not
be aware that the same data are stored at other sites.

Now suppose that the data are replicated at some (but not all) sites (partial repli
cation). If a read request originates at a site that does not contain the requested data,
that request will have to be routed to another site. In this case the distributed DBMS
should select the remote site that will provide the fastest response. The choice of site
will probably depend on current conditions in the network (such as availability of
communications lines). Thus the distributed DBMS (acting in concert with other net
work facilities) should dynamically select an optimum route. Again, with replication
transparency the requesting user need not be aware that this is a global (rather than
local) transaction.

A more complex problem arises when one or more users attempt to update repli
cated data. For example, suppose that a manager in New York wants to change the
price of one of the parts. This change must be accomplished accurately and concur
rently at all three sites, or the data will not be consistent. With replication trans
parency, the New York manager can enter the data as if this were a local transaction
and be unaware that the same update is accomplished at all three sites. However, to

Petitioners' Exhibit 1026, Page 20

guarantee that data integrity is maintained, the system must also provide concurren
cy transparency and failure transparency, which we discuss next.

Failure Transparency

Each site (or node) in a distributed system is subject to the same types of failure as in
a centralized system (erroneous data, disk head crash, and so on). However, there is
the additional risk of failure of a communications link (or loss of messages). For a
system to be robust, it must be able to detect a failure, reconfigure the system so that
computation may continue, and recover when a processor or link is repaired.

Error detection and system reconfiguration are probably the functions of the
communications controller or p rocessor, rather than the DBMS. However, the dis
tributed DBMS is responsible for database recovery when a failure has occurred. The
distributed DBMS at each site has a component called the transaction manager that
performs the following functions:

1. Maintains a log of transactions and before and after database images.

2. Maintains an appropriate concurrency control scheme to ensure data integrity
during parallel execution of transactions at that site.

For global transactions, the transaction managers at each participating site coop
erate to ensure that all update operations are synchronized. Without such coopera
tion, data integrity can be lost when a failure occurs. To illustrate how this might
happen, suppose (as we did earlier) that a manager in New York wants to change the
price of a part in the Standard Price Ust file (Figure 11-9). This transaction is global:
every copy of the record for that part (three sites) must be updated. Suppose that the
price list records in New York and Tulsa are successfully updated; however, due to
transmission failure, the price list record in San Mateo is not updated. Now the data
records for this part are in disagreement, and an employee may access an inaccurate

. price for that part.
With failure transparency, either all the actions of a transaction are committed or

none of them are corrunitted. Once a transaction occurs, its effects survive hardware
and software failures. In the vendor example, when the transaction failed at one site,
the effect of that transaction was not committed at the other sites. Thus the old
vendor rating remains in effect at all sites until the transaction can be successfully
completed.

Commit Protocol

To ensure data integrity for update operations, the cooperating transaction managers
execute a co mmit p rotocol, which is a well-defined procedure (involving an
exchange of messages) to ensure that a global transaction is either successfully com
pleted at each site or else aborted. The most widely used protocol is called a two
phase commit. A two-phase commit works something like arranging a meeting
between many people. First, the site originating the global transaction or an overall
coordinating site (like the person trying to schedule a meeting) sends a request to
each of the sites that will process some portion of the transaction. In the case of
scheduling a meeting, the message might be "Are you available at a given date and
time?" Each site processes the subtransaction (if possible), but does not immediately
commit (or store) the result to the local database. Instead, the result is stored in a tem
porary file. In our meeting analogy, each person writes the meeting on his or her cal
endar in pencil. Each site does, however, lock (prohibit other updating) its portion of

Distributed DBMS 435

Transaction manager: [n

a distributed database, a
software module that
maintains a log of aU
transactions and maintains
an appropriate concurrency
control scheme.

Failure transparency:
A design goal for a distributed
database, which guarantees
that either all the actions of
each transaction are
committed or else none of
them is committed.

Commit protocol: An
algorithm to ensure that a
transaction is successfully
completed, or else it is
aborted.

Two-phase commit: An
algorithm for coordinating
updates in a distributed
database.

II I IIIII

Petitioners' Exhibit 1026, Page 21

.... ;

---~---, 436 Chapter 11- Distributed Databases I
the database being updated (as each person would prohibit other appointments at the
same tentative meeting time). Each site notifies the originating site when it has com
pleted its subtransaction. When all sites have responded, the originating site now ini
tiates the two-phase commit protocol:

1. A message is broadcast to every participating site, asking whether that site is
willing to commit its portion of the transaction at that site. Each site returns an
"OK" or "not OK" message. This would be like a message that each person can
or cannot attend the meeting. lhis is often called the prepare phase. An OK
says that the remote site promises to allow the initiating request to govern the
transaction at the remote database.

2. The originating site collects the messages from all sites. If all are "OK," it
broadcasts a message to all sites to commit the portion of the transaction
handled at each site. If one or more responses are "not OK/' it broadcasts a
message to all sites to abort the transaction. This is often called the commit
phase. Again, our hypothetical meeting arranger would confirm or abort plans
for the meeting depending on the response from each person. It is possible for
a transaction to fail during the commit phase (that is, between commits among
the remote sites), even though it passed the prepare phase; in this case, the
transaction is said to be in limbo. A limbo transaction can be identified by a
timeout or polling. With a timeout (no confinnation of commit for a specified
time period), it is not possible to distinguish between a busy or failed site.
Polling can be expensive in terms of network load and processing time.

lhis description of a two-phase commit protocol is highly simplified. For a more
detailed discussion of this and other protocols, see Date (1995).

With a two-phase commit strategy for synchronizing distributed data, corrunit
ting a transaction is slower than if the originating location were able to work alone.
Recent improvements in this traditional approach to two-phase commit are aimed at
reducing the delays caused by the extensive coordination inherent in this approach.
Three improvement strategies have been developed (McGovern, 1993):

• Read-only commit optimization This approach identifies read-only portions of a
transaction and eliminates the need for confirmation messages on these portions.
For example, a transaction might include checking an inventory balance before
entering a new order. The reading of the inventory balance within the transac
tion boundaries can occur without the callback confirmation.

• Lazy commit optimization This approach allows those sites which can update to
proceed to update, and other sites which cannot immediately update are
allowed to "catch up" later.

• Linear commit optimization This approach permits each part of a transaction to
be committed in sequence, rather than holding up a whole transaction when
subtransaction parts are delayed from being processed.

Concurrency Transparency

The problem of concurrency control for a single (centralized) database is discussed in
depth in Chapter 13. When multiple users access and update a database, data integri
ty may be lost unless locking mechanisms are used to protect the data from the
effects of concurrent updates. The problem of concurrency control is more complex in
a distributed database, since the multiple users are spread out among multiple sites
and the data are often replicated at several sites, as well.

Petitioners' Exhibit 1026, Page 22

I
i
!

~

. r . .

F
1 . -,

i :
·~ ..

f
;

The objective of concurrency management is easy to define but often difficult to
i.JtlpJement in practice. Although the distributed system runs many transactions con
currently, concurrency transparency allows each transaction to appear as if it were the
nly activity in the system. Thus when several transactions are processed concurrent
~ the results must be the same as if each transaction were processed in serial order.
y, The transaction managers (introduced above) at each site must cooperate to pro

vide concurrency control in a clistributed database. Three basic approaches may be
used: locking and versioning, which will be explained in Chapter 13 as concurrency
control methods in any database environment, and timestamping. A few special
aspects of locking in a distri~uted database are discussed in Date (1995). The next sec
tion reviews the timestampmg approach.

fimestamping With this approach, every transaction is given a globally unique
timestamp, which generally consists of the clock time when the transaction occurred
and the site ID. Tunestamping ensures that even if two events occur simultaneously
at different sites, each will have a unique timestamp.

The purpose of timestamping is to ensure that transactions are processed in
serial order, thereby avoiding the use of locks (and the possibility of deadlocks).
Every record in the database carries the timestamp of the transaction that last updat
ed it. If a new transaction attempts to update that record and its timestamp is earlier
than that carried in the record, the transaction is assigned a new timestamp and
restarted. Thus, a transaction cannot process a record until its timestamp is later than
that carried in the record, and therefore it cannot interfere with another transaction.

To illustrate timestamping, suppose that a database record carries the timestamp
168, which indicates that a transaction with timestamp 168 was the most recent trans
action to successfully update that record. A new transaction with timestamp 170
attempts to update the same record. This update is permitted, since the transaction's
timestamp is later than the record's current timestamp. When the update is commit
te<t the record timestamp will be reset to 170. Now, suppose instead that a record with
timestamp 165 attempts to update the record. This update will not be allowed, since
the timestamp is earlier than that carried in the record. Instead, the transaction time
stamp will be reset to that of the record (168), and the transaction will be restarted.

The major advantage of timestamping is that locking and deadlock detection
(and the associated overhead) are avoided. The major disadvantage is that the
approach is conservative, in that transactions are sometimes restarted even when
there is no conflict with other transactions.

Query Optimization

With distributed databases, the response to a query may require the DBMS to assem
ble data from several different sites (although with location transparency, the user is
unaware of this need). A major decision for the DBMS is how to process a query,
which is affected by both the way a user formulates a query and the intelligence of
the distributed DBMS to develop a sensible plan for processing. Date (1983) pro
vides an excellent yet simple example of this problem. Consider the following situa
tion adapted from Date. A simplified procurement {relational) database has the
following three relations:

SUPPLIER (SUPPLIER_NUMBER . CITY)

PART (PART_NUMBER. COLOR)

SH!PMENT(SUPP LI ER_NUMBER. PART_NUMBERl

10,000 records, stored in Detroit

100,000 records, stored in Chicago

1,000,000 records, stored in Detroit

Distributed DBMS 437

Concurrency transparency:
A design goal for a distributed
database, with the property
that although a distributed
system runs many trans
actions, it appears that a given
transaction is the only activity
in the system. Thus, when
several transactions are
processed concurrently, the
results must be the same as if
each transaction were
processed in serial order.

Timestamping: In
distributed databases, a
concurrency control mecha
nism that assigns a globally
unique timestamp to each
transaction. Tunestamping is
an alternative to the use of
locks in distributed databases.

II I IIIII

Petitioners' Exhibit 1026, Page 23

. '

438 Chapter 11 - Distributed Databases

TABLE 11-2 Query-Processing Strategies in a Distributed Database Environment
(Adapted from Date, 1983)

M~od Time

Move PART relation to Detroit, and process whole query at Detroit 16.7 minutes
computer.

Move SUPPUER and SHIPMENT relations to Chicago, and process 28 hours
whole query at Chicago computer.

JOIN SUPPLIER and SHIPMENT at the Detroit computer, 2.3 days
PROJECT these down to only tuples for Cleveland suppliers, and
then for each of these, check at the Chicago computer to determine
if associated PART is red.

PROJECT PART at the Chicago computer down to just the red 20 seconds
items, and for each, check at the Detroit computer to see if there is
some SHIPMENT involving that PART and a Cleveland
SUPPLIER.

JOIN SUPPLIER and SHIPMENT at the Detroit computer, 16.7 minutes
PROJECT just SUPPLIER_NUMBER and PART_NUMBER for only
Cleveland SUPPLIERs, and move this qualified projection to
Chicago for matching with red PARTs.

Select just red PARTs at the Chicago computer and move the result 1 second
to Detroit for matching with Cleveland SUPPLIERs.

and a query is made (in SQL) to list the supplier numbers for Cleveland suppliers of
red parts:

SELECT
FROM
WHERE

AND
AND

SUPP LJER.SUPPLIER_NUHBER
SUPP LIER. SHIPMENT, PART
SUPPLJER.CITY- 'Clevel and'
SHIPMENT.PART_NUMBER- PART.PART_NUMBER
PART.COLOR - 'Red';

Each record in each relation is 100 characters long, there are 10 red parts, a history of
100,000 shipments from Cleveland, and a negligible query computation time com
pared with conununication time. Also, there is a communication system with a data
transmission rate of 10,000 characters per second and 1 second access delay to send a
message from one node to another.

Date identifies six plausible query-processing strategies for this situation and
develops the associated communication times; these strategies and times are sum

. marized in Table 11-2. Depending on the choice of strategy, the time required to sat
isfy the query ranges from 1 second to 2.3 days! Although the last strategy is best, the
fourth strategy is also acceptable.

In general, this example indicates that it is often advisable to break a query in a
distributed database envirorunent into components that are isolated at different sites,
then detennine which site has the potential to yield the fewest qualified records, and
then move this result to another site where additional work is performed. Obviously,
more than two sites require even more complex analyses and more complicated
heuristics to guide query processing.

A distributed DBMS typically uses the following three steps to develop a query
processing plan (Ozsu and Valduriez, 1992):

Petitioners' Exhibit 1026, Page 24

l
;

~--D-~_m_·b_u_te_d_D_B_N5 ______ 43_9

;

I
' l
f
~
t·
>

1. Query decomposition In this step, the query is simplified and rewritten into a
structured, relational algebra form.

z. Data localization Here, the query is transformed from a query referencing data
across the network as if the database were in one location into one or more
fragments which each explicitly reference data at only one site.

3. Global optimzzah"on In this final step, decisions are made about the order in
which to execute query fragments, where to move data between sites, and
where parts of the query will be executed.

Certainly, the design of the database interacts with the sophistication of the distrib
uted DBMS to yield the performance for queries. A distributed database will be
designed based on the best possible understanding of how and where the data will be
used. Given the database design (which allocates data partitions to one or more
sites), however, all queries, whether anticipated or not, must be processed as effi
ciently as possible.

One technique used to make processing a distributed query more efficient is to
use what is called a semi join operation (Elmasri and Navathe, 1989). In a sernijoin,
only the joining attribute is sent from one site to another, and then only the required
rows are returned. If only a small percentage of the rows participate in the join, then
the amount of data being transferred is minimal.

For example, consider the distributed database in figure 11-11. Suppose that a
query at Site 1 asks to display the Cust_Name, SIC, and Order_Date for all customers
in a particular Zip_Code range and an Order_Amount above a specified limit.
Assume that 10 percent of the customers fall in the Zip_Code range and 2 percent of
the orders are above the amount limit. A sernijoin would work as follows:

1. A query is executed at Site 1 to create a list of the Cust_No values in the desired
Zip_Code range. So 10,000 customers* .1, or 1,000 rows satisfy the Zip_Code
qualification. Thus, 1,000 rows of 10 bytes each for the Cust_No attribute (the
joining attribute), or 10,000 bytes, will be sent to Site 2.

2. A query is executed at Site 2 to create a list of the Cust_No and Order_Date
values to be sent ~ack to Site 1 to compose the final result. If we asswne
roughly the same number of orders for each customer, then 40,000 rows of the
Order table will match with the customer numbers sent from Site 1. If we
assume any customer order is equally likely to be above the amount limit,
then 800 rows (40,000 • .02) of the Order table rows are relevant to this query.
For each row, the Cust_No and Order_Date need to be sent to Site 1, or
14 bytes • 800 rows, thus 11,200 bytes.

Semijoin: A joining
operation used with d is trib
uted databases in which only
the joining attribute from one
site is transmitted to the other
site, rather than all the selected
attributes from every qualified
row.

Figure 11·11
Distributed database, one
table at each of two sites

II I IIIII

Petitioners' Exhibit 1026, Page 25

$ 1
"""!"" . ' .

440 Chapter 11 - Distributed Databases

The total data transferred is only 21,200 bytes using the semijoin just described.
Compare this total to simply sending the subset of each table needed at one site to the
other site: ·

• To send data from Site 1 to Site 2 would require sending the Cust_No,
Cust_Name, and SIC (65 bytes) for 1000 rows of the Customer table (65,000
bytes) to Site 2.

• To send data from Site 2 to Site 1 would require sending Cust_No and
Order_Date (14 bytes) for 8000 rows of the Order table (112,000 bytes).

Clearly, the sernijoin approach saves network traffic, which can be a major contribut
ing factor to the overall time to respond to a user 's query.

A distributed DBMS uses a cost model to predict the execution time (for data
processing and transmission) of alternative execution plans. The cost model is per
formed before the query is executed based on general network conditions; conse
quently the actual cost may be more or less, depending on the actual network and
node loads, database reorganizations, and other dynamic factors. Thus, the parame
ters of the cost model should be periodically updated as general conditions change in
the network (for example, as local databases are redesigned, network paths are
changed, and DBMSs at local sites are replaced).

Evolution of Distributed DBMS

Distributed database management is still an emerging, rather than established tech
nology. Current releases of distributed DBMS products do not provide all of the fea
tures described in the previous sections. For example, some products provide location
transparency for read-only transactions but do not yet support global updates. To
illustrate the evolution of distributed DBMS products, we briefly describe three stages
in this evolution: remote unit of work, distributed unit of work, and distributed
request. Then, in the next section, we review the major features of leading distributed
DBMSs (present in these packages at the time of writing this text).

In the following discussion the term unit of work refers to the sequence of instruc·
tions required to process a transaction. That is, it consists of the instructions that
begin with a "begin transaction" operation and end with either a "commit" or a
"rollback" operation.

Remote Unit of Work The first stage allows multiple SQL statements to be origi·
nated at one location and executed as a single unit of work on a single remote DBMS.
Both the originating and receiving computers must be running the same DBMS. The
originating computer does not consult the data directory to locate the site containing
the selected tables in the remote unit of work. Instead, the originating application
must know where the data reside and connect to the remote DBMS prior to each
remote unit of work. Thus the remote unit of work concept does not support location
transparency.

A remote unit of work allows updates at the single remote computer. All updates
within a unit of work are tentative until a commit operation makes them permanent
or a rollback undoes them. Thus transaction integrity is maintained for a single
remote site; however, an application cannot assure transaction integrity when more
than one remote location is involved. Referring to the database in Figure 11-9, an
application in San Mateo could update the Part file in Tulsa and transaction integrity
would be maintained. However, that application could not simultaneously update

Petitioners' Exhibit 1026, Page 26

1
i

!

I
l
l

~
;

!
f
l

' ;
I ;
' :

' :
I i
I i
I !
. F

: ~

l

I
~ .

Part file in two or more locations and still be assured of maintaining transaction
the n·ty Thus the remote unit of work also does not provide failure transparency. itlteg .

Di tributed Unit of Work A distributed unit of work allows various statements
.~a unit of work to refer to multiple remote DBMS locations. This approach sup

Wl rts some location transparency, since the data directory is consulted to locate the
baMS containing the selected table in each statement. However, all tables in a single
sQL statement must be at the same location. Thus, a distributed unit of work would

1101 allow the following query, designed to assemble parts information from all three
sites in Figure 11-9:

SELECT DISTINCT
FROM

PART_NUMBER, PART_NAME
PART

WHERE
ORDER BY

COLOR - 'ORANGE'
PART_NUMBER

similarly, a distributed unit of work would not allow a single SQL s tatement that
attempts to update data at more than one location. For example, the following SQL
statement is intended to update the part file at three locations:

UPDATE
SET
WHERE

PART
UNIT_PRICE • 127.49
PART_NUMBER - 12345

This update (if executed) would set the unit price of part number 12345 to $127.49 at
Tulsa, San Mateo, and New York (Figure 11-9). The statement would not be accept
able as a distributed unit of work, however, since the single SQL statement refers to
data at more than one location. The distributed unit of work does support protected
updates involving multiple sites, provided that each SQL statement refers to a table
(or tables) at one site only. For example, suppose in Figure 11-9 we want to increase
the balance of part number 12345 in Tulsa and at the same time decrease the balance
of the same part in New York (perhaps to reflect an inventory adjustment). The fol
lowing SQL statements could be used:

UPDATE
SET
WHERE
UPDATE
SET
WHERE

PART
BALANCE - BALANCE - 50
PART_NUMBER • 12345 AND LO CATION = ' TULSA'
PART
BALANCE - BALANCE + 50
PART_NUMBER- 12345 AND LOCATION- 'N EW YORK':

Under the distributed unit of work concept, either this update will be committed
at both locations, or else it will be rolled back and (perhaps) attempted again. We con
d ude from these examples that the distributed unit of work supports some (but not
all) of the transparency features described earlier in this section.

Distributed Request The distributed request allows a single SQL statement to refer
to tables in more than one remote DBMS, overcoming a major limitation of the dis
tnbuted unit of work. The distributed request supports true location transparency,
smce a single SQL statement can refer to tables at multiple sites. However, the dis
tributed request may or may not support replication transparency or failure trans
parency. It will probably be some time before a true distributed DBMS, one that
supports all of the transparency features we described earlier, appears on the market.

Distributed DBMS 441

II I il ll

Petitioners' Exhibit 1026, Page127

> ,(! ; -

442

) .

Chapter 11 - Distributed Databases

DISTRIBUTED DBMS PRODUCTS

Most of the leading vendors of database management systems have a distributed ver
sion. In most cases, to utilize all distributed database capabilities, one vendor's DBMS
must be running at each node (a homogeneous distributed database environment).
Client/ server forms of a distributed database are arguably the most common form in
existence today. In a client/server environment (see Chapter 8 for an explanation of
client/server databases), it is very easy to define a database with tables on several
nodes in a local or wide area network. Once a user program establishes a linkage with
each remote site, and suitable database middleware is loaded, full location trans
parency is achieved. So, in a client/server database form, distributed databases are
readily available to any information systems developer, and heterogeneity of DBMS
is possible.

Although their approaches are constantly changing, it is illustrative to overview
how different vendors address distributed database management. Probably the most
interesting aspect of the following sections is the differences across products. These
differences (summarized in Table 11-3) suggest how difficult it is to select a distrib
uted DBMS product, since the exact capabilities of the DBMS must be carefully
matched with the needs of an organization. Also, with so many options, and with
each product handling distributed data differently, it is almost impossible to outline
general principles for managing a distributed database. The design of any distributed
database requires careful analysis of both the business's needs and the intricacies of
the DBMS. Thompson (1997) also recommends that a distributed DBMS product
should be used only when you really need a distributed DBMS. Do not use a distrib
uted DBMS to create a backup database for a mission-critical application; easier solu
tions, such as RAID (see Chapter 7), exist for simpler needs.

IBM Corporation and DB2

One of IBM's distributed database products is called DataPropagator Relational
(DPropR), which works in conjnnction with IBM's DB2 family of relational DBMSs on
a variety of operating system platforms. DataPropagator uses a primary site for all
updates, with asynchronous updates sent to other read-only sites. By a primary site
we mean that all updates occur first at a specified site, and all remote sites are
refreshed usually at the same time. Thus, the primary site serves as one official data
base of record for the organization. The data to be replicated across sites are identified ·
and registered in a data dictionary at the primary site. Sites other than the primary
site subscribe to receive the data they want (Edelstein, 1995b).

A powerful capability of DataPropagator is that the data for which a remote site
subscribes need not be simple subsets of the primary site data. Rather, a site can sub
scribe to a simple subset or to the result of a query. For example, a remote bank
branch could subscribe to a table that is the result of joining customer and account
data for only acconnts assigned to that branch. This capability would be especially
powerful for decision support databases, which contain aggregations and summaries
of base data.

IBM is also developing a standard, distributed relational database architecture
(DRDA), which will facilitate heterogeneous, distributed databases. However, as a
proprietary standard, it may not have broad influence on the industry. IBM provides
Data Joiner, which allows a user of an IBM database product to access databases man
aged by products from other vendors. DataJoiner (a type of middleware) provides a
basic level of heterogeneous, distributed database support for users of an IBM DBMS.

Petitioners' Exhibit 1026, Page128

1
l
!

Table 11·3 Distrib uted DBMSs

Vendor

IBM

Oracle

Compu ter
Associates

Microsoft

Sybase Inc.

Product

DataPropagator Relatio~al

Distribu ted Relational.
Database Architecture
(DRDA)

Data Joiner

Replication Server

SQL Anywhere

OmniSQL

Table Snapshot Option

Symmetric Replication option .

CA· Ingres /Replica tor

Ingres/Net and Ingres/Star

SQLServer

Distributed DBMS Products 443

Important Featur~:s .:,: .. ;,;~ .'?~m~>i';ii
• Wor~ ~.psz . _ · · :· '_·,. :;,; ·,; _, .· . ,:~;n:·:':~~I:¥0::;;f;
• Primary· site· and a?)rnchron~u& ~pa~t~S :· .. :>:.: ,· ~ { ~- ~_.:;:.~:::t~;~>
~ Rea~-oilly sib~s s~bscnbe t'op#mart~fte' · . ., ·. '".L '::. ,_, .' < ~t:~;
• Subscrip.ti~n to subse~ ?r g_u~o/::~e~lr;: : ·:.' ' .: ·/ _:--:-_: · .. ~~;:-··:

. . .~~: .. ·._ .. · ,.. ~ ; ··~ :·.~;;:>'· :/:::\ <:~

: =~=~2~:~~M'~.~~~!.f!l11~:i
• Primary site and. distributed read.:O.nly.sites ... :: y >.;: _:-; ·:_Hj:T

. ·····-· -,
- ..

• Heter~geneous databas~s ·. .. .

• Periodic snapshots ·sent to. read-Only ~it~:, . :; .. ::.:. ::-~::~',!.-, .:-.. ;;;:

.-~; ·;.;

• DBA.controls replication ;-- -.:::-: :·-: ·c,

. -. ·- -....

• Master I $hive form allows slave to ~e·an Ingies dat~ba&~ ·:;:.;;:;~·;
: ·. ·.~: .. ~··· -~>::~··,.d-~~.:.:~f~)f~·:~:~ ~i

• Decomposes query to distributed, hotn:ogene.o~ sit~i::/i :5r; :,:;;;:';•

• rwo·phase e?mr,rut · .. :: , _ · ·.:f'';·_n~-:,:i-;~"";(i;ij:2.i.;
. • . Also used With non-h't~. datab~es . _ · ;· .. : :-:_. =~~=, ;:~~: : .. · . .-~.-. ~_·?~': _~<:- ;·,~_<:,

. · •. rM,kcy ·sit~ ~~-distrib~t:a;~~4~~)r -~~i~~;t ~i:!fMl·~~t; · · ,., :;;;~\lr:,
. • ~lii)lish and subscribe, Witl\~.ctid~ana}m&liditi . , .

.. . : ~:~:~ZL: ,;;;,~t:o't;~I~~\~;~;;;~·~,,, .,!@

The Sybase Replication Server was one of the first replication-based distributed
DBl\1Ss. As with the case for IBM, Sybase's solution also is based on a primary site for
updates and distributed read-only databases. Unique to the Sybase Replication
Server approach is that all the updated row information sent to a remote site is sent
as one transaction, so it is easy to control the integrity of a remote site refresh
either all the data in the refresh are processed, or the refresh is aborted through
normal transaction aborting procedures of the local DBMS. Replication Server also
supports hierarchical replication, so a corporate primary site can refresh divisional

II I ~i l l

Petitioners' Exhibit 1026, Page 29

_..., ~·

r r·· ,

444 Chapter 11 - Distributed Databases

sites, which then can refresh local databases, for example. Different times can be
used for each level of refreshing. A site subscribes to a copy of a table, or to any row
and column subsets of a table using a typical SQL WHERE clause. Replication can
also involve stored procedures of a database, not just data. This is a very powerful
feature that allows a database to behave the same way on any site. This feature can
reduce the update traffic on the network. For example, if one update causes other
database changes, then the remote site needs to receive only the first update and the
stored procedures, and all spawned updates will be locally generated at the replicat
ed site. Sybase also provides SQL Anywhere, which is a tool loaded on a mobile
computer that allows a mobile database to be a fully functioning node in a distributed
database.

Another Sybase distributed database product is OmniSQL, which is a gateway to
Sybase, DB2, Oracle, and a few other DBMSs. With OmniSQL, all the data across
these heterogeneous databases appear to be on one server. The user is able to use one
SQL syntax, and OmniSQL translates the query recognizing the unique features and
syntax of the target DBMS. A join may involve tables from several sites, but there are
limited synchronization con trols.

Oracle Corporation

Oracle provides several options for distributed database replication. The original
Table Snapshot option supports the distribution of periodic snapshots of a database
table to be sent to other read-only nodes in the distributed database network. In
addition, the newer Symmetric Replication option, a form of asynduonous distrib
uted database technology, allows multiple master (or updateable) copies of a full
table, and all changes to any one of the masters are broadcast to all of the other mas
ters. A second version of the Symmetric Replication option extends the Table
Snapshot option to allow target sites for a snapshot to also update data in the local
database copy. All updates eventually flow back to a master database, for further dis
tribution to all replicas (so there are no peer-to-peer refreshes). Snapshots can be a full
refresh of a table (or its subset) or of joined tables. Oracle supports a "fast refresh,"
which we earlier in the chapter called a differential refresh. A fast refresh must be
based on only one table. Oracle does not use the publish-and-subscribe approach to
defining replicas. Instead, the database administrator iden tifies the portions of the
database to be replicated (this includes not only data but also any database object,
such as a view, trigger, and so forth). Replica schemas are thus controlled by a global
database administrator. Oracle also uses stored procedures as the way to propagate
changes across replicated sites. All the forms of asynchronous technology are an inte
gral par t of the Oracle product.

ln addition, Oracle supports a two-phase commit approach to synchronizing
copies of data. This synchronous distributed database technology supports distrib
u ted queries and transactions, synchronous replication, and is a standard component
of Oracle.

Computer Associates International and lngres

The CA-lngres/ Replicator uses yet a different approach. Replicator does not require
a master or primary site; thus all copies of data are updateable. Replicator supports
hierarchical replication. A database administrator registers what data in a database
may be replicated, and other sites subscribe to a replication service. Replica tor imple
ments three forms of replication: peer-to-peer, in which any copy is updateable, and

Petitioners' Exhibit 1026, Page 30

C nflict Resolver module determines which update is the official update across all
~ ~atabases; the tractitional master I slave in which one database is the only one that

e be updated; and a master /slave, in which the slave can be a non-Ingres database.
can fugres/Net and Ingres/Star work together to provide operational access to a
distributed, homogeneous database of Ingres sites. Ingres/Star breaks a query into

bqueries corresponding to the nodes in the distributed database. It then transmits
such subquery to the instance of Ingres at each of the relevant sites. Ingres /Star at the
~a·tiating site then collects the results sent to it from each remote site processing a sub
~ery, and returns the consolidated result to the originating p rocess. A two-phase
~orrunit protocol is used to synchronize data across nodes. Ingres/Star can also be
used with DB2, I!VlS, and other non-CA DBMSs.

Microsoft Corporation and SQL Server

SQL Server uses the primary-site approach, in which the database at one site is the
only one that can receive updates. SQL Server also uses the publish-and-subscribe
approach utilized by several of the other distributed DBMS products. An interesting
concept with SQL Server is how far it takes the publish-and-subscribe analogy. Data
published for replication are packaged into an "article." An article is a row and/ or
column subset of a table at the primary site. Articles are grouped into a "publication/'
which is transmitted to subscriber sites as a Logical unit of work There can be only
one subscriber to a publication on a given site, but the subscriber database can pass
along its copy of the publication to other databases at the same site. For a mobile
database (a database on a laptop computer or a microprocessor server on a dial-up
network), SQL Server works in conjunction with ODBC drivers and the Jet engine
available with Access and Visual Basic.

SUMMARY

This chapter covered various issues and technologies for distributed databases. We
saw that a ctistributed database is a single logical database that is spread across com
puters in multiple locations connected by a data communications network. A ctis
tributed database is contrasted with a decentralized database, in which distributed
data are not interconnected. In a distributed database, the network must allow users
to share the data as transparently as possible, yet must allow each node to operate
autonomously, especially when network linkages are broken or specific nodes fail.
Business conditions today encourage the use of distributed databases: dispersion
and autonomy of business units (including globalization of organizations), need for
data sharing, and the costs and reliability of data communications. A distributed
database environment may be homogeneous, involving the same DBMS at each
node, or heterogeneous, with potentially different DBMSs at different nodes. Also, a
~stributed database environment may keep all copies of data and related data in
IIIUnediate synchronization, or may tolerate planned delays in data updating through
asynchronous methods.

There are numerous advantages to distnbuted databases. The most important of
these are the following: increased reliability and availability of data, local control by
users over their data, modular (or incremental) growth, reduced communications
costs, and faster response to requests for data. There are also several costs and disad
vantages of distributed databases: software is more costly and complex, processing

Summary 445

II I IIIII

Petitioners' Exhibit 1026, Page 31

446 Chapter 11- Di.:;tributed Databases

overhead often increases, maintaining data integrity is often more difficult, and if
data are not distributed properly, response to requests for data may be very slow.

There are several options for distributing data in a network: data replication, hor
izontal partitioning, vertical partitioning, and combinations of these approaches.
With data replication, a separate copy of the database (or part of the database) is
stored at each of two or more sites. Data replication can result in improved reliability
and faster response, can be done simply under certain circumstances, allows nodes to
operate more independently (yet coordinated) of each other, and reduces network
traffic; however, additional storage capacity is required, and inunediate updating at
each of the sites may be difficult. Replicated data can be updated by taking periodic
snapshots of an official record of data and sending the snapshots to replicated sites.
These snapshots can involve all data or only the data that have changed since the last
snapshot. With horizontal partitioning, some of the rows of a relation are placed at
one site, and other rows are placed in a relation at another site (or several sites). On
the other hand, vertical partitioning distributes the columns of a relation among dif
ferent sites. The objectives of data partitioning include improved performance and
security. Combinations of data replication and horizontal and vertical partitioning are
often used. Organizational factors, frequency and location of queries and transac
tions, possible growth of data and node, technology, and the need for reliability influ
ence the choice of a data distribution design.

To have a distributed database, there must be a d istributed DBMS that coordi
nates the access to data at the various nodes. Requests for data by users or applica
tion programs are first processed by the distributed DBMS, which determines
whether the transaction is local (can be processed at the local site), remote (can be
processed at some other site), or global (requires access to data at several nonlocal
sites). For global transactions, the distributed DBMS consults the data directory and
routes parts of the request as necessary, and then consolidates results from the
remote sites.

A distributed DBMS should isolate users from the complexities of distributed
database management. By location transparency, we mean that although data are
geographically distributed, they appear to users as if all of the data were located at a
single node. By replication transparency, we mean that although a data item may be
stored at several different nodes, the user may treat the item as if it were a single item
at a single node. With failure transparency, either all the actions of a transaction are
completed at each site, or else none of them are conunitted. Distributed databases can
be designed to allow temporary inconsistencies across the nodes, when immediate
synchronization is not necessary. With concurrency transparency, each transaction
appears to be the only activity in the system. Failure and concurrency transparency
can be managed by commit protocols, which coordinate updates across nodes, lock
ing data, and timestamping.

A key decision made by a distributed DBMS is how to process a global query.
The time to process a g lobal query can vary from a few seconds to many hours
depending on how intelligent the DBMS is in producing an efficient query-processing
plan. A query-processing plan involves decomposing the query into a structured set
of steps, identifying different steps with local data at different nodes in the distrib
uted database, and finally choosing a sequence and location for executing each step
of the query.

Few (if any) distributed DBMS products provide all forms of transparency, all
forms of data replication and partitioning, and the same level of intelligence in dis
tributed query processing. These products are, however, improving rapidly as the
business pressures for distributed systems increase. Leading vendors of relational
database products have introduced distributed versions, with tools to help a database
administrator design and manage a distributed database.

Petitioners' Exhibit 1026, Page132

?·
~.

;~

KE Y T E RM S

Asynchronous
distributed database

Commit protocol
Concurrency

transparency
Decentralized database
Distributed database

Failure transparency
Global transaction
Local autonomy
Local transaction
Location transparency
Replication transparency
Semijoin

Synchronous distributed
database

Times tamping
Transaction manager
Two-phase conunit

R EV I EW QUEST I O NS

1. Define each of the following terms:

a. distributed database e. local autonomy

b. location transparency f. timestamping

c. two-phase commit g. transaction manager

d . global transaction

2. Contrast the following terms:

a. distributed database; decentralized database

b. homogeneous distributed database; heterogeneous distributed database

c. location transparency; local autonomy

d. asynchronous distributed database; synchronous distributed database

e. horizontal partition; vertical partition

f. publish; subscribe

g. full refresh; differential refresh

h. push replication; pull replication

i. local transaction; global transaction

3. Briefly describe three business conditions which are encouraging the use of distrib-
uted databases.

4. Explain two types of homogeneous distributed databases.

5. Briefly describe five major characteristics of homogeneous distributed databases.

6.

7.

8.

9.

10.

Briefly describe four major characteristics of heterogeneous distributed databases.

Briefly describe five advantages for distributed databases compared to centralized
databases.

Briefly describe four costs and disadvantages for distributed databases.

Briefly describe five advantages to the data replication form of distributed databases.

Briefly describe two disadvantages to the data replication form of distributed
databases.

Chapter Review 447

II I III II ,

. '

Petitioners' Exhibit 1026, Page 33

IIH

• I

) .

·.

_4_4a _____ c_ha __ p_te_r _l_l ___ rn_·s_tr_i_bu_t_e_d_D_a_t_ab_~ __ s ___ ~
. ,

11. Explain under what circumstances a snapshot replication approach appears t b
o eb~t.

12 Explain under what circWI\5tances a near real-time replication approach a
~~ . ~B~

13. Briefly descri~ five factors that influence whether data replication is a viabl .
tributed database design strategy for an application. e dl'>·

14. Explain the advantages and disadvantages of horizontal partitioning for dismbut.-d
databases.

15. Explain the advantages and disadvantages of vertical partitioning for distribut~J
databases.

16. Briefly describe five factors that influence the selection of a distributed datab<hl·
design strategy.

17. Briefly describe five \U\.ique functions performed by a distributed database manal\l~
ment system.

18. Briefly explain the effect of location transparency on an author of an ad hoc cia tab,,~
query.

19. Briefly explain the effect of replication transparency on an author of an ad hoc cta1,1•

base query

20. Briefly explain in what way two-phase commit can still fail to create a compll·tt:h
consistent distributed database. ·

21. Briefly describe three improvements to the two-phase commit protocol.

22. Briefly describe the three steps in distributed query processing.

23. Briefly explain the conditions that suggest the use of a semijoin will result in fastl'r
distributed query processing.

PR O BL EMS AND EXERCISES

1. Match the following terms to the appropriate definition:

replication transparency

unit of work

global transaction

concurrency transparency

replication

failure transparency

a. guarantees that all or none of the
updates occur in a transaction across ,1

distributed database

b. the appearance that a given transacti1m
is the only transaction running against
a distributed database

c. treating copies of data as if there were
only one copy

d. references data atmore than one
location

e. sequence of instructions required to
process a transaction

f. a good database distribution strategy
for read-only data

Petitioners' Exhibit 1026, Pagel 34

i
r

Problems and Exercises 2-4 refer to the distributed database shown in Figure 11-9.

2. Name the type of transparency (location, replication, failure, concurrency) that is
indicated by each statement.

a. End users in New York and Tulsa are updating the Engineering Parts database in
San Mateo at the same time. Neither user is aware that the other is accessing the
data, and the system protects the data from lost updates due to interference.

b. An end user in Tulsa deletes an item from the Standard Price List at the site.
Unknown to the user, the distributed DBMS also deletes that item from the
Standard Price List in San Mateo and New York.

c. A user in San Mateo initiates a transaction to delete a part from San Mateo parts
and simultaneously to add that part to New York parts. The transaction is com
pleted in San Mateo but due to transmission failure is not completed in New
York The distributed DBMS automatically reverses the transaction at San Mateo
and notifies the user to retry the transaction.

d. An end user in New York requests the balance on hand for part number 33445.
The user does not know where the record for this part is located. The distributed
DBMS consults the directory and routes the request to San Mateo.

3. Consider the Standard Price List in Figure 11-9.

a. Write an SQL statement that will increase the Unit_Price of Part_Number 56789
bylO%.

b. Indicate whether the statement you wrote in part (a) is acceptable under each of
the following protocols:

i. Remote unit of work

ii. Distributed unit of work

ill. Distributed request

4. Consider the four parts databases in Figure 11-9.

a. Write an SQL statement that will increase the Balance in Part_Number 56789 in
San Mateo Parts by 10 percent, and another SQL statement that will decrease the
Balance in Part_Number 12345 in New York Parts by 10 percent.

b. Indicate whether the statement you wrote in part (a) is acceptable under each of
the following protocols:

i. Remote unit of work

ii. Distributed unit of work

iii. Distributed request

5. Speculate on why you think a truly heterogeneous distributed database environ
ment is so difficult to achieve. What specific difficulties exist in this environment?

6. Explain the major factors at work in creating the drastically different results for the six
query-processing strategies ou tlined in Table 11-2. .

7. Do any of the six query-processing strategies in Table 11-2 utilize a semijoin? If so,
explain how a semijoin is used. If not, explain how you might use a semijoin to create
an efficient query-processing strategy or why the use of a semijoin will not work in
this situation.

8. Consider the SUPPLIER, PART, and StUPMENT relations and distributed database
mentioned in the section on Query Optimization in this chapter.

a. Write a global SQL query (submitted in Chicago) to display the Part_Number
and Color for every part that is not supplied by a supplier in Columbus.

Chapter Review 449

II I IIIII

Petitioners' Exhibit 1026, Page 35

ea.;:

450

I •

Chapter 11 -Distributed Databases

b. Design three alternative query-processing strategies for your answer to part (a).

c. Develop a table similar to Table 11-2 to compare the processing times for these
three strategies.

d. Which of your three strategies was best and why?

e. Would data replication or horizontal or vertical partitioning of the database allow
you to create an even more efficient g_uery·processing strategy? Why or why not?

9. Consider the following normalized relations for a database in a large retail store chain:

STORE (Store ID. Region, ~c:r:a_g_e;-=~' Square_Feet)
Etv1PLOYEE (Employee_lD, ~:~e---~~~~· Employee_Name, Employee_Address)
DEPARTMENT (Department_ID, ~~C:g_e_:-=~~' Sales_ Goal)
SCHEDULE (Department_ID, Employee_ID, Date)

Assume that a data communications network links a computer at corporate head
quarters with a computer in each retail outle t. The chain includes 50 stores with an
average of 75 employees per store. There are 10 departments in each store. A daily
schedule is maintained for 5 months (the previous 2 months, the current month, and
next 2 months). Further assume that

• Each s tore manager updates the employee work schedule for her or his store
roughly five times per hour.

• The corporation generates all payroll checks, employee notices, and other mailings
for all employees for all stores.

• The corporation establishes a new sales goal each month for each department.

• The corporation hires and fires store managers and controls all information about
store managers; store managers hire and fire all store employees and control all
iniormation about employees in that store.

a. Would you recommend a distributed database, a centralized database, or a set of
decentralized databases for this retail store chain?

b. Assuming that some form of distributed database is justified, what would you rec·
ommend as a data distribution strategy for this retail store chain?

FIELD EXERC I SES

1. Visit an organization that has installed a distributed database management system.
Explore the following questions:

a. Does the organization have a truly distributed database? If so, how are the data
distributed: replication, horizontal partitioning, vertical partitioning?

b. What commercial distributed DBMS products are used? What were the reasons
the organization selected these products? What problems or limitations has the
organization found with these products?

c. To what extent does this system provide each of the following:

i. Location transparency

ii. Replication transparency

iii. Concurrency transparency

iv. Failure transparency

v. Query optimization

d. What are the organization's plans for future evolution of distributed databases?

Petitioners' Exhibit 1026, Pagel 36

T

e. Talk with a database administrator in the organization to explore how decisions
are made concerning the location of data in the network. What factors are consid
ered in this decision? Are any analytical tools used? If so, is the database adminis
trator satisfied that the tools help to make the processing of queries efficient?

z. Using the Web site for this text, investigate the latest distributed database product
offerings from the DBMS vendors mentioned in this chapter. Update the description
of the features for one of the distributed DBMS products listed.

3. VISit an organization that has installed a client/server database environment. Explore
the following questions:

a. What distributed database features do the client/ server DBMSs in use offer?

b. Is the organiza tion attempting to achieve the same benefits from a clien t/server
environment as are outlined in this chapter for distributed databases? Which of
these benefits are they achieving? Which cannot be achieved with client/se rver
technologies?

R E F ERE N CES

Bell, D. and J. Crimson. 1992. Distributed Database Systt?ms. Reading, MA: Addison-Wesley.

Date, C. J. 1983. An introduction to Database Systt?ms. Vol. 2. Reading, MA: Addison-Wesley.

Date, C. J. 1995. An introduction to Database Systt?ms. 6th ed. Reading, MA: Addison-Wesley.

Edelstein, H. 1993. "Replicating Data." DBMS 6 (June): 59-64.

Edelstein, H. 1995a. "The Challenge of Replication, Part I." DBMS 8 (March): 46-52.

Edelstein, H. 1995b. "The Challenge of Replication, Part ll." DBMS 8 (April): 62- 70, 103.

Elmasri, R, and S. B. Navathe. 1989. Fundamentals of Database Systt?ms. Menlo Park, CA:
Benjamin/ Cummings.

Froemming, G. 1996. "Design and Replication: Issues with Mobile Applications-Part 1."
DBMS 9 (March): 48-56.

Koop, P. 1995. "Replication at Work." DBMS 8 (March): ~0.

McGovern, D. 1993. "Two-Phased Commit or Replication." Database Programming & Design 6
(May): 35-44.

Ozsu, M. T., and P. Valduriez. 1992. "Distributed Database Systems: Where Were We?"
Database Programming & Design 5 (April): 49-55.

&hussel, G. 1994. "Database Replication: Watch the Data Fly." Client/Server Today (October):
80-90.

The, L. 1994. "Distribute Data Withou t Choking the Net." Datamation (January 7): 35-38.

Thompson, C. 1997. "Database Replication: Comparing Three Leading DBMS Vendors'
Approaches to Replication." DBMS 10 (May): 76-84.

Chapter Review 451

II I III li

Petitioners' Exhibit 1026, Page 37

r
f
l
f'
"

~' : ·

MOUNTAIN VIEW COMMUNITY HOSPITAL

Project Case

In the Mountain View Community Hospital case in
Chapter 7, you made some physical database design
decisions for a centralized database. Refer to your
answers to Project Questions and Project Exercises in
that case segment.

PROJECT DESCRIPTION

MoW1tain View Community Hospital is growing in sev
eral ways. First, the hospital will be opening its first
sa tellite outpatient surgical unit in the Golf Estates
suburb. Second, the hospital has been acquiring the
practices of several doctor groups in the community
and will be providing all patient record-keeping and
billing services for these offices and clinics. Given these
significant changes, the hospital information systems
staff members aie considering using distributed com
puting and databases.

PROJECT QUESTIONS

1. What additional kinds of information, besides the
information collected to make the physical data
base design decisions in the case in Chapter 7, do
you need to decide if Mountain View Community
should use distributed database technology?

2. What additional kinds of information, besides the
information collected to make the physical
database design decisions in the case in Chapter 7,
do you need to design a distributed database for
Mountain View Community?

3. Are there opportunities for data replication,
horizontal partitioning, and vertical partitioning
of a distributed database for Mountain View
Community? If you are not sure, what other
information would you need to answer this
question?

PROJECT EXERCISES

Most of the data maintenance for the Mountain View
Community Hospital database is local at the site of
patient activity. For example, over 80 percent of changes
to data represented in Case Figure 1 in Chapter 7 are

452

made from doctor offices, 10 pen:ent will be made at the
main hospital, and 10 percent at the satellite surgical
unit. Also, most queries are local (for example, a physi
cian at a doctor's office will look up what treatments
have been performed on a patient when that patient is
in the office). But, because medical service questions
usually require rapid response, the doctors are con
cerned about the performance of a distributed database.

On the other hand, administrative queries are
almost exclusively centralized at the administrative
offices located at the main hospital. Queries to produce
statements, summaries of treatment statistics for state
health agency inquiries, and physician productivity and
profitability questions all are submitted by administra
tive staff at the hospital.

One proposal for the design of Monntain View's
distributed database is to horizontally partition physi
cian, patient, procedure, and consumption data and dis
tribute these to the local physician office computer. For
example, records for all the physicians in one practice,
all the patients for whom any of these doctors are the
primary caie physician, and all the associated activity
data will be stored on one computer at the doctors'
office. Treatment and Item data are to be replicated
across the sites. The main hospital computer and the
surgical unit's computer are to maintain a copy of all
data, since all the data need to be accessible when a
patient is being treated at the hospital or surgical unit
and data links to the offices are down.

1. What form of data replication integrity control
would you recommend for this distributed
database and why?

2. What would you recommend as a global query
optimization plan for each of the following queries:

a. What is the total number of units consumed of
each Item during the last month?

b. How many patients has each physician treated
in each of the following categories over the
past month: doctor offices, surgical unit, main
hospital?

c. Grouped by physician medical specialty, how
many of each kind of treatment has each
physician prescribed?

Petitioners' Exhibit 1026, Page 38

